
DB2 UDB V8.1
SQL Cookbook
Graeme Birchall
4-Feb-2004

 Graeme Birchall ©

 2

DB2 UDB V8.1 Cookbook ©

Preface 3

Preface
Important!

If you didn’t get this document directly from my website, you may have got an older edition.
The book gets changed all the time, so if you want the latest, go to the source. Also, the latest
edition is usually the best book to have, even if you are using an older version of DB2, as the
examples are often much better.

This Cookbook is for DB2 UDB for Windows, UNIX, LINX, OS/2, etc. It is not suitable for
DB2 for z/OS or DB2 for AS/400. The SQL in these two products is quite different.

Disclaimer & Copyright

DISCLAIMER: This document is a best effort on my part. However, I screw up all the time,
so it would be extremely unwise to trust the contents in its entirety. I certainly don’t. And if
you do something silly based on what I say, life is tough.

COPYRIGHT: You can make as many copies of this book as you wish. And I encourage you
to give it to others. But you cannot sell it, nor charge for it (other than to recover reproduction
costs), nor claim the material as your own, nor replace my name with another. Secondary dis-
tribution for gain is not allowed. You are also encouraged to use the related class notes for
teaching. In this case, you can charge for your time and materials (and your expertise). But
you cannot charge any licensing fee, nor claim an exclusive right of use.

TRADEMARKS: Lots of words in this document, like "DB2", are registered trademarks of
the IBM Corporation. And lots of other words, like "Windows", are registered trademarks of
the Microsoft Corporation. Acrobat is a registered trademark of the Adobe Corporation.

Tools Used

This book was written on a Dell PC that came with oodles or RAM. All testing was done on
DB2 V8.1.4. Word for Windows was used to write the document. Adobe Acrobat was used to
make the PDF file. As always, the book would have been written in half the time if Word for
Windows wasn’t such a bunch of bug-ridden junk.

Book Binding

This book looks best when printed on a doubled sided laser printer and then suitably bound.
To this end, I did some experiments a few years ago to figure out how to bind books cheaply
using commonly available materials. I came up with what I consider to be a very satisfactory
solution that is fully documented on page 341.

Author / Book

Author: Graeme Birchall ©
Address: 1 River Court, Apt 1706
 Jersey City NJ 07310-2007
Ph/Fax: (201)-963-0071
Email: Graeme_Birchall@compuserve.com
Web: http://ourworld.compuserve.com/homepages/Graeme_Birchall

Title: DB2 UDB V8.1 SQL Cookbook ©
Date: 4-Feb-2004

 Graeme Birchall ©

 4

Author Notes
Book History

This book originally began a series of notes for my own use. After a while, friends began to
ask for copies, and enemies started to steal it, so I decided to tidy everything up and give it
away. Over the years, new chapters have been added as DB2 has evolved, and I have found
new ways to solve problems. Hopefully, this process will continue for the foreseeable future.

Why Free

This book is free because I want people to use it. The more people that use it, and the more
that it helps them, then the more inclined I am to keep it up to date. For these reasons, if you
find this book to be useful, please share it with others.

This book is free, rather than formally published, because I want to deliver the best product
that I can. If I had a publisher, I would have the services of an editor and a graphic designer,
but I would not be able to get to market so quickly, and when a product changes as quickly as
DB2 does, timeliness is important. Also, giving it away means that I am under no pressure to
make the book marketable. I simply include whatever I think might be useful.

Other Free Documents

The following documents are also available for free from my web site:

• SAMPLE SQL: The complete text of the SQL statements in this Cookbook are available
in an HTML file. Only the first and last few lines of the file have HTML tags, the rest is
raw text, so it can easily be cut and paste into other files.

• CLASS OVERHEADS: Selected SQL examples from this book have been rewritten as
class overheads. This enables one to use this material to teach DB2 SQL to others. Use
this cookbook as the student notes.

• OLDER EDITIONS: This book is rewritten, and usually much improved, with each new
version of DB2. Some of the older editions are available from my website. The others can
be emailed upon request. However, the latest edition is the best, so you should probably
use it, regardless of the version of DB2 that you have.

Answering Questions

As a rule, I do not answer technical questions because I need to have a life. But I’m interested
in hearing about interesting SQL problems, and also about any bugs in this book. However
you may not get a prompt response, or any response. And if you are obviously an idiot, don’t
be surprised if I point out (for free, remember) that you are idiot.

Graeme

DB2 UDB V8.1 Cookbook ©

Book Editions 5

Book Editions
Upload Dates

• 1996-05-08: First edition of the DB2 V2.1.1 SQL Cookbook was posted to my web site.
This version was is Postscript Print File format.

• 1998-02-26: The DB2 V2.1.1 SQL Cookbook was converted to an Adobe Acrobat file
and posted to my web site. Some minor cosmetic changes were made.

• 1998-08-19: First edition of DB2 UDB V5 SQL Cookbook posted. Every SQL statement
was checked for V5, and there were new chapters on OUTER JOIN and GROUP BY.

• 1998-08-26: About 20 minor cosmetic defects were corrected in the V5 Cookbook.

• 1998-09-03: Another 30 or so minor defects were corrected in the V5 Cookbook.

• 1998-10-24: The Cookbook was updated for DB2 UDB V5.2.

• 1998-10-25: About twenty minor typos and sundry cosmetic defects were fixed.

• 1998-12-03: IBM published two versions of the V5.2 upgrade. The initial edition, which
I had used, evidently had a lot of problems. It was replaced within a week with a more
complete upgrade. This book was based on the later upgrade.

• 1999-01-25: A chapter on Summary Tables (new in the Dec/98 fixpack) was added and
all the SQL was checked for changes.

• 1999-01-28: Some more SQL was added to the new chapter on Summary Tables.

• 1999-02-15: The section of stopping recursive SQL statements was completely rewritten,
and a new section was added on denormalizing hierarchical data structures.

• 1999-02-16: Minor editorial changes were made.

• 1999-03-16: Some bright spark at IBM pointed out that my new and improved section on
stopping recursive SQL was all wrong. Damn. I undid everything.

• 1999-05-12: Minor editorial changes were made, and one new example (on getting mul-
tiple counts from one value) was added.

• 1999-09-16: DB2 V6.1 edition. All SQL was rechecked, and there were some minor ad-
ditions - especially to summary tables, plus a chapter on "DB2 Dislikes".

• 1999-09-23: Some minor layout changes were made.

• 1999-10-06: Some bugs fixed, plus new section on index usage in summary tables.

• 2000-04-12: Some typos fixed, and a couple of new SQL tricks were added.

• 2000-09-19: DB2 V7.1 edition. All SQL was rechecked. The new areas covered are:
OLAP functions (whole chapter), ISO functions, and identity columns.

• 2000-09-25: Some minor layout changes were made.

• 2000-10-26: More minor layout changes.

• 2001-01-03: Minor layout changes (to match class notes).

• 2001-02-06: Minor changes, mostly involving the RAND function.

 Graeme Birchall ©

 6

• 2001-04-11: Document new features in latest fixpack. Also add a new chapter on Iden-
tity Columns and completely rewrite sub-query chapter.

• 2001-10-24: DB2 V7.2 fixpack 4 edition. Tested all SQL and added more examples, plus
a new section on the aggregation function.

• 2002-03-11: Minor changes, mostly to section on precedence rules.

• 2002-08-20: DB2 V8.1 (beta) edition. A few new functions are added, plus there is a
new section on temporary tables. The Identity Column and Join chapters were completely
rewritten, and the Whine chapter was removed.

• 2003-01-02: DB2 V8.1 (post-Beta) edition. SQL rechecked. More examples added.

• 2003-07-11: New chapters added for temporary tables, compound SQL, and user defined
functions. New DML section also added. Halting recursion section changed to use user-
defined function.

• 2003-09-04: New sections on complex joins and history tables.

• 2003-10-02: Minor changes. Some more user-defined functions.

• 2003-11-20: Added "quick find" chapter.

• 2003-12-31: Tidied up the SQL in the Recursion chapter, and added a section on the
merge statement. Completely rewrote the chapter on materialized query tables.

• 2004-02-04: Added select-from-DML section, and tidied up some code. Also managed
to waste three whole days due to bugs in Microsoft Word.

Writing Software Whines

This book is written using Microsoft Word for Windows. I’ve been using this product for ap-
proximately ten years, and it has always been a bunch of bug-ridden junk. I could have writ-
ten more than twice as much that was twice as good in half the time, if it weren’t for all of the
unnecessary bugs in Word. So if somebody from Microsoft is reading this note, and if they
feel committed to delivering decent software, kindly contact me.

Unfortunately, I’m probably going to be stuck with Word for a while. I’ve spent quite a bit of
time looking at the alternatives and they are generally less productive, or have their own set
of bugs, or are just wonderful, but cost too much and/or take too long to learn. Also unfortu-
nately, I am now getting to the point where Word is so buggy that it is all but impossible to
add new stuff to this document. Damn.

DB2 UDB V8.1 Cookbook ©

Table of Contents 7

Table of Contents

PREFACE ..3
AUTHOR NOTES..4
BOOK EDITIONS ..5
TABLE OF CONTENTS..7
QUICK FIND ..13

Index of Concepts ... 13
INTRODUCTION TO SQL...17

Syntax Diagram Conventions ...17
SQL Components .. 18
DB2 Objects..18
DB2 Data Types ...19
Distinct Types ...21
SELECT Statement ..22
FETCH FIRST Clause ..24
Correlation Name..25
Renaming Fields...26
Working with Nulls ..26
Quotes and Double-quotes...27
SQL Predicates.. 28
Basic Predicate...28
Quantified Predicate ...28
BETWEEN Predicate..29
EXISTS Predicate...29
IN Predicate ..30
LIKE Predicate..30
NULL Predicate ..32
Precedence Rules ..32
CAST Expression .. 33
VALUES Clause ... 34
CASE Expression .. 37
DML (Data Manipulation Language)... 40
Insert ...40
Update ..43
Delete..46
Select DML Changes..47
Merge..51

COMPOUND SQL ..57
Introduction ... 57
Statement Delimiter ..57
SQL Statement Usage ... 58
DECLARE Variables...58
FOR Statement...59
GET DIAGNOSTICS Statement ...59
IF Statement ...60
ITERATE Statement ...60
LEAVE Statement...61
SIGNAL Statement ...61
WHILE Statement ...61
Other Usage ... 62
Trigger...63
Scalar Function...63
Table Function ..64

COLUMN FUNCTIONS...67
Introduction ...67
Column Functions, Definitions... 67
AVG ..67
CORRELATION..69
COUNT ...69

 Graeme Birchall ©

 8

COUNT_BIG...70
COVARIANCE ..70
GROUPING ..71
MAX ..71
MIN ...72
REGRESSION..72
STDDEV ...73
SUM..74
VAR or VARIANCE...74

OLAP FUNCTIONS..75
Introduction ... 75
OLAP Functions, Definitions .. 78
Ranking Functions ..78
Row Numbering Function ...84
Aggregation Function ...90

SCALAR FUNCTIONS ...101
Introduction ...101
Sample Data ...101
Scalar Functions, Definitions ... 101
ABS or ABSVAL ...101
ACOS..102
ASCII...102
ASIN..102
ATAN ..102
ATANH..102
ATAN2 ..102
BIGINT ..102
BLOB ..103
CEIL or CEILING ..103
CHAR..104
CHR ..106
CLOB ..106
COALESCE ..106
CONCAT...107
COS ..108
COSH..108
COT ..108
DATE ..109
DAY...109
DAYNAME ..110
DAYOFWEEK...110
DAYOFWEEK_ISO...110
DAYOFYEAR..111
DAYS ..111
DBCLOB ...111
DEC or DECIMAL ...112
DEGREES ..112
DEREF..112
DECRYPT_BIN and DECRYPT_CHAR...112
DIFFERENCE...113
DIGITS ..113
DLCOMMENT...113
DLLINKTYPE..114
DLURLCOMPLETE ..114
DLURLPATH ..114
DLURLPATHONLY...114
DLURLSCHEME...114
DLURLSERVER ...114
DLVALUE..114
DOUBLE or DOUBLE_PRECISION...114
ENCRYPT...114
EVENT_MON_STATE..115
EXP...115
FLOAT ..115
FLOOR..116
GENERATE_UNIQUE..116
GETHINT ..117
GRAPHIC..117
HEX...117
HOUR ...118
IDENTITY_VAL_LOCAL...118
INSERT...119
INT or INTEGER...119

DB2 UDB V8.1 Cookbook ©

Table of Contents 9

JULIAN_DAY ..119
LCASE or LOWER..121
LEFT ...122
LENGTH ...122
LN or LOG...123
LOCATE..123
LOG or LN...123
LOG10 ..123
LONG_VARCHAR ..124
LONG_VARGRAPHIC..124
LOWER...124
LTRIM ...124
MICROSECOND ..124
MIDNIGHT_SECONDS ..124
MINUTE ..125
MOD..125
MONTH...126
MONTHNAME ..126
MULTIPLY_ALT..126
NODENUMBER..127
NULLIF..127
PARTITION...127
POSSTR ...128
POWER ..128
QUARTER ..128
RADIANS ..128
RAISE_ERROR ..129
RAND..129
REAL...132
REC2XML...133
REPEAT..133
REPLACE ...133
RIGHT...134
ROUND...134
RTRIM...134
SECOND...134
SIGN ...135
SIN ..135
SINH ...135
SMALLINT ..135
SNAPSHOT Functions ...135
SOUNDEX ..135
SPACE..136
SQLCACHE_SNAPSHOT ..137
SQRT ..137
SUBSTR ...138
TABLE...139
TABLE_NAME ..139
TABLE_SCHEMA ...139
TAN...140
TANH ..140
TIME ...140
TIMESTAMP...140
TIMESTAMP_FORMAT ...140
TIMESTAMP_ISO...141
TIMESTAMPDIFF...141
TO_CHAR...142
TO_DATE ...142
TRANSLATE...143
TRUNC or TRUNCATE ..143
TYPE_ID ...144
TYPE_NAME ..144
TYPE_SECHEMA...144
UCASE or UPPER..144
VALUE ..144
VARCHAR ..144
VARCHAR_FORMAT...145
VARGRAPHIC ..145
VEBLOB_CP_LARGE ..145
VEBLOB_CP_LARGE ..145
WEEK ...145
WEEK_ISO ...146
YEAR ..146
"+" PLUS...146
"-" MINUS..147
"*" MULTIPLY ...147

 Graeme Birchall ©

 10

"/" DIVIDE ...147
"||" CONCAT ...148

USER DEFINED FUNCTIONS ...149
Sourced Functions.. 149
Scalar Functions ... 151
Description ..151
Examples ..152
Table Functions... 156
Description ..156
Examples ..157

ORDER BY, GROUP BY, AND HAVING ..159
Introduction ...159
Order By... 159
Sample Data ...159
Order by Examples ...159
Notes...160
Group By and Having.. 161
GROUP BY Sample Data...161
Simple GROUP BY Statements ...161
GROUPING SETS Statement ..163
ROLLUP Statement ..167
CUBE Statement ..171
Complex Grouping Sets - Done Easy ..173
Group By and Order By ..175
Group By in Join ...176
COUNT and No Rows ..176

JOINS ...177
Why Joins Matter ..177
Sample Views ...177
Join Syntax .. 177
ON vs. WHERE ..179
Join Types.. 180
Inner Join ..180
Left Outer Join ..181
Right Outer Join..183
Full Outer Joins...184
Cartesian Product ...188
Join Notes.. 190
Using the COALESCE Function ...190
Listing non-matching rows only ..190
Join in SELECT Phrase..191
Predicates and Joins, a Lesson ...194
Joins - Things to Remember ..195
Complex Joins ..196

SUB-QUERY..199
Sample Tables..199
Sub-query Flavours... 199
Sub-query Syntax ...199
Correlated vs. Uncorrelated Sub-Queries ..206
Multi-Field Sub-Queries..207
Nested Sub-Queries ...207
Usage Examples.. 208
True if NONE Match ...208
True if ANY Match ..209
True if TEN Match...210
True if ALL match ...211

UNION, INTERSECT, AND EXCEPT...213
Syntax Diagram ..213
Sample Views ...213
Usage Notes... 214
Union & Union All..214
Intersect & Intersect All...214
Except & Except All ..214
Precedence Rules ..215
Unions and Views ...216

MATERIALIZED QUERY TABLES ...217
Usage Notes... 217
Select Statement Restrictions ..219

DB2 UDB V8.1 Cookbook ©

Table of Contents 11

Refresh Deferred Tables ..220
Refresh Immediate Tables ...221
Usage Notes and Restrictions ..222
Multi-table Materialized Query Tables..223
Indexes on Materialized Query Tables...225
Organizing by Dimensions..226
Using Staging Tables ...226

IDENTITY COLUMNS AND SEQUENCES..229
Identity Columns ... 229
Rules and Restrictions..230
Altering Identity Column Options..233
Gaps in the Sequence ..234
Roll Your Own - no Gaps in Sequence ..234
IDENTITY_VAL_LOCAL Function..235
Sequences ... 237
Getting the Sequence Value...238
Multi-table Usage..240
Counting Deletes ..241
Identity Columns vs. Sequences - a Comparison ..242

TEMPORARY TABLES ..243
Introduction ... 243
Temporary Tables - in Statement ... 245
Common Table Expression ..246
Full-Select ...248
Declared Global Temporary Tables.. 251

RECURSIVE SQL...255
Use Recursion To ...255
When (Not) to Use Recursion...255
How Recursion Works .. 255
List Dependents of AAA ...256
Notes & Restrictions ...257
Sample Table DDL & DML ...257
Introductory Recursion... 258
List all Children #1 ..258
List all Children #2 ..258
List Distinct Children...259
Show Item Level ...259
Select Certain Levels..260
Select Explicit Level..261
Trace a Path - Use Multiple Recursions...261
Extraneous Warning Message ...262
Logical Hierarchy Flavours... 263
Divergent Hierarchy ..263
Convergent Hierarchy...264
Recursive Hierarchy ...264
Balanced & Unbalanced Hierarchies..265
Data & Pointer Hierarchies ...265
Halting Recursive Processing .. 266
Sample Table DDL & DML ...266
Stop After "n" Levels...267
Stop When Loop Found..268
Keeping the Hierarchy Clean..271
Clean Hierarchies and Efficient Joins.. 273
Introduction ...273
Limited Update Solution ...273
Full Update Solution ...275

FUN WITH SQL ...279
Creating Sample Data ... 279
Create a Row of Data ...279
Create "n" Rows & Columns of Data..279
Linear Data Generation ..280
Tabular Data Generation ..280
Cosine vs. Degree - Table of Values..281
Make Reproducible Random Data ...281
Make Random Data - Different Ranges ...282
Make Random Data - Different Flavours..282
Make Random Data - Varying Distribution...283
Make Test Table & Data...283
Time-Series Processing.. 286
Find Overlapping Rows ..286

 Graeme Birchall ©

 12

Find Gaps in Time-Series...287
Show Each Day in Gap ..288
Retaining a Record.. 289
Recording Changes..289
Multiple Versions of the World..292
Other Fun Things... 297
Convert Character to Numeric..297
Convert Number to Character ..300
Convert Timestamp to Numeric..302
Selective Column Output..302
Making Charts Using SQL ..303
Multiple Counts in One Pass ..304
Multiple Counts from the Same Row..304
Find Missing Rows in Series / Count all Values...306
Normalize Denormalized Data..307
Denormalize Normalized Data..308
Reversing Field Contents ...310
Stripping Characters ...311
Sort Character Field Contents ..313
Query Runs for "n" Seconds...314
Calculating the Median ...314

QUIRKS IN SQL ..319
Trouble with Timestamps ...319
No Rows Match ..320
Dumb Date Usage ..321
RAND in Predicate..322
Date/Time Manipulation..324
Use of LIKE on VARCHAR...325
Comparing Weeks ..326
DB2 Truncates, not Rounds ...326
CASE Checks in Wrong Sequence ..327
Division and Average..327
Date Output Order ..327
Ambiguous Cursors ..328
Floating Point Numbers ..329
Legally Incorrect SQL ...331

APPENDIX ...333
DB2 Sample Tables ... 333
Class Schedule...333
Department ...333
Employee ..333
Employee Activity ...334
Employee Photo ...336
Employee Resume ...336
In Tray...336
Organization ...337
Project...337
Sales ...338
Staff...338

BOOK BINDING ...341
INDEX ...343

DB2 UDB/V8.1 Cookbook ©

Quick Find 13

Quick Find
This brief chapter is for those who want to find how to do something, but are not sure what
the task is called. Hopefully, this list will identify the concept.

Index of Concepts
Join Rows

To combine matching rows in multiple tables, use a join (see page 177).

EMP_NM EMP_JB SELECT nm.id ANSWER
+----------+ +--------+ ,nm.name ================
|ID|NAME | |ID|JOB | ,jb.job ID NAME JOB
|--|-------| |--|-----| FROM emp_nm nm -- ------- -----
|10|Sanders| |10|Sales| ,emp_jb jb 10 Sanders Sales
|20|Pernal | |20|Clerk| WHERE nm.id = jb.id 20 Pernal Clerk
|50|Hanes | +--------+ ORDER BY 1;
+----------+

Figure 1, Join example

Outer Join

To get all of the rows from one table, plus the matching rows from another table (if there are
any), use an outer join (see page 180).

EMP_NM EMP_JB SELECT nm.id ANSWER
+----------+ +--------+ ,nm.name ================
|ID|NAME | |ID|JOB | ,jb.job ID NAME JOB
|--|-------| |--|-----| FROM emp_nm nm -- ------- -----
|10|Sanders| |10|Sales| LEFT OUTER JOIN 10 Sanders Sales
|20|Pernal | |20|Clerk| emp_jb jb 20 Pernal Clerk
|50|Hanes | +--------+ ON nm.id = jb.id 50 Hanes -
+----------+ ORDER BY nm.id;

Figure 2,Left-outer-join example

To get rows from either side of the join, regardless of whether they match (the join) or not,
use a full outer join (see page 184).

Null Values - Replace

Use the COALESCE function (see page 106) to replace a null value (e.g. generated in an
outer join) with a non-null value.

Select Where No Match

To get the set of the matching rows from one table where something is true or false in another
table (e.g. no corresponding row), use a sub-query (see page 199).

EMP_NM EMP_JB SELECT * ANSWER
+----------+ +--------+ FROM emp_nm nm ========
|ID|NAME | |ID|JOB | WHERE NOT EXISTS ID NAME
|--|-------| |--|-----| (SELECT * == =====
|10|Sanders| |10|Sales| FROM emp_jb jb 50 Hanes
|20|Pernal | |20|Clerk| WHERE nm.id = jb.id)
|50|Hanes | +--------+ ORDER BY id;
+----------+

Figure 3, Sub-query example

 Graeme Birchall ©

14 Index of Concepts

Append Rows

To add (append) one set of rows to another set of rows, use a union (see page 213).

EMP_NM EMP_JB SELECT * ANSWER
+----------+ +--------+ FROM emp_nm =========
|ID|NAME | |ID|JOB | WHERE name < ’S’ ID 2
|--|-------| |--|-----| UNION -- ------
|10|Sanders| |10|Sales| SELECT * 10 Sales
|20|Pernal | |20|Clerk| FROM emp_jb 20 Clerk
|50|Hanes | +--------+ ORDER BY 1,2; 20 Pernal
+----------+ 50 Hanes

Figure 4, Union example

Assign Output Numbers

To assign line numbers to SQL output, use the ROW_NUMBER function (see page 84).

EMP_JB SELECT id
+--------+ ,job ANSWER
|ID|JOB | ,ROW_NUMBER() OVER(ORDER BY job) AS R ==========
|--|-----| FROM emp_jb ID JOB R
|10|Sales| ORDER BY job; -- ----- -
|20|Clerk| 20 Clerk 1
+--------+ 10 Sales 2

Figure 5, Assign row-numbers example

Assign Unique Key Numbers

The make each row inserted into a table automatically get a unique key value, use an identity
column, or a sequence, when creating the table (see page 229).

If-Then-Else Logic

To include if-then-else logical constructs in SQL stmts, use the CASE phrase (see page 37).

EMP_JB SELECT id ANSWER
+--------+ ,job ===============
|ID|JOB | ,CASE ID JOB STATUS
|--|-----| WHEN job = ’Sales’ -- ----- ------
|10|Sales| THEN ’Fire’ 10 Sales Fire
|20|Clerk| ELSE ’Demote’ 20 Clerk Demote
+--------+ END AS STATUS
 FROM emp_jb;

Figure 6, Case stmt example

Get Dependents

To get all of the dependents of some object, regardless of the degree of separation from the
parent to the child, use recursion (see page 255).

FAMILY WITH temp (persn, lvl) AS ANSWER
+-----------+ (SELECT parnt, 1 =========
|PARNT|CHILD| FROM family PERSN LVL
|-----|-----| WHERE parnt = ’Dad’ ----- ---
|GrDad|Dad | UNION ALL Dad 1
|Dad |Dghtr| SELECT child, Lvl + 1 Dghtr 2
|Dghtr|GrSon| FROM temp, GrSon 3
|Dghtr|GrDtr| family GrDtr 3
+-----------+ WHERE persn = parnt)
 SELECT *
 FROM temp;

Figure 7, Recursion example

Convert String to Rows

To convert a (potentially large) set of values in a string (character field) into separate rows
(e.g. one row per word), use recursion (see page 307).

DB2 UDB/V8.1 Cookbook ©

Quick Find 15

INPUT DATA Recursive SQL ANSWER
================= ============> ===========
"Some silly text" TEXT LINE#
 ----- -----
 Some 1
 silly 2
 text 3

Figure 8, Convert string to rows

Be warned - in many cases, the code is not pretty.

Convert Rows to String

To convert a (potentially large) set of values that are in multiple rows into a single combined
field, use recursion (see page 308).

INPUT DATA Recursive SQL ANSWER
=========== ============> =================
TEXT LINE# "Some silly text"
----- -----
Some 1
silly 2
text 3

Figure 9, Convert rows to string

Fetch First "n" Rows

To fetch the first "n" matching rows, use the FETCH FIRST notation (see page 24).

EMP_NM SELECT * ANSWER
+----------+ FROM emp_nm =========
|ID|NAME | ORDER BY id DESC ID NAME
|--|-------| FETCH FIRST 2 ROWS ONLY; -- ------
|10|Sanders| 50 Hanes
|20|Pernal | 20 Pernal
|50|Hanes |
+----------+

Figure 10, Fetch first "n" rows example

Another way to do the same thing is to assign row numbers to the output, and then fetch those
rows where the row-number is less than "n" (see page 85).

Fetch Subsequent "n" Rows

To the fetch the "n" through "n + m" rows, first use the ROW_NUMBER function to assign
output numbers, then put the result in a nested-table-expression, and then fetch the rows with
desired numbers (see page 85).

Fetch Uncommitted Data

To retrieve data that may have been changed by another user, but which they have yet to
commit, use the WITH UR (Uncommitted Read) notation.

EMP_NM SELECT * ANSWER
+----------+ FROM emp_nm ==========
|ID|NAME | WHERE name like ’S%’ ID NAME
|--|-------| WITH UR; -- -------
|10|Sanders| 10 Sanders
|20|Pernal |
|50|Hanes |
+----------+

Figure 11, Fetch WITH UR example

Using this option can result in one fetching data that is subsequently rolled back, and so was
never valid. Use with extreme care.

 Graeme Birchall ©

16 Index of Concepts

Summarize Column Contents

Use a column function (see page 67) to summarize the contents of a column.

EMP_NM SELECT AVG(id) AS avg ANSWER
+----------+ ,MAX(name) AS maxn =================
|ID|NAME | ,COUNT(*) AS #rows AVG MAXN #ROWS
|--|-------| FROM emp_nm; --- ------- -----
|10|Sanders| 26 Sanders 3
|20|Pernal |
|50|Hanes |
+----------+

Figure 12, Column Functions example

Subtotals and Grand Totals

To obtain subtotals and grand-totals, use the ROLLUP or CUBE statements (see page 167).

SELECT job ANSWER
 ,dept =======================
 ,SUM(salary) AS sum_sal JOB DEPT SUM_SAL #EMP
 ,COUNT(*) AS #emps ----- ---- -------- ----
FROM staff Clerk 15 24766.70 2
WHERE dept < 30 Clerk 20 27757.35 2
 AND salary < 20000 Clerk - 52524.05 4
 AND job < ’S’ Mgr 10 19260.25 1
GROUP BY ROLLUP(job, dept) Mgr 20 18357.50 1
ORDER BY job Mgr - 37617.75 2
 ,dept; - - 90141.80 6

Figure 13, Subtotal and Grand-total example

Enforcing Data Integrity

When a table is created, various DB2 features can be used to ensure that the data entered in
the table is always correct:

• Uniqueness (of values) can be enforced by creating unique indexes.

• Check constraints can be defined to limit the values that a column can have.

• Default values (for a column) can be defined - to be used when no value is provided.

• Identity columns (see page 229), can be defined to automatically generate unique nu-
meric values (e.g. invoice numbers) for all of the rows in a table. Sequences can do the
same thing over multiple tables.

• Referential integrity rules can created to enforce key relationships between tables.

• Triggers can be defined to enforce more complex integrity rules, and also to do things
(e.g. populate an audit trail) whenever data is changed.

See the DB2 manuals for documentation about the above.

Hide Complex SQL

One can create a view (see page 18) to hide complex SQL that is run repetitively. Be warned
however that doing so can make it significantly harder to tune the SQL - because some of the
logic will be in the user code, and some in the view definition.

Summary Table

Some queries that use a GROUP BY can be made to run much faster by defining a summary
table (see page 217) that DB2 automatically maintains. Subsequently, when the user writes
the original GROUP BY against the source-data table, the optimizer substitutes with a much
simpler (and faster) query against the summary table.

DB2 UDB/V8.1 Cookbook ©

Introduction to SQL 17

Introduction to SQL
This chapter contains a basic introduction to DB2 UDB SQL. It also has numerous examples
illustrating how to use this language to answer particular business problems. However, it is
not meant to be a definitive guide to the language. Please refer to the relevant IBM manuals
for a more detailed description.

Syntax Diagram Conventions

This book uses railroad diagrams to describe the DB2 UDB SQL statements. The following
diagram shows the conventions used.

SELECT an item

*

FROM

 ,

table name

,

view name WHERE expression

and / or
Mandatory Optional

EndRepeat

Start

Resume

Continue

 DISTINCT

ALL
Default

Figure 14, Syntax Diagram Conventions

Rules

• Upper Case text is a SQL keyword.

• Italic text is either a placeholder, or explained elsewhere.

• Backward arrows enable one to repeat parts of the text.

• A branch line going above the main line is the default.

• A branch line going below the main line is an optional item.

Statement Delimiter

DB2 SQL does not come with a designated statement delimiter (terminator), though a semi-
colon is often used. A semi-colon cannot be used when writing a compound SQL statement
(see page 57) because that character is used to terminate the various sub-components of the
statement.

In DB2BATCH one can set the statement delimiter using an intelligent comment:

--#SET DELIMITER !

SELECT name FROM staff WHERE id = 10!

--#SET DELIMITER ;

SELECT name FROM staff WHERE id = 20;

Figure 15, Set Delimiter example

 Graeme Birchall ©

18 SQL Components

SQL Components

DB2 Objects

DB2 is a relational database that supports a variety of object types. In this section we shall
overview those items which one can obtain data from using SQL.

Table

A table is an organized set of columns and rows. The number, type, and relative position, of
the various columns in the table is recorded in the DB2 catalogue. The number of rows in the
table will fluctuate as data is inserted and deleted.

The CREATE TABLE statement is used to define a table. The following example will define
the EMPLOYEE table, which is found in the DB2 sample database.

CREATE TABLE employee
(empno CHARACTER (00006) NOT NULL
,firstnme VARCHAR (00012) NOT NULL
,midinit CHARACTER (00001) NOT NULL
,lastname VARCHAR (00015) NOT NULL
,workdept CHARACTER (00003)
,phoneno CHARACTER (00004)
,hiredate DATE
,job CHARACTER (00008)
,edlevel SMALLINT NOT NULL
,SEX CHARACTER (00001)
,birthdate DATE
,salary DECIMAL (00009,02)
,bonus DECIMAL (00009,02)
,comm DECIMAL (00009,02)
)
 DATA CAPTURE NONE;

Figure 16, DB2 sample table - EMPLOYEE

View

A view is another way to look at the data in one or more tables (or other views). For example,
a user of the following view will only see those rows (and certain columns) in the EM-
PLOYEE table where the salary of a particular employee is greater than or equal to the aver-
age salary for their particular department.

CREATE VIEW employee_view AS
SELECT a.empno, a.firstnme, a.salary, a.workdept
FROM employee a
WHERE a.salary >=
 (SELECT AVG(b.salary)
 FROM employee b
 WHERE a.workdept = b.workdept);

Figure 17, DB2 sample view - EMPLOYEE_VIEW

A view need not always refer to an actual table. It may instead contain a list of values:

CREATE VIEW silly (c1, c2, c3)
AS VALUES (11, ’AAA’, SMALLINT(22))
 ,(12, ’BBB’, SMALLINT(33))
 ,(13, ’CCC’, NULL);

Figure 18, Define a view using a VALUES clause

Selecting from the above view works the same as selecting from a table:

DB2 UDB/V8.1 Cookbook ©

Introduction to SQL 19

SELECT c1, c2, c3 ANSWER
FROM silly ===========
ORDER BY c1 aSC; C1 C2 C3
 -- --- --
 11 AAA 22
 12 BBB 33
 13 CCC -

Figure 19, SELECT from a view that has its own data

We can go one step further and define a view that begins with a single value that is then ma-
nipulated using SQL to make many other values. For example, the following view, when se-
lected from, will return 10,000 rows. Note however that these rows are not stored anywhere in
the database - they are instead created on the fly when the view is queried.

CREATE VIEW test_data AS
WITH temp1 (num1) AS
(VALUES (1)
 UNION ALL
 SELECT num1 + 1
 FROM temp1
 WHERE num1 < 10000)
SELECT *
FROM temp1;

Figure 20, Define a view that creates data on the fly

Alias

An alias is an alternate name for a table or a view. Unlike a view, an alias can not contain any
processing logic. No authorization is required to use an alias other than that needed to access
to the underlying table or view.

CREATE ALIAS employee_al1 FOR employee;
COMMIT;

CREATE ALIAS employee_al2 fOR employee_al1;
COMMIT;

CREATE ALIAS employee_al3 FOR employee_al2;
COMMIT;

Figure 21, Define three aliases, the latter on the earlier

Neither a view, nor an alias, can be linked in a recursive manner (e.g. V1 points to V2, which
points back to V1). Also, both views and aliases still exist after a source object (e.g. a table)
has been dropped. In such cases, a view, but not an alias, is marked invalid.

DB2 Data Types

DB2 comes with the following standard data types:

• SMALLINT, INT, and BIGINT (i.e. integer numbers).

• FLOAT, REAL, and DOUBLE (i.e. floating point numbers).

• DECIMAL and NUMERIC (i.e. decimal numbers).

• CHAR, VARCHAR, and LONG VARCHAR (i.e. character values).

• GRAPHIC, VARGRAPHIC, and LONG VARGRAPHIC (i.e. graphical values).

• BLOB, CLOB, and DBCLOB (i.e. binary and character long object values).

• DATE, TIME, and TIMESTAMP (i.e. date/time values).

• DATALINK (i.e. link to external object).

 Graeme Birchall ©

20 SQL Components

Below is a simple table definition that uses the above data types:

CREATE TABLE sales_record
(sales# INTEGER NOT NULL
 GENERATED ALWAYS AS IDENTITY
 (START WITH 1
 ,INCREMENT BY 1
 ,NO MAXVALUE
 ,NO CYCLE)
,sale_ts TIMESTAMP NOT NULL
,num_items SMALLINT NOT NULL
,payment_type CHAR(2) NOT NULL
,sale_value DECIMAL(12,2) NOT NULL
,sales_tax DECIMAL(12,2)
,employee# INTEGER NOT NULL
,CONSTRAINT sales1 CHECK(payment_type IN (’CS’,’CR’))
,CONSTRAINT sales2 CHECK(sale_value > 0)
,CONSTRAINT sales3 CHECK(num_items > 0)
,CONSTRAINT sales4 FOREIGN KEY(employee#)
 REFERENCES staff(id)
 ON DELETE RESTRICT
,PRIMARY KEY(sales#));

Figure 22, Sample table definition

In the above table, we have listed the relevant columns, and added various checks to ensure
that the data is always correct. In particular, we have included the following:

• The sales# is automatically generated (see page 229 for details). It is also the primary key
of the table, and so must always be unique.

• The payment-type must be one of two possible values.

• Both the sales-value and the num-items must be greater than zero.

• The employee# must already exist in the staff table. Furthermore, once a row has been
inserted into this table, any attempt to delete the related row from the staff table will fail.

Default Lengths

The following table has two columns:

CREATE TABLE default_values
(c1 CHAR NOT NULL
,d1 DECIMAL NOT NULL);

Figure 23, Table with default column lengths

The length has not been provided for either of the above columns. In this case, DB2 defaults
to CHAR(1) for the first column and DECIMAL(5,0) for the second column.

Data Type Usage

In general, use the standard DB2 data types as follows:

• Always store monetary data in a decimal field.

• Store non-fractional numbers in one of the integer field types.

• Use floating-point when absolute precision is not necessary.

A DB2 data type is not just a place to hold data. It also defines what rules are applied when
the data in manipulated. For example, storing monetary data in a DB2 floating-point field is a
no-no, in part because the data-type is not precise, but also because a floating-point number is
not manipulated (e.g. during division) according to internationally accepted accounting rules.

DB2 UDB/V8.1 Cookbook ©

Introduction to SQL 21

Distinct Types

A distinct data type is a field type that is derived from one of the base DB2 field types. It is
used when one wants to prevent users from combining two separate columns that should
never be manipulated together (e.g. adding US dollars to Japanese Yen).

One creates a distinct (data) type using the following syntax:

 CREATE DISTINCT TYPE type-name source-type WITH COMPARISONS

Figure 24, Create Distinct Type Syntax

NOTE: The following source types do not support distinct types: LOB, LONG VARCHAR,
LONG VARGRAPHIC, and DATALINK.

The creation of a distinct type, under the covers, results in the creation two implied functions
that can be used to convert data to and from the source type and the distinct type. Support for
the basic comparison operators (=, <>, <, <=, >, and >=) is also provided.

Below is a typical create and drop statement:

CREATE DISTINCT TYPE JAP_YEN AS DECIMAL(15,2) WITH COMPARISONS;
DROP DISTINCT TYPE JAP_YEN;

Figure 25, Create and drop distinct type

NOTE: A distinct type cannot be dropped if it is currently being used in a table.

Usage Example

Imagine that we had the following customer table:

CREATE TABLE customer
(id INTEGER NOT NULL
,fname VARCHAR(00010) NOT NULL WITH DEFAULT ’’
,lname VARCHAR(00015) NOT NULL WITH DEFAULT ’’
,date_of_birth DATE
,citizenship CHAR(03)
,usa_sales DECIMAL(9,2)
,eur_sales DECIMAL(9,2)
,sales_office# SMALLINT
,last_updated TIMESTAMP
,PRIMARY KEY(id));

Figure 26, Sample table, without distinct types

One problem with the above table is that the user can add the American and European sales
values, which if they are expressed in dollars and euros respectively, is silly:

SELECT id
 ,usa_sales + eur_sales AS tot_sales
FROM customer;

Figure 27, Silly query, but works

To prevent the above, we can create two distinct types:

CREATE DISTINCT TYPE USA_DOLLARS AS DECIMAL(9,2) WITH COMPARISONS;
CREATE DISTINCT TYPE EUR_DOLLARS AS DECIMAL(9,2) WITH COMPARISONS;

Figure 28, Create Distinct Type examples

Now we can define the customer table thus:

 Graeme Birchall ©

22 SQL Components

CREATE TABLE customer
(id INTEGER NOT NULL
,fname VARCHAR(00010) NOT NULL WITH DEFAULT ’’
,lname VARCHAR(00015) NOT NULL WITH DEFAULT ’’
,date_of_birth DATE
,citizenship CHAR(03)
,usa_sales USA_DOLLARS
,eur_sales EUR_DOLLARS
,sales_office# SMALLINT
,last_updated TIMESTAMP
,PRIMARY KEY(id));

Figure 29, Sample table, with distinct types

Now, when we attempt to run the following, it will fail:

SELECT id
 ,usa_sales + eur_sales AS tot_sales
FROM customer;

Figure 30, Silly query, now fails

The creation of a distinct type, under the covers, results in the creation two implied functions
that can be used to convert data to and from the source type and the distinct type. In the next
example, the two monetary values are converted to their common decimal source type, and
then added together:

SELECT id
 ,DECIMAL(usa_sales) +
 DECIMAL(eur_sales) AS tot_sales
FROM customer;

Figure 31, Silly query, works again

SELECT Statement

A SELECT statement is used to query the database. It has the following components, not all
of which need be used in any particular query:

• SELECT clause. One of these is required, and it must return at least one item, be it a col-
umn, a literal, the result of a function, or something else. One must also access at least
one table, be that a true table, a temporary table, a view, or an alias.

• WITH clause. This clause is optional. Use this phrase to include independent SELECT
statements that are subsequently accessed in a final SELECT (see page 246).

• ORDER BY clause. Optionally, order the final output (see page 159).

• FETCH FIRST clause. Optionally, stop the query after "n" rows (see page 24). If an op-
timize-for value is also provided, both values are used independently by the optimizer.

• READ-ONLY clause. Optionally, state that the query is read-only. Some queries are in-
herently read-only, in which case this option has no effect.

• FOR UPDATE clause. Optionally, state that the query will be used to update certain col-
umns that are returned during fetch processing.

• OPTIMIZE FOR n ROWS clause. Optionally, tell the optimizer to tune the query assum-
ing that not all of the matching rows will be retrieved. If a first-fetch value is also pro-
vided, both values are used independently by the optimizer.

Refer to the IBM manuals for a complete description of all of the above. Some of the more
interesting options are described below.

DB2 UDB/V8.1 Cookbook ©

Introduction to SQL 23

 WITH

 SELECT statement

 ,
 common table expression

 ORDER BY clause FIRST FETCH clause READ-ONLY clause

FOR UPDATE clause

 OPTIMIZE FOR clause

Figure 32, SELECT Statement Syntax (general)

SELECT Clause

Every query must have at least one SELECT statement, and it must return at least one item,
and access at least one object.

 SELECT

FROM

,
an item
*
,
table name
view name
alias name
(full select)

WHERE expression
and /or

correlation name
AS

Figure 33, SELECT Statement Syntax

SELECT Items

• Column: A column in one of the table being selected from.

• Literal: A literal value (e.g. "ABC"). Use the AS expression to name the literal.

• Special Register: A special register (e.g. CURRENT TIME).

• Expression: An expression result (e.g. MAX(COL1*10)).

• Full Select: An embedded SELECT statement that returns a single row.

FROM Objects

• Table: Either a permanent or temporary DB2 table.

• View: A standard DB2 view.

• Alias: A DB2 alias that points to a table, view, or another alias.

• Full Select: An embedded SELECT statement that returns a set of rows.

Sample SQL

SELECT deptno ANSWER
 ,admrdept ===================
 ,’ABC’ AS abc DEPTNO ADMRDEPT ABC
FROM department ------ -------- ---
WHERE deptname LIKE ’%ING%’ B01 A00 ABC
ORDER BY 1; D11 D01 ABC

Figure 34, Sample SELECT statement

To select all of the columns in a table (or tables) one can use the "*" notation:

 Graeme Birchall ©

24 SQL Components

SELECT * ANSWER (part of)
FROM department ================
WHERE deptname LIKE ’%ING%’ DEPTNO etc...
ORDER BY 1; ------ ------>>>
 B01 PLANNING
 D11 MANUFACTU

Figure 35, Use "*" to select all columns in table

To select both individual columns, and all of the columns (using the "*" notation), in a single
SELECT statement, one can still use the "*", but it must fully-qualified using either the object
name, or a correlation name:

SELECT deptno ANSWER (part of)
 ,department.* =======================
FROM department DEPTNO DEPTNO etc...
WHERE deptname LIKE ’%ING%’ ------ ------ ------>>>
ORDER BY 1; B01 B01 PLANNING
 D11 D11 MANUFACTU

Figure 36, Select an individual column, and all columns

Use the following notation to select all the fields in a table twice:

SELECT department.* ANSWER (part of)
 ,department.* ================
FROM department DEPTNO etc...
WHERE deptname LIKE ’%NING%’ ------ ------>>>
ORDER BY 1; B01 PLANNING

Figure 37, Select all columns twice

FETCH FIRST Clause

The fetch first clause limits the cursor to retrieving "n" rows. If the clause is specified and no
number is provided, the query will stop after the first fetch.

 FETCH FIRST
 integer

 1
 ROW
 ROWS

 ONLY

Figure 38, Fetch First clause Syntax

If this clause is used, and there is no ORDER BY, then the query will simply return a random
set of matching rows, where the randomness is a function of the access path used and/or the
physical location of the rows in the table:

SELECT years ANSWER
 ,name =====================
 ,id YEARS NAME ID
FROM staff ------ --------- ----
FETCH FIRST 3 ROWS ONLY; 7 Sanders 10
 8 Pernal 20
 5 Marenghi 30

Figure 39, FETCH FIRST without ORDER BY, gets random rows

WARNING: Using the FETCH FIRST clause to get the first "n" rows can sometimes return
an answer that is not what the user really intended. See below for details.

If an ORDER BY is provided, then the FETCH FIRST clause can be used to stop the query
after a certain number of what are, perhaps, the most desirable rows have been returned.
However, the phrase should only be used in this manner when the related ORDER BY
uniquely identifies each row returned.

DB2 UDB/V8.1 Cookbook ©

Introduction to SQL 25

To illustrate what can go wrong, imagine that we wanted to query the STAFF table in order to
get the names of those three employees that have worked for the firm the longest - in order to
give them a little reward (or possibly to fire them). The following query could be run:

SELECT years ANSWER
 ,name =====================
 ,id YEARS NAME ID
FROM staff ------ --------- ----
WHERE years IS NOT NULL 13 Graham 310
ORDER BY years DESC 12 Jones 260
FETCH FIRST 3 ROWS ONLY; 10 Hanes 50

Figure 40, FETCH FIRST with ORDER BY, gets wrong answer

The above query answers the question correctly, but the question was wrong, and so the an-
swer is wrong. The problem is that there are two employees that have worked for the firm for
ten years, but only one of them shows, and the one that does show was picked at random by
the query processor. This is almost certainly not what the business user intended.

The next query is similar to the previous, but now the ORDER ID uniquely identifies each
row returned (presumably as per the end-user’s instructions):

SELECT years ANSWER
 ,name =====================
 ,id YEARS NAME ID
FROM staff ------ --------- ----
WHERE years IS NOT NULL 13 Graham 310
ORDER BY years DESC 12 Jones 260
 ,id DESC 10 Quill 290
FETCH FIRST 3 ROWS ONLY;

Figure 41, FETCH FIRST with ORDER BY, gets right answer

WARNING: Getting the first "n" rows from a query is actually quite a complicated prob-
lem. Refer to page 87 for a more complete discussion.

Correlation Name

The correlation name is defined in the FROM clause and relates to the preceding object name.
In some cases, it is used to provide a short form of the related object name. In other situations,
it is required in order to uniquely identify logical tables when a single physical table is re-
ferred to twice in the same query. Some sample SQL follows:

SELECT a.empno ANSWER
 ,a.lastname =================
FROM employee a EMPNO LASTNAME
 ,(SELECT MAX(empno)AS empno ------ ----------
 FROM employee) AS b 000340 GOUNOT
WHERE a.empno = b.empno;

Figure 42, Correlation Name usage example

SELECT a.empno ANSWER
 ,a.lastname ======================
 ,b.deptno AS dept EMPNO LASTNAME DEPT
FROM employee a ------ ---------- ----
 ,department b 000090 HENDERSON E11
WHERE a.workdept = b.deptno 000280 SCHNEIDER E11
 AND a.job <> ’SALESREP’ 000290 PARKER E11
 AND b.deptname = ’OPERATIONS’ 000300 SMITH E11
 AND a.sex IN (’M’,’F’) 000310 SETRIGHT E11
 AND b.location IS NULL
ORDER BY 1;

Figure 43, Correlation name usage example

 Graeme Birchall ©

26 SQL Components

Renaming Fields

The AS phrase can be used in a SELECT list to give a field a different name. If the new name
is an invalid field name (e.g. contains embedded blanks), then place the name in quotes:

SELECT empno AS e_num ANSWER
 ,midinit AS "m int" ===================
 ,phoneno AS "..." E_NUM M INT ...
FROM employee ------ ----- ----
WHERE empno < ’000030’ 000010 I 3978
ORDER BY 1; 000020 L 3476

Figure 44, Renaming fields using AS

The new field name must not be qualified (e.g. A.C1), but need not be unique. Subsequent
usage of the new name is limited as follows:

• It can be used in an order by clause.

• It cannot be used in other part of the select (where-clause, group-by, or having).

• It cannot be used in an update clause.

• It is known outside of the full-select of nested table expressions, common table expres-
sions, and in a view definition.

CREATE view emp2 AS
SELECT empno AS e_num
 ,midinit AS "m int"
 ,phoneno AS "..."
FROM employee; ANSWER
 ===================
SELECT * E_NUM M INT ...
FROM emp2 ------ ----- ----
WHERE "..." = ’3978’; 000010 I 3978

Figure 45, View field names defined using AS

Working with Nulls

In SQL something can be true, false, or null. This three-way logic has to always be consid-
ered when accessing data. To illustrate, if we first select all the rows in the STAFF table
where the SALARY is < $10,000, then all the rows where the SALARY is >= $10,000, we
have not necessarily found all the rows in the table because we have yet to select those rows
where the SALARY is null.

The presence of null values in a table can also impact the various column functions. For ex-
ample, the AVG function ignores null values when calculating the average of a set of rows.
This means that a user-calculated average may give a different result from a DB2 calculated
equivalent:

SELECT AVG(comm) AS a1 ANSWER
 ,SUM(comm) / COUNT(*) AS a2 ===============
FROM staff A1 A2
WHERE id < 100; ------- ------
 796.025 530.68

Figure 46, AVG of data containing null values

Null values can also pop in columns that are defined as NOT NULL. This happens when a
field is processed using a column function and there are no rows that match the search crite-
ria:

DB2 UDB/V8.1 Cookbook ©

Introduction to SQL 27

SELECT COUNT(*) AS num ANSWER
 ,MAX(lastname) AS max ========
FROM employee NUM MAX
WHERE firstnme = ’FRED’; --- ---
 0 -

Figure 47, Getting a NULL value from a field defined NOT NULL

Why Nulls Exist

Null values can represent two kinds of data. In first case, the value is unknown (e.g. we do not
know the name of the person’s spouse). Alternatively, the value is not relevant to the situation
(e.g. the person does not have a spouse).

Many people prefer not to have to bother with nulls, so they use instead a special value when
necessary (e.g. an unknown employee name is blank). This trick works OK with character
data, but it can lead to problems when used on numeric values (e.g. an unknown salary is set
to zero).

Locating Null Values

One can not use an equal predicate to locate those values that are null because a null value
does not actually equal anything, not even null, it is simply null. The IS NULL or IS NOT
NULL phrases are used instead. The following example gets the average commission of only
those rows that are not null. Note that the second result differs from the first due to rounding
loss.

SELECT AVG(comm) AS a1 ANSWER
 ,SUM(comm) / COUNT(*) AS a2 ===============
FROM staff A1 A2
WHERE id < 100 ------- ------
 AND comm IS NOT NULL; 796.025 796.02

Figure 48, AVG of those rows that are not null

Quotes and Double-quotes

To write a string, put it in quotes. If the string contains quotes, each quote is represented by a
pair of quotes:

SELECT ’JOHN’ AS J1
 ,’JOHN’’S’ AS J2 ANSWER
 ,’’’JOHN’’S’’’ AS J3 =============================
 ,’"JOHN’’S"’ AS J4 J1 J2 J3 J4
FROM staff ---- ------ -------- --------
WHERE id = 10; JOHN JOHN’S ’JOHN’S’ "JOHN’S"

Figure 49, Quote usage

Double quotes can be used to give a name to a output field that would otherwise not be valid.
To put a double quote in the name, use a pair of quotes:

SELECT id AS "USER ID" ANSWER
 ,dept AS "D#" ===============================
 ,years AS "#Y" USER ID D# #Y ’TXT’ "quote" fld
 ,’ABC’ AS "’TXT’" ------- -- -- ----- -----------
 ,’"’ AS """quote"" fld" 10 20 7 ABC "
FROM staff s 20 20 8 ABC "
WHERE id < 40 30 38 5 ABC "
ORDER BY "USER ID";

Figure 50, Double-quote usage

NOTE: Nonstandard column names (i.e. with double quotes) cannot be used in tables, but
they are permitted in view definitions.

 Graeme Birchall ©

28 SQL Predicates

SQL Predicates
A predicate is used in either the WHERE or HAVING clauses of a SQL statement. It speci-
fies a condition that true, false, or unknown about a row or a group.

Basic Predicate

A basic predicate compares two values. If either value is null, the result is unknown. Other-
wise the result is either true or false.

expresion expression=
<>
<
>
<=
>=

 NOT

Figure 51, Basic Predicate syntax

SELECT id, job, dept ANSWER
FROM staff ===============
WHERE job = ’Mgr’ ID JOB DEPT
 AND NOT job <> ’Mgr’ --- ---- ----
 AND NOT job = ’Sales’ 10 Mgr 20
 AND id <> 100 30 Mgr 38
 AND id >= 0 50 Mgr 15
 AND id <= 150 140 Mgr 51
 AND NOT dept = 50
ORDER BY id;

Figure 52, Basic Predicate examples

Quantified Predicate

A quantified predicate compares one or more values with a collection of values.

 expression SOME
 ANY
 ALL

 NOT
 (fullselect) =

<>
<
>
<=
>=

 expression () SOME
 ANY

 =

 ,

Figure 53, Quantified Predicate syntax,1 of 2

SELECT id, job ANSWER
FROM staff ========
WHERE job = ANY (SELECT job FROM staff) ID JOB
 AND id <= ALL (SELECT id FROM staff) --- ----
ORDER BY id; 10 Mgr

Figure 54, Quantified Predicate example, two single-value sub-queries

SELECT id, dept, job ANSWER
FROM staff ==============
WHERE (id,dept) = ANY ID DEPT JOB
 (SELECT dept, id --- ---- -----
 FROM staff) 20 20 Sales
ORDER BY 1;

Figure 55, Quantified Predicate example, multi-value sub-query

See the sub-query chapter on page 199 for more data on this predicate type.

DB2 UDB/V8.1 Cookbook ©

Introduction to SQL 29

A variation of this predicate type can be used to compare sets of values. Everything on both
sides must equal in order for the row to match:

 NOT
 expression () =

 ,

 expression ()

 ,

Figure 56, Quantified Predicate syntax, 2 of 2

SELECT id, dept, job ANSWER
FROM staff ===========
WHERE (id,dept) = (30,28) ID DEPT JOB
 OR (id,years) = (90, 7) -- ---- ---
 OR (dept,job) = (38,’Mgr’) 30 38 Mgr
ORDER BY 1;

Figure 57, Quantified Predicate example, multi-value check

Below is the same query written the old fashioned way:

SELECT id, dept, job ANSWER
FROM staff ===========
WHERE (id = 30 AND dept = 28) ID DEPT JOB
 OR (id = 90 AND years = 7) -- ---- ---
 OR (dept = 38 AND job = ’Mgr’) 30 38 Mgr
ORDER BY 1;

Figure 58, Same query as prior, using individual predicates

BETWEEN Predicate

The BETWEEN predicate compares a value within a range of values.

 exprsn. BETWEEN
 NOT

 low val. high val. AND
 NOT

Figure 59, BETWEEN Predicate syntax

The between check always assumes that the first value in the expression is the low value and
the second value is the high value. For example, BETWEEN 10 AND 12 may find data, but
BETWEEN 12 AND 10 never will.

SELECT id, job ANSWER
FROM staff =========
WHERE id BETWEEN 10 AND 30 ID JOB
 AND id NOT BETWEEN 30 AND 10 --- -----
 AND NOT id NOT BETWEEN 10 AND 30 10 Mgr
ORDER BY id; 20 Sales
 30 Mgr

Figure 60, BETWEEN Predicate examples

EXISTS Predicate

An EXISTS predicate tests for the existence of matching rows.

EXISTS
 NOT

 (fullselect)

Figure 61, EXISTS Predicate syntax

 Graeme Birchall ©

30 SQL Predicates

SELECT id, job ANSWER
FROM staff a =========
WHERE EXISTS ID JOB
 (SELECT * --- -----
 FROM staff b 10 Mgr
 WHERE b.id = a.id 20 Sales
 AND b.id < 50) 30 Mgr
ORDER BY id; 40 Sales

Figure 62, EXISTS Predicate example

NOTE: See the sub-query chapter on page 199 for more data on this predicate type.

IN Predicate

The IN predicate compares one or more values with a list of values.

 exprsn. IN
 NOT

 (fullselect)
 NOT ,

 expression (
 expression

)

 expression ()

 ,

 IN
 NOT

 (fullselect)

Figure 63, IN Predicate syntax

The list of values being compared in the IN statement can either be a set of in-line expres-
sions (e.g. ID in (10,20,30)), or a set rows returned from a sub-query. Either way, DB2 simply
goes through the list until it finds a match.

SELECT id, job ANSWER
FROM staff a =========
WHERE id IN (10,20,30) ID JOB
 AND id IN (SELECT id --- -----
 FROM staff) 10 Mgr
 AND id NOT IN 99 20 Sales
ORDER BY id; 30 Mgr

Figure 64, IN Predicate examples, single values

The IN statement can also be used to compare multiple fields against a set of rows returned
from a sub-query. A match exists when all fields equal. This type of statement is especially
useful when doing a search against a table with a multi-columns key.

WARNING: Be careful when using the NOT IN expression against a sub-query result. If any
one row in the sub-query returns null, the result will be no match. See page 199 for more de-
tails.

SELECT empno, lastname ANSWER
FROM employee ===============
WHERE (empno, ’AD3113’) IN EMPNO LASTNAME
 (SELECT empno, projno ------ -------
 FROM emp_act 000260 JOHNSON
 WHERE emptime > 0.5) 000270 PEREZ
ORDER BY 1;

Figure 65, IN Predicate example, multi-value

NOTE: See the sub-query chapter on page 199 for more data on this statement type.

LIKE Predicate

The LIKE predicate does partial checks on character strings.

DB2 UDB/V8.1 Cookbook ©

Introduction to SQL 31

 exprsn. LIKE
 NOT ESCAPE NOT

 pattern
 pattern

Figure 66, LIKE Predicate syntax

The percent and underscore characters have special meanings. The first means skip a string of
any length (including zero) and the second means skip one byte. For example:

• LIKE ’AB_D%’ Finds ’ABCD’ and ’ABCDE’, but not ’ABD’, nor ’ABCCD’.

• LIKE ’_X’ Finds ’XX’ and ’DX’, but not ’X’, nor ’ABX’, nor ’AXB’.

• LIKE ’%X’ Finds ’AX’, ’X’, and ’AAX’, but not ’XA’.

SELECT id, name ANSWER
FROM staff ==============
WHERE name LIKE ’S%n’ ID NAME
 OR name LIKE ’_a_a%’ --- ---------
 OR name LIKE ’%r_%a’ 130 Yamaguchi
ORDER BY id; 200 Scoutten

Figure 67, LIKE Predicate examples

The ESCAPE Phrase

The escape character in a LIKE statement enables one to check for percent signs and/or un-
derscores in the search string. When used, it precedes the ’%’ or ’_’ in the search string indicat-
ing that it is the actual value and not the special character which is to be checked for.

When processing the LIKE pattern, DB2 works thus: Any pair of escape characters is treated
as the literal value (e.g. "++" means the string "+"). Any single occurrence of an escape char-
acter followed by either a "%" or a "_" means the literal "%" or "_" (e.g. "+%" means the
string "%"). Any other "%" or "_" is used as in a normal LIKE pattern.

LIKE STATEMENT TEXT WHAT VALUES MATCH
=========================== ======================
LIKE ’AB%’ Finds AB, any string
LIKE ’AB%’ ESCAPE ’+’ Finds AB, any string
LIKE ’AB+%’ ESCAPE ’+’ Finds AB%
LIKE ’AB++’ ESCAPE ’+’ Finds AB+
LIKE ’AB+%%’ ESCAPE ’+’ Finds AB%, any string
LIKE ’AB++%’ ESCAPE ’+’ Finds AB+, any string
LIKE ’AB+++%’ ESCAPE ’+’ Finds AB+%
LIKE ’AB+++%%’ ESCAPE ’+’ Finds AB+%, any string
LIKE ’AB+%+%%’ ESCAPE ’+’ Finds AB%%, any string
LIKE ’AB++++’ ESCAPE ’+’ Finds AB++
LIKE ’AB+++++%’ ESCAPE ’+’ Finds AB++%
LIKE ’AB++++%’ ESCAPE ’+’ Finds AB++, any string
LIKE ’AB+%++%’ ESCAPE ’+’ Finds AB%+, any string

Figure 68, LIKE and ESCAPE examples

Now for sample SQL:

SELECT id ANSWER
FROM staff ======
WHERE id = 10 ID
 AND ’ABC’ LIKE ’AB%’ ---
 AND ’A%C’ LIKE ’A/%C’ ESCAPE ’/’ 10
 AND ’A_C’ LIKE ’A_C’ ESCAPE ’\’
 AND ’A_$’ LIKE ’A$_$$’ ESCAPE ’$’;

Figure 69, LIKE and ESCAPE examples

 Graeme Birchall ©

32 SQL Predicates

NULL Predicate

The NULL predicate checks for null values. The result of this predicate cannot be unknown.
If the value of the expression is null, the result is true. If the value of the expression is not
null, the result is false.

 exprsn. NULL
 NOT NOT

 IS

Figure 70, NULL Predicate syntax

SELECT id, comm ANSWER
FROM staff =========
WHERE id < 100 ID COMM
 AND id IS NOT NULL --- ----
 AND comm IS NULL 10 -
 AND NOT comm IS NOT NULL 30 -
ORDER BY id; 50 -

Figure 71, NULL predicate examples

NOTE: Use the COALESCE function to convert null values into something else.

Precedence Rules

Expressions within parentheses are done first, then prefix operators (e.g. -1), then multiplica-
tion and division, then addition and subtraction. When two operations of equal precedence are
together (e.g. 1 * 5 / 4) they are done from left to right.

Example: 555 + -22 / (12 - 3) * 66 ANSWER
 ======
 ^ ^ ^ ^ ^ 423
 5th 2nd 3rd 1st 4th

Figure 72, Precedence rules example

Be aware that the result that you get depends very much on whether you are doing integer or
decimal arithmetic. Below is the above done using integer numbers:

SELECT (12 - 3) AS int1
 , -22 / (12 - 3) AS int2
 , -22 / (12 - 3) * 66 AS int3
 ,555 + -22 / (12 - 3) * 66 AS int4
FROM sysibm.sysdummy1; ANSWER
 ===================
 INT1 INT2 INT3 INT4
 ---- ---- ---- ----
 9 -2 -132 423

Figure 73, Precedence rules, integer example

NOTE: DB2 truncates, not rounds, when doing integer arithmetic.

Here is the same done using decimal numbers:

SELECT (12.0 - 3) AS dec1
 , -22 / (12.0 - 3) AS dec2
 , -22 / (12.0 - 3) * 66 AS dec3
 ,555 + -22 / (12.0 - 3) * 66 AS dec4
FROM sysibm.sysdummy1; ANSWER
 ===========================
 DEC1 DEC2 DEC3 DEC4
 ------ ------ ------ ------
 9.0 -2.4 -161.3 393.6

Figure 74, Precedence rules, decimal example

AND operations are done before OR operations. This means that one side of an OR is fully
processed before the other side is begun. To illustrate:

DB2 UDB/V8.1 Cookbook ©

Introduction to SQL 33

SELECT * ANSWER>> COL1 COL2 TABLE1
FROM table1 ---- ---- +---------+
WHERE col1 = ’C’ A AA |COL1|COL2|
 AND col1 >= ’A’ B BB |----|----|
 OR col2 >= ’AA’ C CC |A |AA |
ORDER BY col1; |B |BB |
 |C |CC |
SELECT * ANSWER>> COL1 COL2 +---------+
FROM table1 ---- ----
WHERE (col1 = ’C’ A AA
 AND col1 >= ’A’) B BB
 OR col2 >= ’AA’ C CC
ORDER BY col1;

SELECT * ANSWER>> COL1 COL2
FROM table1 ---- ----
WHERE col1 = ’C’ C CC
 AND (col1 >= ’A’
 OR col2 >= ’AA’)
ORDER BY col1;

Figure 75, Use of OR and parenthesis

WARNING: The omission of necessary parenthesis surrounding OR operators is a very
common mistake. The result is usually the wrong answer. One symptom of this problem is
that many more rows are returned (or updated) than anticipated.

CAST Expression
The CAST is expression is used to convert one data type to another. It is similar to the various
field-type functions (e.g. CHAR, SMALLINT) except that it can also handle null values and
host-variable parameter markers.

CAST (data-type)expression
NULL
parameter maker

 AS

Figure 76, CAST expression syntax

Input vs. Output Rules

• EXPRESSION: If the input is neither null, nor a parameter marker, the input data-type is
converted to the output data-type. Truncation and/or padding with blanks occur as re-
quired. An error is generated if the conversion is illegal.

• NULL: If the input is null, the output is a null value of the specified type.

• PARAMETER MAKER: This option is only used in programs and need not concern us
here. See the DB2 SQL Reference for details.

Examples

Use the CAST expression to convert the SALARY field from decimal to integer:

SELECT id ANSWER
 ,salary =================
 ,CAST(salary AS INTEGER) AS sal2 ID SALARY SAL2
FROM staff -- -------- -----
WHERE id < 30 10 18357.50 18357
ORDER BY id; 20 18171.25 18171

Figure 77, Use CAST expression to convert Decimal to Integer

 Graeme Birchall ©

34 VALUES Clause

Use the CAST expression to truncate the JOB field. A warning message will be generated for
the second line of output because non-blank truncation is being done.

SELECT id ANSWER
 ,job =============
 ,CAST(job AS CHAR(3)) AS job2 ID JOB JOB2
FROM staff -- ----- ----
WHERE id < 30 10 Mgr Mgr
ORDER BY id; 20 Sales Sal

Figure 78, Use CAST expression to truncate Char field

Use the CAST expression to make a derived field called JUNK of type SMALLINT where all
of the values are null.

SELECT id ANSWER
 ,CAST(NULL AS SMALLINT) AS junk =======
FROM staff ID JUNK
WHERE id < 30 -- ----
ORDER BY id; 10 -
 20 -

Figure 79, Use CAST expression to define SMALLINT field with null values

The CAST expression can also be used in a join, where the field types being matched differ:

SELECT stf.id ANSWER
 ,emp.empno =========
FROM staff stf ID EMPNO
LEFT OUTER JOIN -- ------
 employee emp 10 -
ON stf.id = CAST(emp.empno AS SMALLINT) 20 000020
AND emp.job = ’MANAGER’ 30 000030
WHERE stf.id < 60 40 -
ORDER BY stf.id; 50 000050

Figure 80, CAST expression in join

Of course, the same join can be written using the raw function:

SELECT stf.id ANSWER
 ,emp.empno =========
FROM staff stf ID EMPNO
LEFT OUTER JOIN -- ------
 employee emp 10 -
ON stf.id = SMALLINT(emp.empno) 20 000020
AND emp.job = ’MANAGER’ 30 000030
WHERE stf.id < 60 40 -
ORDER BY stf.id; 50 000050

Figure 81, Function usage in join

VALUES Clause
The VALUES clause is used to define a set of rows and columns with explicit values. The
clause is commonly used in temporary tables, but can also be used in view definitions. Once
defined in a table or view, the output of the VALUES clause can be grouped by, joined to,
and otherwise used as if it is an ordinary table - except that it can not be updated.

DB2 UDB/V8.1 Cookbook ©

Introduction to SQL 35

VALUES

 expression

 ,

) expression

 NULL

 ,

 (

 ,

Figure 82, VALUES expression syntax

Each column defined is separated from the next using a comma. Multiple rows (which may
also contain multiple columns) are separated from each other using parenthesis and a comma.
When multiple rows are specified, all must share a common data type. Some examples fol-
low:

VALUES 6 <= 1 row, 1 column
VALUES (6) <= 1 row, 1 column
VALUES 6, 7, 8 <= 1 row, 3 columns
VALUES (6), (7), (8) <= 3 rows, 1 column
VALUES (6,66), (7,77), (8,NULL) <= 3 rows, 2 columns

Figure 83, VALUES usage examples

Sample SQL

The next statement shall define a temporary table containing two columns and three rows.
The first column will default to type integer and the second to type varchar.

WITH temp1 (col1, col2) AS ANSWER
(VALUES (0, ’AA’) =========
 ,(1, ’BB’) COL1 COL2
 ,(2, NULL) ---- ----
) 0 AA
SELECT * 1 BB
FROM temp1; 2 -

Figure 84, Use VALUES to define a temporary table (1 of 4)

If we wish to explicitly control the output field types we can define them using the appropri-
ate function. This trick does not work if even a single value in the target column is null.

WITH temp1 (col1, col2) AS ANSWER
(VALUES (DECIMAL(0 ,3,1), ’AA’) =========
 ,(DECIMAL(1 ,3,1), ’BB’) COL1 COL2
 ,(DECIMAL(2 ,3,1), NULL) ---- ----
) 0.0 AA
SELECT * 1.0 BB
FROM temp1; 2.0 -

Figure 85, Use VALUES to define a temporary table (2 of 4)

If any one of the values in the column that we wish to explicitly define has a null value, we
have to use the CAST expression to set the output field type:

WITH temp1 (col1, col2) AS ANSWER
(VALUES (0, CAST(’AA’ AS CHAR(1))) =========
 ,(1, CAST(’BB’ AS CHAR(1))) COL1 COL2
 ,(2, CAST(NULL AS CHAR(1))) ---- ----
) 0 A
SELECT * 1 B
FROM temp1; 2 -

Figure 86, Use VALUES to define a temporary table (3 of 4)

Alternatively, we can set the output type for all of the not-null rows in the column. DB2 will
then use these rows as a guide for defining the whole column:

 Graeme Birchall ©

36 VALUES Clause

WITH temp1 (col1, col2) AS ANSWER
(VALUES (0, CHAR(’AA’,1)) =========
 ,(1, CHAR(’BB’,1)) COL1 COL2
 ,(2, NULL) ---- ----
) 0 A
SELECT * 1 B
FROM temp1; 2 -

Figure 87, Use VALUES to define a temporary table (4 of 4)

More Sample SQL

Temporary tables, or (permanent) views, defined using the VALUES expression can be used
much like a DB2 table. They can be joined, unioned, and selected from. They can not, how-
ever, be updated, or have indexes defined on them. Temporary tables can not be used in a
sub-query.

WITH temp1 (col1, col2, col3) AS ANSWER
(VALUES (0, ’AA’, 0.00) ==========
 ,(1, ’BB’, 1.11) COL1B COLX
 ,(2, ’CC’, 2.22) ----- ----
) 0 0.00
,temp2 (col1b, colx) AS 1 2.11
(SELECT col1 2 4.22
 ,col1 + col3
 FROM temp1
)
SELECT *
FROM temp2;

Figure 88, Derive one temporary table from another

CREATE VIEW silly (c1, c2, c3)
AS VALUES (11, ’AAA’, SMALLINT(22))
 ,(12, ’BBB’, SMALLINT(33))
 ,(13, ’CCC’, NULL);
COMMIT;

Figure 89, Define a view using a VALUES clause

WITH temp1 (col1) AS ANSWER
(VALUES 0 ======
 UNION ALL COL1
 SELECT col1 + 1 ----
 FROM temp1 0
 WHERE col1 + 1 < 100 1
) 2
SELECT * 3
FROM temp1; etc

Figure 90, Use VALUES defined data to seed a recursive SQL statement

All of the above examples have matched a VALUES statement up with a prior WITH expres-
sion, so as to name the generated columns. One doesn’t have to use the latter, but if you don’t,
you get a table with unnamed columns, which is pretty useless:

SELECT * ANSWER
FROM (VALUES (123,’ABC’) ======
 ,(234,’DEF’) --- ---
)AS ttt 234 DEF
ORDER BY 1 DESC; 123 ABC

Figure 91, Generate table with unnamed columns

DB2 UDB/V8.1 Cookbook ©

Introduction to SQL 37

CASE Expression
WARNING: The sequence of the CASE conditions can affect the answer. The first WHEN
check that matches is the one used.

CASE expressions enable one to do if-then-else type processing inside of SQL statements.
There are two general flavors of the expression. In the first kind, each WHEN statement does
its own independent checking. In the second kind, all of the WHEN conditions are used to do
"equal" checks against a common reference expression. With both flavors, the first WHEN
that matches is the one chosen.

CASE

 search-condition THEN

END
ELSE

WHEN result
NULL

 expression THEN WHEN expression result
NULL

result

ELSE NULL

Figure 92, CASE expression syntax

Notes & Restrictions

• If more than one WHEN condition is true, the first one processed that matches is used.

• If no WHEN matches, the value in the ELSE clause applies. If no WHEN matches and
there is no ELSE clause, the result is NULL.

• There must be at least one non-null result in a CASE statement. Failing that, one of the
NULL results must be inside of a CAST expression.

• All result values must be of the same type.

• Functions that have an external action (e.g. RAND) can not be used in the expression part
of a CASE statement.

CASE Flavours

The following CASE is of the kind where each WHEN does an equal check against a com-
mon expression - in this example, the current value of SEX.

SELECT Lastname ANSWER
 ,sex AS sx ====================
 ,CASE sex LASTNAME SX SEXX
 WHEN ’F’ THEN ’FEMALE’ ---------- -- ------
 WHEN ’M’ THEN ’MALE’ JEFFERSON M MALE
 ELSE NULL JOHNSON F FEMALE
 END AS sexx JONES M MALE
FROM employee
WHERE lastname LIKE ’J%’
ORDER BY 1;

Figure 93, Use CASE (type 1) to expand a value

The next statement is logically the same as the above, but it uses the alternative form of the
CASE notation in order to achieve the same result. In this example, the equal predicate is ex-
plicitly stated rather than implied.

 Graeme Birchall ©

38 CASE Expression

SELECT lastname ANSWER
 ,sex AS sx ====================
 ,CASE LASTNAME SX SEXX
 WHEN sex = ’F’ THEN ’FEMALE’ ---------- -- ------
 WHEN sex = ’M’ THEN ’MALE’ JEFFERSON M MALE
 ELSE NULL JOHNSON F FEMALE
 END AS sexx JONES M MALE
FROM employee
WHERE lastname LIKE ’J%’
ORDER BY 1;

Figure 94, Use CASE (type 2) to expand a value

More Sample SQL

SELECT lastname ANSWER
 ,midinit AS mi ===================
 ,sex AS sx LASTNAME MI SX MX
 ,CASE ---------- -- -- --
 WHEN midinit > SEX JEFFERSON J M M
 THEN midinit JOHNSON P F P
 ELSE sex JONES T M T
 END AS mx
FROM employee
WHERE lastname LIKE ’J%’
ORDER BY 1;

Figure 95, Use CASE to display the higher of two values

SELECT COUNT(*) AS tot ANSWER
 ,SUM(CASE sex WHEN ’F’ THEN 1 ELSE 0 END) AS #f =========
 ,SUM(CASE sex WHEN ’M’ THEN 1 ELSE 0 END) AS #m TOT #F #M
FROM employee --- -- --
WHERE lastname LIKE ’J%’; 3 1 2

Figure 96, Use CASE to get multiple counts in one pass

SELECT lastname ANSWER
 ,sex ==============
FROM employee LASTNAME SEX
WHERE lastname LIKE ’J%’ ---------- ---
 AND CASE sex JEFFERSON M
 WHEN ’F’ THEN ’’ JOHNSON F
 WHEN ’M’ THEN ’’ JONES M
 ELSE NULL
 END IS NOT NULL
ORDER BY 1;

Figure 97, Use CASE in a predicate

SELECT lastname ANSWER
 ,LENGTH(RTRIM(lastname)) AS len =====================
 ,SUBSTR(lastname,1, LASTNAME LEN LASTNM
 CASE ---------- --- ------
 WHEN LENGTH(RTRIM(lastname)) JEFFERSON 9 JEFFER
 > 6 THEN 6 JOHNSON 7 JOHNSO
 ELSE LENGTH(RTRIM(lastname)) JONES 5 JONES
 END) AS lastnm
FROM employee
WHERE lastname LIKE ’J%’
ORDER BY 1;

Figure 98, Use CASE inside a function

The CASE expression can also be used in an UPDATE statement to do any one of several
alternative updates to a particular field in a single pass of the data:

DB2 UDB/V8.1 Cookbook ©

Introduction to SQL 39

UPDATE staff
SET comm = CASE dept
 WHEN 15 THEN comm * 1.1
 WHEN 20 THEN comm * 1.2
 WHEN 38 THEN
 CASE
 WHEN years < 5 THEN comm * 1.3
 WHEN years >= 5 THEN comm * 1.4
 ELSE NULL
 END
 ELSE comm
 END
WHERE comm IS NOT NULL
 AND dept < 50;

Figure 99, UPDATE statement with nested CASE expressions

WITH temp1 (c1,c2) AS ANSWER
(VALUES (88,9),(44,3),(22,0),(0,1)) ========
SELECT c1 C1 C2 C3
 ,c2 -- -- --
 ,CASE c2 88 9 9
 WHEN 0 THEN NULL 44 3 14
 ELSE c1/c2 22 0 -
 END AS c3 0 1 0
FROM temp1;

Figure 100, Use CASE to avoid divide by zero

At least one of the results in a CASE expression must be non-null. This is so that DB2 will
know what output type to make the result. One can get around this restriction by using the
CAST expression. It is hard to imagine why one might want to do this, but it works:

SELECT name ANSWER
 ,CASE ============
 WHEN name = LCASE(name) THEN NULL NAME DUMB
 ELSE CAST(NULL AS CHAR(1)) ------- ----
 END AS dumb Sanders -
FROM staff Pernal -
WHERE id < 30;

Figure 101, Silly CASE expression that always returns NULL

Problematic CASE Statements

The case WHEN checks are always processed in the order that they are found. The first one
that matches is the one used. This means that the answer returned by the query can be affected
by the sequence on the WHEN checks. To illustrate this, the next statement uses the SEX
field (which is always either "F" or "M") to create a new field called SXX. In this particular
example, the SQL works as intended.

SELECT lastname ANSWER
 ,sex =================
 ,CASE LASTNAME SX SXX
 WHEN sex >= ’M’ THEN ’MAL’ ---------- -- ---
 WHEN sex >= ’F’ THEN ’FEM’ JEFFERSON M MAL
 END AS sxx JOHNSON F FEM
FROM employee JONES M MAL
WHERE lastname LIKE ’J%’
ORDER BY 1;

Figure 102, Use CASE to derive a value (correct)

In the example below all of the values in SXX field are "FEM". This is not the same as what
happened above, yet the only difference is in the order of the CASE checks.

 Graeme Birchall ©

40 DML (Data Manipulation Language)

SELECT lastname ANSWER
 ,sex =================
 ,CASE LASTNAME SX SXX
 WHEN sex >= ’F’ THEN ’FEM’ ---------- -- ---
 WHEN sex >= ’M’ THEN ’MAL’ JEFFERSON M FEM
 END AS sxx JOHNSON F FEM
FROM employee JONES M FEM
WHERE lastname LIKE ’J%’
ORDER BY 1;

Figure 103, Use CASE to derive a value (incorrect)

In the prior statement the two WHEN checks overlap each other in terms of the values that
they include. Because the first check includes all values that also match the second, the latter
never gets invoked. Note that this problem can not occur when all of the WHEN expressions
are equality checks.

DML (Data Manipulation Language)
The section has a very basic introduction to the INSERT, UPDATE, DELETE, and MERGE
statements. See the DB2 manuals for more details.

Select DML Changes

A special kind of SELECT statement (see page 47) can encompass an INSERT, UPDATE, or
DELETE statement to get the before or after image of whatever rows were changed (e.g. se-
lect the list of rows deleted). This kind of SELECT can be very useful when the DML state-
ment is internally generating a value that one needs to know (e.g. an INSERT automatically
creates a new invoice number using a sequence column).

Insert

The INSERT statement is used to insert rows into a table, view, or full-select. To illustrate
how it is used, this section will use the EMP_ACT sample table, which is defined thus:

CREATE TABLE emp_act
(empno CHARACTER (00006) NOT NULL
,projno CHARACTER (00006) NOT NULL
,actno SMALLINT NOT NULL
,emptime DECIMAL (05,02)
,emstdate DATE
,emendate DATE);

Figure 104, EMP_ACT sample table - DDL

Insert Syntax

 INSERT INTO table-name

 INCLUDE

 WITH common-table-expression

 column-name
 view-name

 (full-select) (

 ,

)

 column-name (

 ,

) data-type

 VALUES expression (

 ,

)

 full-select

Figure 105, INSERT statement syntax

DB2 UDB/V8.1 Cookbook ©

Introduction to SQL 41

Usage Notes

• One can insert into a table, view, or full-select. If the object is not a table, then it must be
insertable (i.e. refer to a single table, not have any column functions, etc).

• One has to provide a list of the columns (to be inserted) if the set of values provided does
not equal the complete set of columns in the target table, or are not in the same order as
the columns are defined in the target table.

• The columns in the INCLUDE list are not inserted. They are intended to be referenced in
a SELECT statement that encompasses the INSERT (see page 47).

• The input data can either be explicitly defined using the VALUES statement, or retrieved
from some other table using a full-select.

Direct Insert

To insert a single row, where all of the columns are populated, one lists the input the values in
the same order as the columns are defined in the table:

INSERT INTO emp_act VALUES
 (’100000’ ,’ABC’ ,10 ,1.4 ,’2003-10-22’, ’2003-11-24’);

Figure 106, Single row insert

To insert multiple rows in one statement, separate the row values using a comma:

INSERT INTO emp_act VALUES
 (’200000’ ,’ABC’ ,10 ,1.4 ,’2003-10-22’, ’2003-11-24’)
 ,(’200000’ ,’DEF’ ,10 ,1.4 ,’2003-10-22’, ’2003-11-24’)
 ,(’200000’ ,’IJK’ ,10 ,1.4 ,’2003-10-22’, ’2003-11-24’);

Figure 107, Multi row insert

NOTE: If multiple rows are inserted in one statement, and one of them violates a unique
index check, all of the rows are rejected.

The NULL and DEFAULT keywords can be used to assign these values to columns. One can
also refer to special registers, like the current date and current time:

INSERT INTO emp_act VALUES
 (’400000’ ,’ABC’ ,10 ,NULL ,DEFAULT, CURRENT DATE);

Figure 108,Using null and default values

To leave some columns out of the insert statement, one has to explicitly list those columns
that are included. When this is done, one can refer to the columns (being inserted with data)
in any order:

INSERT INTO emp_act (projno, emendate, actno, empno) VALUES
 (’ABC’ ,DATE(CURRENT TIMESTAMP) ,123 ,’500000’);

Figure 109, Explicitly listing columns being populated during insert

Insert into Full-Select

The next statement inserts a row into a full-select that just happens to have a predicate which,
if used in a subsequent query, would not find the row inserted. The predicate has no impact
on the insert itself:

INSERT INTO
 (SELECT *
 FROM emp_act
 WHERE empno < ’1’
)
VALUES (’510000’ ,’ABC’ ,10 ,1.4 ,’2003-10-22’, ’2003-11-24’);

Figure 110, Insert into a full-select

 Graeme Birchall ©

42 DML (Data Manipulation Language)

One can insert rows into a view (with predicates in the definition) that are outside the bounds
of the predicates. To prevent this, define the view WITH CHECK OPTION.

Insert from Select

One can insert a set of rows that is the result of a query using the following notation:

INSERT INTO emp_act
SELECT LTRIM(CHAR(id + 600000))
 ,SUBSTR(UCASE(name),1,6)
 ,salary / 229
 ,123
 ,CURRENT DATE
 ,’2003-11-11’
FROM staff
WHERE id < 50;

Figure 111,Insert result of select statement

NOTE: In the above example, the fractional part of the SALARY value is eliminated when
the data is inserted into the ACTNO field, which only supports integer values.

If only some columns are inserted using the query, they need to be explicitly listed:

INSERT INTO emp_act (empno, actno, projno)
SELECT LTRIM(CHAR(id + 700000))
 ,MINUTE(CURRENT TIME)
 ,’DEF’
FROM staff
WHERE id < 40;

Figure 112, Insert result of select - specified columns only

One reason why tables should always have unique indexes is to stop stupid SQL statements
like the following, which will double the number of rows in the table:

INSERT INTO emp_act
SELECT *
FROM emp_act;

Figure 113, Stupid - insert - doubles rows

The select statement using the insert can be as complex as one likes. In the next example, it
contains the union of two queries:

INSERT INTO emp_act (empno, actno, projno)
SELECT LTRIM(CHAR(id + 800000))
 ,77
 ,’XYZ’
FROM staff
WHERE id < 40
UNION
SELECT LTRIM(CHAR(id + 900000))
 ,SALARY / 100
 ,’DEF’
FROM staff
WHERE id < 50;

Figure 114, Inserting result of union

The select can also refer to a common table expression. In the following example, six values
are first generated, each in a separate row. These rows are then selected from during the in-
sert:

DB2 UDB/V8.1 Cookbook ©

Introduction to SQL 43

INSERT INTO emp_act (empno, actno, projno, emptime)
WITH temp1 (col1) AS
(VALUES (1),(2),(3),(4),(5),(6))
SELECT LTRIM(CHAR(col1 + 910000))
 ,col1
 ,CHAR(col1)
 ,col1 / 2
FROM temp1;

Figure 115, Insert from common table expression

The next example inserts multiple rows - all with an EMPNO beginning "92". Three rows are
found in the STAFF table, and all three are inserted, even though the sub-query should get
upset once the first row has been inserted. This doesn’t happen because all of the matching
rows in the STAFF table are retrieved and placed in a work-file before the first insert is done:

INSERT INTO emp_act (empno, actno, projno)
SELECT LTRIM(CHAR(id + 920000))
 ,id
 ,’ABC’
FROM staff
WHERE id < 40
 AND NOT EXISTS
 (SELECT *
 FROM emp_act
 WHERE empno LIKE ’92%’);

Figure 116, Insert with irrelevant sub-query

Update

The UPDATE statement is used to change one or more columns/rows in a table, view, or full-
select. Each column that is to be updated has to specified. Here is an example:

UPDATE emp_act
SET emptime = NULL
 ,emendate = DEFAULT
 ,emstdate = CURRENT DATE + 2 DAYS
 ,actno = ACTNO / 2
 ,projno = ’ABC’
WHERE empno = ’100000’;

Figure 117, Single row update

Update Syntax

UPDATE table-name or view-name or (full-select)

 INCLUDE

 WHERE
 column-name

 corr-name

 column-name (

 ,

) data-type

 SET expression =
 predicates

 ,

Figure 118, UPDATE statement syntax

Usage Notes

• One can update rows in a table, view, or full-select. If the object is not a table, then it
must be updateable (i.e. refer to a single table, not have any column functions, etc).

• The correlation name is optional, and is only needed if there is an expression or predicate
that references another table.

• The columns in the INCLUDE list are not updated. They are intended to be referenced in
a SELECT statement that encompasses the UPDATE (see page 47).

 Graeme Birchall ©

44 DML (Data Manipulation Language)

• The SET statement lists the columns to be updated, and the new value they will get.

• Predicates are optional. If none are provided, all rows in the table are updated.

Update Examples

To update all rows in a table, leave off all predicates:

UPDATE emp_act
SET actno = actno / 2;

Figure 119, Mass update

In the next example, both target columns get the same values. This happens because the result
for both columns is calculated before the first column is updated:

UPDATE emp_act ac1
SET actno = actno * 2
 ,emptime = actno * 2
WHERE empno LIKE ’910%’;

Figure 120, Two columns get same value

One can also have an update refer to the output of a select statement- as long as the result of
the select is a single row:

UPDATE emp_act
SET actno = (SELECT MAX(salary)
 FROM staff)
WHERE empno = ’200000’;

Figure 121, Update using select

The following notation lets one update multiple columns using a single select:

UPDATE emp_act
SET (actno
 ,emstdate
 ,projno) = (SELECT MAX(salary)
 ,CURRENT DATE + 2 DAYS
 ,MIN(CHAR(id))
 FROM staff
 WHERE id <> 33)
WHERE empno LIKE ’600%’;

Figure 122, Multi-row update using select

Multiple rows can be updated using multiple different values, as long as there is a one-to-one
relationship between the result of the select, and each row to be updated.

UPDATE emp_act ac1
SET (actno
 ,emptime) = (SELECT ac2.actno + 1
 ,ac1.emptime / 2
 FROM emp_act ac2
 WHERE ac2.empno LIKE ’60%’
 AND SUBSTR(ac2.empno,3) = SUBSTR(ac1.empno,3))
WHERE EMPNO LIKE ’700%’;

Figure 123, Multi-row update using correlated select

Using Full-selects

An update statement can be run against a table, a view, or a full-select. In the next example,
the table is referred to directly:

UPDATE emp_act
SET emptime = 10
WHERE empno = ’000010’
 AND projno = ’MA2100’;

Figure 124, Direct update of table

DB2 UDB/V8.1 Cookbook ©

Introduction to SQL 45

Below is a logically equivalent update that pushes the predicates up into a full-select:

UPDATE
 (SELECT *
 FROM emp_act
 WHERE empno = ’000010’
 AND projno = ’MA2100’
)AS ea
SET emptime = 20;

Figure 125, Update of full-select

Using OLAP Functions

Imagine that we want to set the employee-time for a particular row in the EMP_ACT table to
the MAX time for that employee. Below is one way to do it:

UPDATE emp_act ea1
SET emptime = (SELECT MAX(emptime)
 FROM emp_act ea2
 WHERE ea1.empno = ea2.empno)
WHERE empno = ’000010’
 AND projno = ’MA2100’;

Figure 126, Set employee-time in row to MAX - for given employee

The same result can be achieved by calling an OLAP function in a full-select, and then updat-
ing the result. In next example, the MAX employee-time per employee is calculated (for each
row), and placed in a new column. This column is then used to do the final update:

UPDATE
 (SELECT ea1.*
 ,MAX(emptime) OVER(PARTITION BY empno) AS maxtime
 FROM emp_act ea1
)AS ea2
SET emptime = maxtime
WHERE empno = ’000010’
 AND projno = ’MA2100’;

Figure 127, Use OLAP function to get max-time, then apply (correct)

The above statement has the advantage of only accessing the EMP_ACT table once. If there
were many rows per employee, and no suitable index (i.e. on EMPNO and EMPTIME), it
would be much faster than the prior update.

The next update is similar to the prior - but it does the wrong update! In this case, the scope of
the OLAP function is constrained by the predicate on PROJNO, so it no longer gets the MAX
time for the employee:

UPDATE emp_act
SET emptime = MAX(emptime) OVER(PARTITION BY empno)
WHERE empno = ’000010’
 AND projno = ’MA2100’;

Figure 128, Use OLAP function to get max-time, then apply (wrong)

Correlated and Uncorrelated Update

In the next example, regardless of the number of rows updated, the ACTNO will always come
out as one. This is because the sub-query that calculates the row-number is correlated, which
means that it is resolved again for each row to be updated in the "AC1" table. At most, one
"AC2" row will match, so the row-number must always equal one:

 Graeme Birchall ©

46 DML (Data Manipulation Language)

UPDATE emp_act ac1
SET (actno
 ,emptime) = (SELECT ROW_NUMBER() OVER()
 ,ac1.emptime / 2
 FROM emp_act ac2
 WHERE ac2.empno LIKE ’60%’
 AND SUBSTR(ac2.empno,3) = SUBSTR(ac1.empno,3))
WHERE EMPNO LIKE ’800%’;

Figure 129, Update with correlated query

In the next example, the ACTNO will be updated to be values 1, 2, 3, etc, in order that the
rows are updated. In this example, the sub-query that calculates the row-number is uncorre-
lated, so all of the matching rows are first resolved, and then referred to in the next, corre-
lated, step:

UPDATE emp_act ac1
SET (actno
 ,emptime) = (SELECT c1
 ,c2
 FROM (SELECT ROW_NUMBER() OVER() AS c1
 ,actno / 100 AS c2
 ,empno
 FROM emp_act
 WHERE empno LIKE ’60%’
)AS ac2
 WHERE SUBSTR(ac2.empno,3) = SUBSTR(ac1.empno,3))
WHERE empno LIKE ’900%’;

Figure 130, Update with uncorrelated query

Delete

The DELETE statement is used to remove rows from a table , view, or full-select. The set of
rows deleted depends on the scope of the predicates used. The following example would de-
lete a single row from the EMP_ACT sample table:

DELETE
FROM emp_act
WHERE empno = ’000010’
 AND projno = ’MA2100’
 AND actno = 10;

Figure 131, Single-row delete

Delete Syntax

 DELETE FROM table-name or view-name or (full-select)

 INCLUDE

 WHERE

 corr-name

 column-name (

 ,

) data-type

 predicates

Figure 132, DELETE statement syntax

Usage Notes

• One can delete rows from a table, view, or full-select. If the object is not a table, then it
must be deletable (i.e. refer to a single table, not have any column functions, etc).

• The correlation name is optional, and is only needed if there is a predicate that references
another table.

• The columns in the INCLUDE list are not updated. They are intended to be referenced in
a SELECT statement that encompasses the DELETE (see page 47).

DB2 UDB/V8.1 Cookbook ©

Introduction to SQL 47

• Predicates are optional. If none are provided, all rows are deleted.

Basic Delete

The next example would delete all rows in the EMP_ACT table:

DELETE
FROM emp_act;

Figure 133, Mass delete

Correlated Delete

The next example deletes all the rows in the STAFF table - except those that have the highest
ID in their respective department:

DELETE
FROM staff s1
WHERE id NOT IN
 (SELECT MAX(id)
 FROM staff s2
 WHERE s1.dept = s2.dept);

Figure 134, Correlated delete (1 of 2)

Here is another way to write the same:

DELETE
FROM staff s1
WHERE EXISTS
 (SELECT *
 FROM staff s2
 WHERE s2.dept = s1.dept
 AND s2.id > s1.id);

Figure 135, Correlated delete (2 of 2)

The next query is logically equivalent to the prior two, but it works quite differently. It uses a
full-select and an OLAP function to get, for each row, the ID, and also the highest ID value in
the current department. All rows where these two values do not match are then deleted:

DELETE FROM
 (SELECT id
 ,MAX(id) OVER(PARTITION BY dept) AS max_id
 FROM staff
)AS ss
WHERE id <> max_id;

Figure 136, Delete using full-select and OLAP function

Select DML Changes

One often needs to know what data a particular insert, update, or delete statement changed.
For example, one may need to get the key (e.g. invoice number) that was generated on the fly
(using an identity column - see page 229) during an insert, or get the set of rows that were
removed by a delete. All of this can be done by coding a special kind of select.

Select DML Syntax

 SELECT column-list FROM OLD DML stmt ()

 NEW

 FINAL

 TABLE

 WHERE predicates ORDER BY sort-columns

 INPUT SEQUENCE

Figure 137, Select DML statement syntax

 Graeme Birchall ©

48 DML (Data Manipulation Language)

Table Types

• OLD: Has the before state of the data. This is allowed for an update and delete.

• NEW: Has the after state of the data - before any triggers are applied. This is allowed for
an insert and an update.

• FINAL: Has the final state of the data - after all triggers have been applied. This is al-
lowed for an insert and an update.

Usage Notes

• Only one of the above tables can be listed in the FROM statement.

• The table listed in the FROM statement cannot be given a correlation name.

• No other table can be listed (i.e. joined to) in the FROM statement. One can reference
another table in the SELECT list (see example page 51), or by using a sub-query in the
predicate section of the statement.

• The SELECT statement cannot be embedded in a nested-table expression.

• The SELECT statement cannot be embedded in an insert statement.

• To retrieve (generated) columns that are not in the target table, list them in an INCLUDE
phrase in the DML statement. This technique can be used to, for example, assign row
numbers to the set of rows entered during an insert.

• Predicates (on the select) are optional. They have no impact on the underlying DML.

• The INPUT SEQUENCE phrase can be used in the ORDER BY to retrieve the rows in
the same sequence as they were inserted. It is not valid in an update or delete.

• The usual scalar functions, OLAP functions, and column functions, plus the GROUP BY
phrase, can be applied to the output - as desired.

Insert Examples

The example below selects from the final result of the insert:

 ANSWER
 ==============
SELECT empno EMPNO PRJ ACT
 ,projno AS prj ------ --- ---
 ,actno AS act 200000 ABC 10
FROM FINAL TABLE 200000 DEF 10
 (INSERT INTO emp_act
 VALUES (’200000’,’ABC’,10 ,1,’2003-10-22’,’2003-11-24’)
 ,(’200000’,’DEF’,10 ,1,’2003-10-22’,’2003-11-24’))
ORDER BY 1,2,3;

Figure 138, Select rows inserted

One way to retrieve the new rows in the order that they were inserted is to include a column
in the insert statement that is a sequence number:

DB2 UDB/V8.1 Cookbook ©

Introduction to SQL 49

SELECT empno ANSWER
 ,projno AS prj =================
 ,actno AS act EMPNO PRJ ACT R#
 ,row# AS r# ------ --- --- --
FROM FINAL TABLE 300000 ZZZ 999 1
 (INSERT INTO emp_act (empno, projno, actno) 300000 VVV 111 2
 INCLUDE (row# SMALLINT)
 VALUES (’300000’,’ZZZ’,999,1)
 ,(’300000’,’VVV’,111,2))
ORDER BY row#;

Figure 139, Include column to get insert sequence

The next example uses the INPUT SEQUENCE phrase to select the new rows in the order
that they were inserted. Row numbers are assigned to the output:

SELECT empno ANSWER
 ,projno AS prj =================
 ,actno AS act EMPNO PRJ ACT R#
 ,ROW_NUMBER() OVER() AS r# ------ --- --- --
FROM FINAL TABLE 400000 ZZZ 999 1
 (INSERT INTO emp_act (empno, projno, actno) 400000 VVV 111 2
 VALUES (’400000’,’ZZZ’,999)
 ,(’400000’,’VVV’,111))
ORDER BY INPUT SEQUENCE;

Figure 140, Select rows in insert order

NOTE: The INPUT SEQUENCE phrase only works in an insert statement. It can be listed
in the ORDER BY part of the statement, but not in the SELECT part. The only way to dis-
play the row number of each row inserted is to explicitly assign row numbers.

In the next example, the only way to know for sure what the insert has done is to select from
the result. This is because the select statement (in the insert) has the following unknowns:

• We do not, or may not, know what ID values were selected, and thus inserted.

• The project-number is derived from the current-time special register.

• The action-number is generated using the RAND function.

Now for the insert:

SELECT empno ANSWER
 ,projno AS prj =================
 ,actno AS act EMPNO PRJ ACT R#
 ,ROW_NUMBER() OVER() AS r# ------ --- -- --
FROM NEW TABLE 600010 1 59 1
 (INSERT INTO emp_act (empno, actno, projno) 600020 563 59 2
 SELECT LTRIM(CHAR(id + 600000)) 600030 193 59 3
 ,SECOND(CURRENT TIME)
 ,CHAR(SMALLINT(RAND(1) * 1000))
 FROM staff
 WHERE id < 40)
ORDER BY INPUT SEQUENCE;

Figure 141, Select from an insert that has unknown values

Update Examples

The statement below updates the matching rows by a fixed amount. The select statement gets
the old EMPTIME values:

 Graeme Birchall ©

50 DML (Data Manipulation Language)

SELECT empno ANSWER
 ,projno AS prj ================
 ,emptime AS etime EMPNO PRJ ETIME
FROM OLD TABLE ------ --- -----
 (UPDATE emp_act 200000 ABC 1.00
 SET emptime = emptime * 2 200000 DEF 1.00
 WHERE empno = ’200000’)
ORDER BY projno;

Figure 142, Select values - from before update

The next statement updates the matching EMPTIME values by random amount. To find out
exactly what the update did, we need to get both the old and new values. The new values are
obtained by selecting from the NEW table, while the old values are obtained by including a
column in the update which is set to them, and then subsequently selected:

SELECT projno AS prj ANSWER
 ,old_t AS old_t ===============
 ,emptime AS new_t PRJ OLD_T NEW_T
FROM NEW TABLE --- ----- -----
 (UPDATE emp_act ABC 2.00 0.02
 INCLUDE (old_t DECIMAL(5,2)) DEF 2.00 11.27
 SET emptime = emptime * RAND(1) * 10
 ,old_t = emptime
 WHERE empno = ’200000’)
ORDER BY 1;

Figure 143, Select values - before and after update

Delete Examples

The following example lists the rows that were deleted:

SELECT projno AS prj ANSWER
 ,actno AS act =======
FROM OLD TABLE PRJ ACT
 (DELETE --- ---
 FROM emp_act VVV 111
 WHERE empno = ’300000’) ZZZ 999
ORDER BY 1,2;

Figure 144, List deleted rows

The next query deletes a set of rows, and assigns row-numbers (to the included field) as the
rows are deleted. The subsequent query selects every second row:

SELECT empno ANSWER
 ,projno ====================
 ,actno AS act EMPNO PROJNO ACT R#
 ,row# AS r# ------ ------ --- --
FROM OLD TABLE 000260 AD3113 70 2
 (DELETE 000260 AD3113 80 4
 FROM emp_act 000260 AD3113 180 6
 INCLUDE (row# SMALLINT)
 SET row# = ROW_NUMBER() OVER()
 WHERE empno = ’000260’)
WHERE row# = row# / 2 * 2
ORDER BY 1,2,3;

Figure 145, Assign row numbers to deleted rows

NOTE: Predicates (in the select result phrase) have no impact on the range of rows changed
by the underlying DML, which is determined by its own predicates.

One cannot join the table generated by a DML statement to another table, nor include it in a
nested table expression, but one can join in the SELECT phrase. The following delete illus-
trates this concept by joining to the EMPLOYEE table:

DB2 UDB/V8.1 Cookbook ©

Introduction to SQL 51

SELECT empno ANSWER
 ,(SELECT lastname ==========================
 FROM (SELECT empno AS e# EMPNO LASTNAME PROJNO ACT
 ,lastname ------ -------- ------ ---
 FROM employee 000010 HAAS AD3100 10
)AS xxx 000010 HAAS MA2100 10
 WHERE empno = e#) 000010 HAAS MA2110 10
 ,projno AS projno 000020 THOMPSON PL2100 30
 ,actno AS act 000030 KWAN IF1000 10
FROM OLD TABLE
 (DELETE
 FROM emp_act
 WHERE empno < ’0001’)
FETCH FIRST 5 ROWS ONLY;

Figure 146, Join result to another table

Observe above that the EMPNO field in the EMPLOYEE table was be renamed (before doing
the join) using a nested table expression. This was necessary because one cannot join on two
fields that have the same name, without using correlation names. A correlation name cannot
be used on the OLD TABLE, so we had to rename the field to get around this problem.

Merge

A merge statement is a combination insert and update, or delete, statement on steroids. It can
be used to take the data from a source table, and combine it with the data in a target table. The
qualifying rows in the source and target tables are first matched by unique key value, and then
evaluated:

• If the source row is already in the target, the latter can be either updated or deleted.

• If the source row in not in the target, it can be inserted.

• If desired, as SQL error can also be generated.

Below is the basic syntax diagram:

 MERGE INTO table-name or view-name or (full-select)

 THEN UPDATE SET...

corr-name

 ELSE IGNORE

ON search-conditions

 WHEN MATCHED

 search-c AND DELETE

 SIGNAL...

 THEN INSERT... WHEN NOT MATCHED

 search-c AND SIGNAL...

USING table-name or view-name or (full-select)
corr-name

Figure 147, MERGE statement syntax

Usage Rules

The following rules apply to the merge statement:

• Correlation names are optional, but are required if the field names are not unique.

 Graeme Birchall ©

52 DML (Data Manipulation Language)

• If the target of the merge is a full-select or a view, it must allow updates, inserts, and de-
letes - as if it were an ordinary table.

• At least one ON condition must be provided.

• The ON conditions must uniquely identify the matching rows in the target table.

• Each individual WHEN check can only invoke a single modification statement.

• When a MATCHED search condition is true, the matching target row can be updated,
deleted, or an error can be flagged.

• When a NOT MATCHED search condition is true, the source row can be inserted into
the target table, or an error can be flagged.

• When more than one MATCHED or NOT MATCHED search condition is true, the first
one that matches (for each type) is applied. This prevents any target row from being up-
dated or deleted more than once. Ditto for any source row being inserted.

• The ELSE IGNORE phrase specifies that no action be taken if no WHEN check evalu-
ates to true.

• If an error is encountered, all changes are rolled back.

Sample Tables

To illustrate the merge statement, the following test tables were created and populated:

CREATE TABLE old_staff AS OLD_STAFF NEW_STAFF
 (SELECT id, job, salary +-----------------+ +----------+
 FROM staff) |ID|JOB |SALARY | |ID|SALARY |
WITH NO DATA; |--|-----|--------| |--|-------|
 |20|Sales|18171.25| |30|1750.67|
CREATE TABLE new_staff AS |30|Mgr |17506.75| |40|1800.60|
 (SELECT id, salary |40|Sales|18006.00| |50|2065.98|
 FROM staff) +-----------------+ +----------+
WITH NO DATA;

INSERT INTO old_staff INSERT INTO new_staff
SELECT id, job, salary SELECT id, salary / 10
FROM staff FROM staff
WHERE id BETWEEN 20 and 40; WHERE id BETWEEN 30 and 50;

Figure 148, Sample tables for merge

Update or Insert Merge

The next statement merges the new staff table into the old, using the following rules:

• The two tables are matched on common ID columns.

• If a row matches, the salary is updated with the new value.

• If there is no matching row, a new row is inserted.

Now for the code:

DB2 UDB/V8.1 Cookbook ©

Introduction to SQL 53

MERGE INTO old_staff oo OLD_STAFF NEW_STAFF
USING new_staff nn +-----------------+ +----------+
ON oo.id = nn.id |ID|JOB |SALARY | |ID|SALARY |
WHEN MATCHED THEN |--|-----|--------| |--|-------|
 UPDATE |20|Sales|18171.25| |30|1750.67|
 SET oo.salary = nn.salary |30|Mgr |17506.75| |40|1800.60|
WHEN NOT MATCHED THEN |40|Sales|18006.00| |50|2065.98|
 INSERT +-----------------+ +----------+
 VALUES (nn.id,’?’,nn.salary);
 AFTER-MERGE
 =================
 ID JOB SALARY
 -- ----- --------
 20 Sales 18171.25
 30 Mgr 1750.67
 40 Sales 1800.60
 50 ? 2065.98

Figure 149, Merge - do update or insert

Delete-only Merge

The next statement deletes all matching rows:

MERGE INTO old_staff oo AFTER-MERGE
USING new_staff nn =================
ON oo.id = nn.id ID JOB SALARY
WHEN MATCHED THEN -- ----- --------
 DELETE; 20 Sales 18171.25

Figure 150, Merge - delete if match

Complex Merge

The next statement has the following options:

• The two tables are matched on common ID columns.

• If a row matches, and the old salary is < 18,000, it is updated.

• If a row matches, and the old salary is > 18,000, it is deleted.

• If no row matches, and the new ID is > 10, the new row is inserted.

• If no row matches, and (by implication) the new ID is <= 10, an error is flagged.

Now for the code:

MERGE INTO old_staff oo OLD_STAFF NEW_STAFF
USING new_staff nn +-----------------+ +----------+
ON oo.id = nn.id |ID|JOB |SALARY | |ID|SALARY |
WHEN MATCHED |--|-----|--------| |--|-------|
AND oo.salary < 18000 THEN |20|Sales|18171.25| |30|1750.67|
 UPDATE |30|Mgr |17506.75| |40|1800.60|
 SET oo.salary = nn.salary |40|Sales|18006.00| |50|2065.98|
WHEN MATCHED +-----------------+ +----------+
AND oo.salary > 18000 THEN
 DELETE AFTER-MERGE
WHEN NOT MATCHED =================
AND nn.id > 10 THEN ID JOB SALARY
 INSERT -- ----- --------
 VALUES (nn.id,’?’,nn.salary) 20 Sales 18171.25
WHEN NOT MATCHED THEN 30 Mgr 1750.67
 SIGNAL SQLSTATE ’70001’ 50 ? 2065.98
 SET MESSAGE_TEXT = ’New ID <= 10’;

Figure 151, Merge with multiple options

 Graeme Birchall ©

54 DML (Data Manipulation Language)

The merge statement is like the case statement (see page 37) in that the sequence in which
one writes the WHEN checks determines the processing logic. In the above example, if the
last check was written before the prior, any non-match would generate an error.

Using a Full-select

The following merge generates an input table (i.e. full-select) that has a single row containing
the MAX value of every field in the relevant table. This row is then inserted into the table:

MERGE INTO old_staff AFTER-MERGE
USING =================
 (SELECT MAX(id) + 1 AS max_id ID JOB SALARY
 ,MAX(job) AS max_job -- ----- --------
 ,MAX(salary) AS max_sal 20 Sales 18171.25
 FROM old_staff 30 Mgr 17506.75
)AS mx 40 Sales 18006.00
ON id = max_id 41 Sales 18171.25
WHEN NOT MATCHED THEN
 INSERT
 VALUES (max_id, max_job, max_sal);

Figure 152, Merge MAX row into table

Here is the same thing written as a plain on insert:

INSERT INTO old_staff
SELECT MAX(id) + 1 AS max_id
 ,MAX(job) AS max_job
 ,MAX(salary) AS max_sal
FROM old_staff;

Figure 153, Merge logic - done using insert

Use a full-select on the target and/or source table to limit the set of rows that are processed
during the merge:

MERGE INTO OLD_STAFF NEW_STAFF
 (SELECT * +-----------------+ +----------+
 FROM old_staff |ID|JOB |SALARY | |ID|SALARY |
 WHERE id < 40 |--|-----|--------| |--|-------|
)AS oo |20|Sales|18171.25| |30|1750.67|
USING |30|Mgr |17506.75| |40|1800.60|
 (SELECT * |40|Sales|18006.00| |50|2065.98|
 FROM new_staff +-----------------+ +----------+
 WHERE id < 50
)AS nn AFTER-MERGE
ON oo.id = nn.id =================
WHEN MATCHED THEN ID JOB SALARY
 DELETE -- ----- --------
WHEN NOT MATCHED THEN 20 Sales 18171.25
 INSERT 40 ? 1800.60
 VALUES (nn.id,’?’,nn.salary); 40 Sales 18006.00

Figure 154, Merge using two full-selects

Observe that the above merge did the following:

• The target row with an ID of 30 was deleted - because it matched.

• The target row with an ID of 40 was not deleted, because it was excluded in the full-
select that was done before the merge.

• The source row with an ID of 40 was inserted, because it was not found in the target full-
select. This is why the base table now has two rows with an ID of 40.

• The source row with an ID of 50 was not inserted, because it was excluded in the full-
select that was done before the merge.

DB2 UDB/V8.1 Cookbook ©

Introduction to SQL 55

Listing Columns

The next example explicitly lists the target fields in the insert statement - so they correspond
to those listed in the following values phrase:

MERGE INTO old_staff oo AFTER-MERGE
USING new_staff nn =================
ON oo.id = nn.id ID JOB SALARY
WHEN MATCHED THEN -- ----- --------
 UPDATE 20 Sales 18171.25
 SET (salary,job) = (1234,’?’) 30 ? 1234.00
WHEN NOT MATCHED THEN 40 ? 1234.00
 INSERT (id,salary,job) 50 ? 5678.90
 VALUES (id,5678.9,’?’);

Figure 155, Listing columns and values in insert

 Graeme Birchall ©

56 DML (Data Manipulation Language)

DB2 UDB/V8.1 Cookbook ©

Compound SQL 57

Compound SQL
A compound statement groups multiple independent SQL statements into a single executable.
In addition, simple processing logic can be included to create what is, in effect, a very basic
program. Such statements can be embedded in triggers, SQL functions, SQL methods, and
dynamic SQL statements.

Introduction
A compound SQL statement begins with an (optional) name, followed by the variable decla-
rations, followed by the procedural logic:

 BEGIN ATOMIC label:

DECLARE
DEFAULT NULL

; var-name data type
DEFAULT default value

DECLARE cond-name string constant
SQLSTATE

VALUE

,

SQL procedure statement ; END
label:

Figure 156, Compound SQL Statement syntax

Below is a compound statement that reads a set of rows from the STAFF table and, for each
row fetched, updates the COMM field to equal the current fetch number.

BEGIN ATOMIC
 DECLARE cntr SMALLINT DEFAULT 1;
 FOR V1 AS
 SELECT id as idval
 FROM staff
 WHERE id < 80
 ORDER BY id
 DO
 UPDATE staff
 SET comm = cntr
 WHERE id = idval;
 SET cntr = cntr + 1;
 END FOR;
END

Figure 157, Sample Compound SQL statement

Statement Delimiter

DB2 SQL does not come with an designated statement delimiter (terminator), though a semi-
colon is usually used. However, a semi-colon cannot be used in a compound SQL statement
because that character is used to differentiate the sub-components of the statement.

In DB2BATCH, one can run the SET DELIMITER command (intelligent comment) to use
something other than a semi-colon. The following script illustrates this usage:

 Graeme Birchall ©

58 SQL Statement Usage

--#SET DELIMITER !

SELECT NAME FROM STAFF WHERE ID = 10!

--#SET DELIMITER ;

SELECT NAME FROM STAFF WHERE ID = 20;

Figure 158, Set Delimiter example

SQL Statement Usage
When used in dynamic SQL, the following control statements can be used:

• FOR statement

• GET DIAGNOSTICS statement

• IF statement

• ITERATE statement

• LEAVE statement

• SIGNAL statement

• WHILE statement

NOTE: There are many more PSM control statements than what is shown above. But only
these ones can be used in Compound SQL statements.

The following SQL statement can be issued:

• full-select

• UPDATE

• DELETE

• INSERT

• SET variable statement

DECLARE Variables

All variables have to be declared at the start of the compound statement. Each variable must
be given a name and a type and, optionally, a default (start) value.

BEGIN ATOMIC
 DECLARE aaa, bbb, ccc SMALLINT DEFAULT 1;
 DECLARE ddd CHAR(10) DEFAULT NULL;
 DECLARE eee INTEGER;
 SET eee = aaa + 1;
 UPDATE staff
 SET comm = aaa
 ,salary = bbb
 ,years = eee
 WHERE id = 10;
END

Figure 159, DECLARE examples

DB2 UDB/V8.1 Cookbook ©

Compound SQL 59

FOR Statement

The FOR statement executes a group of statements for each row fetched from a query.

 FOR label: for-loop-name
DEFAULT cursor-name

select-stmt

AS

label:
DO SQL-procedure-stmt ; END FOR

Figure 160, FOR statement syntax

In the example below, one row is fetched per DEPT in the STAFF table. That row is then
used to do two independent updates:

BEGIN ATOMIC
 FOR V1 AS
 SELECT dept AS dname
 ,max(id) AS max_id
 FROM staff
 GROUP BY dept
 HAVING COUNT(*) > 1
 ORDER BY dept
 DO
 UPDATE staff
 SET id = id * -1
 WHERE id = max_id;
 UPDATE staff
 set dept = dept / 10
 WHERE dept = dname
 AND dept < 30;
 END FOR;
END

Figure 161, FOR statement example

GET DIAGNOSTICS Statement

The GET DIAGNOSTICS statement returns information about the most recently run SQL
statement. One can either get the number of rows processed (i.e. inserted, updated, or de-
leted), or the return status (for an external procedure call).

 GET DIAGNOSTICS SQL-var-name ROW_COUNT =
 RETURN_COUNT

Figure 162, GET DIAGNOSTICS statement syntax

In the example below, some number of rows are updated in the STAFF table. Then the count
of rows updated is obtained, and used to update a row in the STAFF table:

BEGIN ATOMIC
 DECLARE numrows INT DEFAULT 0;
 UPDATE staff
 SET salary = 12345
 WHERE ID < 100;
 GET DIAGNOSTICS numrows = ROW_COUNT;
 UPDATE staff
 SET salary = numrows
 WHERE ID = 10;
END

Figure 163, GET DIAGNOSTICS statement example

 Graeme Birchall ©

60 SQL Statement Usage

IF Statement

The IF statement is used to do standard if-then-else branching logic. It always begins with an
IF THEN statement and ends with and END IF statement.

 THEN seach condition

ELSEIF

END IF

SQL procedure statement ; IF

seach condition THEN SQL procedure statement ;

ELSE SQL procedure statement ;

Figure 164, IF statement syntax

The next example uses if-then-else logic to update one of three rows in the STAFF table, de-
pending on the current timestamp value:

BEGIN ATOMIC
 DECLARE cur INT;
 SET cur = MICROSECOND(CURRENT TIMESTAMP);
 IF cur > 600000 THEN
 UPDATE staff
 SET name = CHAR(cur)
 WHERE id = 10;
 ELSEIF cur > 300000 THEN
 UPDATE staff
 SET name = CHAR(cur)
 WHERE id = 20;
 ELSE
 UPDATE staff
 SET name = CHAR(cur)
 WHERE id = 30;
 END IF;
END

Figure 165, IF statement example

ITERATE Statement

The ITERATE statement causes the program to return to the beginning of the labeled loop.

 ITERATE label

Figure 166, ITERATE statement syntax

In next example, the second update statement will never get performed because the ITERATE
will always return the program to the start of the loop:

BEGIN ATOMIC
 DECLARE cntr INT DEFAULT 0;
 whileloop:
 WHILE cntr < 60 DO
 SET cntr = cntr + 10;
 UPDATE staff
 SET salary = cntr
 WHERE id = cntr;
 ITERATE whileloop;
 UPDATE staff
 SET comm = cntr + 1
 WHERE id = cntr;
 END WHILE;
END

Figure 167, ITERATE statement example

DB2 UDB/V8.1 Cookbook ©

Compound SQL 61

LEAVE Statement

The LEAVE statement exits the labeled loop.

 LEAVE label

Figure 168, LEAVE statement syntax

In the next example, the WHILE loop would continue forever, if left to its own devices. But
after some random number of iterations, the LEAVE statement will exit the loop:

BEGIN ATOMIC
 DECLARE cntr INT DEFAULT 1;
 whileloop:
 WHILE 1 <> 2 DO
 SET cntr = cntr + 1;
 IF RAND() > 0.99 THEN
 LEAVE whileloop;
 END IF;
 END WHILE;
 UPDATE staff
 SET salary = cntr
 WHERE ID = 10;
END

Figure 169, LEAVE statement example

SIGNAL Statement

The SIGNAL statement is used to issue an error or warning message.

VALUE

SQLSTATE

MESSAGE_TEXT

sqlstate string SIGNAL

condition-name

SET variable-name =
diagnostic-string

Figure 170, SIGNAL statement syntax

The next example loops a random number of times, and then generates an error message us-
ing the SIGNAL command, saying how many loops were done:

BEGIN ATOMIC
 DECLARE cntr INT DEFAULT 1;
 DECLARE emsg CHAR(20);
 whileloop:
 WHILE RAND() < .99 DO
 SET cntr = cntr + 1;
 END WHILE;
 SET emsg = ’#loops: ’ || CHAR(cntr);
 SIGNAL SQLSTATE ’75001’ SET MESSAGE_TEXT = emsg;
END

Figure 171, SIGNAL statement example

WHILE Statement

The WHILE statement repeats one or more statements while some condition is true.

 WHILE label:

label:

DO SQL-procedure-stmt ;

END WHILE

seach-condition

Figure 172, WHILE statement syntax

 Graeme Birchall ©

62 Other Usage

The next statement has two nested WHILE loops, and then updates the STAFF table:

BEGIN ATOMIC
 DECLARE c1, C2 INT DEFAULT 1;
 WHILE c1 < 10 DO
 WHILE c2 < 20 DO
 SET c2 = c2 + 1;
 END WHILE;
 SET c1 = c1 + 1;
 END WHILE;
 UPDATE staff
 SET salary = c1
 ,comm = c2
 WHERE id = 10;
END

Figure 173, WHILE statement example

Other Usage
The following DB2 objects also support the language elements described above:

• Triggers.

• Stored procedures.

• User-defined functions.

• Embedded compound SQL (in programs).

Some of the above support many more language elements. For example stored procedures
that are written in SQL also allow the following: ASSOCIATE, CASE, GOTO, LOOP, RE-
PEAT, RESIGNAL, and RETURN.

NOTE: To write stored procedures in the SQL language, you need a C compiler.

Test Query

To illustrate some of the above uses of compound SQL, we are going to get from the STAFF
table as complete list of departments, and the number of rows in each department. Here is the
basic query, with the related answer:

SELECT dept ANSWER
 ,count(*) as #rows ==========
FROM staff DEPT #ROWS
GROUP BY dept ---- -----
ORDER BY dept; 10 4
 15 4
 20 4
 38 5
 42 4
 51 5
 66 5
 84 4

Figure 174, List departments in STAFF table

If all you want to get is this list, the above query is the way to go. But we will get the same
answer using various other methods, just to show how it can be done using compound SQL
statements.

DB2 UDB/V8.1 Cookbook ©

Compound SQL 63

Trigger

One cannot get an answer using a trigger. All one can do is alter what happens during an in-
sert, update, or delete. With this in mind, the following example does the following:

• Sets the statement delimiter to an "!". Because we are using compound SQL inside the
trigger definition, we cannot use the usual semi-colon.

• Creates a new table (note: triggers are not allowed on temporary tables).

• Creates an INSERT trigger on the new table. This trigger gets the number of rows per
department in the STAFF table - for each row (department) inserted.

• Inserts a list of departments into the new table.

• Selects from the new table.

Now for the code:

--#SET DELIMITER ! IMPORTANT
 ============
CREATE TABLE dpt This example
(dept SMALLINT NOT NULL uses an "!"
,#names SMALLINT as the stmt
,PRIMARY KEY(dept))! delimiter.
COMMIT!

CREATE TRIGGER dpt1 AFTER INSERT ON dpt
REFERENCING NEW AS NNN
FOR EACH ROW
MODE DB2SQL
BEGIN ATOMIC
 DECLARE namecnt SMALLINT DEFAULT 0;
 FOR getnames AS
 SELECT COUNT(*) AS #n
 FROM staff
 WHERE dept = nnn.dept
 DO
 SET namecnt = #n;
 END FOR;
 UPDATE dpt
 SET #names = namecnt
 WHERE dept = nnn.dept; ANSWER
END! ===========
COMMIT! DEPT #NAMES
 ---- ------
INSERT INTO dpt (dept) 10 4
SELECT DISTINCT dept 15 4
FROM staff! 20 4
COMMIT! 38 5
 42 4
SELECT * 51 5
FROM dpt 66 5
ORDER BY dept! 84 4

Figure 175, Trigger with compound SQL

NOTE: The above code was designed to be run in DB2BATCH. The "set delimiter" notation
will probably not work in other environments.

Scalar Function

One can do something very similar to the above that is almost as stupid using a user-defined
scalar function, that calculates the number of rows in a given department. The basic logic will
go as follows:

 Graeme Birchall ©

64 Other Usage

• Set the statement delimiter to an "!".

• Create the scalar function.

• Run a query that first gets a list of distinct departments, then calls the function.

Here is the code:

--#SET DELIMITER ! IMPORTANT
 ============
CREATE FUNCTION dpt1 (deptin SMALLINT) This example
RETURNS SMALLINT uses an "!"
BEGIN ATOMIC as the stmt
 DECLARE num_names SMALLINT; delimiter.
 FOR getnames AS
 SELECT COUNT(*) AS #n
 FROM staff
 WHERE dept = deptin
 DO
 SET num_names = #n;
 END FOR; ANSWER
 RETURN num_names; ===========
END! DEPT #NAMES
COMMIT! ---- ------
 10 4
SELECT XXX.* 15 4
 ,dpt1(dept) as #names 20 4
FROM (SELECT dept 38 5
 FROM staff 42 4
 GROUP BY dept 51 5
)AS XXX 66 5
ORDER BY dept! 84 4

Figure 176, Scalar Function with compound SQL

Because the query used in the above function will only ever return one row, we can greatly
simplify the function definition thus:

--#SET DELIMITER ! IMPORTANT
 ============
CREATE FUNCTION dpt1 (deptin SMALLINT) This example
RETURNS SMALLINT uses an "!"
BEGIN ATOMIC as the stmt
 RETURN delimiter.
 SELECT COUNT(*)
 FROM staff
 WHERE dept = deptin;
END!
COMMIT!

SELECT XXX.*
 ,dpt1(dept) as #names
FROM (SELECT dept
 FROM staff
 GROUP BY dept
)AS XXX
ORDER BY dept!

Figure 177, Scalar Function with compound SQL

In the above example, the RETURN statement is directly finding the one matching row, and
then returning it to the calling statement.

Table Function

Below is almost exactly the same logic, this time using a table function:

DB2 UDB/V8.1 Cookbook ©

Compound SQL 65

--#SET DELIMITER ! IMPORTANT
 ============
CREATE FUNCTION dpt2 () This example
RETURNS TABLE (dept SMALLINT uses an "!"
 ,#names SMALLINT) as the stmt
BEGIN ATOMIC delimiter.
 RETURN
 SELECT dept
 ,count(*) ANSWER
 FROM staff ===========
 GROUP BY dept DEPT #NAMES
 ORDER BY dept; ---- ------
END! 10 4
COMMIT! 15 4
 20 4
--#SET DELIMITER ; 38 5
 42 4
SELECT * 51 5
FROM TABLE(dpt2()) T1 66 5
ORDER BY dept; 84 4

Figure 178, Table Function with compound SQL

 Graeme Birchall ©

66 Other Usage

DB2 UDB/V8.1 Cookbook ©

Column Functions 67

Column Functions
Introduction

By themselves, column functions work on the complete set of matching rows. One can use a
GROUP BY expression to limit them to a subset of matching rows. One can also use them in
an OLAP function to treat individual rows differently.

WARNING: Be very careful when using either a column function, or the DISTINCT clause,
in a join. If the join is incorrectly coded, and does some form of Cartesian Product, the col-
umn function may get rid of the all the extra (wrong) rows so that it becomes very hard to
confirm that the answer is incorrect. Likewise, be appropriately suspicious whenever you see
that someone (else) has used a DISTINCT statement in a join. Sometimes, users add the
DISTINCT clause to get rid of duplicate rows that they didn’t anticipate and don’t understand.

Column Functions, Definitions

AVG

Get the average (mean) value of a set of non-null rows. The columns(s) must be numeric.
ALL is the default. If DISTINCT is used duplicate values are ignored. If no rows match, the
null value is returned.

AVG (expression)
 DISTINCT

 ALL

Figure 179, AVG function syntax

SELECT AVG(DEPT) AS A1 ANSWER
 ,AVG(ALL DEPT) AS A2 ==============
 ,AVG(DISTINCT DEPT) AS A3 A1 A2 A3 A4 A5
 ,AVG(DEPT/10) AS A4 -- -- -- -- --
 ,AVG(DEPT)/10 AS A5 41 41 40 3 4
FROM STAFF
HAVING AVG(DEPT) > 40;

Figure 180, AVG function examples

WARNING: Observe columns A4 and A5 above. Column A4 has the average of each value
divided by 10. Column A5 has the average of all of the values divided by 10. In the former
case, precision has been lost due to rounding of the original integer value and the result is
arguably incorrect. This problem also occurs when using the SUM function.

Averaging Null and Not-Null Values

Some database designers have an intense and irrational dislike of using nullable fields. What
they do instead is define all columns as not-null and then set the individual fields to zero (for
numbers) or blank (for characters) when the value is unknown. This solution is reasonable in
some situations, but it can cause the AVG function to give what is arguably the wrong an-
swer.

One solution to this problem is some form of counseling or group therapy to overcome the
phobia. Alternatively, one can use the CASE expression to put null values back into the an-
swer-set being processed by the AVG function. The following SQL statement uses a modified

 Graeme Birchall ©

68 Column Functions, Definitions

version of the IBM sample STAFF table (all null COMM values were changed to zero) to
illustrate the technique:

UPDATE STAFF
SET COMM = 0
WHERE COMM IS NULL;

SELECT AVG(SALARY) AS SALARY ANSWER
 ,AVG(COMM) AS COMM1 ===================
 ,AVG(CASE COMM SALARY COMM1 COMM2
 WHEN 0 THEN NULL ------- ----- -----
 ELSE COMM 16675.6 351.9 513.3
 END) AS COMM2
FROM STAFF;

UPDATE STAFF
SET COMM = NULL
WHERE COMM = 0;

Figure 181, Convert zero to null before doing AVG

The COMM2 field above is the correct average. The COMM1 field is incorrect because it has
factored in the zero rows with really represent null values. Note that, in this particular query,
one cannot use a WHERE to exclude the "zero" COMM rows because it would affect the av-
erage salary value.

Dealing with Null Output

The AVG, MIN, MAX, and SUM functions all return a null value when there are no match-
ing rows. One use the COALESCE function, or a CASE expression, to convert the null value
into a suitable substitute. Both methodologies are illustrated below:

SELECT COUNT(*) AS C1 ANSWER
 ,AVG(SALARY) AS A1 ===========
 ,COALESCE(AVG(SALARY),0) AS A2 C1 A1 A2 A3
 ,CASE -- -- -- --
 WHEN AVG(SALARY) IS NULL THEN 0 0 - 0 0
 ELSE AVG(SALARY)
 END AS A3
FROM STAFF
WHERE ID < 10;

Figure 182, Convert null output (from AVG) to zero

AVG Date/Time Values

The AVG function only accepts numeric input. However, one can, with a bit of trickery, also
use the AVG function on a date field. First convert the date to the number of days since the
start of the Current Era, then get the average, then convert the result back to a date. Please be
aware that, in many cases, the average of a date does not really make good business sense.
Having said that, the following SQL gets the average birth-date of all employees:

SELECT AVG(DAYS(BIRTHDATE)) ANSWER
 ,DATE(AVG(DAYS(BIRTHDATE))) =================
FROM EMPLOYEE; 1 2
 ------ ----------
 709113 06/27/1942

Figure 183, AVG of date column

Time data can be manipulated in a similar manner using the MIDNIGHT_SECONDS func-
tion. If one is really desperate (or silly), the average of a character field can also be obtained
using the ASCII and CHR functions.

DB2 UDB/V8.1 Cookbook ©

Column Functions 69

Average of an Average

In some cases, getting the average of an average gives an overflow error. Inasmuch as you
shouldn’t do this anyway, it is no big deal:

SELECT AVG(AVG_SAL) AS AVG_AVG ANSWER
FROM (SELECT DEPT ================
 ,AVG(SALARY) AS AVG_SAL <Overflow error>
 FROM STAFF
 GROUP BY DEPT
)AS XXX;

Figure 184, Select average of average

CORRELATION

I don’t know a thing about statistics, so I haven’t a clue what this function does. But I do know
that the SQL Reference is wrong - because it says the value returned will be between 0 and 1.
I found that it is between -1 and +1 (see below). The output type is float.

CORRELATION expression , expression) (

CORR
Figure 185, CORRELATION function syntax

WITH TEMP1(COL1, COL2, COL3, COL4) AS ANSWER
(VALUES (0 , 0 , 0 , RAND(1)) ===========================
 UNION ALL COR11 COR12 COR23 COR34
 SELECT COL1 + 1 ------ ------ ------ ------
 ,COL2 - 1 1.000 -1.000 -0.017 -0.005
 ,RAND()
 ,RAND()
 FROM TEMP1
 WHERE COL1 <= 1000
)
SELECT DEC(CORRELATION(COL1,COL1),5,3) AS COR11
 ,DEC(CORRELATION(COL1,COL2),5,3) AS COR12
 ,DEC(CORRELATION(COL2,COL3),5,3) AS COR23
 ,DEC(CORRELATION(COL3,COL4),5,3) AS COR34
FROM TEMP1;

Figure 186, CORRELATION function examples

COUNT

Get the number of values in a set of rows. The result is an integer. The value returned depends
upon the options used:

• COUNT(*) gets a count of matching rows.

• COUNT(expression) gets a count of rows with a non-null expression value.

• COUNT(ALL expression) is the same as the COUNT(expression) statement.

• COUNT(DISTINCT expression) gets a count of distinct non-null expression values.

COUNT (expression)
 DISTINCT

 ALL

 *

Figure 187, COUNT function syntax

 Graeme Birchall ©

70 Column Functions, Definitions

SELECT COUNT(*) AS C1 ANSWER
 ,COUNT(INT(COMM/10)) AS C2 =================
 ,COUNT(ALL INT(COMM/10)) AS C3 C1 C2 C3 C4 C5 C6
 ,COUNT(DISTINCT INT(COMM/10)) AS C4 -- -- -- -- -- --
 ,COUNT(DISTINCT INT(COMM)) AS C5 35 24 24 19 24 2
 ,COUNT(DISTINCT INT(COMM))/10 AS C6
FROM STAFF;

Figure 188, COUNT function examples

There are 35 rows in the STAFF table (see C1 above), but only 24 of them have non-null
commission values (see C2 above).

If no rows match, the COUNT returns zero - except when the SQL statement also contains a
GROUP BY. In this latter case, the result is no row.

SELECT ’NO GP-BY’ AS C1 ANSWER
 ,COUNT(*) AS C2 ============
FROM STAFF C1 C2
WHERE ID = -1 -------- --
UNION NO GP-BY 0
SELECT ’GROUP-BY’ AS C1
 ,COUNT(*) AS C2
FROM STAFF
WHERE ID = -1
GROUP BY DEPT;

Figure 189, COUNT function with and without GROUP BY

COUNT_BIG

Get the number of rows or distinct values in a set of rows. Use this function if the result is too
large for the COUNT function. The result is of type decimal 31. If the DISTINCT option is
used both duplicate and null values are eliminated. If no rows match, the result is zero.

COUNT_BIG (expression)
 DISTINCT

 ALL

 *

Figure 190, COUNT_BIG function syntax

SELECT COUNT_BIG(*) AS C1 ANSWER
 ,COUNT_BIG(DEPT) AS C2 ===================
 ,COUNT_BIG(DISTINCT DEPT) AS C3 C1 C2 C3 C4 C5
 ,COUNT_BIG(DISTINCT DEPT/10) AS C4 --- --- --- --- ---
 ,COUNT_BIG(DISTINCT DEPT)/10 AS C5 35. 35. 8. 7. 0.
FROM STAFF;

Figure 191, COUNT_BIG function examples

COVARIANCE

Returns the covariance of a set of number pairs. The output type is float.

COVARIANCE expression , expression) (

COVAR
Figure 192, COVARIANCE function syntax

DB2 UDB/V8.1 Cookbook ©

Column Functions 71

WITH TEMP1(C1, C2, C3, C4) AS ANSWER
(VALUES (0 , 0 , 0 , RAND(1)) ===============================
 UNION ALL COV11 COV12 COV23 COV34
 SELECT C1 + 1 ------- ------- ------- -------
 ,C2 - 1 83666. -83666. -1.4689 -0.0004
 ,RAND()
 ,RAND()
 FROM TEMP1
 WHERE C1 <= 1000
)
SELECT DEC(COVARIANCE(C1,C1),6,0) AS COV11
 ,DEC(COVARIANCE(C1,C2),6,0) AS COV12
 ,DEC(COVARIANCE(C2,C3),6,4) AS COV23
 ,DEC(COVARIANCE(C3,C4),6,4) AS COV34
FROM TEMP1;

Figure 193, COVARIANCE function examples

GROUPING

The GROUPING function is used in CUBE, ROLLUP, and GROUPING SETS statements to
identify what rows come from which particular GROUPING SET. A value of 1 indicates that
the corresponding data field is null because the row is from of a GROUPING SET that does
not involve this row. Otherwise, the value is zero.

GROUPING (expression)

Figure 194, GROUPING function syntax

SELECT DEPT ANSWER
 ,AVG(SALARY) AS SALARY ================
 ,GROUPING(DEPT) AS DF DEPT SALARY DF
FROM STAFF ---- -------- --
GROUP BY ROLLUP(DEPT) 10 20865.86 0
ORDER BY DEPT; 15 15482.33 0
 20 16071.52 0
 38 15457.11 0
 42 14592.26 0
 51 17218.16 0
 66 17215.24 0
 84 16536.75 0
 - 16675.64 1

Figure 195, GROUPING function example

NOTE: See the section titled "Group By and Having" for more information on this function.

MAX

Get the maximum value of a set of rows. The use of the DISTINCT option has no affect. If no
rows match, the null value is returned.

MAX (expression)
 DISTINCT

 ALL

Figure 196, MAX function syntax

SELECT MAX(DEPT) ANSWER
 ,MAX(ALL DEPT) ===============
 ,MAX(DISTINCT DEPT) 1 2 3 4
 ,MAX(DISTINCT DEPT/10) --- --- --- ---
FROM STAFF; 84 84 84 8

Figure 197, MAX function examples

 Graeme Birchall ©

72 Column Functions, Definitions

MAX and MIN usage with Scalar Functions

Several DB2 scalar functions convert a value from one format to another, for example from
numeric to character. The function output format will not always shave the same ordering
sequence as the input. This difference can affect MIN, MAX, and ORDER BY processing.

SELECT MAX(HIREDATE) ANSWER
 ,CHAR(MAX(HIREDATE),USA) ================================
 ,MAX(CHAR(HIREDATE,USA)) 1 2 3
FROM EMPLOYEE; ---------- ---------- ----------
 09/30/1980 09/30/1980 12/15/1976

Figure 198, MAX function with dates

In the above the SQL, the second field gets the MAX before doing the conversion to character
whereas the third field works the other way round. In most cases, the later is wrong.

In the next example, the MAX function is used on a small integer value that has been con-
verted to character. If the CHAR function is used for the conversion, the output is left justi-
fied, which results in an incorrect answer. The DIGITS output is correct (in this example).

SELECT MAX(ID) AS ID ANSWER
 ,MAX(CHAR(ID)) AS CHR ===================
 ,MAX(DIGITS(ID)) AS DIG ID CHR DIG
FROM STAFF; ------ ------ -----
 350 90 00350

Figure 199, MAX function with numbers, 1 of 2

The DIGITS function can also give the wrong answer - if the input data is part positive and
part negative. This is because this function does not put a sign indicator in the output.

SELECT MAX(ID - 250) AS ID ANSWER
 ,MAX(CHAR(ID - 250)) AS CHR =====================
 ,MAX(DIGITS(ID - 250)) AS DIG ID CHR DIG
FROM STAFF; ----- ---- ----------
 100 90 0000000240

Figure 200, MAX function with numbers, 2 of 2

WARNING: Be careful when using a column function on a field that has been converted
from number to character, or from date/time to character. The result may not be what you
intended.

MIN

Get the minimum value of a set of rows. The use of the DISTINCT option has no affect. If no
rows match, the null value is returned.

MIN (expression)
 DISTINCT

 ALL

Figure 201, MIN function syntax

SELECT MIN(DEPT) ANSWER
 ,MIN(ALL DEPT) ===============
 ,MIN(DISTINCT DEPT) 1 2 3 4
 ,MIN(DISTINCT DEPT/10) --- --- --- ---
FROM STAFF; 10 10 10 1

Figure 202, MIN function examples

REGRESSION

The various regression functions support the fitting of an ordinary-least-squares regression
line of the form y = a * x + b to a set of number pairs.

DB2 UDB/V8.1 Cookbook ©

Column Functions 73

REGR_AVGX expression , expression) (

REGR_AVGY

REGR_COUNT

REGR_INTERCEPT

REGR_ICPT

REGR_R2

REGR_SLOPE

REGR_SXX

REGR_SXY

REGR_SYY
Figure 203, REGRESSION functions syntax

Functions

• REGR_AVGX returns a quantity that than can be used to compute the validity of the re-
gression model. The output is of type float.

• REGR_AVGY (see REGR_AVGX).

• REGR_COUNT returns the number of matching non-null pairs. The output is integer.

• REGR_INTERCEPT returns the y-intercept of the regression line.

• REGR_R2 returns the coefficient of determination for the regression.

• REGR_SLOPE returns the slope of the line.

• REGR_SXX (see REGR_AVGX).

• REGR_SXY (see REGR_AVGX).

• REGR_SYY (see REGR_AVGX).

See the IBM SQL Reference for more details on the above functions.

 ANSWERS
 ==========
SELECT DEC(REGR_SLOPE(BONUS,SALARY) ,7,5) AS R_SLOPE 0.01710
 ,DEC(REGR_INTERCEPT(BONUS,SALARY),7,3) AS R_ICPT 100.871
 ,INT(REGR_COUNT(BONUS,SALARY)) AS R_COUNT 3
 ,INT(REGR_AVGX(BONUS,SALARY)) AS R_AVGX 42833
 ,INT(REGR_AVGY(BONUS,SALARY)) AS R_AVGY 833
 ,INT(REGR_SXX(BONUS,SALARY)) AS R_SXX 296291666
 ,INT(REGR_SXY(BONUS,SALARY)) AS R_SXY 5066666
 ,INT(REGR_SYY(BONUS,SALARY)) AS R_SYY 86666
FROM EMPLOYEE
WHERE WORKDEPT = ’A00’;

Figure 204, REGRESSION functions examples

STDDEV

Get the standard deviation of a set of numeric values. If DISTINCT is used, duplicate values
are ignored. If no rows match, the result is null. The output format is double.

STDDEV (expression)
 DISTINCT

 ALL

Figure 205, STDDEV function syntax

 Graeme Birchall ©

74 Column Functions, Definitions

 ANSWER
 ===============================
 A1 S1 S2 S3 S4
 -- ------------- ---- ---- ----
SELECT AVG(DEPT) AS A1 41 +2.3522355E+1 23.5 23.5 24.1
 ,STDDEV(DEPT) AS S1
 ,DEC(STDDEV(DEPT),3,1) AS S2
 ,DEC(STDDEV(ALL DEPT),3,1) AS S3
 ,DEC(STDDEV(DISTINCT DEPT),3,1) AS S4
FROM STAFF;

Figure 206, STDDEV function examples

SUM

Get the sum of a set of numeric values If DISTINCT is used, duplicate values are ignored.
Null values are always ignored. If no rows match, the result is null.

SUM (expression)
 DISTINCT

 ALL

Figure 207, SUM function syntax

SELECT SUM(DEPT) AS S1 ANSWER
 ,SUM(ALL DEPT) AS S2 ========================
 ,SUM(DISTINCT DEPT) AS S3 S1 S2 S3 S4 S5
 ,SUM(DEPT/10) AS S4 ---- ---- ---- ---- ----
 ,SUM(DEPT)/10 AS S5 1459 1459 326 134 145
FROM STAFF;

Figure 208, SUM function examples

WARNING: The answers S4 and S5 above are different. This is because the division is done
before the SUM in column S4, and after in column S5. In the former case, precision has been
lost due to rounding of the original integer value and the result is arguably incorrect. When in
doubt, use the S5 notation.

VAR or VARIANCE

Get the variance of a set of numeric values. If DISTINCT is used, duplicate values are ig-
nored. If no rows match, the result is null. The output format is double.

 VARIANCE expression)
 DISTINCT

 ALL

VAR

 (

Figure 209, VARIANCE function syntax

 ANSWER
 ==============================
 A1 V1 V2 V3 V4
 -- --------------- --- --- ---
SELECT AVG(DEPT) AS A1 41 +5.533012244E+2 553 553 582
 ,VARIANCE(DEPT) AS S1
 ,DEC(VARIANCE(DEPT),4,1) AS S2
 ,DEC(VARIANCE(ALL DEPT),4,1) AS S3
 ,DEC(VARIANCE(DISTINCT DEPT),4,1) AS S4
FROM STAFF;

Figure 210, VARIANCE function examples

DB2 UDB/V8.1 Cookbook ©

OLAP Functions 75

OLAP Functions

Introduction
The OLAP (Online Analytical Processing) functions enable one sequence and rank query
rows. They are especially useful when the calling program is very simple.

The Bad Old Days

To really appreciate the value of the OLAP functions, one should try to do some seemingly
trivial task without them. To illustrate this point, below is a simple little query:

SELECT S1.JOB, S1.ID, S1.SALARY ANSWER
FROM STAFF S1 =================
WHERE S1.NAME LIKE ’%s%’ JOB ID SALARY
 AND S1.ID < 90 ----- -- --------
ORDER BY S1.JOB Clerk 80 13504.60
 ,S1.ID; Mgr 10 18357.50
 Mgr 50 20659.80

Figure 211, Select rows from STAFF table

Let us now add two fields to this query:

• A running sum of the salaries selected.

• A running count of the rows retrieved.

Adding these fields is easy - when using OLAP functions:

SELECT S1.JOB, S1.ID, S1.SALARY
 ,SUM(SALARY) OVER(ORDER BY JOB, ID) AS SUMSAL
 ,ROW_NUMBER() OVER(ORDER BY JOB, ID) AS R ANSWER
FROM STAFF S1 ======
WHERE S1.NAME LIKE ’%s%’ JOB ID SALARY SUMSAL R
 AND S1.ID < 90 ----- -- -------- -------- -
ORDER BY S1.JOB Clerk 80 13504.60 13504.60 1
 ,S1.ID; Mgr 10 18357.50 31862.10 2
 Mgr 50 20659.80 52521.90 3

Figure 212, Using OLAP functions to get additional fields

If one does not have OLAP functions, or one is too stupid to figure out how to use them, or
one gets paid by the hour, one can still get the required answer, but the code is quite tricky.
The problem is that this seemingly simple query contains two nasty tricks:

• Not all of the rows in the table are selected.

• The output is ordered on two fields, the first of which is not unique.

Below are several examples that use plain SQL to get the above answer. All of the examples
have the same generic design (i.e. join each matching row to itself and all previous matching
rows) and share similar problems (i.e. difficult to read, and poor performance).

Nested Table Expression

Below is a query that uses a nested table expression to get the additional fields. This SQL has
the following significant features:

• The TABLE phrase is required because the nested table expression has a correlated refer-
ence to the prior table. See page 249 for more details on the use of this phrase.

 Graeme Birchall ©

76 Introduction

• There are no join predicates between the nested table expression output and the original
STAFF table. They are unnecessary because these predicates are provided in the body of
the nested table expression. With them there, and the above TABLE function, the nested
table expression is resolved once per row obtained from the STAFF S1 table.

• The original literal predicates have to be repeated in the nested table expression.

• The correlated predicates in the nested table expression have to match the ORDER BY
sequence (i.e. first JOB, then ID) in the final output.

Now for the query:

SELECT S1.JOB, S1.ID, S1.SALARY
 ,XX.SUMSAL, XX.R
FROM STAFF S1
 ,TABLE
 (SELECT SUM(S2.SALARY) AS SUMSAL
 ,COUNT(*) AS R
 FROM STAFF S2
 WHERE S2.NAME LIKE ’%s%’
 AND S2.ID < 90
 AND (S2.JOB < S1.JOB
 OR (S2.JOB = S1.JOB ANSWER
 AND S2.ID <= S1.ID)) ============================
)AS XX JOB ID SALARY SUMSAL R
WHERE S1.NAME LIKE ’%s%’ ----- -- -------- -------- -
 AND S1.ID < 90 Clerk 80 13504.60 13504.60 1
ORDER BY S1.JOB Mgr 10 18357.50 31862.10 2
 ,S1.ID; Mgr 50 20659.80 52521.90 3

Figure 213, Using Nested Table Expression to get additional fields

Ignoring any readability issues, this query has some major performance problems:

• The nested table expression is a partial Cartesian product. Each row fetched from "S1" is
joined to all prior rows (in "S2"), which quickly gets to be very expensive.

• The join criteria match the ORDER BY fields. If the latter are suitably complicated, then
the join is going to be inherently inefficient.

Self-Join and Group By

In the next example, the STAFF table is joined to itself such that each matching row obtained
from the "S1" table is joined to all prior rows (plus the current row) in the "S2" table, where
"prior" is a function of the ORDER BY clause used. After the join, a GROUP BY is needed
in order to roll up the matching "S2" rows up into one:

SELECT S1.JOB, S1.ID, S1.SALARY ANSWER
 ,SUM(S2.SALARY) AS SUMSAL ============================
 ,COUNT(*) AS R JOB ID SALARY SUMSAL R
FROM STAFF S1 ----- -- -------- -------- -
 ,STAFF S2 Clerk 80 13504.60 13504.60 1
WHERE S1.NAME LIKE ’%s%’ Mgr 10 18357.50 31862.10 2
 AND S1.ID < 90 Mgr 50 20659.80 52521.90 3
 AND S2.NAME LIKE ’%s%’
 AND S2.ID < 90
 AND (S2.JOB < S1.JOB
 OR (S2.JOB = S1.JOB
 AND S2.ID <= S1.ID))
GROUP BY S1.JOB
 ,S1.ID
 ,S1.SALARY
ORDER BY S1.JOB
 ,S1.ID;

Figure 214, Using Self-Join and Group By to get additional fields

DB2 UDB/V8.1 Cookbook ©

OLAP Functions 77

Nested Table Expressions in Select

In our final example, two nested table expression are used to get the answer. Both are done in
the SELECT part of the main query:

SELECT S1.JOB, S1.ID, S1.SALARY
 ,(SELECT SUM(S2.SALARY)
 FROM STAFF S2
 WHERE S2.NAME LIKE ’%s%’
 AND S2.ID < 90
 AND (S2.JOB < S1.JOB
 OR (S2.JOB = S1.JOB
 AND S2.ID <= S1.ID))) AS SUMSAL
 ,(SELECT COUNT(*)
 FROM STAFF S3
 WHERE S3.NAME LIKE ’%s%’
 AND S3.ID < 90
 AND (S3.JOB < S1.JOB
 OR (S3.JOB = S1.JOB
 AND S3.ID <= S1.ID))) AS R
FROM STAFF S1
WHERE S1.NAME LIKE ’%s%’ ANSWER
 AND S1.ID < 90 ============================
ORDER BY S1.JOB JOB ID SALARY SUMSAL R
 ,S1.ID; ----- -- -------- -------- -
 Clerk 80 13504.60 13504.60 1
 Mgr 10 18357.50 31862.10 2
 Mgr 50 20659.80 52521.90 3

Figure 215, Using Nested Table Expressions in Select to get additional fields

Once again, this query processes the matching rows multiple times, repeats predicates, has
join predicates that match the ORDER BY, and does a partial Cartesian product. The only
difference here is that this query commits all of the above sins twice.

Conclusion

Almost anything that an OLAP function does can be done some other way using simple SQL.
But as the above examples illustrate, the alternatives are neither pretty nor efficient. And re-
member that the initial query used above was actually very simple. Feel free to try replacing
the OLAP functions in the following query with their SQL equivalents:

SELECT DPT.DEPTNAME
 ,EMP.EMPNO
 ,EMP.LASTNAME
 ,EMP.SALARY
 ,SUM(SALARY) OVER(ORDER BY DPT.DEPTNAME ASC
 ,EMP.SALARY DESC
 ,EMP.EMPNO ASC) AS SUMSAL
 ,ROW_NUMBER() OVER(ORDER BY DPT.DEPTNAME ASC
 ,EMP.SALARY DESC
 ,EMP.EMPNO ASC) AS ROW#
FROM EMPLOYEE EMP
 ,DEPARTMENT DPT
WHERE EMP.FIRSTNME LIKE ’%S%’
 AND EMP.WORKDEPT = DPT.DEPTNO
 AND DPT.ADMRDEPT LIKE ’A%’
 AND NOT EXISTS
 (SELECT *
 FROM EMP_ACT EAT
 WHERE EMP.EMPNO = EAT.EMPNO
 AND EAT.EMPTIME > 10)
ORDER BY DPT.DEPTNAME ASC
 ,EMP.SALARY DESC
 ,EMP.EMPNO ASC;

Figure 216, Complicated query using OLAP functions

 Graeme Birchall ©

78 OLAP Functions, Definitions

OLAP Functions, Definitions

Ranking Functions

The RANK and DENSE_RANK functions enable one to rank the rows returned by a query.
The result is of type BIGINT.

 RANK()

partitioning expression

,

DENSE_RANK()

 OVER(

PARTITION BY

) ORDER BY sort-key expression

,
 asc option

 desc option

asc option

ASC
 NULLS LAST

 NULLS FIRST

desc option

DESC NULLS LAST

 NULLS FIRST

Figure 217, Ranking Functions syntax

NOTE: The ORDER BY phrase, which is required, is used to both sequence the values, and
to tell DB2 when to generate a new value. See page 79 for details.

RANK vs. DENSE_RANK

The two functions differ in how they handle multiple rows with the same value:

• The RANK function returns the number of proceeding rows, plus one. If multiple rows
have equal values, they all get the same rank, while subsequent rows get a ranking that
counts all of the prior rows. Thus, there may be gaps in the ranking sequence.

• The DENSE_RANK function returns the number of proceeding distinct values, plus one.
If multiple rows have equal values, they all get the same rank. Each change in data value
causes the ranking number to be incremented by one.

The following query illustrates the use of the two functions:

DB2 UDB/V8.1 Cookbook ©

OLAP Functions 79

SELECT ID
 ,YEARS
 ,SALARY
 ,RANK() OVER(ORDER BY YEARS) AS RANK#
 ,DENSE_RANK() OVER(ORDER BY YEARS) AS DENSE#
 ,ROW_NUMBER() OVER(ORDER BY YEARS) AS ROW#
FROM STAFF
WHERE ID < 100
 AND YEARS IS NOT NULL ANSWER
ORDER BY YEARS; ===================================
 ID YEARS SALARY RANK# DENSE# ROW#
 -- ----- -------- ----- ------ ----
 30 5 17506.75 1 1 1
 40 6 18006.00 2 2 2
 90 6 18001.75 2 2 3
 10 7 18357.50 4 3 4
 70 7 16502.83 4 3 5
 20 8 18171.25 6 4 6
 50 10 20659.80 7 5 7

Figure 218, Ranking functions example

ORDER BY Usage

The ORDER BY phrase, which is mandatory, gives a sequence to the ranking, and also tells
DB2 when to start a new rank value. The following query illustrates both uses:

SELECT JOB
 ,YEARS
 ,ID
 ,NAME
 ,SMALLINT(RANK() OVER(ORDER BY JOB ASC)) AS ASC1
 ,SMALLINT(RANK() OVER(ORDER BY JOB ASC
 ,YEARS ASC)) AS ASC2
 ,SMALLINT(RANK() OVER(ORDER BY JOB ASC
 ,YEARS ASC
 ,ID ASC)) AS ASC3
 ,SMALLINT(RANK() OVER(ORDER BY JOB DESC)) AS DSC1
 ,SMALLINT(RANK() OVER(ORDER BY JOB DESC
 ,YEARS DESC)) AS DSC2
 ,SMALLINT(RANK() OVER(ORDER BY JOB DESC
 ,YEARS DESC
 ,ID DESC)) AS DSC3
 ,SMALLINT(RANK() OVER(ORDER BY JOB ASC
 ,YEARS DESC
 ,ID ASC)) AS MIX1
 ,SMALLINT(RANK() OVER(ORDER BY JOB DESC
 ,YEARS ASC
 ,ID DESC)) AS MIX2
FROM STAFF
WHERE ID < 150
 AND YEARS IN (6,7)
 AND JOB > ’L’
ORDER BY JOB
 ,YEARS
 ,ID;
 ANSWER
 ==
 JOB YEARS ID NAME ASC1 ASC2 ASC3 DSC1 DSC2 DSC3 MIX1 MIX2
 ----- ----- --- ------- ---- ---- ---- ---- ---- ---- ---- ----
 Mgr 6 140 Fraye 1 1 1 4 6 6 3 4
 Mgr 7 10 Sanders 1 2 2 4 4 5 1 6
 Mgr 7 100 Plotz 1 2 3 4 4 4 2 5
 Sales 6 40 O’Brien 4 4 4 1 2 3 5 2
 Sales 6 90 Koonitz 4 4 5 1 2 2 6 1
 Sales 7 70 Rothman 4 6 6 1 1 1 4 3

Figure 219, ORDER BY usage

 Graeme Birchall ©

80 OLAP Functions, Definitions

Observe above that adding more fields to the ORDER BY phrase resulted in more ranking
values being generated.

Ordering Nulls

When writing the ORDER BY, one can optionally specify whether or not null values should
be counted as high or low. The default, for an ascending field is that they are counted as high
(i.e. come last), and for a descending field, that they are counted as low:

SELECT ID
 ,YEARS AS YR
 ,SALARY
 ,DENSE_RANK() OVER(ORDER BY YEARS ASC) AS A
 ,DENSE_RANK() OVER(ORDER BY YEARS ASC NULLS FIRST) AS AF
 ,DENSE_RANK() OVER(ORDER BY YEARS ASC NULLS LAST) AS AL
 ,DENSE_RANK() OVER(ORDER BY YEARS DESC) AS D
 ,DENSE_RANK() OVER(ORDER BY YEARS DESC NULLS FIRST) AS DF
 ,DENSE_RANK() OVER(ORDER BY YEARS DESC NULLS LAST) AS DL
FROM STAFF
WHERE ID < 100
ORDER BY YEARS ANSWER
 ,SALARY; ==================================
 ID YR SALARY A AF AL D DF DL
 -- -- -------- -- -- -- -- -- --
 30 5 17506.75 1 2 1 6 6 5
 90 6 18001.75 2 3 2 5 5 4
 40 6 18006.00 2 3 2 5 5 4
 70 7 16502.83 3 4 3 4 4 3
 10 7 18357.50 3 4 3 4 4 3
 20 8 18171.25 4 5 4 3 3 2
 50 10 20659.80 5 6 5 2 2 1
 80 - 13504.60 6 1 6 1 1 6
 60 - 16808.30 6 1 6 1 1 6

Figure 220, Overriding the default null ordering sequence

In general, in a relational database one null value does not equal another null value. But, as is
illustrated above, for purposes of assigning rank, all null values are considered equal.

NOTE: The ORDER BY used in the ranking functions (above) has nothing to do with the
ORDER BY at the end of the query. The latter defines the row output order, while the former
tells each ranking function how to sequence the values. Likewise, one cannot define the null
sort sequence when ordering the rows.

Counting Nulls

The DENSE RANK and RANK functions include null values when calculating rankings. By
contrast the COUNT DISTINCT statement excludes null values when counting values. Thus,
as is illustrated below, the two methods will differ (by one) when they are used get a count of
distinct values - if there are nulls in the target data:

SELECT COUNT(DISTINCT YEARS) AS Y#1
 ,MAX(Y#) AS Y#2
FROM (SELECT YEARS
 ,DENSE_RANK() OVER(ORDER BY YEARS) AS Y#
 FROM STAFF
 WHERE ID < 100
)AS XXX ANSWER
ORDER BY 1; =======
 Y#1 Y#2
 --- ---
 5 6

Figure 221, Counting distinct values - comparison

DB2 UDB/V8.1 Cookbook ©

OLAP Functions 81

PARTITION Usage

The PARTITION phrase lets one rank the data by subsets of the rows returned. In the follow-
ing example, the rows are ranked by salary within year:

SELECT ID ANSWER
 ,YEARS AS YR =================
 ,SALARY ID YR SALARY R1
 ,RANK() OVER(PARTITION BY YEARS -- -- -------- --
 ORDER BY SALARY) AS R1 30 5 17506.75 1
FROM STAFF 40 6 18006.00 1
WHERE ID < 80 70 7 16502.83 1
 AND YEARS IS NOT NULL 10 7 18357.50 2
ORDER BY YEARS 20 8 18171.25 1
 ,SALARY; 50 0 20659.80 1

Figure 222, Values ranked by subset of rows

Multiple Rankings

One can do multiple independent rankings in the same query:

SELECT ID
 ,YEARS
 ,SALARY
 ,SMALLINT(RANK() OVER(ORDER BY YEARS ASC)) AS RANK_A
 ,SMALLINT(RANK() OVER(ORDER BY YEARS DESC)) AS RANK_D
 ,SMALLINT(RANK() OVER(ORDER BY ID, YEARS)) AS RANK_IY
FROM STAFF
WHERE ID < 100
 AND YEARS IS NOT NULL
ORDER BY YEARS;

Figure 223, Multiple rankings in same query

Dumb Rankings

If one wants to, one can do some really dumb rankings. All of the examples below are fairly
stupid, but arguably the dumbest of the lot is the last. In this case, the "ORDER BY 1" phrase
ranks the rows returned by the constant "one", so every row gets the same rank. By contrast
the "ORDER BY 1" phrase at the bottom of the query sequences the rows, and so has valid
business meaning:

SELECT ID
 ,YEARS
 ,NAME
 ,SALARY
 ,SMALLINT(RANK() OVER(ORDER BY SUBSTR(NAME,3,2))) AS DUMB1
 ,SMALLINT(RANK() OVER(ORDER BY SALARY / 1000)) AS DUMB2
 ,SMALLINT(RANK() OVER(ORDER BY YEARS * ID)) AS DUMB3
 ,SMALLINT(RANK() OVER(ORDER BY RAND())) AS DUMB4
 ,SMALLINT(RANK() OVER(ORDER BY 1)) AS DUMB5
FROM STAFF
WHERE ID < 40
 AND YEARS IS NOT NULL
ORDER BY 1;

Figure 224, Dumb rankings, SQL

ID YEARS NAME SALARY DUMB1 DUMB2 DUMB3 DUMB4 DUMB5
-- ----- -------- -------- ----- ----- ----- ----- -----
10 7 Sanders 18357.50 1 3 1 1 1
20 8 Pernal 18171.25 3 2 3 3 1
30 5 Marenghi 17506.75 2 1 2 2 1

Figure 225, Dumb ranking, Answer

 Graeme Birchall ©

82 OLAP Functions, Definitions

Subsequent Processing

The ranking function gets the rank of the value as of when the function was applied. Subse-
quent processing may mean that the rank no longer makes sense. To illustrate this point, the
following query ranks the same field twice. Between the two ranking calls, some rows were
removed from the answer set, which has caused the ranking results to differ:

SELECT XXX.* ANSWER
 ,RANK()OVER(ORDER BY ID) AS R2 ================
FROM (SELECT ID ID NAME R1 R2
 ,NAME -- ------- -- --
 ,RANK() OVER(ORDER BY ID) AS R1 40 O’Brien 4 1
 FROM STAFF 50 Hanes 5 2
 WHERE ID < 100 70 Rothman 6 3
 AND YEARS IS NOT NULL 90 Koonitz 7 4
)AS XXX
WHERE ID > 30
ORDER BY ID;

Figure 226, Subsequent processing of ranked data

Ordering Rows by Rank

One can order the rows based on the output of a ranking function. This can let one sequence
the data in ways that might be quite difficult to do using ordinary SQL. For example, in the
following query the matching rows are ordered so that all those staff with the highest salary in
their respective department come first, followed by those with the second highest salary, and
so on. Within each ranking value, the person with the highest overall salary is listed first:

SELECT ID ANSWER
 ,RANK() OVER(PARTITION BY DEPT =================
 ORDER BY SALARY DESC) AS R1 ID R1 SALARY DP
 ,SALARY -- -- -------- --
 ,DEPT AS DP 50 1 20659.80 15
FROM STAFF 10 1 18357.50 20
WHERE ID < 80 40 1 18006.00 38
 AND YEARS IS NOT NULL 20 2 18171.25 20
ORDER BY R1 ASC 30 2 17506.75 38
 ,SALARY DESC; 70 2 16502.83 15

Figure 227, Ordering rows by rank, using RANK function

Here is the same query, written without the ranking function:

SELECT ID ANSWER
 ,(SELECT COUNT(*) =================
 FROM STAFF S2 ID R1 SALARY DP
 WHERE S2.ID < 80 -- -- -------- --
 AND S2.YEARS IS NOT NULL 50 1 20659.80 15
 AND S2.DEPT = S1.DEPT 10 1 18357.50 20
 AND S2.SALARY >= S1.SALARY) AS R1 40 1 18006.00 38
 ,SALARY 20 2 18171.25 20
 ,DEPT AS DP 30 2 17506.75 38
FROM STAFF S1 70 2 16502.83 15
WHERE ID < 80
 AND YEARS IS NOT NULL
ORDER BY R1 ASC
 ,SALARY DESC;

Figure 228, Ordering rows by rank, using sub-query

The above query has all of the failings that were discussed at the beginning of this chapter:

• The nested table expression has to repeat all of the predicates in the main query, and have
predicates that define the ordering sequence. Thus it is hard to read.

• The nested table expression will (inefficiently) join every matching row to all prior rows.

DB2 UDB/V8.1 Cookbook ©

OLAP Functions 83

Selecting the Highest Value

The ranking functions can also be used to retrieve the row with the highest value in a set of
rows. To do this, one must first generate the ranking in a nested table expression, and then
query the derived field later in the query. The following statement illustrates this concept by
getting the person, or persons, in each department with the highest salary:

SELECT ID ANSWER
 ,SALARY ==============
 ,DEPT AS DP ID SALARY DP
FROM (SELECT S1.* -- -------- --
 ,RANK() OVER(PARTITION BY DEPT 50 20659.80 15
 ORDER BY SALARY DESC) AS R1 10 18357.50 20
 FROM STAFF S1 40 18006.00 38
 WHERE ID < 80
 AND YEARS IS NOT NULL
)AS XXX
WHERE R1 = 1
ORDER BY DP;

Figure 229, Get highest salary in each department, use RANK function

Here is the same query, written using a correlated sub-query:

SELECT ID ANSWER
 ,SALARY ==============
 ,DEPT AS DP ID SALARY DP
FROM STAFF S1 -- -------- --
WHERE ID < 80 50 20659.80 15
 AND YEARS IS NOT NULL 10 18357.50 20
 AND NOT EXISTS 40 18006.00 38
 (SELECT *
 FROM STAFF S2
 WHERE S2.ID < 80
 AND S2.YEARS IS NOT NULL
 AND S2.DEPT = S1.DEPT
 AND S2.SALARY > S1.SALARY)
ORDER BY DP;

Figure 230, Get highest salary in each department, use correlated sub-query

Here is the same query, written using an uncorrelated sub-query:

SELECT ID ANSWER
 ,SALARY ==============
 ,DEPT AS DP ID SALARY DP
FROM STAFF -- -------- --
WHERE ID < 80 50 20659.80 15
 AND YEARS IS NOT NULL 10 18357.50 20
 AND (DEPT, SALARY) IN 40 18006.00 38
 (SELECT DEPT, MAX(SALARY)
 FROM STAFF
 WHERE ID < 80
 AND YEARS IS NOT NULL
 GROUP BY DEPT)
ORDER BY DP;

Figure 231, Get highest salary in each department, use uncorrelated sub-query

Arguably, the first query above (i.e. the one using the RANK function) is the most elegant of
the series because it is the only statement where the basic predicates that define what rows
match are written once. With the two sub-query examples, these predicates have to be re-
peated, which can often lead to errors.

NOTE: If it seems at times that this chapter was written with a poison pen, it is because just
about now I had a "Microsoft moment" and my machine crashed. Needless to say, I had

 Graeme Birchall ©

84 OLAP Functions, Definitions

backups and, needless to say, they got trashed. It took me four days to get back to where I
was. Thanks Bill - may you rot in hell. / Graeme

Row Numbering Function

The ROW_NUMBER function lets one number the rows being returned. The result is of type
BIGINT. A syntax diagram follows. Observe that unlike with the ranking functions, the OR-
DER BY is not required:

 ROW_NUMBER()

partitioning expression

,

 OVER(

PARTITION BY

)

ORDER BY ordering expression

,
 asc option

 desc option

Figure 232, Numbering Function syntax

ORDER BY Usage

You don’t have to provide an ORDER BY when using the ROW_NUMBER function, but not
doing so can be considered to be either brave or foolish, depending on one’s outlook on life.
To illustrate this issue, consider the following query:

SELECT ID ANSWER
 ,NAME =================
 ,ROW_NUMBER() OVER() AS R1 ID NAME R1 R2
 ,ROW_NUMBER() OVER(ORDER BY ID) AS R2 -- -------- -- --
FROM STAFF 10 Sanders 1 1
WHERE ID < 50 20 Pernal 2 2
 AND YEARS IS NOT NULL 30 Marenghi 3 3
ORDER BY ID; 40 O’Brien 4 4

Figure 233, ORDER BY example, 1 of 3

In the above example, both ROW_NUMBER functions return the same set of values, which
happen to correspond to the sequence in which the rows are returned. In the next query, the
second ROW_NUMBER function purposely uses another sequence:

SELECT ID ANSWER
 ,NAME =================
 ,ROW_NUMBER() OVER() AS R1 ID NAME R1 R2
 ,ROW_NUMBER() OVER(ORDER BY NAME) AS R2 -- -------- -- --
FROM STAFF 10 Sanders 4 4
WHERE ID < 50 20 Pernal 3 3
 AND YEARS IS NOT NULL 30 Marenghi 2 2
ORDER BY ID; 40 O’Brien 1 1

Figure 234, ORDER BY example, 2 of 3

Observe that changing the second function has had an impact on the first. Now lets see what
happens when we add another ROW_NUMBER function:

DB2 UDB/V8.1 Cookbook ©

OLAP Functions 85

SELECT ID ANSWER
 ,NAME ====================
 ,ROW_NUMBER() OVER() AS R1 ID NAME R1 R2 R3
 ,ROW_NUMBER() OVER(ORDER BY ID) AS R2 -- -------- -- -- --
 ,ROW_NUMBER() OVER(ORDER BY NAME) AS R3 10 Sanders 1 1 4
FROM STAFF 20 Pernal 2 2 3
WHERE ID < 50 30 Marenghi 3 3 1
 AND YEARS IS NOT NULL 40 O’Brien 4 4 2
ORDER BY ID;

Figure 235, ORDER BY example, 3 of 3

Observe that now the first function has reverted back to the original sequence.

The lesson to be learnt here is that the ROW_NUMBER function, when not given an explicit
ORDER BY, may create a value in any odd sequence. Usually, the sequence will reflect the
order in which the rows are returned - but not always.

PARTITION Usage

The PARTITION phrase lets one number the matching rows by subsets of the rows returned.
In the following example, the rows are both ranked and numbered within each JOB:

SELECT JOB
 ,YEARS
 ,ID
 ,NAME
 ,ROW_NUMBER() OVER(PARTITION BY JOB
 ORDER BY YEARS) AS ROW#
 ,RANK() OVER(PARTITION BY JOB
 ORDER BY YEARS) AS RN1#
 ,DENSE_RANK() OVER(PARTITION BY JOB
 ORDER BY YEARS) AS RN2#
FROM STAFF
WHERE ID < 150
 AND YEARS IN (6,7) ANSWER
 AND JOB > ’L’ ======================================
ORDER BY JOB JOB YEARS ID NAME ROW# RN1# RN2#
 ,YEARS; ----- ----- --- ------- ---- ---- ----
 Mgr 6 140 Fraye 1 1 1
 Mgr 7 10 Sanders 2 2 2
 Mgr 7 100 Plotz 3 2 2
 Sales 6 40 O’Brien 1 1 1
 Sales 6 90 Koonitz 2 1 1
 Sales 7 70 Rothman 3 3 2

Figure 236, Use of PARTITION phrase

One problem with the above query is that the final ORDER BY that sequences the rows does
not identify a unique field (e.g. ID). Consequently, the rows can be returned in any sequence
within a given JOB and YEAR. Because the ORDER BY in the ROW_NUMBER function
also fails to identify a unique row, this means that there is no guarantee that a particular row
will always give the same row number.

For consistent results, ensure that both the ORDER BY phrase in the function call, and at the
end of the query, identify a unique row. And to always get the rows returned in the desired
row-number sequence, these phrases must be equal.

Selecting "n" Rows

To query the output of the ROW_NUMBER function, one has to make a nested temporary
table that contains the function expression. In the following example, this technique is used to
limit the query to the first three matching rows:

 Graeme Birchall ©

86 OLAP Functions, Definitions

SELECT * ANSWER
FROM (SELECT ID =============
 ,NAME ID NAME R
 ,ROW_NUMBER() OVER(ORDER BY ID) AS R -- -------- -
 FROM STAFF 10 Sanders 1
 WHERE ID < 100 20 Pernal 2
 AND YEARS IS NOT NULL 30 Marenghi 3
)AS XXX
WHERE R <= 3
ORDER BY ID;

Figure 237, Select first 3 rows, using ROW_NUMBER function

In the next query, the FETCH FIRST "n" ROWS notation is used to achieve the same result:

SELECT ID ANSWER
 ,NAME =============
 ,ROW_NUMBER() OVER(ORDER BY ID) AS R ID NAME R
FROM STAFF -- -------- -
WHERE ID < 100 10 Sanders 1
 AND YEARS IS NOT NULL 20 Pernal 2
ORDER BY ID 30 Marenghi 3
FETCH FIRST 3 ROWS ONLY;

Figure 238, Select first 3 rows, using FETCH FIRST notation

So far, the ROW_NUMBER and the FETCH FIRST notations seem to be about the same. But
the former technique is much more flexible. To illustrate, in the next query we retrieve the 3rd
through 6th matching rows:

SELECT * ANSWER
FROM (SELECT ID =============
 ,NAME ID NAME R
 ,ROW_NUMBER() OVER(ORDER BY ID) AS R -- -------- -
 FROM STAFF 30 Marenghi 3
 WHERE ID < 200 40 O’Brien 4
 AND YEARS IS NOT NULL 50 Hanes 5
)AS XXX 70 Rothman 6
WHERE R BETWEEN 3 AND 6
ORDER BY ID;

Figure 239, Select 3rd through 6th rows

In the next query we get every 5th matching row - starting with the first:

SELECT * ANSWER
FROM (SELECT ID ==============
 ,NAME ID NAME R
 ,ROW_NUMBER() OVER(ORDER BY ID) AS R --- ------- --
 FROM STAFF 10 Sanders 1
 WHERE ID < 200 70 Rothman 6
 AND YEARS IS NOT NULL 140 Fraye 11
)AS XXX 190 Sneider 16
WHERE (R - 1) = ((R - 1) / 5) * 5
ORDER BY ID;

Figure 240, Select every 5th matching row

In the next query we get the last two matching rows:

DB2 UDB/V8.1 Cookbook ©

OLAP Functions 87

SELECT *
FROM (SELECT ID
 ,NAME
 ,ROW_NUMBER() OVER(ORDER BY ID DESC) AS R
 FROM STAFF
 WHERE ID < 200
 AND YEARS IS NOT NULL ANSWER
)AS XXX ==============
WHERE R <= 2 ID NAME R
ORDER BY ID; --- -------- -
 180 Abrahams 2
 190 Sneider 1

Figure 241, Select last two rows

Selecting "n" or more Rows

Imagine that one wants to fetch the first "n" rows in a query. This is easy to do, and has been
illustrated above. But imagine that one also wants to keep on fetching if the following rows
have the same value as the "nth".

In the next example, we will get the first three matching rows in the STAFF table, ordered by
years of service. However, if the 4th row, or any of the following rows, has the same YEAR
as the 3rd row, then we also want to fetch them.

The query logic goes as follows:

• Select every matching row in the STAFF table, and give them all both a row-number and
a ranking value. Both values are assigned according to the order of the final output. Put
the result into a temporary table - TEMP1.

• Query the TEMP1 table, getting the ranking of whatever row we want to stop fetching at.
In this case, it is the 3rd row. Put the result into a temporary table - TEMP2.

• Finally, join to the two temporary tables. Fetch those rows in TEMP1 that have a ranking
that is less than or equal to the single row in TEMP2.

WITH
TEMP1(YEARS, ID, NAME, RNK, ROW) AS
 (SELECT YEARS
 ,ID
 ,NAME
 ,RANK() OVER(ORDER BY YEARS)
 ,ROW_NUMBER() OVER(ORDER BY YEARS, ID)
 FROM STAFF
 WHERE ID < 200
 AND YEARS IS NOT NULL
),
TEMP2(RNK) AS
 (SELECT RNK
 FROM TEMP1
 WHERE ROW = 3 ANSWER
) ==========================
SELECT TEMP1.* YEARS ID NAME RNK ROW
FROM TEMP1 ----- --- -------- --- ---
 ,TEMP2 3 180 Abrahams 1 1
WHERE TEMP1.RNK <= TEMP2.RNK 4 170 Kermisch 2 2
ORDER BY YEARS 5 30 Marenghi 3 3
 ,ID; 5 110 Ngan 3 4

Figure 242, Select first "n" rows, or more if needed

The type of query illustrated above can be extremely useful in certain business situations. To
illustrate, imagine that one wants to give a reward to the three employees that have worked
for the company the longest. Stopping the query that lists the lucky winners after three rows

 Graeme Birchall ©

88 OLAP Functions, Definitions

are fetched can get one into a lot of trouble if it happens that there are more than three em-
ployees that have worked for the company for the same number of years.

Selecting "n" Rows - Efficiently

Sometimes, one only wants to fetch the first "n" rows, where "n" is small, but the number of
matching rows is extremely large. In this section, we will discus how to obtain these "n" rows
efficiently, which means that we will try to fetch just them without having to process any of
the many other matching rows.

Below is a sample invoice table. Observe that we have defined the INV# field as the primary
key, which means that DB2 will build a unique index on this column:

CREATE TABLE INVOICE
(INV# INTEGER NOT NULL
,CUSTOMER# INTEGER NOT NULL
,SALE_DATE DATE NOT NULL
,SALE_VALUE DECIMAL(9,2) NOT NULL
,CONSTRAINT CTX1 PRIMARY KEY (INV#)
,CONSTRAINT CTX2 CHECK(INV# >= 0));

Figure 243, Performance test table - definition

The next SQL statement will insert 100,000 rows into the above table. After the rows were
inserted, RUNSTATS was run, so the optimizer could choose the best access path.

INSERT INTO INVOICE
WITH TEMP (N,M) AS
(VALUES (INTEGER(0),RAND(1))
 UNION ALL
 SELECT N+1, RAND()
 FROM TEMP
 WHERE N+1 < 100000
)
SELECT N AS INV#
 ,INT(M * 1000) AS CUSTOMER#
 ,DATE(’2000-11-01’) + (M*40) DAYS AS SALE_DATE
 ,DECIMAL((M * M * 100),8,2) AS SALE_VALUE
FROM TEMP;

Figure 244, Performance test table - insert 100,000 rows

Imagine we want to retrieve the first five rows (only) from the above table. Below are several
queries that will get this result. For each query, for the elapsed time, as measured by the DB2
Event Monitor is provided.

Below we use the "FETCH FIRST n ROWS" notation to stop the query at the 5th row. This
query first did a tablespace scan, then sorted all 100,000 matching rows, and then fetched the
first five. It was not cheap:

SELECT S.*
 ,ROW_NUMBER() OVER() AS ROW#
FROM INVOICE S
ORDER BY INV#
FETCH FIRST 5 ROWS ONLY;

Figure 245, Fetch first 5 rows - 2.837 elapsed seconds

The next query is essentially the same as the prior, but this time we told DB2 to optimize the
query for fetching five rows. Now one would think that the optimizer would already know
this, but it evidently did not. This query used the INV# index to retrieve the rows without
sorting. It stopped processing at the 5th row. Observe that it was almost a thousand times
faster than the prior example:

DB2 UDB/V8.1 Cookbook ©

OLAP Functions 89

SELECT S.*
 ,ROW_NUMBER() OVER() AS ROW#
FROM INVOICE S
ORDER BY INV#
FETCH FIRST 5 ROWS ONLY
OPTIMIZE FOR 5 ROWS;

Figure 246, Fetch first 5 rows - 0.003 elapsed seconds

The next query uses the ROW_NUMBER function to sequence the rows. Subsequently, only
those rows with a row-number less than or equal to five are retrieved. DB2 answers this query
using a single non-matching index scan of the whole table. No temporary table is used, and
nor is a sort done, but the query is not exactly cheap

SELECT *
FROM (SELECT S.*
 ,ROW_NUMBER() OVER() AS ROW#
 FROM INVOICE S
)XXX
WHERE ROW# <= 5
ORDER BY INV#;

Figure 247, Fetch first 5 rows - 0.691 elapsed seconds

At about this point, almost any halfway-competent idiot would conclude that the best way to
make the above query run faster is to add the same "OPTIMIZE FOR 5 ROWS" notation that
did wonders in the prior example. So we did (see below), but the access path remained the
same, and the query now ran significantly slower:

SELECT *
FROM (SELECT S.*
 ,ROW_NUMBER() OVER() AS ROW#
 FROM INVOICE S
)XXX
WHERE ROW# <= 5
ORDER BY INV#
OPTIMIZE FOR 5 ROWS;

Figure 248, Fetch first 5 rows - 2.363 elapsed seconds

One can also use recursion to get the first "n" rows. One begins by getting the first matching
row, and then one uses that row to get the next, and then the next, and so on (in a recursive
join), until the required number of rows has been obtained.

In the following example, we start by getting the row with the MIN invoice-number. This row
is then joined to the row with the next to lowest invoice-number, which is then joined to the
next, and so on. After five such joins, the cycle is stopped and the result is selected:

 Graeme Birchall ©

90 OLAP Functions, Definitions

WITH TEMP (INV#, C#, SD, SV, N) AS
 (SELECT INV.*
 ,1
 FROM INVOICE INV
 WHERE INV# =
 (SELECT MIN(INV#)
 FROM INVOICE)
 UNION ALL
 SELECT NEW.*, N + 1
 FROM TEMP OLD
 ,INVOICE NEW
 WHERE OLD.INV# < NEW.INV#
 AND OLD.N < 5
 AND NEW.INV# =
 (SELECT MIN(XXX.INV#)
 FROM INVOICE XXX
 WHERE XXX.INV# > OLD.INV#)
)
SELECT *
FROM TEMP;

Figure 249, Fetch first 5 rows - 0.005 elapsed seconds

The above technique is nice to know, but it will have few practical uses, because it has sev-
eral major disadvantages:

• It is not exactly easy to understand.

• It requires all primary predicates (e.g. get only those rows where the sale-value is greater
than $10,000, and the sale-date greater than last month) to be repeated four times. In the
above example there are none, which is unusual in the real world.

• It quickly becomes both very complicated and quite inefficient when the sequencing
value is made up of multiple fields. In the above example, we sequenced by the INV#
column, but imagine if we had used the sale-date, sale-value, and customer-number.

• It is extremely vulnerable to inefficient access paths. For example, if instead of joining
from one (indexed) invoice-number to the next, we joined from one (non-indexed) cus-
tomer-number to the next, the query would run forever.

In conclusion, in this section we have illustrated how minor changes to the SQL syntax can
cause major changes in query performance. But to illustrate this phenomenon, we used a set
of queries with 100,000 matching rows. In situations where there are far fewer matching
rows, one can reasonably assume that this problem is not an issue.

Aggregation Function

The various aggregation functions let one do cute things like get cumulative totals or running
averages. In some ways, they can be considered to be extensions of the existing DB2 column
functions. The output type is dependent upon the input type.

DB2 UDB/V8.1 Cookbook ©

OLAP Functions 91

partitioning expression

,

 OVER()

PARTITION BY

)

ORDER BY ordering expression

,
 asc option

 desc option

column-function
 OVER(

ROWS

RANGE

UNBOUNDED PRECEDING

unsigned-constant PRECEDING

CURRENT ROW

BETWEEN UNBOUNDED PRECEDING

CURRENT ROW

unsigned-constant PRECEDING

unsigned-constant FOLLOWING

AND UNBOUNDED FOLLOWING

CURRENT ROW

unsigned-constant PRECEDING

unsigned-constant FOLLOWING

)

)

Figure 250, Aggregation Function syntax

Syntax Notes

Guess what - this is a complicated function. Be aware of the following:

• Any DB2 column function (e.g. AVG, SUM, COUNT) can use the aggregation function.

• The OVER() usage aggregates all of the matching rows. This is equivalent to getting the
current row, and also applying a column function (e.g. MAX, SUM) against all of the
matching rows (see page 92).

• The PARTITION phrase limits any aggregation to a subset of the matching rows.

• The ORDER BY phrase has two purposes; It defines a set of values to do aggregations
on. Each distinct value gets a new result. It also defines a direction for the aggregation
function processing - either ascending or descending (see page 93).

• An ORDER BY phrase is required if the aggregation is confined to a set of rows or range
of values. In addition, if a RANGE is used, then the ORDER BY expression must be a
single value that allows subtraction.

• If an ORDER BY phrase is provided, but neither a RANGE nor ROWS is specified, then
the aggregation is done from the first row to the current row.

• The ROWS phrase limits the aggregation result to a set of rows - defined relative to the
current row being processed. The applicable rows can either be already processed (i.e.
preceding) or not yet processed (i.e. following), or both (see page 94).

 Graeme Birchall ©

92 OLAP Functions, Definitions

• The RANGE phrase limits the aggregation result to a range of values - defined relative to
the value of the current row being processed. The range is calculated by taking the value
in the current row (defined by the ORDER BY phrase) and adding to and/or subtracting
from it, then seeing what other rows are in the range. For this reason, when RANGE is
used, only one expression can be specified in the aggregation function ORDER BY, and
the expression must be numeric (see page 97).

• Preceding rows have already been fetched. Thus, the phrase "ROWS 3 PRECEDING"
refers to the 3 preceding rows - plus the current row. The phrase "UNBOUNDED
PRECEDING" refers to all those rows (in the partition) that have already been fetched,
plus the current one.

• Following rows have yet to be fetched. The phrase "UNBOUNDED FOLLOWING" re-
fers to all those rows (in the partition) that have yet to be fetched, plus the current one.

• The phrase CURRENT ROW refers to the current row. It is equivalent to getting zero
preceding and following rows.

• If either a ROWS or a RANGE phrase is used, but no BETWEEN is provided, then one
must provide a starting point for the aggregation (e.g. ROWS 1 PRECEDING). The start-
ing point must either precede or equal the current row - it cannot follow it. The implied
end point is the current row.

• When using the BETWEEN phrase, put the "low" value in the first check and the "high"
value in the second check. Thus one can go from the 1 PRECEDING to the CURRENT
ROW, or from the CURRENT ROW to 1 FOLLOWING, but not the other way round.

• The set of rows that match the BETWEEN phrase differ depending upon whether the
aggregation function ORDER BY is ascending or descending.

Basic Usage

In its simplest form, with just an "OVER()" phrase, an aggregation function works on all of
the matching rows, running the column function specified. Thus, one gets both the detailed
data, plus the SUM, or AVG, or whatever, of all the matching rows.

In the following example, five rows are selected from the STAFF table. Along with various
detailed fields, the query also gets sum summary data about the matching rows:

SELECT ID
 ,NAME
 ,SALARY
 ,SUM(SALARY) OVER() AS SUM_SAL
 ,AVG(SALARY) OVER() AS AVG_SAL
 ,MIN(SALARY) OVER() AS MIN_SAL
 ,MAX(SALARY) OVER() AS MAX_SAL
 ,COUNT(*) OVER() AS #ROWS
FROM STAFF
WHERE ID < 60
ORDER BY ID;

Figure 251, Aggregation function, basic usage, SQL

Below is the answer

DB2 UDB/V8.1 Cookbook ©

OLAP Functions 93

ID NAME SALARY SUM_SAL AVG_SAL MIN_SAL MAX_SAL #ROWS
-- -------- -------- -------- -------- -------- -------- -----
10 Sanders 18357.50 92701.30 18540.26 17506.75 20659.80 5
20 Pernal 18171.25 92701.30 18540.26 17506.75 20659.80 5
30 Marenghi 17506.75 92701.30 18540.26 17506.75 20659.80 5
40 O’Brien 18006.00 92701.30 18540.26 17506.75 20659.80 5
50 Hanes 20659.80 92701.30 18540.26 17506.75 20659.80 5

Figure 252, Aggregation function, basic usage, Answer

It is possible to do exactly the same thing using old-fashioned SQL, but it is not so pretty:

WITH
TEMP1 (ID, NAME, SALARY) AS
 (SELECT ID, NAME, SALARY
 FROM STAFF
 WHERE ID < 60
),
TEMP2 (SUM_SAL, AVG_SAL, MIN_SAL, MAX_SAL, #ROWS) AS
 (SELECT SUM(SALARY)
 ,AVG(SALARY)
 ,MIN(SALARY)
 ,MAX(SALARY)
 ,COUNT(*)
 FROM TEMP1
)
SELECT *
FROM TEMP1
 ,TEMP2
ORDER BY ID;

Figure 253, Select detailed data, plus summary data

An aggregation function with just an "OVER()" phrase is logically equivalent to one that has
an ORDER BY on a field that has the same value for all matching rows. To illustrate, in the
following query, the four aggregation functions are all logically equivalent:

SELECT ID
 ,NAME
 ,SALARY
 ,SUM(SALARY) OVER() AS SUM1
 ,SUM(SALARY) OVER(ORDER BY ID * 0) AS SUM2
 ,SUM(SALARY) OVER(ORDER BY ’ABC’) AS SUM3
 ,SUM(SALARY) OVER(ORDER BY ’ABC’
 RANGE BETWEEN UNBOUNDED PRECEDING
 AND UNBOUNDED FOLLOWING) AS SUM4
FROM STAFF
WHERE ID < 60
ORDER BY ID;

Figure 254, Logically equivalent aggregation functions, SQL

ID NAME SALARY SUM1 SUM2 SUM3 SUM4
-- -------- -------- -------- -------- -------- --------
10 Sanders 18357.50 92701.30 92701.30 92701.30 92701.30
20 Pernal 18171.25 92701.30 92701.30 92701.30 92701.30
30 Marenghi 17506.75 92701.30 92701.30 92701.30 92701.30
40 O’Brien 18006.00 92701.30 92701.30 92701.30 92701.30
50 Hanes 20659.80 92701.30 92701.30 92701.30 92701.30

Figure 255, Logically equivalent aggregation functions, Answer

ORDER BY Usage

The ORDER BY phrase has two main purposes:

• It provides a set of values to do aggregations on. Each distinct value gets a new result.

• It gives a direction to the aggregation function processing (i.e. ASC or DESC).

 Graeme Birchall ©

94 OLAP Functions, Definitions

In the next query, various aggregations are done on the DEPT field, which is not unique, and
on the DEPT and NAME fields combined, which are unique (for these rows). Both ascending
and descending aggregations are illustrated:

SELECT DEPT
 ,NAME
 ,SALARY
 ,SUM(SALARY) OVER(ORDER BY DEPT) AS SUM1
 ,SUM(SALARY) OVER(ORDER BY DEPT DESC) AS SUM2
 ,SUM(SALARY) OVER(ORDER BY DEPT, NAME) AS SUM3
 ,SUM(SALARY) OVER(ORDER BY DEPT DESC, NAME DESC) AS SUM4
 ,COUNT(*) OVER(ORDER BY DEPT) AS ROW1
 ,COUNT(*) OVER(ORDER BY DEPT, NAME) AS ROW2
FROM STAFF
WHERE ID < 60
ORDER BY DEPT
 ,NAME;

Figure 256, Aggregation function, order by usage, SQL

The answer is below. Observe that the ascending fields sum or count up, while the descending
fields sum down. Also observe that each aggregation field gets a separate result for each new
set of rows, as defined in the ORDER BY phrase:

DEPT NAME SALARY SUM1 SUM2 SUM3 SUM4 ROW1 ROW2
---- -------- -------- -------- -------- -------- -------- ---- ----
 15 Hanes 20659.80 20659.80 92701.30 20659.80 92701.30 1 1
 20 Pernal 18171.25 57188.55 72041.50 38831.05 72041.50 3 2
 20 Sanders 18357.50 57188.55 72041.50 57188.55 53870.25 3 3
 38 Marenghi 17506.75 92701.30 35512.75 74695.30 35512.75 5 4
 38 O’Brien 18006.00 92701.30 35512.75 92701.30 18006.00 5 5

Figure 257, Aggregation function, order by usage, Answer

ROWS Usage

The ROWS phrase can be used to limit the aggregation function to a subset of the matching
rows or distinct values. If no ROWS or RANGE phrase is provided, the aggregation is done
for all preceding rows, up to the current row. Likewise, if no BETWEEN phrase is provided,
the aggregation is done from the start-location given, up to the current row. In the following
query, all of the examples using the ROWS phrase are of this type:

SELECT DEPT
 ,NAME
 ,YEARS
 ,SMALLINT(SUM(YEARS) OVER(ORDER BY DEPT)) AS D
 ,SMALLINT(SUM(YEARS) OVER(ORDER BY DEPT, NAME)) AS DN
 ,SMALLINT(SUM(YEARS) OVER(ORDER BY DEPT, NAME
 ROWS UNBOUNDED PRECEDING))AS DNU
 ,SMALLINT(SUM(YEARS) OVER(ORDER BY DEPT, NAME
 ROWS 3 PRECEDING)) AS DN3
 ,SMALLINT(SUM(YEARS) OVER(ORDER BY DEPT, NAME
 ROWS 1 PRECEDING)) AS DN1
 ,SMALLINT(SUM(YEARS) OVER(ORDER BY DEPT, NAME
 ROWS 0 PRECEDING)) AS DN0
 ,SMALLINT(SUM(YEARS) OVER(ORDER BY DEPT, NAME
 ROWS CURRENT ROW)) AS DNC
 ,SMALLINT(SUM(YEARS) OVER(ORDER BY DEPT DESC, NAME DESC
 ROWS 1 PRECEDING)) AS DNX
FROM STAFF
WHERE ID < 100
 AND YEARS IS NOT NULL
ORDER BY DEPT
 ,NAME;

Figure 258, Starting ROWS usage. Implied end is current row, SQL

DB2 UDB/V8.1 Cookbook ©

OLAP Functions 95

Below is the answer. Observe that an aggregation starting at the current row, or including
zero proceeding rows, doesn’t aggregate anything other than the current row:

DEPT NAME YEARS D DN DNU DN3 DN1 DN0 DNC DNX
---- -------- ----- -- -- --- --- --- --- --- ---
 15 Hanes 10 17 10 10 10 10 10 10 17
 15 Rothman 7 17 17 17 17 17 7 7 15
 20 Pernal 8 32 25 25 25 15 8 8 15
 20 Sanders 7 32 32 32 32 15 7 7 12
 38 Marenghi 5 43 37 37 27 12 5 5 11
 38 O’Brien 6 43 43 43 26 11 6 6 12
 42 Koonitz 6 49 49 49 24 12 6 6 6

Figure 259, Starting ROWS usage. Implied end is current row, Answer

BETWEEN Usage

In the next query, the BETWEEN phrase is used to explicitly define the start and end rows
that are used in the aggregation:

SELECT DEPT
 ,NAME
 ,YEARS
 ,SMALLINT(SUM(YEARS) OVER(ORDER BY DEPT, NAME)) AS UC1
 ,SMALLINT(SUM(YEARS) OVER(ORDER BY DEPT, NAME
 ROWS UNBOUNDED PRECEDING)) AS UC2
 ,SMALLINT(SUM(YEARS) OVER(ORDER BY DEPT, NAME
 ROWS BETWEEN UNBOUNDED PRECEDING
 AND CURRENT ROW)) AS UC3
 ,SMALLINT(SUM(YEARS) OVER(ORDER BY DEPT, NAME
 ROWS BETWEEN CURRENT ROW
 AND CURRENT ROW)) AS CU1
 ,SMALLINT(SUM(YEARS) OVER(ORDER BY DEPT, NAME
 ROWS BETWEEN 1 PRECEDING
 AND 1 FOLLOWING)) AS PF1
 ,SMALLINT(SUM(YEARS) OVER(ORDER BY DEPT, NAME
 ROWS BETWEEN 2 PRECEDING
 AND 2 FOLLOWING)) AS PF2
 ,SMALLINT(SUM(YEARS) OVER(ORDER BY DEPT, NAME
 ROWS BETWEEN 3 PRECEDING
 AND 3 FOLLOWING)) AS PF3
 ,SMALLINT(SUM(YEARS) OVER(ORDER BY DEPT, NAME
 ROWS BETWEEN CURRENT ROW
 AND UNBOUNDED FOLLOWING)) AS CU1
 ,SMALLINT(SUM(YEARS) OVER(ORDER BY DEPT, NAME
 ROWS BETWEEN UNBOUNDED PRECEDING
 AND UNBOUNDED FOLLOWING)) AS UU1
FROM STAFF
WHERE ID < 100
 AND YEARS IS NOT NULL
ORDER BY DEPT
 ,NAME;

Figure 260, ROWS usage, with BETWEEN phrase, SQL

Now for the answer. Observe that the first three aggregation calls are logically equivalent:

DEPT NAME YEARS UC1 UC2 UC3 CU1 PF1 PF2 PF3 CU1 UU1
---- -------- ----- --- --- --- --- --- --- --- --- ---
 15 Hanes 10 10 10 10 10 17 25 32 49 49
 15 Rothman 7 17 17 17 7 25 32 37 39 49
 20 Pernal 8 25 25 25 8 22 37 43 32 49
 20 Sanders 7 32 32 32 7 20 33 49 24 49
 38 Marenghi 5 37 37 37 5 18 32 39 17 49
 38 O’Brien 6 43 43 43 6 17 24 32 12 49
 42 Koonitz 6 49 49 49 6 12 17 24 6 49

Figure 261, ROWS usage, with BETWEEN phrase, Answer

 Graeme Birchall ©

96 OLAP Functions, Definitions

The BETWEEN predicate in an ordinary SQL statement is used to get those rows that have a
value between the specified low-value (given first) and the high value (given last). Thus the
predicate "BETWEEN 5 AND 10" may find rows, but the predicate "BETWEEN 10 AND 5"
will never find any.

The BETWEEN phrase in an aggregation function has a similar usage in that it defines the set
of rows to be aggregated. But it differs in that the answer depends upon the function ORDER
BY sequence, and a non-match returns a null value, not no-rows.

Below is some sample SQL. Observe that the first two aggregations are ascending, while the
last two are descending:

SELECT ID
 ,NAME
 ,SMALLINT(SUM(ID) OVER(ORDER BY ID ASC
 ROWS BETWEEN 1 PRECEDING
 AND CURRENT ROW)) AS APC
 ,SMALLINT(SUM(ID) OVER(ORDER BY ID ASC
 ROWS BETWEEN CURRENT ROW
 AND 1 FOLLOWING)) AS ACF
 ,SMALLINT(SUM(ID) OVER(ORDER BY ID DESC
 ROWS BETWEEN 1 PRECEDING
 AND CURRENT ROW)) AS DPC
 ,SMALLINT(SUM(ID) OVER(ORDER BY ID DESC
 ROWS BETWEEN CURRENT ROW
 AND 1 FOLLOWING)) AS DCF
FROM STAFF
WHERE ID < 50
 AND YEARS IS NOT NULL ANSWER
ORDER BY ID; ===========================
 ID NAME APC ACF DPC DCF
 -- -------- --- --- --- ---
 10 Sanders 10 30 30 10
 20 Pernal 30 50 50 30
 30 Marenghi 50 70 70 50
 40 O’Brien 70 40 40 70

Figure 262,BETWEEN and ORDER BY usage

The following table illustrates the processing sequence in the above query. Each BETWEEN
is applied from left to right, while the rows are read either from left to right (ORDER BY ID
ASC) or right to left (ORDER BY ID DESC):

ASC ID (10,20,30,40)
READ ROWS, LEFT to RIGHT 1ST-ROW 2ND-ROW 3RD-ROW 4TH-ROW
========================== ======== ======== ======== ========
1 PRECEDING to CURRENT ROW 10=10 10+20=30 20+30=40 30+40=70
CURRENT ROW to 1 FOLLOWING 10+20=30 20+30=50 30+40=70 40 =40

DESC ID (40,30,20,10)
READ ROWS, RIGHT to LEFT 1ST-ROW 2ND-ROW 3RD-ROW 4TH-ROW
========================== ======== ======== ======== ========
1 PRECEDING to CURRENT ROW 20+10=30 30+20=50 40+30=70 40 =40
CURRENT ROW to 1 FOLLOWING 10 =10 20+10=30 30+20=50 40+30=70

NOTE: Preceding row is always on LEFT of current row.
 Following row is always on RIGHT of current row.

Figure 263, Explanation of query

IMPORTANT: The BETWEEN predicate, when used in an ordinary SQL statement, is not
affected by the sequence of the input rows. But the BETWEEN phrase, when used in an ag-
gregation function, is affected by the input sequence.

DB2 UDB/V8.1 Cookbook ©

OLAP Functions 97

RANGE Usage

The RANGE phrase limits the aggregation result to a range of numeric values - defined rela-
tive to the value of the current row being processed. The range is obtained by taking the value
in the current row (defined by the ORDER BY expression) and adding to and/or subtracting
from it, then seeing what other rows are in the range. Note that only one expression can be
specified in the ORDER BY, and that expression must be numeric.

In the following example, the RANGE function adds to and/or subtracts from the DEPT field.
For example, in the function that is used to populate the RG10 field, the current DEPT value
is checked against the preceding DEPT values. If their value is within 10 digits of the current
value, the related YEARS field is added to the SUM:

SELECT DEPT
 ,NAME
 ,YEARS
 ,SMALLINT(SUM(YEARS) OVER(ORDER BY DEPT
 ROWS BETWEEN 1 PRECEDING
 AND CURRENT ROW)) AS ROW1
 ,SMALLINT(SUM(YEARS) OVER(ORDER BY DEPT
 ROWS BETWEEN 2 PRECEDING
 AND CURRENT ROW)) AS ROW2
 ,SMALLINT(SUM(YEARS) OVER(ORDER BY DEPT
 RANGE BETWEEN 1 PRECEDING
 AND CURRENT ROW)) AS RG01
 ,SMALLINT(SUM(YEARS) OVER(ORDER BY DEPT
 RANGE BETWEEN 10 PRECEDING
 AND CURRENT ROW)) AS RG10
 ,SMALLINT(SUM(YEARS) OVER(ORDER BY DEPT
 RANGE BETWEEN 20 PRECEDING
 AND CURRENT ROW)) AS RG20
 ,SMALLINT(SUM(YEARS) OVER(ORDER BY DEPT
 RANGE BETWEEN 10 PRECEDING
 AND 20 FOLLOWING)) AS RG11
 ,SMALLINT(SUM(YEARS) OVER(ORDER BY DEPT
 RANGE BETWEEN CURRENT ROW
 AND 20 FOLLOWING)) AS RG99
FROM STAFF
WHERE ID < 100
 AND YEARS IS NOT NULL
ORDER BY DEPT
 ,NAME;

Figure 264, RANGE usage, SQL

Now for the answer:

DEPT NAME YEARS ROW1 ROW2 RG01 RG10 RG20 RG11 RG99
------ ------- ----- ---- ---- ---- ---- ---- ---- ----
 15 Hanes 10 10 10 17 17 17 32 32
 15 Rothman 7 17 17 17 17 17 32 32
 20 Pernal 8 15 25 15 32 32 43 26
 20 Sanders 7 15 22 15 32 32 43 26
 38 Marengh 5 12 20 11 11 26 17 17
 38 O’Brien 6 11 18 11 11 26 17 17
 42 Koonitz 6 12 17 6 17 17 17 6

Figure 265, RANGE usage, Answer

Note the difference between the ROWS as RANGE expressions:

• The ROWS expression refers to the "n" rows before and/or after (within the partition), as
defined by the ORDER BY.

• The RANGE expression refers to those before and/or after rows (within the partition) that
are within an arithmetic range of the current row.

 Graeme Birchall ©

98 OLAP Functions, Definitions

PARTITION Usage

One can take all of the lovely stuff described above, and make it whole lot more complicated
by using the PARTITION expression. This phrase limits the current processing of the aggre-
gation to a subset of the matching rows.

In the following query, some of the aggregation functions are broken up by partition range
and some are not. When there is a partition, then the ROWS check only works within the
range of the partition (i.e. for a given DEPT):

SELECT DEPT
 ,NAME
 ,YEARS
 ,SMALLINT(SUM(YEARS) OVER(ORDER BY DEPT)) AS X
 ,SMALLINT(SUM(YEARS) OVER(ORDER BY DEPT
 ROWS 3 PRECEDING)) AS XO3
 ,SMALLINT(SUM(YEARS) OVER(ORDER BY DEPT
 ROWS BETWEEN 1 PRECEDING
 AND 1 FOLLOWING)) AS XO11
 ,SMALLINT(SUM(YEARS) OVER(PARTITION BY DEPT)) AS P
 ,SMALLINT(SUM(YEARS) OVER(PARTITION BY DEPT
 ORDER BY DEPT)) AS PO
 ,SMALLINT(SUM(YEARS) OVER(PARTITION BY DEPT
 ORDER BY DEPT
 ROWS 1 PRECEDING)) AS PO1
 ,SMALLINT(SUM(YEARS) OVER(PARTITION BY DEPT
 ORDER BY DEPT
 ROWS 3 PRECEDING)) AS PO3
 ,SMALLINT(SUM(YEARS) OVER(PARTITION BY DEPT
 ORDER BY DEPT
 ROWS BETWEEN 1 PRECEDING
 AND 1 FOLLOWING)) AS PO11
FROM STAFF
WHERE ID BETWEEN 40 AND 120
 AND YEARS IS NOT NULL
ORDER BY DEPT
 ,NAME;

Figure 266, PARTITION usage, SQL

DEPT NAME YEARS X XO3 XO11 P PO PO1 PO3 PO11
----- ------- ----- ---- ---- ---- ---- ---- ---- ---- ----
 15 Hanes 10 22 10 15 22 22 10 10 15
 15 Ngan 5 22 15 22 22 22 15 15 22
 15 Rothman 7 22 22 18 22 22 12 22 12
 38 O’Brien 6 28 28 19 6 6 6 6 6
 42 Koonitz 6 41 24 19 13 13 6 6 13
 42 Plotz 7 41 26 13 13 13 13 13 13

Figure 267, PARTITION usage, Answer

PARTITION vs. GROUP BY

The PARTITION clause, when used by itself, returns a very similar result to a GROUP BY,
except that it does not remove the duplicate rows. To illustrate, below is a simple query that
does a GROUP BY:

SELECT DEPT ANSWER
 ,SUM(YEARS) AS SUM ================
 ,AVG(YEARS) AS AVG DEPT SUM AVG ROW
 ,COUNT(*) AS ROW ---- --- --- ---
FROM STAFF 15 22 7 3
WHERE ID BETWEEN 40 AND 120 38 6 6 1
 AND YEARS IS NOT NULL 42 13 6 2
GROUP BY DEPT;

Figure 268, Sample query using GROUP BY

DB2 UDB/V8.1 Cookbook ©

OLAP Functions 99

Below is a similar query that uses the PARTITION phrase. Observe that the answer is the
same, except that duplicate rows have not been removed:

SELECT DEPT ANSWER
 ,SUM(YEARS) OVER(PARTITION BY DEPT) AS SUM =================
 ,AVG(YEARS) OVER(PARTITION BY DEPT) AS AVG DEPT SUM AVG ROW
 ,COUNT(*) OVER(PARTITION BY DEPT) AS ROW ----- --- --- ---
FROM STAFF 15 22 7 3
WHERE ID BETWEEN 40 AND 120 15 22 7 3
 AND YEARS IS NOT NULL 15 22 7 3
ORDER BY DEPT; 38 6 6 1
 42 13 6 2
 42 13 6 2

Figure 269, Sample query using PARTITION

Below is another similar query that uses the PARTITION phrase, and then uses a DISTINCT
clause to remove the duplicate rows:

SELECT DISTINCT DEPT ANSWER
 ,SUM(YEARS) OVER(PARTITION BY DEPT) AS SUM =================
 ,AVG(YEARS) OVER(PARTITION BY DEPT) AS AVG DEPT SUM AVG ROW
 ,COUNT(*) OVER(PARTITION BY DEPT) AS ROW ----- --- --- ---
FROM STAFF 15 22 7 3
WHERE ID BETWEEN 40 AND 120 38 6 6 1
 AND YEARS IS NOT NULL 42 13 6 2
ORDER BY DEPT;

Figure 270, Sample query using PARTITION and DISTINCT

Even though the above statement gives the same answer as the prior GROUP BY example, it
is not the same internally. Nor is it (probably) as efficient, and it certainly is not as easy to
understand. Therefore, when in doubt, use the GROUP BY syntax.

 Graeme Birchall ©

100 OLAP Functions, Definitions

DB2 UDB/V8.1 Cookbook ©

Scalar Functions 101

Scalar Functions
Introduction

Scalar functions act on a single row at a time. In this section we shall list all of the ones that
come with DB2 and look in detail at some of the more interesting ones. Refer to the SQL
Reference for information on those functions not fully described here.

WARNING: Some of the scalar functions changed their internal logic between V5 and V6 of
DB2. There have been no changes between V6 and V7, or between V7 and V8, except for the
addition of a few more functions.

Sample Data

The following self-defined view will be used throughout this section to illustrate how some of
the following functions work. Observe that the view has a VALUES expression that defines
the contents- three rows and nine columns.

CREATE VIEW SCALAR (D1,F1,S1,C1,V1,TS1,DT1,TM1,TC1) AS
WITH TEMP1 (N1, C1, T1) AS
(VALUES (-2.4,’ABCDEF’,’1996-04-22-23.58.58.123456’)
 ,(+0.0,’ABCD ’,’1996-08-15-15.15.15.151515’)
 ,(+1.8,’AB ’,’0001-01-01-00.00.00.000000’))
SELECT DECIMAL(N1,3,1)
 ,DOUBLE(N1)
 ,SMALLINT(N1)
 ,CHAR(C1,6)
 ,VARCHAR(RTRIM(C1),6)
 ,TIMESTAMP(T1)
 ,DATE(T1)
 ,TIME(T1)
 ,CHAR(T1)
FROM TEMP1;

Figure 271, Sample View DDL - Scalar functions

Below are the view contents:

D1 F1 S1 C1 V1 TS1
------ --------- -- ------ ------ --------------------------
 -2.4 -2.4e+000 -2 ABCDEF ABCDEF 1996-04-22-23.58.58.123456
 0.0 0.0e+000 0 ABCD ABCD 1996-08-15-15.15.15.151515
 1.8 1.8e+000 1 AB AB 0001-01-01-00.00.00.000000

DT1 TM1 TC1
---------- -------- --------------------------
04/22/1996 23:58:58 1996-04-22-23.58.58.123456
08/15/1996 15:15:15 1996-08-15-15.15.15.151515
01/01/0001 00:00:00 0001-01-01-00.00.00.000000

Figure 272, SCALAR view, contents (3 rows)

Scalar Functions, Definitions

ABS or ABSVAL

Returns the absolute value of a number (e.g. -0.4 returns + 0.4). The output field type will
equal the input field type (i.e. double input returns double output).

 Graeme Birchall ©

102 Scalar Functions, Definitions

SELECT D1 AS D1 ANSWER (float output shortened)
 ,ABS(D1) AS D2 ================================
 ,F1 AS F1 D1 D2 F1 F2
 ,ABS(F1) AS F2 ---- --- ---------- ---------
FROM SCALAR; -2.4 2.4 -2.400e+0 2.400e+00
 0.0 0.0 0.000e+0 0.000e+00
 1.8 1.8 1.800e+0 1.800e+00

Figure 273, ABS function examples

ACOS

Returns the arccosine of the argument as an angle expressed in radians. The output format is
double.

ASCII

Returns the ASCII code value of the leftmost input character. Valid input types are any valid
character type up to 1 MEG. The output type is integer.

SELECT C1 ANSWER
 ,ASCII(C1) AS AC1 ================
 ,ASCII(SUBSTR(C1,2)) AS AC2 C1 AC1 AC2
FROM SCALAR ------ --- ---
WHERE C1 = ’ABCDEF’; ABCDEF 65 66

Figure 274, ASCII function examples

The CHR function is the inverse of the ASCII function.

ASIN

Returns the arcsine of the argument as an angle expressed in radians. The output format is
double.

ATAN

Returns the arctangent of the argument as an angle expressed in radians. The output format is
double.

ATANH

Returns the hyperbolic acrctangent of the argument, where the argument is and an angle ex-
pressed in radians. The output format is double.

ATAN2

Returns the arctangent of x and y coordinates, specified by the first and second arguments, as
an angle, expressed in radians. The output format is double.

BIGINT

Converts the input value to bigint (big integer) format. The input can be either numeric or
character. If character, it must be a valid representation of a number.

DB2 UDB/V8.1 Cookbook ©

Scalar Functions 103

WITH TEMP (BIG) AS ANSWER
(VALUES BIGINT(1) ====================
 UNION ALL BIG
 SELECT BIG * 256 --------------------
 FROM TEMP 1
 WHERE BIG < 1E16 256
) 65536
SELECT BIG 16777216
FROM TEMP; 4294967296
 1099511627776
 281474976710656
 72057594037927936

Figure 275, BIGINT function example

Converting certain float values to both bigint and decimal will result in different values being
returned (see below). Both results are arguably correct, it is simply that the two functions use
different rounding methods:

WITH TEMP (F1) AS
(VALUES FLOAT(1.23456789)
 UNION ALL
 SELECT F1 * 100
 FROM TEMP
 WHERE F1 < 1E18
)
SELECT F1 AS FLOAT1
 ,DEC(F1,19) AS DECIMAL1
 ,BIGINT(F1) AS BIGINT1
FROM TEMP;

Figure 276, Convert FLOAT to DECIMAL and BIGINT, SQL

FLOAT1 DECIMAL1 BIGINT1
---------------------- ------------------- --------------------
+1.23456789000000E+000 1. 1
+1.23456789000000E+002 123. 123
+1.23456789000000E+004 12345. 12345
+1.23456789000000E+006 1234567. 1234567
+1.23456789000000E+008 123456789. 123456788
+1.23456789000000E+010 12345678900. 12345678899
+1.23456789000000E+012 1234567890000. 1234567889999
+1.23456789000000E+014 123456789000000. 123456788999999
+1.23456789000000E+016 12345678900000000. 12345678899999996
+1.23456789000000E+018 1234567890000000000. 1234567889999999488

Figure 277, Convert FLOAT to DECIMAL and BIGINT, answer

See page 329 for a discussion on floating-point number manipulation.

BLOB

Converts the input (1st argument) to a blob. The output length (2nd argument) is optional.

)BLOB (string-expression

, length
Figure 278, BLOB function syntax

CEIL or CEILING

Returns the next smallest integer value that is greater than or equal to the input (e.g. 5.045
returns 6.000). The output field type will equal the input field type.

)CEIL or CEILING (numeric-expression

Figure 279, CEILING function syntax

 Graeme Birchall ©

104 Scalar Functions, Definitions

SELECT D1 ANSWER (float output shortened)
 ,CEIL(D1) AS D2 ==================================
 ,F1 D1 D2 F1 F2
 ,CEIL(F1) AS F2 ---- ---- ---------- ----------
FROM SCALAR; -2.4 -2. -2.400E+0 -2.000E+0
 0.0 0. +0.000E+0 +0.000E+0
 1.8 2. +1.800E+0 +2.000E+0

Figure 280, CEIL function examples

NOTE: Usually, when DB2 converts a number from one format to another, any extra digits
on the right are truncated, not rounded. For example, the output of INTEGER(123.9) is 123.
Use the CEIL or ROUND functions to avoid truncation.

CHAR

The CHAR function has a multiplicity of uses. The result is always a fixed-length character
value, but what happens to the input along the way depends upon the input type:

• For character input, the CHAR function acts a bit like the SUBSTR function, except that
it can only truncate starting from the left-most character. The optional length parameter,
if provided, must be a constant or keyword.

• Date-time input is converted into an equivalent character string. Optionally, the external
format can be explicitly specified (i.e. ISO, USA, EUR, JIS, or LOCAL).

• Integer and double input is converted into a left-justified character string.

• Decimal input is converted into a right-justified character string with leading zeros. The
format of the decimal point can optionally be provided. The default decimal point is a
dot. The ’+’ and ’-’ symbols are not allowed as they are used as sign indicators.

Below is a syntax diagram:

CHAR (character value)
 , length

 date-time value
 , format

 integer value

 , dec.pt
 decimal value

 double value

Figure 281, CHAR function syntax

Below are some examples of the CHAR function in action:

SELECT NAME ANSWER
 ,CHAR(NAME,3) =====================================
 ,COMM NAME 2 COMM 4 5
 ,CHAR(COMM) ------- --- ------- -------- --------
 ,CHAR(COMM,’@’) James Jam 128.20 00128.20 00128@20
FROM STAFF Koonitz Koo 1386.70 01386.70 01386@70
WHERE ID BETWEEN 80 Plotz Plo - - -
 AND 100
ORDER BY ID;

Figure 282, CHAR function examples - characters and numbers

The CHAR function treats decimal numbers quite differently from integer and real numbers.
In particular, it right-justifies the former (with leading zeros), while it left-justifies the latter
(with trailing blanks). The next example illustrates this point:

DB2 UDB/V8.1 Cookbook ©

Scalar Functions 105

 ANSWER
 ==
 INT CHAR_INT CHAR_FLT CHAR_DEC
 -------- -------- ----------- ------------
WITH TEMP1 (N) AS 3 3 3.0E0 00000000003.
(VALUES (3) 9 9 9.0E0 00000000009.
 UNION ALL 81 81 8.1E1 00000000081.
 SELECT N * N 6561 6561 6.561E3 00000006561.
 FROM TEMP1 43046721 43046721 4.3046721E7 00043046721.
 WHERE N < 9000
)
SELECT N AS INT
 ,CHAR(INT(N)) AS CHAR_INT
 ,CHAR(FLOAT(N)) AS CHAR_FLT
 ,CHAR(DEC(N)) AS CHAR_DEC
FROM TEMP1;

Figure 283, CHAR function examples - positive numbers

Negative numeric input is given a leading minus sign. This messes up the alignment of digits
in the column (relative to any positive values). In the following query, a leading blank is put
in front of all positive numbers in order to realign everything:

WITH TEMP1 (N1, N2) AS ANSWER
(VALUES (SMALLINT(+3) ===================================
 ,SMALLINT(-7)) N1 I1 I2 D1 D2
 UNION ALL ------ ----- ------ ------- -------
 SELECT N1 * N2 3 3 +3 00003. +00003.
 ,N2 -21 -21 -21 -00021. -00021.
 FROM TEMP1 147 147 +147 00147. +00147.
 WHERE N1 < 300 -1029 -1029 -1029 -01029. -01029.
) 7203 7203 +7203 07203. +07203.
SELECT N1
 ,CHAR(N1) AS I1
 ,CASE
 WHEN N1 < 0 THEN CHAR (N1)
 ELSE ’+’ CONCAT CHAR(N1)
 END AS I2
 ,CHAR(DEC(N1)) AS D1
 ,CASE
 WHEN N1 < 0 THEN CHAR(DEC(N1))
 ELSE ’+’ CONCAT CHAR(DEC(N1))
 END AS D2
FROM TEMP1;

Figure 284, Align CHAR function output - numbers

Both the I2 and D2 fields above will have a trailing blank on all negative values - that was
added during the concatenation operation. The RTRIM function can be used to remove it.

SELECT CHAR(HIREDATE,ISO) ANSWER
 ,CHAR(HIREDATE,USA) ================================
 ,CHAR(HIREDATE,EUR) 1 2 3
FROM EMPLOYEE ---------- ---------- ----------
WHERE LASTNAME < ’C’ 1972-02-12 02/12/1972 12.02.1972
ORDER BY 2; 1966-03-03 03/03/1966 03.03.1966

Figure 285, CHAR function examples - dates

WARNING: Observe that the above data is in day, month, and year (2nd column) order. Had
the ORDER BY been on the 1st column (with the ISO output format), the row sequencing
would have been different.

CHAR vs. DIGITS - A Comparison

Numeric input can be converted to character using either the DIGITS or the CHAR function,
though the former does not support float. Both functions work differently, and neither gives

 Graeme Birchall ©

106 Scalar Functions, Definitions

perfect output. The CHAR function doesn’t properly align up positive and negative numbers,
while the DIGITS function looses both the decimal point and sign indicator:

SELECT D2 ANSWER
 ,CHAR(D2) AS CD2 ================
 ,DIGITS(D2) AS DD2 D2 CD2 DD2
FROM (SELECT DEC(D1,4,1) AS D2 ---- ------ ----
 FROM SCALAR -2.4 -002.4 0024
)AS XXX 0.0 000.0 0000
ORDER BY 1; 1.8 001.8 0018

Figure 286, DIGITS vs. CHAR

NOTE: Neither the DIGITS nor the CHAR function do a great job of converting numbers to
characters. See page 300 for some user-defined functions that can be used instead.

CHR

Converts integer input in the range 0 through 255 to the equivalent ASCII character value. An
input value above 255 returns 255. The ASCII function (see above) is the inverse of the CHR
function.

SELECT ’A’ AS "C" ANSWER
 ,ASCII(’A’) AS "C>N" =================
 ,CHR(ASCII(’A’)) AS "C>N>C" C C>N C>N>C NL
 ,CHR(333) AS "NL" - --- ----- --
FROM STAFF A 65 A ÿ
WHERE ID = 10;

Figure 287, CHR function examples

NOTE: At present, the CHR function has a bug that results in it not returning a null value
when the input value is greater than 255.

CLOB

Converts the input (1st argument) to a clob. The output length (2nd argument) is optional. If
the input is truncated during conversion, a warning message is issued. For example, in the
following example the second clob statement will induce a warning for the first two lines of
input because they have non-blank data after the third byte:

SELECT C1 ANSWER
 ,CLOB(C1) AS CC1 ===================
 ,CLOB(C1,3) AS CC2 C1 CC1 CC2
FROM SCALAR; ------ ------ ---
 ABCDEF ABCDEF ABC
 ABCD ABCD ABC
 AB AB AB

Figure 288, CLOB function examples

NOTE: At present, the DB2BATCH command processor dies a nasty death whenever it en-
counters a clob field in the output.

COALESCE

Returns the first non-null value in a list of input expressions (reading from left to right). Each
expression is separated from the prior by a comma. All input expressions must be compatible.
VALUE is a synonym for COALESCE.

DB2 UDB/V8.1 Cookbook ©

Scalar Functions 107

SELECT ID ANSWER
 ,COMM ==================
 ,COALESCE(COMM,0) ID COMM 3
FROM STAFF -- ------ ------
WHERE ID < 30 10 - 0.00
ORDER BY ID; 20 612.45 612.45

Figure 289, COALESCE function example

A CASE expression can be written to do exactly the same thing as the COALESCE function.
The following SQL statement shows two logically equivalent ways to replace nulls:

WITH TEMP1(C1,C2,C3) AS ANSWER
(VALUES (CAST(NULL AS SMALLINT) ========
 ,CAST(NULL AS SMALLINT) CC1 CC2
 ,CAST(10 AS SMALLINT))) --- ---
SELECT COALESCE(C1,C2,C3) AS CC1 10 10
 ,CASE
 WHEN C1 IS NOT NULL THEN C1
 WHEN C2 IS NOT NULL THEN C2
 WHEN C3 IS NOT NULL THEN C3
 END AS CC2
FROM TEMP1;

Figure 290, COALESCE and equivalent CASE expression

Be aware that a field can return a null value, even when it is defined as not null. This occurs if
a column function is applied against the field, and no row is returned:

SELECT COUNT(*) AS #ROWS ANSWER
 ,MIN(ID) AS MIN_ID ===================
 ,COALESCE(MIN(ID),-1) AS CCC_ID #ROWS MIN_ID CCC_ID
FROM STAFF ----- ------ ------
WHERE ID < 5; 0 - -1

Figure 291, NOT NULL field returning null value

CONCAT

Joins two strings together. The CONCAT function has both "infix" and "prefix" notations. In
the former case, the verb is placed between the two strings to be acted upon. In the latter case,
the two strings come after the verb. Both syntax flavours are illustrated below:

SELECT ’A’ || ’B’ ANSWER
 ,’A’ CONCAT ’B’ ===================
 ,CONCAT(’A’,’B’) 1 2 3 4 5
 ,’A’ || ’B’ || ’C’ --- --- --- --- ---
 ,CONCAT(CONCAT(’A’,’B’),’C’) AB AB AB ABC ABC
FROM STAFF
WHERE ID = 10;

Figure 292, CONCAT function examples

Note that the "||" keyword can not be used with the prefix notation. This means that "||(’a’,’b’)"
is not valid while "CONCAT(’a’,’b’)" is.

Using CONCAT with ORDER BY

When ordinary character fields are concatenated, any blanks at the end of the first field are
left in place. By contrast, concatenating varchar fields removes any (implied) trailing blanks.
If the result of the second type of concatenation is then used in an ORDER BY, the resulting
row sequence will probably be not what the user intended. To illustrate:

 Graeme Birchall ©

108 Scalar Functions, Definitions

WITH TEMP1 (COL1, COL2) AS ANSWER
(VALUES (’A’ , ’YYY’) ===============
 ,(’AE’, ’OOO’) COL1 COL2 COL3
 ,(’AE’, ’YYY’) ---- ---- -----
) AE OOO AEOOO
SELECT COL1 AE YYY AEYYY
 ,COL2 A YYY AYYY
 ,COL1 CONCAT COL2 AS COL3
FROM TEMP1
ORDER BY COL3;

Figure 293, CONCAT used with ORDER BY - wrong output sequence

Converting the fields being concatenated to character gets around this problem:

WITH TEMP1 (COL1, COL2) AS ANSWER
(VALUES (’A’ , ’YYY’) ===============
 ,(’AE’, ’OOO’) COL1 COL2 COL3
 ,(’AE’, ’YYY’) ---- ---- -----
) A YYY A YYY
SELECT COL1 AE OOO AEOOO
 ,COL2 AE YYY AEYYY
 ,CHAR(COL1,2) CONCAT
 CHAR(COL2,3) AS COL3
FROM TEMP1
ORDER BY COL3;

Figure 294, CONCAT used with ORDER BY - correct output sequence

WARNING: Never do an ORDER BY on a concatenated set of variable length fields. The
resulting row sequence is probably not what the user intended (see above).

COS

Returns the cosine of the argument where the argument is an angle expressed in radians. The
output format is double.

WITH TEMP1(N1) AS ANSWER
(VALUES (0) =======================
 UNION ALL N1 RAN COS SIN
 SELECT N1 + 10 -- ----- ----- -----
 FROM TEMP1 0 0.000 1.000 0.000
 WHERE N1 < 90) 10 0.174 0.984 0.173
SELECT N1 20 0.349 0.939 0.342
 ,DEC(RADIANS(N1),4,3) AS RAN 30 0.523 0.866 0.500
 ,DEC(COS(RADIANS(N1)),4,3) AS COS 40 0.698 0.766 0.642
 ,DEC(SIN(RADIANS(N1)),4,3) AS SIN 50 0.872 0.642 0.766
FROM TEMP1; 60 1.047 0.500 0.866
 70 1.221 0.342 0.939
 80 1.396 0.173 0.984
 90 1.570 0.000 1.000

Figure 295, RADIAN, COS, and SIN functions example

COSH

Returns the hyperbolic cosine for the argument, where the argument is an angle expressed in
radians. The output format is double.

COT

Returns the cotangent of the argument where the argument is an angle expressed in radians.
The output format is double.

DB2 UDB/V8.1 Cookbook ©

Scalar Functions 109

DATE

Converts the input into a date value. The nature of the conversion process depends upon the
input type and length:

• Timestamp and date input have the date part extracted.

• Char or varchar input that is a valid string representation of a date or a timestamp (e.g.
"1997-12-23") is converted as is.

• Char or varchar input that is seven bytes long is assumed to be a Julian date value in the
format yyyynnn where yyyy is the year and nnn is the number of days since the start of
the year (in the range 001 to 366).

• Numeric input is assumed to have a value which represents the number of days since the
date "0001-01-01" inclusive. All numeric types are supported, but the fractional part of a
value is ignored (e.g. 12.55 becomes 12 which converts to "0001-01-12").

)DATE (expression

Figure 296, DATE function syntax

If the input can be null, the output will also support null. Null values convert to null output.

SELECT TS1 ANSWER
 ,DATE(TS1) AS DT1 ======================================
FROM SCALAR; TS1 DT1
 -------------------------- ----------
 1996-04-22-23.58.58.123456 04/22/1996
 1996-08-15-15.15.15.151515 08/15/1996
 0001-01-01-00.00.00.000000 01/01/0001

Figure 297, DATE function example - timestamp input

WITH TEMP1(N1) AS ANSWER
(VALUES (000001) ===================
 ,(728000) N1 D1
 ,(730120)) ------- ----------
SELECT N1 1 01/01/0001
 ,DATE(N1) AS D1 728000 03/13/1994
FROM TEMP1; 730120 01/01/2000

Figure 298, DATE function example - numeric input

DAY

Returns the day (as in day of the month) part of a date (or equivalent) value. The output for-
mat is integer.

SELECT DT1 ANSWER
 ,DAY(DT1) AS DAY1 ================
FROM SCALAR DT1 DAY1
WHERE DAY(DT1) > 10; ---------- ----
 04/22/1996 22
 08/15/1996 15

Figure 299, DAY function examples

If the input is a date or timestamp, the day value must be between 1 and 31. If the input is a
date or timestamp duration, the day value can ran from -99 to +99, though only -31 to +31
actually make any sense:

 Graeme Birchall ©

110 Scalar Functions, Definitions

SELECT DT1 ANSWER
 ,DAY(DT1) AS DAY1 =========================
 ,DT1 -’1996-04-30’ AS DUR2 DT1 DAY1 DUR2 DAY2
 ,DAY(DT1 -’1996-04-30’) AS DAY2 ---------- ---- ---- ----
FROM SCALAR 04/22/1996 22 -8. -8
WHERE DAY(DT1) > 10 08/15/1996 15 315. 15
ORDER BY DT1;

Figure 300, DAY function, using date-duration input

NOTE: A date-duration is what one gets when one subtracts one date from another. The field
is of type decimal(8), but the value is not really a number. It has digits in the format:
YYYYMMDD, so in the above query the value "315" represents 3 months, 15 days.

DAYNAME

Returns the name of the day (e.g. Friday) as contained in a date (or equivalent) value. The
output format is varchar(100).

SELECT DT1 ANSWER
 ,DAYNAME(DT1) AS DY1 ========================
 ,LENGTH(DAYNAME(DT1)) AS DY2 DT1 DY1 DY2
FROM SCALAR ---------- ------- ---
WHERE DAYNAME(DT1) LIKE ’%a%y’ 01/01/0001 Monday 6
ORDER BY DT1; 04/22/1996 Monday 6
 08/15/1996 Thursday 8

Figure 301, DAYNAME function example

DAYOFWEEK

Returns a number that represents the day of the week (where Sunday is 1 and Saturday is 7)
from a date (or equivalent) value. The output format is integer.

SELECT DT1 ANSWER
 ,DAYOFWEEK(DT1) AS DWK =========================
 ,DAYNAME(DT1) AS DNM DT1 DWK DNM
FROM SCALAR ---------- --- --------
ORDER BY DWK 01/01/0001 2 Monday
 ,DNM; 04/22/1996 2 Monday
 08/15/1996 5 Thursday

Figure 302, DAYOFWEEK function example

DAYOFWEEK_ISO

Returns an integer value that represents the day of the "ISO" week. An ISO week differs from
an ordinary week in that it begins on a Monday (i.e. day-number = 1) and it neither ends nor
begins at the exact end of the year. Instead, the final ISO week of the prior year will continue
into the new year. This often means that the first days of the year have an ISO week number
of 52, and that one gets more than seven days in a year for ISO week 52.

DB2 UDB/V8.1 Cookbook ©

Scalar Functions 111

WITH ANSWER
TEMP1 (N) AS ========================
 (VALUES (0) DATE DAY W D WI I
 UNION ALL ---------- --- -- - -- -
 SELECT N+1 1999-12-25 Sat 52 7 51 6
 FROM TEMP1 1999-12-26 Sun 53 1 51 7
 WHERE N < 9), 1999-12-27 Mon 53 2 52 1
TEMP2 (DT1) AS 1999-12-28 Tue 53 3 52 2
 (VALUES(DATE(’1999-12-25’)) 1999-12-29 Wed 53 4 52 3
 ,(DATE(’2000-12-24’))), 1999-12-30 Thu 53 5 52 4
TEMP3 (DT2) AS 1999-12-31 Fri 53 6 52 5
 (SELECT DT1 + N DAYS 2000-01-01 Sat 1 7 52 6
 FROM TEMP1 2000-01-02 Sun 2 1 52 7
 ,TEMP2) 2000-01-03 Mon 2 2 1 1
SELECT CHAR(DT2,ISO) AS DATE 2000-12-24 Sun 53 1 51 7
 ,SUBSTR(DAYNAME(DT2),1,3) AS DAY 2000-12-25 Mon 53 2 52 1
 ,WEEK(DT2) AS W 2000-12-26 Tue 53 3 52 2
 ,DAYOFWEEK(DT2) AS D 2000-12-27 Wed 53 4 52 3
 ,WEEK_ISO(DT2) AS WI 2000-12-28 Thu 53 5 52 4
 ,DAYOFWEEK_ISO(DT2) AS I 2000-12-29 Fri 53 6 52 5
FROM TEMP3 2000-12-30 Sat 53 7 52 6
ORDER BY 1; 2000-12-31 Sun 54 1 52 7
 2001-01-01 Mon 1 2 1 1
 2001-01-02 Tue 1 3 1 2

Figure 303, DAYOFWEEK_ISO function example

DAYOFYEAR

Returns a number that is the day of the year (from 1 to 366) from a date (or equivalent) value.
The output format is integer.

SELECT DT1 ANSWER
 ,DAYOFYEAR(DT1) AS DYR ===============
FROM SCALAR DT1 DYR
ORDER BY DYR; ---------- ---
 01/01/0001 1
 04/22/1996 113
 08/15/1996 228

Figure 304, DAYOFYEAR function example

DAYS

Converts a date (or equivalent) value into a number that represents the number of days since
the date "0001-01-01" inclusive. The output format is INTEGER.

SELECT DT1 ANSWER
 ,DAYS(DT1) AS DY1 ==================
FROM SCALAR DT1 DY1
ORDER BY DY1 ---------- ------
 ,DT1; 01/01/0001 1
 04/22/1996 728771
 08/15/1996 728886

Figure 305, DAYS function example

The DATE function can act as the inverse of the DAYS function. It can convert the DAYS
output back into a valid date.

DBCLOB

Converts the input (1st argument) to a dbclob. The output length (2nd argument) is optional.

 Graeme Birchall ©

112 Scalar Functions, Definitions

DEC or DECIMAL

Converts either character or numeric input to decimal. When the input is of type character, the
decimal point format can be specified.

 number) DECIMAL

 DEC

 (

 , scale
 , precision

 (char)

 , scale
 , precision

 , dec

Figure 306, DECIMAL function syntax

WITH TEMP1(N1,N2,C1,C2) AS ANSWER
(VALUES (123 ==========================
 ,1E2 DEC1 DEC2 DEC3 DEC4
 ,’123.4’ ----- ------ ------ ------
 ,’567$8’)) 123. 100.0 123.4 567.8
SELECT DEC(N1,3) AS DEC1
 ,DEC(N2,4,1) AS DEC2
 ,DEC(C1,4,1) AS DEC3
 ,DEC(C2,4,1,’$’) AS DEC4
FROM TEMP1;

Figure 307, DECIMAL function examples

WARNING: Converting a floating-point number to decimal may get different results from
converting the same number to integer. See page 329 for a discussion of this issue.

DEGREES

Returns the number of degrees converted from the argument as expressed in radians. The out-
put format is double.

DEREF

Returns an instance of the target type of the argument.

DECRYPT_BIN and DECRYPT_CHAR

Decrypts data that has been encrypted using the ENCRYPT function. Use the BIN function to
decrypt binary data (e.g. BLOBS, CLOBS) and the CHAR function to do character data. Nu-
meric data cannot be encrypted.

 encrypted data) DECRYPT_BIN

 DECRYPT_CHAR

 (
 , password

Figure 308, DECRYPT function syntax

If the password is null or not supplied, the value of the encryption password special register
will be used. If it is incorrect, a SQL error will be generated.

DB2 UDB/V8.1 Cookbook ©

Scalar Functions 113

SELECT ID
 ,NAME
 ,DECRYPT_CHAR(NAME2,’CLUELESS’) AS NAME3
 ,GETHINT(NAME2) AS HINT
 ,NAME2
FROM (SELECT ID
 ,NAME
 ,ENCRYPT(NAME,’CLUELESS’,’MY BOSS’) AS NAME2
 FROM STAFF
 WHERE ID < 30
)AS XXX
ORDER BY ID;

Figure 309, DECRYPT_CHAR function example

DIFFERENCE

Returns the difference between the sounds of two strings as determined using the SOUNDEX
function. The output (of type integer) ranges from 4 (good match) to zero (poor match).

SELECT A.NAME AS N1 ANSWER
 ,SOUNDEX(A.NAME) AS S1 ==============================
 ,B.NAME AS N2 N1 S1 N2 S2 DF
 ,SOUNDEX(B.NAME) AS S2 ------- ---- --------- ---- --
 ,DIFFERENCE Sanders S536 Sneider S536 4
 (A.NAME,B.NAME) AS DF Sanders S536 Smith S530 3
FROM STAFF A Sanders S536 Lundquist L532 2
 ,STAFF B Sanders S536 Daniels D542 1
WHERE A.ID = 10 Sanders S536 Molinare M456 1
 AND B.ID > 150 Sanders S536 Scoutten S350 1
 AND B.ID < 250 Sanders S536 Abrahams A165 0
ORDER BY DF DESC Sanders S536 Kermisch K652 0
 ,N2 ASC; Sanders S536 Lu L000 0

Figure 310, DIFFERENCE function example

NOTE: The difference function returns one of five possible values. In many situations, it
would imprudent to use a value with such low granularity to rank values.

DIGITS

Converts an integer or decimal value into a character string with leading zeros. Both the sign
indicator and the decimal point are lost in the translation.

SELECT S1 ANSWER
 ,DIGITS(S1) AS DS1 =========================
 ,D1 S1 DS1 D1 DD1
 ,DIGITS(D1) AS DD1 ------ ----- ----- ---
FROM SCALAR; -2 00002 -2.4 024
 0 00000 0.0 000
 1 00001 1.8 018

Figure 311, DIGITS function examples

The CHAR function can sometimes be used as alternative to the DIGITS function. Their out-
put differs slightly - see page 300 for a comparison.

NOTE: Neither the DIGITS nor the CHAR function do a great job of converting numbers to
characters. See page 300 for some user-defined functions that can be used instead.

DLCOMMENT

Returns the comments value, if it exists, from a datalink value.

 Graeme Birchall ©

114 Scalar Functions, Definitions

DLLINKTYPE

Returns the linktype value from a datalink value.

DLURLCOMPLETE

Returns the URL value from a datalink value with a linktype of URL.

DLURLPATH

Returns the path and file name necessary to access a file within a given server from a datalink
value with linktype of URL.

DLURLPATHONLY

Returns the path and file name necessary to access a file within a given server from a datalink
value with a linktype of URL. The value returned never includes a file access token.

DLURLSCHEME

Returns the scheme from a datalink value with a linktype of URL.

DLURLSERVER

Returns the file server from a datalink value with a linktype of URL.

DLVALUE

Returns a datalink value.

DOUBLE or DOUBLE_PRECISION

Converts numeric or valid character input to type double. This function is actually two with
the same name. The one that converts numeric input is a SYSIBM function, while the other
that handles character input is a SYSFUN function. The keyword DOUBLE_PRECISION has
not been defined for the latter.

WITH TEMP1(C1,D1) AS ANSWER (output shortened)
(VALUES (’12345’,12.4) ==================================
 ,(’-23.5’,1234) C1D D1D
 ,(’1E+45’,-234) ---------------- ----------------
 ,(’-2e05’,+2.4)) +1.23450000E+004 +1.24000000E+001
SELECT DOUBLE(C1) AS C1D -2.35000000E+001 +1.23400000E+003
 ,DOUBLE(D1) AS D1D +1.00000000E+045 -2.34000000E+002
FROM TEMP1; -2.00000000E+005 +2.40000000E+000

Figure 312, DOUBLE function examples

See page 329 for a discussion on floating-point number manipulation.

ENCRYPT

Returns a encrypted rendition of the input string. The input must be char or varchar. The out-
put is varchar for bit data.

 encrypted data) ENCRYPT (
 , password

 , hint

Figure 313, DECRYPT function syntax

DB2 UDB/V8.1 Cookbook ©

Scalar Functions 115

The input values are defined as follows:

• ENCRYPTED DATA: A char or varchar string 32633 bytes that is to be encrypted. Nu-
meric data must be converted to character before encryption.

• PASSWORD: A char or varchar string of at least six bytes and no more than 127 bytes. If
the value is null or not provided, the current value of the encryption password special reg-
ister will be used. Be aware that a password that is padded with blanks is not the same as
one that lacks the blanks.

• HINT: A char or varchar string of up to 32 bytes that can be referred to if one forgets
what the password is. It is included with the encrypted string and can be retrieved using
the GETHINT function.

The length of the output string can be calculated thus:

• When the hint is provided, the length of the input data, plus eight bytes, plus the distance
to the next eight-byte boundary, plus thirty-two bytes for the hint.

• When the hint is not provided, the length of the input data, plus eight bytes, plus the dis-
tance to the next eight-byte boundary.

SELECT ID
 ,NAME
 ,ENCRYPT(NAME,’THAT IDIOT’,’MY BROTHER’) AS NAME2
FROM STAFF
WHERE ID < 30
ORDER BY ID;

Figure 314, ENCRYPT function example

EVENT_MON_STATE

Returns an operational state of a particular event monitor.

EXP

Returns the exponential function of the argument. The output format is double.

WITH TEMP1(N1) AS ANSWER
(VALUES (0) ==============================
 UNION ALL N1 E1 E2
 SELECT N1 + 1 -- --------------------- -----
 FROM TEMP1 0 +1.00000000000000E+0 1
 WHERE N1 < 10) 1 +2.71828182845904E+0 2
SELECT N1 2 +7.38905609893065E+0 7
 ,EXP(N1) AS E1 3 +2.00855369231876E+1 20
 ,SMALLINT(EXP(N1)) AS E2 4 +5.45981500331442E+1 54
FROM TEMP1; 5 +1.48413159102576E+2 148
 6 +4.03428793492735E+2 403
 7 +1.09663315842845E+3 1096
 8 +2.98095798704172E+3 2980
 9 +8.10308392757538E+3 8103
 10 +2.20264657948067E+4 22026

Figure 315, EXP function examples

FLOAT

Same as DOUBLE.

 Graeme Birchall ©

116 Scalar Functions, Definitions

FLOOR

Returns the next largest integer value that is smaller than or equal to the input (e.g. 5.945 re-
turns 5.000). The output field type will equal the input field type.

SELECT D1 ANSWER (float output shortened)
 ,FLOOR(D1) AS D2 ===================================
 ,F1 D1 D2 F1 F2
 ,FLOOR(F1) AS F2 ----- ---- ---------- ----------
FROM SCALAR; -2.4 -3. -2.400E+0 -3.000E+0
 0.0 +0. +0.000E+0 +0.000E+0
 1.8 +1. +1.800E+0 +1.000E+0

Figure 316, FLOOR function examples

GENERATE_UNIQUE

Uses the system clock and node number to generate a value that is guaranteed unique (as long
as one does not reset the clock). The output is of type char(13) for bit data. There are no ar-
guments. The result is essentially a timestamp (set to GMT, not local time), with the node
number appended to the back.

SELECT ID
 ,GENERATE_UNIQUE() AS UNIQUE_VAL#1
 ,DEC(HEX(GENERATE_UNIQUE()),26) AS UNIQUE_VAL#2
FROM STAFF
WHERE ID < 50
ORDER BY ID;

 ANSWER
 ================= ===========================
 ID UNIQUE_VAL#1 UNIQUE_VAL#2
 -- -------------- ---------------------------
NOTE: 2ND FIELD => 10 20011017191648990521000000.
IS UNPRINTABLE. => 20 20011017191648990615000000.
 30 20011017191648990642000000.
 40 20011017191648990669000000.

Figure 317, GENERATE_UNIQUE function examples

Observe that in the above example, each row gets a higher value. This is to be expected, and
is in contrast to a CURRENT TIMESTAMP call, where every row returned by the cursor will
have the same timestamp value. Also notice that the second invocation of the function on the
same row got a lower value (than the first).

In the prior query, the HEX and DEC functions were used to convert the output value into a
number. Alternatively, the TIMESTAMP function can be used to convert the date component
of the data into a valid timestamp. In a system with multiple nodes, there is no guarantee that
this timestamp (alone) is unique.

Making Random

One thing that DB2 lacks is a random number generator that makes unique values. However,
if we flip the characters returned in the GENERATE_UNIQUE output, we have something
fairly close to what is needed. Unfortunately, DB2 also lacks a REVERSE function, so the
data flipping has to be done the hard way.

DB2 UDB/V8.1 Cookbook ©

Scalar Functions 117

SELECT U1
 ,SUBSTR(U1,20,1) CONCAT SUBSTR(U1,19,1) CONCAT
 SUBSTR(U1,18,1) CONCAT SUBSTR(U1,17,1) CONCAT
 SUBSTR(U1,16,1) CONCAT SUBSTR(U1,15,1) CONCAT
 SUBSTR(U1,14,1) CONCAT SUBSTR(U1,13,1) CONCAT
 SUBSTR(U1,12,1) CONCAT SUBSTR(U1,11,1) CONCAT
 SUBSTR(U1,10,1) CONCAT SUBSTR(U1,09,1) CONCAT
 SUBSTR(U1,08,1) CONCAT SUBSTR(U1,07,1) CONCAT
 SUBSTR(U1,06,1) CONCAT SUBSTR(U1,05,1) CONCAT
 SUBSTR(U1,04,1) CONCAT SUBSTR(U1,03,1) CONCAT
 SUBSTR(U1,02,1) CONCAT SUBSTR(U1,01,1) AS U2
FROM (SELECT HEX(GENERATE_UNIQUE()) AS U1
 FROM STAFF
 WHERE ID < 50) AS XXX
ORDER BY U2;
 ANSWER
 ==
 U1 U2
 -------------------------- --------------------
 20000901131649119940000000 04991194613110900002
 20000901131649119793000000 39791194613110900002
 20000901131649119907000000 70991194613110900002
 20000901131649119969000000 96991194613110900002

Figure 318, GENERATE_UNIQUE output, characters reversed to make pseudo-random

Observe above that we used a nested table expression to temporarily store the results of the
GENERATE_UNIQUE calls. Alternatively, we could have put a GENERATE_UNIQUE call
inside each SUBSTR, but these would have amounted to separate function calls, and there is a
very small chance that the net result would not always be unique.

GETHINT

Returns the password hint, if one is found in the encrypted data.

SELECT ID
 ,NAME
 ,GETHINT(NAME2) AS HINT
FROM (SELECT ID
 ,NAME
 ,ENCRYPT(NAME,’THAT IDIOT’,’MY BROTHER’) AS NAME2
 FROM STAFF
 WHERE ID < 30 ANSWER
)AS XXX =====================
ORDER BY ID; ID NAME HINT
 -- ------- ----------
 10 Sanders MY BROTHER
 20 Pernal MY BROTHER

Figure 319, GETHINT function example

GRAPHIC

Converts the input (1st argument) to a graphic data type. The output length (2nd argument) is
optional.

HEX

Returns the hexadecimal representation of a value. All input types are supported.

 Graeme Birchall ©

118 Scalar Functions, Definitions

WITH TEMP1(N1) AS ANSWER
(VALUES (-3) ===============================
 UNION ALL S SHX DHX FHX
 SELECT N1 + 1 -- ---- ------ ----------------
 FROM TEMP1 -3 FDFF 00003D 00000000000008C0
 WHERE N1 < 3) -2 FEFF 00002D 00000000000000C0
SELECT SMALLINT(N1) AS S -1 FFFF 00001D 000000000000F0BF
 ,HEX(SMALLINT(N1)) AS SHX 0 0000 00000C 0000000000000000
 ,HEX(DEC(N1,4,0)) AS DHX 1 0100 00001C 000000000000F03F
 ,HEX(DOUBLE(N1)) AS FHX 2 0200 00002C 0000000000000040
FROM TEMP1; 3 0300 00003C 0000000000000840

Figure 320, HEX function examples, numeric data

SELECT C1 ANSWER
 ,HEX(C1) AS CHX =======================================
 ,V1 C1 CHX V1 VHX
 ,HEX(V1) AS VHX ------ ------------ ------ ------------
FROM SCALAR; ABCDEF 414243444546 ABCDEF 414243444546
 ABCD 414243442020 ABCD 41424344
 AB 414220202020 AB 4142

Figure 321, HEX function examples, character & varchar

SELECT DT1 ANSWER
 ,HEX(DT1) AS DTHX ===================================
 ,TM1 DT1 DTHX TM1 TMHX
 ,HEX(TM1) AS TMHX ---------- -------- -------- ------
FROM SCALAR; 04/22/1996 19960422 23:58:58 235858
 08/15/1996 19960815 15:15:15 151515
 01/01/0001 00010101 00:00:00 000000

Figure 322, HEX function examples, date & time

HOUR

Returns the hour (as in hour of day) part of a time value. The output format is integer.

SELECT TM1 ANSWER
 ,HOUR(TM1) AS HR ============
FROM SCALAR TM1 HR
ORDER BY TM1; -------- --
 00:00:00 0
 15:15:15 15
 23:58:58 23

Figure 323, HOUR function example

IDENTITY_VAL_LOCAL

Returns the most recently assigned value (by the current user) to an identity column. The re-
sult type is decimal (31,0), regardless of the field type of the identity column. See page 235
for detailed notes on using this function.

CREATE TABLE SEQ#
(IDENT_VAL INTEGER NOT NULL GENERATED ALWAYS AS IDENTITY
,CUR_TS TIMESTAMP NOT NULL
,PRIMARY KEY (IDENT_VAL));
COMMIT;

INSERT INTO SEQ# VALUES(DEFAULT,CURRENT TIMESTAMP);
 ANSWER
WITH TEMP (IDVAL) AS ======
(VALUES (IDENTITY_VAL_LOCAL())) IDVAL
SELECT * -----
FROM TEMP; 1.

Figure 324, IDENTITY_VAL_LOCAL function usage

DB2 UDB/V8.1 Cookbook ©

Scalar Functions 119

INSERT

Insert one string in the middle of another, replacing a portion of what was already there. If the
value to be inserted is either longer or shorter than the piece being replaced, the remainder of
the data (on the right) is shifted either left or right accordingly in order to make a good fit.

 source)INSERT (, start-pos , del-bytes , new-value

Figure 325, INSERT function syntax

Usage Notes

• Acceptable input types are varchar, clob(1M), and blob(1M).

• The first and last parameters must always have matching field types.

• To insert a new value in the middle of another without removing any of what is already
there, set the third parameter to zero.

• The varchar output is always of length 4K.

SELECT NAME ANSWER (4K output fields shortened)
 ,INSERT(NAME,3,2,’A’) ===================================
 ,INSERT(NAME,3,2,’AB’) NAME 2 3 4
 ,INSERT(NAME,3,2,’ABC’) -------- ------- -------- ---------
FROM STAFF Sanders SaAers SaABers SaABCers
WHERE ID < 40; Pernal PeAal PeABal PeABCal
 Marenghi MaAnghi MaABnghi MaABCnghi

Figure 326, INSERT function examples

INT or INTEGER

The INTEGER or INT function converts either a number or a valid character value into an
integer. The character input can have leading and/or trailing blanks, and a sign indictor, but it
can not contain a decimal point. Numeric decimal input works just fine.

SELECT D1 ANSWER
 ,INTEGER(D1) ====================================
 ,INT(’+123’) D1 2 3 4 5
 ,INT(’-123’) ----- ----- ------ ------ ------
 ,INT(’ 123 ’) -2.4 -2 123 -123 123
FROM SCALAR; 0.0 0 123 -123 123
 1.8 1 123 -123 123

Figure 327, INTEGER function examples

JULIAN_DAY

Converts a date (or equivalent) value into a number which represents the number of days
since January the 1st, 4,713 BC. The output format is integer.

WITH TEMP1(DT1) AS ANSWER
(VALUES (’0001-01-01-00.00.00’) =========================
 ,(’1752-09-10-00.00.00’) DT DY DJ
 ,(’1993-01-03-00.00.00’) ---------- ------ -------
 ,(’1993-01-03-23.59.59’)) 01/01/0001 1 1721426
SELECT DATE(DT1) AS DT 09/10/1752 639793 2361218
 ,DAYS(DT1) AS DY 01/03/1993 727566 2448991
 ,JULIAN_DAY(DT1) AS DJ 01/03/1993 727566 2448991
FROM TEMP1;

Figure 328, JULIAN_DAY function example

 Graeme Birchall ©

120 Scalar Functions, Definitions

Julian Days, A History

I happen to be a bit of an Astronomy nut, so what follows is a rather extended description of
Julian Days - their purpose, and history (taken from the web).

The Julian Day calendar is used in Astronomy to relate ancient and modern astronomical ob-
servations. The Babylonians, Egyptians, Greeks (in Alexandria), and others, kept very de-
tailed records of astronomical events, but they all used different calendars. By converting all
such observations to Julian Days, we can compare and correlate them.

For example, a solar eclipse is said to have been seen at Ninevah on Julian day 1,442,454 and
a lunar eclipse is said to have been observed at Babylon on Julian day number 1,566,839.
These numbers correspond to the Julian Calendar dates -763-03-23 and -423-10-09 respec-
tively). Thus the lunar eclipse occurred 124,384 days after the solar eclipse.

The Julian Day number system was invented by Joseph Justus Scaliger (born 1540-08-05 J in
Agen, France, died 1609-01-21 J in Leiden, Holland) in 1583. Although the term Julian Cal-
endar derives from the name of Julius Caesar, the term Julian day number probably does not.
Evidently, this system was named, not after Julius Caesar, but after its inventor’s father, Julius
Caesar Scaliger (1484-1558).

The younger Scaliger combined three traditionally recognized temporal cycles of 28, 19 and
15 years to obtain a great cycle, the Scaliger cycle, or Julian period, of 7980 years (7980 is
the least common multiple of 28, 19 and 15). The length of 7,980 years was chosen as the
product of 28 times 19 times 15; these, respectively, are:

The number of years when dates recur on the same days of the week.

The lunar or Metonic cycle, after which the phases of the Moon recur on a particular day in
the solar year, or year of the seasons.

The cycle of indiction, originally a schedule of periodic taxes or government requisitions in
ancient Rome.

The first Scaliger cycle began with Year 1 on -4712-01-01 (Julian) and will end after 7980
years on 3267-12-31 (Julian), which is 3268-01-22 (Gregorian). 3268-01-01 (Julian) is the
first day of Year 1 of the next Scaliger cycle.

Astronomers adopted this system and adapted it to their own purposes, and they took noon
GMT -4712-01-01 as their zero point. For astronomers a day begins at noon and runs until the
next noon (so that the nighttime falls conveniently within one "day"). Thus they defined the
Julian day number of a day as the number of days (or part of a day) elapsed since noon GMT
on January 1st, 4713 B.C.E.

This was not to the liking of all scholars using the Julian day number system, in particular,
historians. For chronologists who start "days" at midnight, the zero point for the Julian day
number system is 00:00 at the start of -4712-01-01 J, and this is day 0. This means that 2000-
01-01 G is 2,451,545 JD.

Since most days within about 150 years of the present have Julian day numbers beginning
with "24", Julian day numbers within this 300-odd-year period can be abbreviated. In 1975
the convention of the modified Julian day number was adopted: Given a Julian day number
JD, the modified Julian day number MJD is defined as MJD = JD - 2,400,000.5. This has two
purposes:

Days begin at midnight rather than noon.

DB2 UDB/V8.1 Cookbook ©

Scalar Functions 121

For dates in the period from 1859 to about 2130 only five digits need to be used to specify the
date rather than seven.

MJD 0 thus corresponds to JD 2,400,000.5, which is twelve hours after noon on JD 2,400,000
= 1858-11-16. Thus MJD 0 designates the midnight of November 16th/17th, 1858, so day 0
in the system of modified Julian day numbers is the day 1858-11-17.

The following SQL statement uses the JULIAN_DAY function to get the Julian Date for cer-
tain days. The same calculation is also done using hand-coded SQL.

SELECT BD
 ,JULIAN_DAY(BD)
 ,(1461 * (YEAR(BD) + 4800 + (MONTH(BD)-14)/12))/4
 +(367 * (MONTH(BD)- 2 - 12*((MONTH(BD)-14)/12)))/12
 -(3 * ((YEAR(BD) + 4900 + (MONTH(BD)-14)/12)/100))/4
 +DAY(BD) - 32075
FROM (SELECT BIRTHDATE AS BD
 FROM EMPLOYEE
 WHERE MIDINIT = ’R’ ANSWER
) AS XXX ==========================
ORDER BY BD; BD 2 3
 ---------- ------- -------
 05/17/1926 2424653 2424653
 03/28/1936 2428256 2428256
 07/09/1946 2432011 2432011
 04/12/1955 2435210 2435210

Figure 329, JULIAN_DAY function examples

Julian Dates

Many computer users think of the "Julian Date" as a date format that has a layout of "yynnn"
or "yyyynnn" where "yy" is the year and "nnn" is the number of days since the start of the
same. A more correct use of the term "Julian Date" refers to the current date according to the
calendar as originally defined by Julius Caesar - which has a leap year on every fourth year.
In the US/UK, this calendar was in effect until "1752-09-14". The days between the 3rd and
13th of September in 1752 were not used in order to put everything back in sync. In the 20th
and 21st centuries, to derive the Julian date one must subtract 13 days from the relevant Gre-
gorian date (e.g.1994-01-22 becomes 1994-01-07).

The following SQL illustrates how to convert a standard DB2 Gregorian Date to an equiva-
lent Julian Date (calendar) and a Julian Date (output format):

 ANSWER
 =============================
 DT DJ1 DJ2
WITH TEMP1(DT1) AS ---------- ---------- -------
(VALUES (’1997-01-01’) 01/01/1997 12/17/1996 1997001
 ,(’1997-01-02’) 01/02/1997 12/18/1996 1997002
 ,(’1997-12-31’)) 12/31/1997 12/16/1997 1997365
SELECT DATE(DT1) AS DT
 ,DATE(DT1) - 15 DAYS AS DJ1
 ,YEAR(DT1) * 1000 + DAYOFYEAR(DT1) AS DJ2
FROM TEMP1;

Figure 330, Julian Date outputs

WARNING: DB2 does not make allowances for the days that were not used when English-
speaking countries converted from the Julian to the Gregorian calendar in 1752

LCASE or LOWER

Coverts a mixed or upper-case string to lower case. The output is the same data type and
length as the input.

 Graeme Birchall ©

122 Scalar Functions, Definitions

SELECT NAME ANSWER
 ,LCASE(NAME) AS LNAME =========================
 ,UCASE(NAME) AS UNAME NAME LNAME UNAME
FROM STAFF ------- ------- -------
WHERE ID < 30; Sanders sanders SANDERS
 Pernal pernal PERNAL

Figure 331, LCASE function example

Documentation Comment

According to the DB2 UDB V8.1 SQL Reference, the LCASE and UCASE functions are the
inverse of each other for the standard alphabetical characters, "a" to "z", but not for some odd
European characters. Therefore LCASE(UCASE(string)) may not equal LCASE(string).

This may be true from some code pages, but it is not for the one that I use. The following re-
cursive SQL illustrates the point. It shows that for every ASCII character, the use of both
functions gives the same result as the use of just one:

WITH TEMP1 (N1,C1) AS ANSWER
(VALUES (SMALLINT(0),CHR(0)) =================
 UNION ALL N1 C1 U1 U2 L1 L2
 SELECT N1 + 1 -- -- -- -- -- --
 ,CHR(N1 + 1) <no rows>
 FROM TEMP1
 WHERE N1 < 255
)
SELECT N1
 ,C1
 ,UCASE(C1) AS U1
 ,UCASE(LCASE(C1)) AS U2
 ,LCASE(C1) AS L1
 ,LCASE(UCASE(C1)) AS L2
FROM TEMP1
WHERE UCASE(C1) <> UCASE(LCASE(C1))
 OR LCASE(C1) <> LCASE(UCASE(C1));

Figure 332, LCASE and UCASE usage on special characters

LEFT

The LEFT function has two arguments: The first is an input string of type char, varchar, clob,
or blob. The second is a positive integer value. The output is the left most characters in the
string. Trailing blanks are not removed.

WITH TEMP1(C1) AS ANSWER
(VALUES (’ ABC’) ================
 ,(’ ABC ’) C1 C2 L2
 ,(’ABC ’)) ----- ----- --
SELECT C1 ABC AB 4
 ,LEFT(C1,4) AS C2 ABC ABC 4
 ,LENGTH(LEFT(C1,4)) AS L2 ABC ABC 4
FROM TEMP1;

Figure 333, LEFT function examples

If the input is either char or varchar, the output is varchar(4000). A column this long is a nui-
sance to work with. Where possible, use the SUBSTR function to get around this problem.

LENGTH

Returns an integer value with the internal length of the expression (except for double-byte
string types, which return the length in characters). The value will be the same for all fields in
a column, except for columns containing varying-length strings.

DB2 UDB/V8.1 Cookbook ©

Scalar Functions 123

SELECT LENGTH(D1) ANSWER
 ,LENGTH(F1) =======================
 ,LENGTH(S1) 1 2 3 4 5
 ,LENGTH(C1) --- --- --- --- ---
 ,LENGTH(RTRIM(C1)) 2 8 2 6 6
FROM SCALAR; 2 8 2 6 4
 2 8 2 6 2

Figure 334, LENGTH function examples

LN or LOG

Returns the natural logarithm of the argument (same as LOG). The output format is double.

WITH TEMP1(N1) AS ANSWER
(VALUES (1),(123),(1234) ===============================
 ,(12345),(123456)) N1 L1
SELECT N1 ------ -----------------------
 ,LOG(N1) AS L1 1 +0.00000000000000E+000
FROM TEMP1; 123 +4.81218435537241E+000
 1234 +7.11801620446533E+000
 12345 +9.42100640177928E+000
 123456 +1.17236400962654E+001

Figure 335, LOG function example

LOCATE

Returns an integer value with the absolute starting position of the first occurrence of the first
string within the second string. If there is no match the result is zero. The optional third pa-
rameter indicates where to start the search.

, start-pos.
)LOCATE (find-string , look-in-string

Figure 336, LOCATE function syntax

The result, if there is a match, is always the absolute position (i.e. from the start of the string),
not the relative position (i.e. from the starting position).

SELECT C1 ANSWER
 ,LOCATE(’D’, C1) ==========================
 ,LOCATE(’D’, C1,2) C1 2 3 4 5
 ,LOCATE(’EF’,C1) ------ --- --- --- ---
 ,LOCATE(’A’, C1,2) ABCDEF 4 4 5 0
FROM SCALAR; ABCD 4 4 0 0
 AB 0 0 0 0

Figure 337, LOCATE function examples

LOG or LN

See the description of the LN function.

LOG10

Returns the base ten logarithm of the argument. The output format is double.

 Graeme Birchall ©

124 Scalar Functions, Definitions

WITH TEMP1(N1) AS ANSWER
(VALUES (1),(123),(1234) ===============================
 ,(12345),(123456)) N1 L1
SELECT N1 ------ -----------------------
 ,LOG10(N1) AS L1 1 +0.00000000000000E+000
FROM TEMP1; 123 +2.08990511143939E+000
 1234 +3.09131515969722E+000
 12345 +4.09149109426795E+000
 123456 +5.09151220162777E+000

Figure 338, LOG10 function example

LONG_VARCHAR

Converts the input (1st argument) to a long_varchar data type. The output length (2nd argu-
ment) is optional.

LONG_VARGRAPHIC

Converts the input (1st argument) to a long_vargraphic data type. The output length (2nd ar-
gument) is optional.

LOWER

See the description for the LCASE function.

LTRIM

Remove leading blanks, but not trailing blanks, from the argument.

WITH TEMP1(C1) AS ANSWER
(VALUES (’ ABC’) ================
 ,(’ ABC ’) C1 C2 L2
 ,(’ABC ’)) ----- ----- --
SELECT C1 ABC ABC 3
 ,LTRIM(C1) AS C2 ABC ABC 4
 ,LENGTH(LTRIM(C1)) AS L2 ABC ABC 5
FROM TEMP1;

Figure 339, LTRIM function example

MICROSECOND

Returns the microsecond part of a timestamp (or equivalent) value. The output is integer.

SELECT TS1 ANSWER
 ,MICROSECOND(TS1) ======================================
FROM SCALAR TS1 2
ORDER BY TS1; -------------------------- -----------
 0001-01-01-00.00.00.000000 0
 1996-04-22-23.58.58.123456 123456
 1996-08-15-15.15.15.151515 151515

Figure 340, MICROSECOND function example

MIDNIGHT_SECONDS

Returns the number of seconds since midnight from a timestamp, time or equivalent value.
The output format is integer.

DB2 UDB/V8.1 Cookbook ©

Scalar Functions 125

SELECT TS1 ANSWER
 ,MIDNIGHT_SECONDS(TS1) ======================================
 ,HOUR(TS1)*3600 + TS1 2 3
 MINUTE(TS1)*60 + -------------------------- ----- -----
 SECOND(TS1) 0001-01-01-00.00.00.000000 0 0
FROM SCALAR 1996-04-22-23.58.58.123456 86338 86338
ORDER BY TS1; 1996-08-15-15.15.15.151515 54915 54915

Figure 341, MIDNIGHT_SECONDS function example

There is no single function that will convert the MIDNIGHT_SECONDS output back into a
valid time value. However, it can be done using the following SQL:

 ANSWER
 ==============
 MS TM
 ----- --------
WITH TEMP1 (MS) AS 0 00:00:00
(SELECT MIDNIGHT_SECONDS(TS1) 54915 15:15:15
 FROM SCALAR 86338 23:58:58
)
SELECT MS
 ,SUBSTR(DIGITS(MS/3600),9) || ’:’ ||
 SUBSTR(DIGITS((MS-((MS/3600)*3600))/60),9) || ’:’ ||
 SUBSTR(DIGITS(MS-((MS/60)*60)),9) AS TM
FROM TEMP1
ORDER BY 1;

Figure 342, Convert MIDNIGHT_SECONDS output back to a time value

NOTE: Imagine a column with two timestamp values: "1996-07-15.24.00.00" and "1996-07-
16.00.00.00". These two values represent the same point in time, but will return different
MIDNIGHT_SECONDS results. See the chapter titled "Quirks in SQL" on page 319 for a
detailed discussion of this problem.

MINUTE

Returns the minute part of a time or timestamp (or equivalent) value. The output is integer.

SELECT TS1 ANSWER
 ,MINUTE(TS1) ======================================
FROM SCALAR TS1 2
ORDER BY TS1; -------------------------- -----------
 0001-01-01-00.00.00.000000 0
 1996-04-22-23.58.58.123456 58
 1996-08-15-15.15.15.151515 15

Figure 343, MINUTE function example

MOD

Returns the remainder (modulus) for the first argument divided by the second. In the follow-
ing example the last column uses the MOD function to get the modulus, while the second to
last column obtains the same result using simple arithmetic.

 Graeme Birchall ©

126 Scalar Functions, Definitions

WITH TEMP1(N1,N2) AS ANSWER
(VALUES (-31,+11) =======================
 UNION ALL N1 N2 DIV MD1 MD2
 SELECT N1 + 13 --- --- --- --- ---
 ,N2 - 4 -31 11 -2 -9 -9
 FROM TEMP1 -18 7 -2 -4 -4
 WHERE N1 < 60 -5 3 -1 -2 -2
) 8 -1 -8 0 0
SELECT N1 21 -5 -4 1 1
 ,N2 34 -9 -3 7 7
 ,N1/N2 AS DIV 47 -13 -3 8 8
 ,N1-((N1/N2)*N2) AS MD1 60 -17 -3 9 9
 ,MOD(N1,N2) AS MD2
FROM TEMP1
ORDER BY 1;

Figure 344, MOD function example

MONTH

Returns an integer value in the range 1 to 12 that represents the month part of a date or time-
stamp (or equivalent) value.

MONTHNAME

Returns the name of the month (e.g. October) as contained in a date (or equivalent) value. The
output format is varchar(100).

SELECT DT1 ANSWER
 ,MONTH(DT1) =======================
 ,MONTHNAME(DT1) DT1 2 3
FROM SCALAR ---------- -- -------
ORDER BY DT1; 01/01/0001 1 January
 04/22/1996 4 April
 08/15/1996 8 August

Figure 345, MONTH and MONTHNAME functions example

MULTIPLY_ALT

Returns the product of two arguments as a decimal value. Use this function instead of the
multiplication operator when you need to avoid an overflow error because DB2 is putting
aside too much space for the scale (i.e. fractional part of number) Valid input is any exact
numeric type: decimal, integer, bigint, or smallint (but not float).

WITH TEMP1 (N1,N2) AS
(VALUES (DECIMAL(1234,10) ANSWER
 ,DECIMAL(1234,10))) ========
SELECT N1 >> 1234.
 ,N2 >> 1234.
 ,N1 * N2 AS P1 >> 1522756.
 ,"*"(N1,N2) AS P2 >> 1522756.
 ,MULTIPLY_ALT(N1,N2) AS P3 >> 1522756.
FROM TEMP1;

Figure 346, Multiplying numbers - examples

When doing ordinary multiplication of decimal values, the output precision and the scale is
the sum of the two input precisions and scales - with both having an upper limit of 31. Thus,
multiplying a DEC(10,5) number and a DEC(4,2) number returns a DEC(14,7) number. DB2
always tries to avoid losing (truncating) fractional digits, so multiplying a DEC(20,15) num-
ber with a DEC(20,13) number returns a DEC(31,28) number, which is probably going to be
too small.

DB2 UDB/V8.1 Cookbook ©

Scalar Functions 127

The MULTIPLY_ALT function addresses the multiplication overflow problem by, if need be,
truncating the output scale. If it is used to multiply a DEC(20,15) number and a DEC(20,13)
number, the result is a DEC(31,19) number. The scale has been reduced to accommodate the
required precision. Be aware that when there is a need for a scale in the output, and it is more
than three digits, the function will leave at least three digits.

Below are some examples of the output precisions and scales generated by this function:

 <--MULTIPLY_ALT->
 RESULT RESULT SCALE PRECSION
 INPUT#1 INPUT#2 "*" OPERATOR MULTIPLY_ALT TRUNCATD TRUNCATD
========== ========== ============ ============ ======== =======
DEC(05,00) DEC(05,00) DEC(10,00) DEC(10,00) NO NO
DEC(10,05) DEC(11,03) DEC(21,08) DEC(21,08) NO NO
DEC(20,15) DEC(21,13) DEC(31,28) DEC(31,18) YES NO
DEC(26,23) DEC(10,01) DEC(31,24) DEC(31,19) YES NO
DEC(31,03) DEC(15,08) DEC(31,11) DEC(31,03) YES YES

Figure 347, Decimal multiplication - same output lengths

NODENUMBER

Returns the partition number of the row. The result is zero if the table is not partitioned. The
output is of type integer, and is never null.

 column-name)NODENUMBER (

Figure 348, NODENUMBER function syntax

SELECT NODENUMBER(ID) AS NN ANSWER
FROM STAFF ======
WHERE ID = 10; NN
 --
 0

Figure 349, NODENUMBER function example

The NODENUMBER function will generate a SQL error if the column/row used can not be
related directly back to specific row in a real table. Therefore, one can not use this function on
fields in GROUP BY statements, nor in some views. It can also cause an error when used in
an outer join, and the target row failed to match in the join.

NULLIF

Returns null if the two values being compared are equal, otherwise returns the first value.

SELECT S1 ANSWER
 ,NULLIF(S1,0) =====================
 ,C1 S1 2 C1 4
 ,NULLIF(C1,’AB’) --- --- ------ ------
FROM SCALAR -2 -2 ABCDEF ABCDEF
WHERE NULLIF(0,0) IS NULL; 0 - ABCD ABCD
 1 1 AB -

Figure 350, NULLIF function examples

PARTITION

Returns the partition map index of the row. The result is zero if the table is not partitioned.
The output is of type integer, and is never null.

 Graeme Birchall ©

128 Scalar Functions, Definitions

SELECT PARTITION(ID) AS PP ANSWER
FROM STAFF ======
WHERE ID = 10; PP
 --
 0

POSSTR

Returns the position at which the second string is contained in the first string. If there is no
match the value is zero. The test is case sensitive. The output format is integer.

SELECT C1 ANSWER
 ,POSSTR(C1,’ ’) AS P1 ==================
 ,POSSTR(C1,’CD’) AS P2 C1 P1 P2 P3
 ,POSSTR(C1,’cd’) AS P3 ------ -- -- --
FROM SCALAR AB 3 0 0
ORDER BY 1; ABCD 5 3 0
 ABCDEF 0 3 0

Figure 351, POSSTR function examples

POSSTR vs. LOCATE

The LOCATE and POSSTR functions are very similar. Both look for matching strings
searching from the left. The only functional differences are that the input parameters are re-
versed and the LOCATE function enables one to begin the search at somewhere other than
the start. When either is suitable for the task at hand, it is probably better to use the POSSTR
function because it is a SYSIBM function and so should be faster.

SELECT C1 ANSWER
 ,POSSTR(C1,’ ’) AS P1 ===========================
 ,LOCATE(’ ’,C1) AS L1 C1 P1 L1 P2 L2 P3 L3 L4
 ,POSSTR(C1,’CD’) AS P2 ------ -- -- -- -- -- -- --
 ,LOCATE(’CD’,C1) AS L2 AB 3 3 0 0 0 0 0
 ,POSSTR(C1,’cd’) AS P3 ABCD 5 5 3 3 0 0 4
 ,LOCATE(’cd’,C1) AS L3 ABCDEF 0 0 3 3 0 0 4
 ,LOCATE(’D’,C1,2) AS L4
FROM SCALAR
ORDER BY 1;

Figure 352, POSSTR vs. LOCATE functions

POWER

Returns the value of the first argument to the power of the second argument

WITH TEMP1(N1) AS ANSWER
(VALUES (1),(10),(100)) ===============================
SELECT N1 N1 P1 P2 P3
 ,POWER(N1,1) AS P1 ------- ------- ------- -------
 ,POWER(N1,2) AS P2 1 1 1 1
 ,POWER(N1,3) AS P3 10 10 100 1000
FROM TEMP1; 100 100 10000 1000000

Figure 353, POWER function examples

QUARTER

Returns an integer value in the range 1 to 4 that represents the quarter of the year from a date
or timestamp (or equivalent) value.

RADIANS

Returns the number of radians converted from the input, which is expressed in degrees. The
output format is double.

DB2 UDB/V8.1 Cookbook ©

Scalar Functions 129

RAISE_ERROR

Causes the SQL statement to stop and return a user-defined error message when invoked.
There are a lot of usage restrictions involving this function, see the SQL Reference for details.

 sqlstate)RAISE_ERROR (,error-message

Figure 354, RAISE_ERROR function syntax

SELECT S1 ANSWER
 ,CASE ==============
 WHEN S1 < 1 THEN S1 S1 S2
 ELSE RAISE_ERROR(’80001’,C1) ------ ------
 END AS S2 -2 -2
FROM SCALAR; 0 0
 SQLSTATE=80001

Figure 355, RAISE_ERROR function example

RAND

WARNING: Using the RAND function in a predicate can result in unpredictable results. See
page 322 for a detailed description of this issue.

Returns a pseudo-random floating-point value in the range of zero to one inclusive. An op-
tional seed value can be provided to get reproducible random results. This function is espe-
cially useful when one is trying to create somewhat realistic sample data.

Usage Notes

• The RAND function returns any one of 32K distinct floating-point values in the range of
zero to one inclusive. Note that many equivalent functions in other languages (e.g. SAS)
return many more distinct values over the same range.

• The values generated by the RAND function are evenly distributed over the range of zero
to one inclusive.

• A seed can be provided to get reproducible results. The seed can be any valid number of
type integer. Note that the use of a seed alone does not give consistent results. Two dif-
ferent SQL statements using the same seed may return different (but internally consistent)
sets of pseudo-random numbers.

• If the seed value is zero, the initial result will also be zero. All other seed values return
initial values that are not the same as the seed. Subsequent calls of the RAND function in
the same statement are not affected.

• If there are multiple references to the RAND function in the same SQL statement, the
seed of the first RAND invocation is the one used for all.

• If the seed value is not provided, the pseudo-random numbers generated will usually be
unpredictable. However, if some prior SQL statement in the same thread has already in-
voked the RAND function, the newly generated pseudo-random numbers "may" continue
where the prior ones left off.

Typical Output Values

The following recursive SQL generates 100,000 random numbers using two as the seed value.
The generated data is then summarized using various DB2 column functions:

 Graeme Birchall ©

130 Scalar Functions, Definitions

WITH TEMP (NUM, RAN) AS
(VALUES (INT(1)
 ,RAND(2))
 UNION ALL
 SELECT NUM + 1
 ,RAND()
 FROM TEMP
 WHERE NUM < 100000 ANSWER
) =============
SELECT COUNT(*) AS #ROWS ==> 100000
 ,COUNT(DISTINCT RAN) AS #VALUES ==> 31242
 ,DEC(AVG(RAN),7,6) AS AVG_RAN ==> 0.499838
 ,DEC(STDDEV(RAN),7,6) AS STD_DEV 0.288706
 ,DEC(MIN(RAN),7,6) AS MIN_RAN 0.000000
 ,DEC(MAX(RAN),7,6) AS MAX_RAN 1.000000
 ,DEC(MAX(RAN),7,6) -
 DEC(MIN(RAN),7,6) AS RANGE 1.000000
 ,DEC(VAR(RAN),7,6) AS VARIANCE 0.083351
FROM TEMP;

Figure 356, Sample output from RAND function

Observe that less than 32K distinct numbers were generated. Presumably, this is because the
RAND function uses a 2-byte carry. Also observe that the values range from a minimum of
zero to a maximum of one.

WARNING: Unlike most, if not all, other numeric functions in DB2, the RAND function
returns different results in different flavors of DB2.

Reproducible Random Numbers

The RAND function creates pseudo-random numbers. This means that the output looks ran-
dom, but it is actually made using a very specific formula. If the first invocation of the func-
tion uses a seed value, all subsequent invocations will return a result that is explicitly derived
from the initial seed. To illustrate this concept, the following statement selects six random
numbers. Because of the use of the seed, the same six values will always be returned when
this SQL statement is invoked (when invoked on my machine):

SELECT DEPTNO AS DNO ANSWER
 ,RAND(0) AS RAN ===========================
FROM DEPARTMENT DNO RAN
WHERE DEPTNO < ’E’ --- ----------------------
ORDER BY 1; A00 +1.15970336008789E-003
 B01 +2.35572374645222E-001
 C01 +6.48152104251228E-001
 D01 +7.43736075930052E-002
 D11 +2.70241401409955E-001
 D21 +3.60026856288339E-001

Figure 357, Make reproducible random numbers (use seed)

To get random numbers that are not reproducible, simply leave the seed out of the first invo-
cation of the RAND function. To illustrate, the following statement will give differing results
with each invocation:

SELECT DEPTNO AS DNO ANSWER
 ,RAND() AS RAN ===========================
FROM DEPARTMENT DNO RAN
WHERE DEPTNO < ’D’ --- ----------------------
ORDER BY 1; A00 +2.55287331766717E-001
 B01 +9.85290078432569E-001
 C01 +3.18918424024171E-001

Figure 358, Make non-reproducible random numbers (no seed)

DB2 UDB/V8.1 Cookbook ©

Scalar Functions 131

NOTE: Use of the seed value in the RAND function has an impact across multiple SQL
statements. For example, if the above two statements were always run as a pair (with nothing
else run in between), the result from the second would always be the same.

Generating Random Values

Imagine that we need to generate a set of reproducible random numbers that are within a cer-
tain range (e.g. 5 to 15). Recursive SQL can be used to make the rows, and various scalar
functions can be used to get the right range of data.

In the following example we shall make a list of three columns and ten rows. The first field is
a simple ascending sequence. The second is a set of random numbers of type smallint in the
range zero to 350 (by increments of ten). The last is a set of random decimal numbers in the
range of zero to 10,000.

WITH TEMP1 (COL1, COL2, COL3) AS ANSWER
(VALUES (0 ===================
 ,SMALLINT(RAND(2)*35)*10 COL1 COL2 COL3
 ,DECIMAL(RAND()*10000,7,2)) ---- ---- -------
 UNION ALL 0 0 9342.32
 SELECT COL1 + 1 1 250 8916.28
 ,SMALLINT(RAND()*35)*10 2 310 5430.76
 ,DECIMAL(RAND()*10000,7,2) 3 150 5996.88
 FROM TEMP1 4 110 8066.34
 WHERE COL1 + 1 < 10 5 50 5589.77
) 6 130 8602.86
SELECT * 7 340 184.94
FROM TEMP1; 8 310 5441.14
 9 70 9267.55

Figure 359, Use RAND to make sample data

NOTE: See the section titled "Making Sample Data" for more detailed examples of using the
RAND function and recursion to make test data.

Making Many Distinct Random Values

The RAND function generates 32K distinct random values. To get a larger set of (evenly dis-
tributed) random values, combine the result of two RAND calls in the manner shown below
for the RAN2 column:

WITH TEMP1 (COL1,RAN1,RAN2) AS ANSWER
(VALUES (0 ===================
 ,RAND(2) COL#1 RAN#1 RAN#2
 ,RAND()+(RAND()/1E5)) ----- ----- -----
 UNION ALL 30000 19698 29998
 SELECT COL1 + 1
 ,RAND()
 ,RAND() +(RAND()/1E5)
 FROM TEMP1
 WHERE COL1 + 1 < 30000
)
SELECT COUNT(*) AS COL#1
 ,COUNT(DISTINCT RAN1) AS RAN#1
 ,COUNT(DISTINCT RAN2) AS RAN#2
FROM TEMP1;

Figure 360, Use RAND to make many distinct random values

Observe that we do not multiply the two values that make up the RAN2 column above. If we
did this, it would skew the average (from 0.5 to 0.25), and we would always get a zero when-
ever either one of the two RAND functions returned a zero.

 Graeme Birchall ©

132 Scalar Functions, Definitions

NOTE: The GENERATE_UNIQUE function can also be used to get a list of distinct values,
and actually does a better job that the RAND function. With a bit of simple data manipulation
(see page 116), these values can also be made random.

Selecting Random Rows, Percentage

WARNING: Using the RAND function in a predicate can result in unpredictable results. See
page 322 for a detailed description of this issue.

Imagine that you want to select approximately 10% of the matching rows from some table.
The predicate in the following query will do the job:

SELECT ID ANSWER
 ,NAME ============
FROM STAFF ID NAME
WHERE RAND() < 0.1 --- --------
ORDER BY ID; 140 Fraye
 190 Sneider
 290 Quill

Figure 361, Randomly select 10% of matching rows

The RAND function randomly generates values in the range of zero through one, so the above
query should return approximately 10% the matching rows. But it may return anywhere from
zero to all of the matching rows - depending on the specific values that the RAND function
generates. If the number of rows to be processed is large, then the fraction (of rows) that you
get will be pretty close to what you asked for. But for small sets of matching rows, the result
set size is quite often anything but what you wanted.

Selecting Random Rows, Number

The following query will select five random rows from the set of matching rows. It begins (in
the nested table expression) by using the ROW_NUMBER function to assign row numbers to
the matching rows in random order (using the RAND function). Subsequently, those rows
with the five lowest row numbers are selected:

SELECT ID ANSWER
 ,NAME ============
FROM (SELECT S.* ID NAME
 ,ROW_NUMBER() OVER(ORDER BY RAND()) AS R --- --------
 FROM STAFF S 10 Sanders
)AS XXX 30 Marenghi
WHERE R <= 5 190 Sneider
ORDER BY ID; 270 Lea
 280 Wilson

Figure 362, Select five random rows

Use in DML

Imagine that in act of inspired unfairness, we decided to update a selected set of employee’s
salary to a random number in the range of zero to $10,000. This too is easy:

UPDATE STAFF
SET SALARY = RAND()*10000
WHERE ID < 50;

Figure 363, Use RAND to assign random salaries

REAL

Returns a single-precision floating-point representation of a number.

DB2 UDB/V8.1 Cookbook ©

Scalar Functions 133

 ANSWERS
 ================================
SELECT N1 AS DEC => 1234567890.123456789012345678901
 ,DOUBLE(N1) AS DBL => 1.23456789012346e+009
 ,REAL(N1) AS REL => 1.234568e+009
 ,INTEGER(N1) AS INT => 1234567890
 ,BIGINT(N1) AS BIG => 1234567890
FROM (SELECT 1234567890.123456789012345678901 AS N1
 FROM STAFF
 WHERE ID = 10) AS XXX;

Figure 364, REAL and other numeric function examples

REC2XML

Returns a string formatted with XML tags and containing column names and column data.

REPEAT

Repeats a character string "n" times.

 string-to-repeat)REPEAT (, #times

Figure 365, REPEAT function syntax

SELECT ID ANSWER
 ,CHAR(REPEAT(NAME,3),40) ===========================
FROM STAFF ID 2
WHERE ID < 40 -- ------------------------
ORDER BY ID; 10 SandersSandersSanders
 20 PernalPernalPernal
 30 MarenghiMarenghiMarenghi

Figure 366, REPEAT function example

REPLACE

Replaces all occurrences of one string with another. The output is of type varchar(4000).

 string-to-change)REPLACE (, search-for , replace-with

Figure 367, REPLACE function syntax

SELECT C1 ANSWER
 ,REPLACE(C1,’AB’,’XY’) AS R1 ======================
 ,REPLACE(C1,’BA’,’XY’) AS R2 C1 R1 R2
FROM SCALAR; ------ ------ ------
 ABCDEF XYCDEF ABCDEF
 ABCD XYCD ABCD
 AB XY AB

Figure 368, REPLACE function examples

The REPLACE function is case sensitive. To replace an input value, regardless of the case,
one can nest the REPLACE function calls. Unfortunately, this technique gets to be a little
tedious when the number of characters to replace is large.

SELECT C1 ANSWER
 ,REPLACE(REPLACE(==============
 REPLACE(REPLACE(C1, C1 R1
 ’AB’,’XY’),’ab’,’XY’), ------ ------
 ’Ab’,’XY’),’aB’,’XY’) ABCDEF XYCDEF
FROM SCALAR; ABCD XYCD
 AB XY

Figure 369, Nested REPLACE functions

 Graeme Birchall ©

134 Scalar Functions, Definitions

RIGHT

Has two arguments: The first is an input string of type char, varchar, clob, or blob. The sec-
ond is a positive integer value. The output, of type varchar(4000), is the right most characters
in the string.

WITH TEMP1(C1) AS ANSWER
(VALUES (’ ABC’) ================
 ,(’ ABC ’) C1 C2 L2
 ,(’ABC ’)) ----- ----- --
SELECT C1 ABC ABC 4
 ,RIGHT(C1,4) AS C2 ABC ABC 4
 ,LENGTH(RIGHT(C1,4)) AS L2 ABC BC 4
FROM TEMP1;

Figure 370, RIGHT function examples

ROUND

Rounds the rightmost digits of number (1st argument). If the second argument is positive, it
rounds to the right of the decimal place. If the second argument is negative, it rounds to the
left. A second argument of zero results rounds to integer. The input and output types are the
same, except for decimal where the precision will be increased by one - if possible. Therefore,
a DEC(5,2)field will be returned as DEC(6,2), and a DEC(31,2) field as DEC(31,2). To trun-
cate instead of round, use the TRUNCATE function.

 ANSWER
 ===
 D1 P2 P1 P0 N1 N2
 ------- ------- ------- ------- ------- -------
WITH TEMP1(D1) AS 123.400 123.400 123.400 123.000 120.000 100.000
(VALUES (123.400) 23.450 23.450 23.400 23.000 20.000 0.000
 ,(23.450) 3.456 3.460 3.500 3.000 0.000 0.000
 ,(3.456) 0.056 0.060 0.100 0.000 0.000 0.000
 ,(.056))
SELECT D1
 ,DEC(ROUND(D1,+2),6,3) AS P2
 ,DEC(ROUND(D1,+1),6,3) AS P1
 ,DEC(ROUND(D1,+0),6,3) AS P0
 ,DEC(ROUND(D1,-1),6,3) AS N1
 ,DEC(ROUND(D1,-2),6,3) AS N2
FROM TEMP1;

Figure 371, ROUND function examples

RTRIM

Trims the right-most blanks of a character string.

SELECT C1 ANSWER
 ,RTRIM(C1) AS R1 ======================
 ,LENGTH(C1) AS R2 C1 R1 R2 R3
 ,LENGTH(RTRIM(C1)) AS R3 ------ ------ -- --
FROM SCALAR; ABCDEF ABCDEF 6 6
 ABCD ABCD 6 4
 AB AB 6 2

Figure 372, RTRIM function example

SECOND

Returns the second (of minute) part of a time or timestamp (or equivalent) value.

DB2 UDB/V8.1 Cookbook ©

Scalar Functions 135

SIGN

Returns -1 if the input number is less than zero, 0 if it equals zero, and +1 if it is greater than
zero. The input and output types will equal, except for decimal which returns double.

SELECT D1 ANSWER (float output shortened)
 ,SIGN(D1) ===
 ,F1 D1 2 F1 4
 ,SIGN(F1) ----- ---------- ---------- ----------
FROM SCALAR; -2.4 -1.000E+0 -2.400E+0 -1.000E+0
 0.0 +0.000E+0 +0.000E+0 +0.000E+0
 1.8 +1.000E+0 +1.800E+0 +1.000E+0

Figure 373, SIGN function examples

SIN

Returns the SIN of the argument where the argument is an angle expressed in radians. The
output format is double.

WITH TEMP1(N1) AS ANSWER
(VALUES (0) =======================
 UNION ALL N1 RAN SIN TAN
 SELECT N1 + 10 -- ----- ----- -----
 FROM TEMP1 0 0.000 0.000 0.000
 WHERE N1 < 80) 10 0.174 0.173 0.176
SELECT N1 20 0.349 0.342 0.363
 ,DEC(RADIANS(N1),4,3) AS RAN 30 0.523 0.500 0.577
 ,DEC(SIN(RADIANS(N1)),4,3) AS SIN 40 0.698 0.642 0.839
 ,DEC(TAN(RADIANS(N1)),4,3) AS TAN 50 0.872 0.766 1.191
FROM TEMP1; 60 1.047 0.866 1.732
 70 1.221 0.939 2.747
 80 1.396 0.984 5.671

Figure 374, SIN function example

SINH

Returns the hyperbolic sin for the argument, where the argument is an angle expressed in ra-
dians. The output format is double.

SMALLINT

Converts either a number or a valid character value into a smallint value.

SELECT D1 ANSWER
 ,SMALLINT(D1) ==================================
 ,SMALLINT(’+123’) D1 2 3 4 5
 ,SMALLINT(’-123’) ----- ------ ------ ------ ------
 ,SMALLINT(’ 123 ’) -2.4 -2 123 -123 123
FROM SCALAR; 0.0 0 123 -123 123
 1.8 1 123 -123 123

Figure 375, SMALLINT function examples

SNAPSHOT Functions

The various SNAPSHOT functions can be used to analyze the system. They are beyond the
scope of this book. Refer instead to the DB2 System Monitor Guide and Reference.

SOUNDEX

Returns a 4-character code representing the sound of the words in the argument. Use the
DIFFERENCE function to convert words to soundex values and then compare.

 Graeme Birchall ©

136 Scalar Functions, Definitions

SELECT A.NAME AS N1 ANSWER
 ,SOUNDEX(A.NAME) AS S1 ==============================
 ,B.NAME AS N2 N1 S1 N2 S2 DF
 ,SOUNDEX(B.NAME) AS S2 ------- ---- --------- ---- --
 ,DIFFERENCE Sanders S536 Sneider S536 4
 (A.NAME,B.NAME) AS DF Sanders S536 Smith S530 3
FROM STAFF A Sanders S536 Lundquist L532 2
 ,STAFF B Sanders S536 Daniels D542 1
WHERE A.ID = 10 Sanders S536 Molinare M456 1
 AND B.ID > 150 Sanders S536 Scoutten S350 1
 AND B.ID < 250 Sanders S536 Abrahams A165 0
ORDER BY DF DESC Sanders S536 Kermisch K652 0
 ,N2 ASC; Sanders S536 Lu L000 0

Figure 376, SOUNDEX function example

SOUNDEX Formula

There are several minor variations on the SOUNDEX algorithm. Below is one example:

• The first letter of the name is left unchanged.

• The letters W and H are ignored.

• The vowels, A, E, I, O, U, and Y are not coded, but are used as separators (see last item).

• The remaining letters are coded as:

 B, P, F, V 1
 C, G, J, K, Q, S, X, Z 2
 D, T 3
 L 4
 M, N 5
 R 6

• Letters that follow letters with same code are ignored unless a separator (see the third
item above) precedes them.

The result of the above calculation is a four byte value. The first byte is a character as defined
in step one. The remaining three bytes are digits as defined in steps two through four. Output
longer than four bytes is truncated If the output is not long enough, it is padded on the right
with zeros. The maximum number of distinct values is 8,918.

NOTE: The SOUNDEX function is something of an industry standard that was developed
several decades ago. Since that time, several other similar functions have been developed.
You may want to investigate writing your own DB2 function to search for similar-sounding
names.

SPACE

Returns a string consisting of "n" blanks. The output format is varchar(4000).

WITH TEMP1(N1) AS ANSWER
(VALUES (1),(2),(3)) ==================
SELECT N1 N1 S1 S2 S3
 ,SPACE(N1) AS S1 -- ---- -- ----
 ,LENGTH(SPACE(N1)) AS S2 1 1 X
 ,SPACE(N1) || ’X’ AS S3 2 2 X
FROM TEMP1; 3 3 X

Figure 377, SPACE function examples

DB2 UDB/V8.1 Cookbook ©

Scalar Functions 137

SQLCACHE_SNAPSHOT

DB2 maintains a dynamic SQL statement cache. It also has several fields that record usage of
the SQL statements in the cache. The following command can be used to access this data:

DB2 GET SNAPSHOT FOR DYNAMIC SQL ON SAMPLE WRITE TO FILE

 ANSWER - PART OF (ONE OF THE STATEMENTS IN THE SQL CACHE)
 ===
 Number of executions = 8
 Number of compilations = 1
 Worst preparation time (ms) = 3
 Best preparation time (ms) = 3
 Rows deleted = Not Collected
 Rows inserted = Not Collected
 Rows read = Not Collected
 Rows updated = Not Collected
 Rows written = Not Collected
 Statement sorts = Not Collected
 Total execution time (sec.ms) = Not Collected
 Total user cpu time (sec.ms) = Not Collected
 Total system cpu time (sec.ms) = Not Collected
 Statement text = select min(dept) from staff

Figure 378, GET SNAPSHOT command

The SQLCACHE_SNAPSHOT table function can also be used to obtain the same data - this
time in tabular format. One first has to run the above GET SNAPSHOT command. Then one
can run a query like the following:

SELECT *
FROM TABLE(SQLCACHE_SNAPSHOT()) SS
WHERE SS.NUM_EXECUTIONS <> 0;

Figure 379, SQLCACHE_SNAPSHOT function example

If one runs the RESET MONITOR command, the above execution and compilation counts
will be set to zero, but all other fields will be unaffected.

The following query can be used to list all the columns returned by this function:

SELECT ORDINAL AS COLNO
 ,CHAR(PARMNAME,18) AS COLNAME
 ,TYPENAME AS COLTYPE
 ,LENGTH
 ,SCALE
FROM SYSCAT.FUNCPARMS
WHERE FUNCSCHEMA = ’SYSFUN’
 AND FUNCNAME = ’SQLCACHE_SNAPSHOT’
ORDER BY COLNO;

Figure 380, List columns returned by SQLCACHE_SNAPSHOT

SQRT

Returns the square root of the input value, which can be any positive number. The output
format is double.

WITH TEMP1(N1) AS ANSWER
(VALUES (0.5),(0.0) ============
 ,(1.0),(2.0)) N1 S1
SELECT DEC(N1,4,3) AS N1 ----- -----
 ,DEC(SQRT(N1),4,3) AS S1 0.500 0.707
FROM TEMP1; 0.000 0.000
 1.000 1.000
 2.000 1.414

Figure 381, SQRT function example

 Graeme Birchall ©

138 Scalar Functions, Definitions

SUBSTR

Returns part of a string. If the length is not provided, the output is from the start value to the
end of the string.

, length
)SUBSTR (string , start

Figure 382, SUBSTR function syntax

If the length is provided, and it is longer than the field length, a SQL error results. The fol-
lowing statement illustrates this. Note that in this example the DAT1 field has a "field length"
of 9 (i.e. the length of the longest input string).

WITH TEMP1 (LEN, DAT1) AS ANSWER
(VALUES (6,’123456789’) =========================
 ,(4,’12345’) LEN DAT1 LDAT SUBDAT
 ,(16,’123’) --- --------- ---- ------
) 6 123456789 9 123456
SELECT LEN 4 12345 5 1234
 ,DAT1 <error>
 ,LENGTH(DAT1) AS LDAT
 ,SUBSTR(DAT1,1,LEN) AS SUBDAT
FROM TEMP1;

Figure 383, SUBSTR function - error because length parm too long

The best way to avoid the above problem is to simply write good code. If that sounds too
much like hard work, try the following SQL:

WITH TEMP1 (LEN, DAT1) AS ANSWER
(VALUES (6,’123456789’) =========================
 ,(4,’12345’) LEN DAT1 LDAT SUBDAT
 ,(16,’123’) --- --------- ---- ------
) 6 123456789 9 123456
SELECT LEN 4 12345 5 1234
 ,DAT1 16 123 3 123
 ,LENGTH(DAT1) AS LDAT
 ,SUBSTR(DAT1,1,CASE
 WHEN LEN < LENGTH(DAT1) THEN LEN
 ELSE LENGTH(DAT1)
 END) AS SUBDAT
FROM TEMP1;

Figure 384, SUBSTR function - avoid error using CASE (see previous)

In the above SQL a CASE statement is used to compare the LEN value against the length of
the DAT1 field. If the former is larger, it is replaced by the length of the latter.

If the input is varchar, and no length value is provided, the output is varchar. However, if the
length is provided, the output is of type char - with padded blanks (if needed):

SELECT NAME ANSWER
 ,LENGTH(NAME) AS LEN ===========================
 ,SUBSTR(NAME,5) AS S1 NAME LEN S1 L1 S2 L2
 ,LENGTH(SUBSTR(NAME,5)) AS L1 -------- --- ---- -- --- --
 ,SUBSTR(NAME,5,3) AS S2 Sanders 7 ers 3 ers 3
 ,LENGTH(SUBSTR(NAME,5,3)) AS L2 Pernal 6 al 2 al 3
FROM STAFF Marenghi 8 nghi 4 ngh 3
WHERE ID < 60; O’Brien 7 ien 3 ien 3
 Hanes 5 s 1 s 3

Figure 385, SUBSTR function - fixed length output if third parm. used

DB2 UDB/V8.1 Cookbook ©

Scalar Functions 139

TABLE

There isn’t really a TABLE function, but there is a TABLE phrase that returns a result, one
row at a time, from either an external (e.g. user written) function, or from a nested table ex-
pression. The TABLE phrase (function) has to be used in the latter case whenever there is a
reference in the nested table expression to a row that exists outside of the expression. An ex-
ample follows:

SELECT A.ID ANSWER
 ,A.DEPT =========================
 ,A.SALARY ID DEPT SALARY DEPTSAL
 ,B.DEPTSAL -- ---- -------- --------
FROM STAFF A 10 20 18357.50 64286.10
 ,TABLE 20 20 18171.25 64286.10
 (SELECT B.DEPT 30 38 17506.75 77285.55
 ,SUM(B.SALARY) AS DEPTSAL
 FROM STAFF B
 WHERE B.DEPT = A.DEPT
 GROUP BY B.DEPT
)AS B
WHERE A.ID < 40
ORDER BY A.ID;

Figure 386, Full-select with external table reference

See page 249 for more details on using of the TABLE phrase in a nested table expression.

TABLE_NAME

Returns the base view or table name for a particular alias after all alias chains have been re-
solved. The output type is varchar(18). If the alias name is not found, the result is the input
values. There are two input parameters. The first, which is required, is the alias name. The
second, which is optional, is the alias schema. If the second parameter is not provided, the
default schema is used for the qualifier.

CREATE ALIAS EMP1 FOR EMPLOYEE; ANSWER
CREATE ALIAS EMP2 FOR EMP1; =======================
 TABSCHEMA TABNAME CARD
SELECT TABSCHEMA --------- -------- ----
 ,TABNAME GRAEME EMPLOYEE -1
 ,CARD
FROM SYSCAT.TABLES
WHERE TABNAME = TABLE_NAME(’EMP2’,’GRAEME’);

Figure 387, TABLE_NAME function example

TABLE_SCHEMA

Returns the base view or table schema for a particular alias after all alias chains have been
resolved. The output type is char(8). If the alias name is not found, the result is the input val-
ues. There are two input parameters. The first, which is required, is the alias name. The sec-
ond, which is optional, is the alias schema. If the second parameter is not provided, the de-
fault schema is used for the qualifier.

Resolving non-existent Objects

Dependent aliases are not dropped when a base table or view is removed. After the base table
or view drop, the TABLE_SCHEMA and TABLE_NAME functions continue to work fine
(see the 1st output line below). However, when the alias being checked does not exist, the
original input values (explicit or implied) are returned (see the 2nd output line below).

 Graeme Birchall ©

140 Scalar Functions, Definitions

CREATE VIEW FRED1 (C1, C2, C3) ANSWER
AS VALUES (11, ’AAA’, ’BBB’); ===========================
 TAB_SCH TAB_NME
CREATE ALIAS FRED2 FOR FRED1; -------- ------------------
CREATE ALIAS FRED3 FOR FRED2; GRAEME FRED1
 GRAEME XXXXX
DROP VIEW FRED1;

WITH TEMP1 (TAB_SCH, TAB_NME) AS
(VALUES (TABLE_SCHEMA(’FRED3’,’GRAEME’),TABLE_NAME(’FRED3’)),
 (TABLE_SCHEMA(’XXXXX’) ,TABLE_NAME(’XXXXX’,’XXX’)))
SELECT *
FROM TEMP1;

Figure 388, TABLE_SCHEMA and TABLE_NAME functions example

TAN

Returns the tangent of the argument where the argument is an angle expressed in radians.

TANH

Returns the hyperbolic tan for the argument, where the argument is an angle expressed in ra-
dians. The output format is double.

TIME

Converts the input into a time value.

TIMESTAMP

Converts the input(s) into a timestamp value.

Argument Options

• If only one argument is provided, it must be (one of):

• A timestamp value.

• A character representation of a timestamp (the microseconds are optional).

• A 14 byte string in the form: YYYYMMDDHHMMSS.

• If both arguments are provided:

• The first must be a date, or a character representation of a date.

• The second must be a time, or a character representation of a time.

SELECT TIMESTAMP(’1997-01-11-22.44.55.000000’)
 ,TIMESTAMP(’1997-01-11-22.44.55.000’)
 ,TIMESTAMP(’1997-01-11-22.44.55’)
 ,TIMESTAMP(’19970111224455’)
 ,TIMESTAMP(’1997-01-11’,’22.44.55’)
FROM STAFF
WHERE ID = 10;

Figure 389, TIMESTAMP function examples

TIMESTAMP_FORMAT

Takes an input string with the format: "YYYY-MM-DD HH:MM:SS" and converts it into a
valid timestamp value. The VARCHAR_FORMAT function does the inverse.

DB2 UDB/V8.1 Cookbook ©

Scalar Functions 141

WITH TEMP1 (TS1) AS
(VALUES (’1999-12-31 23:59:59’)
 ,(’2002-10-30 11:22:33’)
)
SELECT TS1
 ,TIMESTAMP_FORMAT(TS1,’YYYY-MM-DD HH24:MI:SS’) AS TS2
FROM TEMP1
ORDER BY TS1; ANSWER
 ===
 TS1 TS2
 ------------------- --------------------------
 1999-12-31 23:59:59 1999-12-31-23.59.59.000000
 2002-10-30 11:22:33 2002-10-30-11.22.33.000000

Figure 390, TIMESTAMP_FORMAT function example

Note that the only allowed formatting mask is the one shown.

TIMESTAMP_ISO

Returns a timestamp in the ISO format (yyyy-mm-dd hh:mm:ss.nnnnnn) converted from the
IBM internal format (yyyy-mm-dd-hh.mm.ss.nnnnnn). If the input is a date, zeros are inserted
in the time part. If the input is a time, the current date is inserted in the date part and zeros in
the microsecond section.

SELECT TM1 ANSWER
 ,TIMESTAMP_ISO(TM1) ===================================
FROM SCALAR; TM1 2
 -------- --------------------------
 23:58:58 2000-09-01-23.58.58.000000
 15:15:15 2000-09-01-15.15.15.000000
 00:00:00 2000-09-01-00.00.00.000000

Figure 391, TIMESTAMP_ISO function example

TIMESTAMPDIFF

Returns an integer value that is an estimate of the difference between two timestamp values.
Unfortunately, the estimate can sometimes be seriously out (see the example below), so this
function should be used with extreme care.

Arguments

There are two arguments. The first argument indicates what interval kind is to be returned.
Valid options are:

1 = Microseconds. 2 = Seconds. 4 = Minutes.

8 = Hours. 16 = Days. 32 = Weeks.

64 = Months. 128 = Quarters. 256 = Years.

The second argument is the result of one timestamp subtracted from another and then con-
verted to character.

 Graeme Birchall ©

142 Scalar Functions, Definitions

WITH TEMP1 (TS1,TS2) AS
(VALUES (’1996-03-01-00.00.01’,’1995-03-01-00.00.00’)
 ,(’1996-03-01-00.00.00’,’1995-03-01-00.00.01’))
SELECT DF1
 ,TIMESTAMPDIFF(16,DF1) AS DIFF
 ,DAYS(TS1) - DAYS(TS2) AS DAYS
FROM (SELECT TS1
 ,TS2
 ,CHAR(TS1 - TS2) AS DF1
 FROM (SELECT TIMESTAMP(TS1) AS TS1
 ,TIMESTAMP(TS2) AS TS2
 FROM TEMP1
)AS TEMP2 ANSWER
)AS TEMP3; ================================
 DF1 DIFF DAYS
 ---------------------- ---- ----
 00010000000001.000000 365 366
 00001130235959.000000 360 366

Figure 392, TIMESTAMPDIFF function example

WARNING: The microsecond interval option for TIMESTAMPDIFF has a bug. Do not use.
The other interval types return estimates, not definitive differences, so should be used with
care. To get the difference between two timestamps in days, use the DAYS function as shown
above. It is more accurate.

Roll Your Own

The SQL will get the difference, in microseconds, between two timestamp values. It can be
used as an alternative to the above function.

WITH TEMP1 (TS1,TS2) AS
(VALUES (’1995-03-01-00.12.34.000’,’1995-03-01-00.00.00.000’)
 ,(’1995-03-01-00.12.00.034’,’1995-03-01-00.00.00.000’))
SELECT MS1
 ,MS2
 ,MS1 - MS2 AS DIFF
FROM (SELECT BIGINT(DAYS(TS1) * 86400000000
 + MIDNIGHT_SECONDS(TS1) * 1000000
 + MICROSECOND(TS1)) AS MS1
 ,BIGINT(DAYS(TS2) * 86400000000
 + MIDNIGHT_SECONDS(TS2) * 1000000
 + MICROSECOND(TS2)) AS MS2
 FROM (SELECT TIMESTAMP(TS1) AS TS1
 ,TIMESTAMP(TS2) AS TS2
 FROM TEMP1
)AS TEMP2
)AS TEMP3
ORDER BY 1; ANSWER
 ===
 MS1 MS2 DIFF
 ----------------- ----------------- ---------
 62929699920034000 62929699200000000 720034000
 62929699954000000 62929699200000000 754000000

Figure 393, Difference in microseconds between two timestamps

TO_CHAR

This function is a synonym for VARCHAR_FORMAT (see page 145). It converts a time-
stamp value into a string using a template to define the output layout.

TO_DATE

This function is a synonym for TIMESTAMP_FORMAT (see page 140). It converts a char-
acter string value into a timestamp using a template to define the input layout.

DB2 UDB/V8.1 Cookbook ©

Scalar Functions 143

TRANSLATE

Converts individual characters in either a character or graphic input string from one value to
another. It can also convert lower case data to upper case.

 , substitute

)TRANSLATE (string
 , to , from

Figure 394, TRANSLATE function syntax

Usage Notes

• The use of the input string alone generates upper case output.

• When "from" and "to" values are provided, each individual "from" character in the input
string is replaced by the corresponding "to" character (if there is one).

• If there is no "to" character for a particular "from" character, those characters in the input
string that match the "from" are set to blank (if there is no substitute value).

• A fourth, optional, single-character parameter can be provided that is the substitute char-
acter to be used for those "from" values having no "to" value.

• If there are more "to" characters than "from" characters, the additional "to" characters are
ignored.

 ANS. NOTES
 ==== =================
SELECT ’abcd’ ==> abcd No change
 ,TRANSLATE(’abcd’) ==> ABCD Make upper case
 ,TRANSLATE(’abcd’,’’,’a’) ==> bcd ’a’=>’ ’
 ,TRANSLATE(’abcd’,’A’,’A’) abcd ’A’=>’A’
 ,TRANSLATE(’abcd’,’A’,’a’) Abcd ’a’=>’A’
 ,TRANSLATE(’abcd’,’A’,’ab’) A cd ’a’=>’A’,’b’=>’ ’
 ,TRANSLATE(’abcd’,’A’,’ab’,’ ’) A cd ’a’=>’A’,’b’=>’ ’
 ,TRANSLATE(’abcd’,’A’,’ab’,’z’) Azcd ’a’=>’A’,’b’=>’z’
 ,TRANSLATE(’abcd’,’AB’,’a’) Abcd ’a’=>’A’
FROM STAFF
WHERE ID = 10;

Figure 395, TRANSLATE function examples

REPLACE vs. TRANSLATE - A Comparison

Both the REPLACE and the TRANSLATE functions alter the contents of input strings. They
differ in that the REPLACE converts whole strings while the TRANSLATE converts multiple
sets of individual characters. Also, the "to" and "from" strings are back to front.

 ANSWER
 ======
SELECT C1 ==> ABCD
 ,REPLACE(C1,’AB’,’XY’) ==> XYCD
 ,REPLACE(C1,’BA’,’XY’) ==> ABCD
 ,TRANSLATE(C1,’XY’,’AB’) XYCD
 ,TRANSLATE(C1,’XY’,’BA’) YXCD
FROM SCALAR
WHERE C1 = ’ABCD’;

Figure 396, REPLACE vs. TRANSLATE

TRUNC or TRUNCATE

Truncates (not rounds) the rightmost digits of an input number (1st argument). If the second
argument is positive, it truncates to the right of the decimal place. If the second value is nega-

 Graeme Birchall ©

144 Scalar Functions, Definitions

tive, it truncates to the left. A second value of zero truncates to integer. The input and output
types will equal. To round instead of truncate, use the ROUND function.

 ANSWER
 ===
 D1 POS2 POS1 ZERO NEG1 NEG2
 ------- ------- ------- ------- ------- -------
WITH TEMP1(D1) AS 123.400 123.400 123.400 123.000 120.000 100.000
(VALUES (123.400) 23.450 23.440 23.400 23.000 20.000 0.000
 ,(23.450) 3.456 3.450 3.400 3.000 0.000 0.000
 ,(3.456) 0.056 0.050 0.000 0.000 0.000 0.000
 ,(.056))
SELECT D1
 ,DEC(TRUNC(D1,+2),6,3) AS POS2
 ,DEC(TRUNC(D1,+1),6,3) AS POS1
 ,DEC(TRUNC(D1,+0),6,3) AS ZERO
 ,DEC(TRUNC(D1,-1),6,3) AS NEG1
 ,DEC(TRUNC(D1,-2),6,3) AS NEG2
FROM TEMP1
ORDER BY 1 DESC;

Figure 397, TRUNCATE function examples

TYPE_ID

Returns the internal type identifier of he dynamic data type of the expression.

TYPE_NAME

Returns the unqualified name of the dynamic data type of the expression.

TYPE_SECHEMA

Returns the schema name of the dynamic data type of the expression.

UCASE or UPPER

Coverts a mixed or lower-case string to upper case. The output is the same data type and
length as the input.

SELECT NAME ANSWER
 ,LCASE(NAME) AS LNAME =========================
 ,UCASE(NAME) AS UNAME NAME LNAME UNAME
FROM STAFF ------- ------- -------
WHERE ID < 30; Sanders sanders SANDERS
 Pernal pernal PERNAL

Figure 398, UCASE function example

VALUE

Same as COALESCE.

VARCHAR

Converts the input (1st argument) to a varchar data type. The output length (2nd argument) is
optional. Trailing blanks are not removed.

DB2 UDB/V8.1 Cookbook ©

Scalar Functions 145

SELECT C1 ANSWER
 ,LENGTH(C1) AS L1 ========================
 ,VARCHAR(C1) AS V2 C1 L1 V2 L2 V3
 ,LENGTH(VARCHAR(C1)) AS L2 ------ -- ------ -- ----
 ,VARCHAR(C1,4) AS V3 ABCDEF 6 ABCDEF 6 ABCD
FROM SCALAR; ABCD 6 ABCD 6 ABCD
 AB 6 AB 6 AB

Figure 399, VARCHAR function examples

VARCHAR_FORMAT

Converts a timestamp value into a string with the format: "YYYY-MM-DD HH:MM:SS".
The TIMESTAMP_FORMAT function does the inverse.

WITH TEMP1 (TS1) AS
(VALUES (TIMESTAMP(’1999-12-31-23.59.59’))
 ,(TIMESTAMP(’2002-10-30-11.22.33’))
)
SELECT TS1
 ,VARCHAR_FORMAT(TS1,’YYYY-MM-DD HH24:MI:SS’) AS TS2
FROM TEMP1
ORDER BY TS1; ANSWER
 ==
 TS1 TS2
 -------------------------- -------------------
 1999-12-31-23.59.59.000000 1999-12-31 23:59:59
 2002-10-30-11.22.33.000000 2002-10-30 11:22:33

Figure 400, VARCHAR_FORMAT function example

Note that the only allowed formatting mask is the one shown.

VARGRAPHIC

Converts the input (1st argument) to a vargraphic data type. The output length (2nd argument)
is optional.

VEBLOB_CP_LARGE

This is an undocumented function that IBM has included.

VEBLOB_CP_LARGE

This is an undocumented function that IBM has included.

WEEK

Returns a value in the range 1 to 53 or 54 that represents the week of the year, where a week
begins on a Sunday, or on the first day of the year. Valid input types are a date, a timestamp,
or an equivalent character value. The output is of type integer.

SELECT WEEK(DATE(’2000-01-01’)) AS W1 ANSWER
 ,WEEK(DATE(’2000-01-02’)) AS W2 ==================
 ,WEEK(DATE(’2001-01-02’)) AS W3 W1 W2 W3 W4 W5
 ,WEEK(DATE(’2000-12-31’)) AS W4 -- -- -- -- --
 ,WEEK(DATE(’2040-12-31’)) AS W5 1 2 1 54 53
FROM SYSIBM.SYSDUMMY1;

Figure 401, WEEK function examples

Both the first and last week of the year may be partial weeks. Likewise, from one year to the
next, a particular day will often be in a different week (see page 326).

 Graeme Birchall ©

146 Scalar Functions, Definitions

WEEK_ISO

Returns an integer value, in the range 1 to 53, that is the "ISO" week number. An ISO week
differs from an ordinary week in that it begins on a Monday and it neither ends nor begins at
the exact end of the year. Instead, week 1 is the first week of the year to contain a Thursday.
Therefore, it is possible for up to three days at the beginning of the year to appear in the last
week of the previous year. As with ordinary weeks, not all ISO weeks contain seven days.

WITH ANSWER
TEMP1 (N) AS ==========================
 (VALUES (0) DTE DY WK DY WI DI
 UNION ALL ---------- --- -- -- -- --
 SELECT N+1 1998-12-27 Sun 53 1 52 7
 FROM TEMP1 1998-12-28 Mon 53 2 53 1
 WHERE N < 10), 1998-12-29 Tue 53 3 53 2
TEMP2 (DT2) AS 1998-12-30 Wed 53 4 53 3
 (SELECT DATE(’1998-12-27’) + Y.N YEARS 1998-12-31 Thu 53 5 53 4
 + D.N DAYS 1999-01-01 Fri 1 6 53 5
 FROM TEMP1 Y 1999-01-02 Sat 1 7 53 6
 ,TEMP1 D 1999-01-03 Sun 2 1 53 7
 WHERE Y.N IN (0,2)) 1999-01-04 Mon 2 2 1 1
SELECT CHAR(DT2,ISO) DTE 1999-01-05 Tue 2 3 1 2
 ,SUBSTR(DAYNAME(DT2),1,3) DY 1999-01-06 Wed 2 4 1 3
 ,WEEK(DT2) WK 2000-12-27 Wed 53 4 52 3
 ,DAYOFWEEK(DT2) DY 2000-12-28 Thu 53 5 52 4
 ,WEEK_ISO(DT2) WI 2000-12-29 Fri 53 6 52 5
 ,DAYOFWEEK_ISO(DT2) DI 2000-12-30 Sat 53 7 52 6
FROM TEMP2 2000-12-31 Sun 54 1 52 7
ORDER BY 1; 2001-01-01 Mon 1 2 1 1
 2001-01-02 Tue 1 3 1 2
 2001-01-03 Wed 1 4 1 3
 2001-01-04 Thu 1 5 1 4
 2001-01-05 Fri 1 6 1 5
 2001-01-06 Sat 1 7 1 6

Figure 402, WEEK_ISO function example

YEAR

Returns a four-digit year value in the range 0001 to 9999 that represents the year (including
the century). The input is a date or timestamp (or equivalent) value. The output is integer.

SELECT DT1 ANSWER
 ,YEAR(DT1) AS YR ======================
 ,WEEK(DT1) AS WK DT1 YR WK
FROM SCALAR; ---------- ---- ----
 04/22/1996 1996 17
 08/15/1996 1996 33
 01/01/0001 1 1

Figure 403, YEAR and WEEK functions example

"+" PLUS

The PLUS function is same old plus sign that you have been using since you were a kid. One
can use it the old fashioned way, or as if it were normal a DB2 function - with one or two in-
put items. If there is a single input item, then the function acts as the unary "plus" operator. If
there are two items, the function adds them:

DB2 UDB/V8.1 Cookbook ©

Scalar Functions 147

SELECT ID ANSWER
 ,SALARY =============================
 ,"+"(SALARY) AS S2 ID SALARY S2 S3
 ,"+"(SALARY,ID) AS S3 -- -------- -------- --------
FROM STAFF 10 18357.50 18357.50 18367.50
WHERE ID < 40 20 18171.25 18171.25 18191.25
ORDER BY ID; 30 17506.75 17506.75 17536.75

Figure 404, PLUS function examples

Both the PLUS and MINUS functions can be used to add and subtract numbers, and also date
and time values. For the latter, one side of the equation has to be a date/time value, and the
other either a date or time duration (a numeric representation of a date/time), or a specified
date/time type. To illustrate, below are three different ways to add one year to a date:

SELECT EMPNO
 ,CHAR(BIRTHDATE,ISO) AS BDATE1
 ,CHAR(BIRTHDATE + 1 YEAR,ISO) AS BDATE2
 ,CHAR("+"(BIRTHDATE,DEC(00010000,8)),ISO) AS BDATE3
 ,CHAR("+"(BIRTHDATE,DOUBLE(1),SMALLINT(1)),ISO) AS BDATE4
FROM EMPLOYEE
WHERE EMPNO < ’000040’
ORDER BY EMPNO; ANSWER
 ==
 EMPNO BDATE1 BDATE2 BDATE3 BDATE4
 ------ ---------- ---------- ---------- ----------
 000010 1933-08-24 1934-08-24 1934-08-24 1934-08-24
 000020 1948-02-02 1949-02-02 1949-02-02 1949-02-02
 000030 1941-05-11 1942-05-11 1942-05-11 1942-05-11

Figure 405, Adding one year to date value

"-" MINUS

The MINUS works the same way as the PLUS function, but does the opposite:

SELECT ID ANSWER
 ,SALARY ==============================
 ,"-"(SALARY) AS S2 ID SALARY S2 S3
 ,"-"(SALARY,ID) AS S3 -- -------- --------- --------
FROM STAFF 10 18357.50 -18357.50 18347.50
WHERE ID < 40 20 18171.25 -18171.25 18151.25
ORDER BY ID; 30 17506.75 -17506.75 17476.75

Figure 406, MINUS function examples

"*" MULTIPLY

The MULTIPLY function is used to multiply two numeric values:

SELECT ID ANSWER
 ,SALARY ===============================
 ,SALARY * ID AS S2 ID SALARY S2 S3
 ,"*"(SALARY,ID) AS S3 -- -------- --------- ---------
FROM STAFF 10 18357.50 183575.00 183575.00
WHERE ID < 40 20 18171.25 363425.00 363425.00
ORDER BY ID; 30 17506.75 525202.50 525202.50

Figure 407, MULTIPLY function examples

"/" DIVIDE

The DIVIDE function is used to divide two numeric values:

 Graeme Birchall ©

148 Scalar Functions, Definitions

SELECT ID ANSWER
 ,SALARY =============================
 ,SALARY / ID AS S2 ID SALARY S2 S3
 ,"/"(SALARY,ID) AS S3 -- -------- -------- --------
FROM STAFF 10 18357.50 1835.750 1835.750
WHERE ID < 40 20 18171.25 908.562 908.562
ORDER BY ID; 30 17506.75 583.558 583.558

Figure 408, DIVIDE function examples

"||" CONCAT

Same as the CONCAT function:

SELECT ID ANSWER
 ,NAME || ’Z’ AS N1 ===========================
 ,NAME CONCAT ’Z’ AS N2 ID N1 N2 N3 N4
 ,"||"(NAME,’Z’) As N3 --- ----- ----- ----- -----
 ,CONCAT(NAME,’Z’) As N4 110 NganZ NganZ NganZ NganZ
FROM STAFF 210 LuZ LuZ LuZ LuZ
WHERE LENGTH(NAME) < 5 270 LeaZ LeaZ LeaZ LeaZ
ORDER BY ID;

Figure 409, CONCAT function examples

DB2 UDB/V8.1 Cookbook ©

User Defined Functions 149

User Defined Functions
Many problems that are really hard to solve using raw SQL become surprisingly easy to ad-
dress, once one writes a simple function. This chapter will cover some of the basics of user-
defined functions. These can be very roughly categorized by their input source, their output
type, and the language used:

• External scalar functions use an external process (e.g. a C program), and possibly also an
external data source, to return a single value.

• External table functions use an external process, and possibly also an external data
source, to return a set of rows and columns.

• Internal sourced functions are variations of an existing DB2 function

• Internal scalar functions use compound SQL code to return a single value.

• Internal table functions use compound SQL code to return a set of rows and columns

This chapter will briefly go over the last three types of function listed above. See the official
DB2 documentation for more details.

WARNING: As of the time of writing, there is a known bug in DB2 that causes the prepare
cost of a dynamic SQL statement to go up exponentially when a user defined function that is
written in the SQL language is referred to multiple times in a single SQL statement.

Sourced Functions
A sourced function is used to redefine an existing DB2 function so as to in some way restrict
or enhance its applicability. Below is the basic syntax:

 data-type

) CREATE FUNCTION

parm-name

 function-name (
,

 SPECIFIC specific-name

 SOURCE function-name

 SPECIFIC specific-name

 function-name ()

 data-type

,

 RETURNS data-type

Figure 410, Sourced function syntax

Below is a scalar function that is a variation on the standard DIGITS function, but which only
works on small integer fields:

CREATE FUNCTION digi_int (SMALLINT)
RETURNS CHAR(5)
SOURCE SYSIBM.DIGITS(SMALLINT);

Figure 411, Create sourced function

Here is an example of the function in use:

 Graeme Birchall ©

150 Sourced Functions

SELECT id AS ID ANSWER
 ,DIGITS(id) AS I2 ==============
 ,digi_int(id) AS I3 ID I2 I3
FROM staff -- ----- -----
WHERE id < 40 10 00010 00010
ORDER BY id; 20 00020 00020
 30 00030 00030

Figure 412, Using sourced function - works

By contrast, the following statement will fail because the input is an integer field:

SELECT id ANSWER
 ,digi_int(INT(id)) =======
FROM staff <error>
WHERE id < 50;

Figure 413, Using sourced function - fails

Sourced functions are especially useful when one has created a distinct (data) type, because
these do not come with any of the usual DB2 functions. To illustrate, in the following exam-
ple a distinct type is created, then a table using the type, then two rows are inserted:

CREATE DISTINCT TYPE us_dollars AS DEC(7,2) WITH COMPARISONS;

CREATE TABLE customers
(ID SMALLINT NOT NULL
,balance us_dollars NOT NULL);
 ANSWER
INSERT INTO customers VALUES (1 ,111.11),(2 ,222.22); ==========
 ID balance
SELECT * -- -------
FROM customers 1 111.11
ORDER BY ID; 2 222.22

Figure 414, Create distinct type and test table

The next query will fail because there is currently no multiply function for "us_dollars":

SELECT ID ANSWER
 ,balance * 10 =======
FROM customers <error>
ORDER BY ID;

Figure 415, Do multiply - fails

The enable the above, we have to create a sourced function:

CREATE FUNCTION "*" (us_dollars,INT)
RETURNS us_dollars
SOURCE SYSIBM."*"(DECIMAL,INT);

Figure 416, Create sourced function

Now we can do the multiply:

SELECT ID ANSWER
 ,balance * 10 AS NEWBAL ==========
FROM customers ID NEWBAL
ORDER BY ID; -- -------
 1 1111.10
 2 2222.20

Figure 417, Do multiply - works

For the record, here is another way to write the same:

DB2 UDB/V8.1 Cookbook ©

User Defined Functions 151

SELECT ID ANSWER
 ,"*"(balance,10) AS NEWBAL ==========
FROM customers ID NEWBAL
ORDER BY ID; -- -------
 1 1111.10
 2 2222.20

Figure 418, Do multiply - works

Scalar Functions
A scalar function has as input a specific number of values (i.e. not a table) and returns a single
output item. Here is the syntax (also for table function):

 data-type

) CREATE FUNCTION

parm-name

 function-name (
,

 LANGUAGE SQL

column-name

 RETURN value

 NULL

 common-table-expression

 full-select
,

 RETURNS data-type

 TABLE ()

,

 NOT DETERMINISTIC

 DETERMINISTIC

 EXTERNAL ACTION

 NO EXTERNAL ACTION

 READS SQL DATA STATIC DISPATCH

 CONTAINS SQL

 CALLED ON NULL INPUT

 predicate-list PREDICATES ()

 WITH

column-type

Figure 419, Scalar and Table function syntax

Description

• FUNCTION NAME: A qualified or unqualified name, that along with the number and
type of parameters, uniquely identifies the function.

• RETURNS: The type of value returned, if a scalar function. For a table function, the list
of columns, with their type.

• LANGUAGE SQL: This the default, and the only one that is supported.

• DETERMINISTIC: Specifies whether the function always returns the same result for a
given input. For example, a function that multiplies the input number by ten is determi-
nistic, whereas a function that gets the current timestamp is not. The optimizer needs to
know this information.

• EXTERNAL ACTION: Whether the function takes some action, or changes some object
that is not under the control of DB2. The optimizer needs to know this information.

 Graeme Birchall ©

152 Scalar Functions

• READS SQL DATA: Whether the function reads SQL data only, or doesn’t even do that.
The function cannot modify any DB2 data, except via an external procedure call.

• STATIC DISPATCH: At function resolution time, DB2 chooses the function to run
based on the parameters of the function.

• CALLED ON NULL INPUT: The function is called, even when the input is null.

• PREDICATES: For predicates using this function, this clause lists those that can use the
index extensions. If this clause is specified, function must also be DETERMINISTIC
with NO EXTERNAL ACTION. See the DB2 documentation for details.

• RETURN: The value or table (result set) returned by the function.

Input and Output Limits

One can have multiple scalar functions with the same name and different input/output data
types, but not with the same name and input/output types, but with different lengths. So if one
wants to support all possible input/output lengths for, say, varchar data, one has to define the
input and output lengths to be the maximum allowed for the field type.

For varchar input, one would need an output length of 32,672 bytes to support all possible
input values. But this is a problem, because it is very close to the maximum allowable table
(row) length in DB2, which is 32,677 bytes.

Decimal field types are even more problematic, because one needs to define both a length and
a scale. To illustrate, imagine that one defines the input as being of type decimal(31,12). The
following input values would be treated thus:

• A decimal(10,5) value would be fine.

• A decimal(31,31) value would lose precision.

• A decimal(31,0) value may fail because it is too large.

See page 301 for a detailed description of this problem.

Examples

In addition to the examples shown in this section, there are also the following:

• Check character input is a numeric value - page 298

• Covert numeric data to character (right justified) - page 300.

• Locate string in input, a block at a time - page 268.

• Sort character field contents - page 313.

• Strip characters from text - page 311.

Below is a very simple scalar function - that always returns zero:

CREATE FUNCTION returns_zero() RETURNS SMALLINT RETURN 0;
 ANSWER
SELECT id AS ID ======
 ,returns_zero() AS ZZ ID ZZ
FROM staff -- --
WHERE id = 10; 10 0

Figure 420, Simple function usage

DB2 UDB/V8.1 Cookbook ©

User Defined Functions 153

Two functions can be created with the same name. Which one is used depends on the input
type that is provided:

CREATE FUNCTION calc(inval SMALLINT) RETURNS INT RETURN inval * 10;
CREATE FUNCTION calc(inval INTEGER) RETURNS INT RETURN inval * 5;

SELECT id AS ID ANSWER
 ,calc(SMALLINT(id)) AS C1 ==========
 ,calc(INTEGER (id)) AS C2 ID C1 C2
FROM staff -- --- ---
WHERE id < 30 10 100 50
ORDER BY id; 20 200 100

DROP FUNCTION calc(SMALLINT);
DROP FUNCTION calc(INTEGER);

Figure 421, Two functions with same name

Below is an example of a function that is not deterministic, which means that the function
result can not be determined based on the input:

CREATE FUNCTION rnd(inval INT)
RETURNS SMALLINT
NOT DETERMINISTIC
RETURN RAND() * 50; ANSWER
 ======
SELECT id AS ID ID RND
 ,rnd(1) AS RND -- ---
FROM staff 10 37
WHERE id < 40 20 8
ORDER BY id; 30 42

Figure 422, Not deterministic function

The next function uses a query to return a single row/column value:

CREATE FUNCTION get_sal(inval SMALLINT)
RETURNS DECIMAL(7,2)
RETURN SELECT salary
 FROM staff
 WHERE ID = inval; ANSWER
 ===========
SELECT id AS ID ID SALARY
 ,get_sal(id) AS SALARY -- --------
FROM staff 10 18357.50
WHERE id < 40 20 18171.25
ORDER BY id; 30 17506.75

Figure 423, Function using query

More complex SQL statements are also allowed - as long as the result (in a scalar function) is
just one row/column value. In the next example, the either the maximum salary in the same
department is obtained, or the maximum salary for the same year - whatever is higher:

 Graeme Birchall ©

154 Scalar Functions

CREATE FUNCTION max_sal(inval SMALLINT)
RETURNS DECIMAL(7,2)
RETURN WITH
 ddd (max_sal) AS
 (SELECT MAX(S2.salary)
 FROM staff S1
 ,staff S2
 WHERE S1.id = inval
 AND S1.dept = s2.dept)
 ,yyy (max_sal) AS
 (SELECT MAX(S2.salary)
 FROM staff S1
 ,staff S2
 WHERE S1.id = inval
 AND S1.years = s2.years)
SELECT CASE
 WHEN ddd.max_sal > yyy.max_sal
 THEN ddd.max_sal
 ELSE yyy.max_sal
 END
FROM ddd, yyy;
 ANSWER
SELECT id AS ID ====================
 ,salary AS SAL1 ID SAL1 SAL2
 ,max_sal(id) AS SAL2 -- -------- --------
FROM staff 10 18357.50 22959.20
WHERE id < 40 20 18171.25 18357.50
ORDER BY id; 30 17506.75 19260.25

Figure 424, Function using common table expression

A scalar or table function cannot change any data, but it can be used in a DML statement. In
the next example, a function is used to remove all "e" characters from the name column:

CREATE FUNCTION remove_e(instr VARCHAR(50))
RETURNS VARCHAR(50)
RETURN replace(instr,’e’,’’);

UPDATE staff
SET name = remove_e(name)
WHERE id < 40;

Figure 425, Function used in update

Compound SQL Usage

A function can use compound SQL, with the following limitations:

• The statement delimiter, if needed, cannot be a semi-colon.

• No DML statements are allowed.

Below is an example of a scalar function that uses compound SQL to reverse the contents of a
text string:

DB2 UDB/V8.1 Cookbook ©

User Defined Functions 155

--#SET DELIMITER ! IMPORTANT
 ============
CREATE FUNCTION reverse(instr VARCHAR(50)) This example
RETURNS VARCHAR(50) uses an "!"
BEGIN ATOMIC as the stmt
 DECLARE outstr VARCHAR(50) DEFAULT ’’; delimiter.
 DECLARE curbyte SMALLINT DEFAULT 0;
 SET curbyte = LENGTH(RTRIM(instr));
 WHILE curbyte >= 1 DO
 SET outstr = outstr || SUBSTR(instr,curbyte,1);
 SET curbyte = curbyte - 1;
 END WHILE;
 RETURN outstr;
END!
 ANSWER
SELECT id AS ID ====================
 ,name AS NAME1 ID NAME1 NAME2
 ,reverse(name) AS NAME2 -- -------- -------
FROM staff 10 Sanders srednaS
WHERE id < 40 20 Pernal lanreP
ORDER BY id! 30 Marenghi ihgneraM

Figure 426, Function using compound SQL

Because compound SQL is a language with basic logical constructs, one can add code that
does different things, depending on what input is provided. To illustrate, in the next example
the possible output values are as follows:

• If the input is null, the output is set to null.

• If the length of the input string is less than 6, an error is flagged.

• If the length of the input string is less than 7, the result is set to -1.

• Otherwise, the result is the length of the input string.

Now for the code:

--#SET DELIMITER ! IMPORTANT
 ============
CREATE FUNCTION check_len(instr VARCHAR(50)) This example
RETURNS SMALLINT uses an "!"
BEGIN ATOMIC as the stmt
 IF instr IS NULL THEN delimiter.
 RETURN NULL;
 END IF;
 IF length(instr) < 6 THEN
 SIGNAL SQLSTATE ’75001’
 SET MESSAGE_TEXT = ’Input string is < 6’;
 ELSEIF length(instr) < 7 THEN
 RETURN -1;
 END IF;
 RETURN length(instr); ANSWER
END! =================
 ID NAME1 NAME2
SELECT id AS ID -- -------- -----
 ,name AS NAME1 10 Sanders 7
 ,check_len(name) AS NAME2 20 Pernal -1
FROM staff 30 Marenghi 8
WHERE id < 60 40 O’Brien 7
ORDER BY id! <error>

Figure 427, Function with error checking logic

The above query failed when it got to the name "Hanes", which is less than six bytes long.

 Graeme Birchall ©

156 Table Functions

Table Functions
A table function is very similar to a scalar function, except that it returns a set of rows and
columns, rather than a single value. Here is an example:

CREATE FUNCTION get_staff()
RETURNS TABLE (ID SMALLINT
 ,NAME VARCHAR(9)
 ,YR SMALLINT)
RETURN SELECT id
 ,name
 ,years ANSWER
 FROM staff; ==============
 ID NAME YR
SELECT * -- -------- --
FROM TABLE(get_staff()) AS s 10 Sanders 7
WHERE id < 40 20 Pernal 8
ORDER BY id; 30 Marenghi 5

Figure 428, Simple table function

NOTE: See page 151 for the create table function syntax diagram.

Description

The basic syntax for selecting from a table function goes as follows:

) FROM function-name (TABLE

 input-parmeter

,

 AS
 correlation-name

 ()

)

 column-name

,
 (

Figure 429, Table function usage - syntax

Note the following:

• The TABLE keyword, the function name (obviously), the two sets of parenthesis , and a
correlation name, are all required.

• If the function has input parameters, they are all required, and their type must match.

• Optionally, one can list all of the columns that are returned by the function, giving each
an assigned name

Below is an example of a function that uses all of the above features:

CREATE FUNCTION get_st(inval INTEGER)
RETURNS TABLE (ID SMALLINT
 ,NAME VARCHAR(9)
 ,YR SMALLINT)
RETURN SELECT id
 ,name
 ,years
 FROM staff ANSWER
 WHERE id = inval; ==============
 ID NNN YY
SELECT * -- -------- --
FROM TABLE(get_st(30)) AS sss (ID, NNN, YY); 30 Marenghi 5

Figure 430, Table function with parameters

DB2 UDB/V8.1 Cookbook ©

User Defined Functions 157

Examples

A table function returns a table, but it doesn’t have to touch a table. To illustrate, the follow-
ing function creates the data on the fly:

CREATE FUNCTION make_data()
RETURNS TABLE (KY SMALLINT
 ,DAT CHAR(5))
RETURN WITH temp1 (k#) AS (VALUES (1),(2),(3)) ANSWER
 SELECT k# ========
 ,DIGITS(SMALLINT(k#)) KY DAT
 FROM temp1; -- -----
 1 00001
SELECT * 2 00002
FROM TABLE(make_data()) AS ttt; 3 00003

Figure 431, Table function that creates data

The next example uses compound SQL to first flag an error if one of the input values is too
low, then find the maximum salary and related ID in the matching set of rows, then fetch the
same rows - returning the two previously found values at the same time:

CREATE FUNCTION staff_list(lo_key INTEGER IMPORTANT
 ,lo_sal INTEGER) ============
RETURNS TABLE (id SMALLINT This example
 ,salary DECIMAL(7,2) uses an "!"
 ,max_sal DECIMAL(7,2) as the stmt
 ,id_max SMALLINT) delimiter.
LANGUAGE SQL
READS SQL DATA
EXTERNAL ACTION
DETERMINISTIC
BEGIN ATOMIC
 DECLARE hold_sal DECIMAL(7,2) DEFAULT 0;
 DECLARE hold_key SMALLINT;
 IF lo_sal < 0 THEN
 SIGNAL SQLSTATE ’75001’
 SET MESSAGE_TEXT = ’Salary too low’;
 END IF;
 FOR get_max AS
 SELECT id AS in_key
 ,salary As in_sal
 FROM staff
 WHERE id >= lo_key
 DO
 IF in_sal > hold_sal THEN
 SET hold_sal = in_sal;
 SET hold_key = in_key;
 END IF;
 END FOR;
 RETURN
 SELECT id
 ,salary
 ,hold_sal
 ,hold_key ANSWER
 FROM staff ============================
 WHERE id >= lo_key; ID SALARY MAX_SAL ID_MAX
END! --- -------- -------- ------
 70 16502.83 22959.20 160
SELECT * 80 13504.60 22959.20 160
FROM TABLE(staff_list(66,1)) AS ttt 90 18001.75 22959.20 160
WHERE id < 111 100 18352.80 22959.20 160
ORDER BY id! 110 12508.20 22959.20 160

Figure 432, Table function with compound SQL

 Graeme Birchall ©

158 Table Functions

DB2 UDB/V8.1 Cookbook ©

Order By, Group By, and Having 159

Order By, Group By, and Having
Introduction

The GROUP BY statement is used to combine multiple rows into one. The HAVING expres-
sion is where one can select which of the combined rows are to be retrieved. In this sense, the
HAVING and the WHERE expressions are very similar. The ORDER BY statement is used
to sequence the rows in the final output.

Order By

 ORDER BY column name

 ,
ASC

 column#

 expression

DESC

Figure 433, ORDER BY syntax

The ORDER BY statement can only be applied to the final result set of the SQL statement.
Unlike the GROUP BY, it can not be used on any intermediate result set (e.g. a sub-query or
a nested-table expression). Nor can it be used in a view definition.

Sample Data

CREATE VIEW seq_data(col1,col2) AS VALUES
(’ab’,’xy’),(’AB’,’xy’),(’ac’,’XY’),(’AB’,’XY’),(’Ab’,’12’);

Figure 434, ORDER BY sample data definition

Order by Examples

SELECT col1 ANSWER
 ,col2 =========
FROM seq_data COL1 COL2
ORDER BY col1 ASC ---- ----
 ,col2; ab xy
 ac XY
 Ab 12
 AB xy
 AB XY

Figure 435, Simple ORDER BY

Observe how in the above example all of the lower case data comes before the upper case
data. Use the TRANSLATE function to display the data in case-independent order:

SELECT col1 ANSWER
 ,col2 =========
FROM seq_data COL1 COL2
ORDER BY TRANSLATE(col1) ASC ---- ----
 ,TRANSLATE(col2) ASC Ab 12
 ab xy
 AB XY
 AB xy
 ac XY

Figure 436, Case insensitive ORDER BY

 Graeme Birchall ©

160 Order By

One does not have to specify the column in the ORDER BY in the select list though, to the
end-user, the data may seem to be random order if one leaves it out:

SELECT col2 ANSWER
FROM seq_data ======
ORDER BY col1 COL2
 ,col2; ----
 xy
 XY
 12
 xy
 XY

Figure 437, ORDER BY on not-displayed column

In the next example, the data is (primarily) sorted in descending sequence, based on the sec-
ond byte of the first column:

SELECT col1 ANSWER
 ,col2 =========
FROM seq_data COL1 COL2
ORDER BY SUBSTR(col1,2) DESC ---- ----
 ,col2 ac XY
 ,1; AB xy
 AB XY
 Ab 12
 ab xy

Figure 438, ORDER BY second byte of first column

If a character column is defined FOR BIT DATA, the data is returned in internal ASCII se-
quence, as opposed to the standard collating sequence where ’a’ < ’A’ < ’b’ < ’B’. In ASCII se-
quence all upper case characters come before all lower case characters. In the following ex-
ample, the HEX function is used to display ordinary character data in bit-data order:

SELECT col1 ANSWER
 ,HEX(col1) AS hex1 ===================
 ,col2 COL1 HEX1 COL2 HEX2
 ,HEX(col2) AS hex2 ---- ---- ---- ----
FROM seq_data AB 4142 XY 5859
ORDER BY HEX(col1) AB 4142 xy 7879
 ,HEX(col2) Ab 4162 12 3132
 ab 6162 xy 7879
 ac 6163 XY 5859

Figure 439, ORDER BY in bit-data sequence

Arguably, either the BLOB or CLOB functions should be used (instead of HEX) to get the
data in ASCII sequence. However, when these two were tested (in DB2BATCH) they caused
the ORDER BY to fail.

Notes

• Specifying the same field multiple times in an ORDER BY list is allowed, but silly. Only
the first specification of the field will have any impact on the data output order.

• If the ORDER BY column list does not uniquely identify each row, those rows with du-
plicate values will come out in random order. This is almost always the wrong thing to do
when the data is being displayed to an end-user.

• Use the TRANSLATE function to order data regardless of case. Note that this trick may
not work consistently with some European character sets.

• NULL values always sort high.

DB2 UDB/V8.1 Cookbook ©

Order By, Group By, and Having 161

Group By and Having
The GROUP BY statement is used to group individual rows into combined sets based on the
value in one, or more, columns. The GROUPING SETS clause is used to define multiple in-
dependent GROUP BY clauses in one query. The ROLLUP and CUBE clauses are short-
hand forms of the GROUPING SETS statement.

 GROUP BY expression

 ,

 GROUPING SETS expression (

 ,

 ROLLUP expression (

 ,

(expression
 ,

)

)

CUBE expression (

 ,

(expression
 ,

)

)

()

()

)

 grand-total

 HAVING search-condition(s)

 ROLLUP stmt (see below)

 CUBE stmt (see below)

Figure 440, GROUP BY syntax

GROUP BY Sample Data

CREATE VIEW employee_view AS ANSWER
SELECT SUBSTR(workdept,1,1) AS d1 ==================
 ,workdept AS dept D1 DEPT SEX SALARY
 ,sex AS sex -- ---- --- ------
 ,INTEGER(salary) AS salary A A00 F 52750
FROM employee A A00 M 29250
WHERE workdept < ’D20’; A A00 M 46500
COMMIT; B B01 M 41250
 C C01 F 23800
 C C01 F 28420
 C C01 F 38250
 D D11 F 21340
SELECT * D D11 F 22250
FROM employee_view D D11 F 29840
ORDER BY 1,2,3,4; D D11 M 18270
 D D11 M 20450
 D D11 M 24680
 D D11 M 25280
 D D11 M 27740
 D D11 M 32250

Figure 441, GROUP BY Sample Data

Simple GROUP BY Statements

A simple GROUP BY is used to combine individual rows into a distinct set of summary rows.

 Graeme Birchall ©

162 Group By and Having

Rules and Restrictions

• There can only be one GROUP BY per SELECT. Multiple select statements in the same
query can each have their own GROUP BY.

• Every field in the SELECT list must either be specified in the GROUP BY, or must have
a column function applied against it.

• The result of a simple GROUP BY (i.e. with no GROUPING SETS, ROLLUP or CUBE
clause) is always a distinct set of rows, where the unique identifier is whatever fields
were grouped on.

• There is no guarantee that the rows resulting from a GROUP BY will come back in any
particular order, unless an ORDER BY is also specified.

• Variable length character fields with differing numbers on trailing blanks are treated as
equal in the GROUP. The number of trailing blanks, if any, in the result is unpredictable.

• When grouping, all null values in the GROUP BY fields are considered equal.

Sample Queries

In this first query we group our sample data by the first three fields in the view:

SELECT d1, dept, sex ANSWER
 ,SUM(salary) AS salary ========================
 ,SMALLINT(COUNT(*)) AS #rows D1 DEPT SEX SALARY #ROWS
FROM employee_view -- ---- --- ------ -----
WHERE dept <> ’ABC’ A A00 F 52750 1
GROUP BY d1, dept, sex A A00 M 75750 2
HAVING dept > ’A0’ B B01 M 41250 1
 AND (SUM(salary) > 100 C C01 F 90470 3
 OR MIN(salary) > 10 D D11 F 73430 3
 OR COUNT(*) <> 22) D D11 M 148670 6
ORDER BY d1, dept, sex;

Figure 442, Simple GROUP BY

There is no need to have the a field in the GROUP BY in the SELECT list, but the answer
really doesn’t make much sense if one does this:

SELECT sex ANSWER
 ,SUM(salary) AS salary ================
 ,SMALLINT(COUNT(*)) AS #rows SEX SALARY #ROWS
FROM employee_view --- ------ -----
WHERE sex IN (’F’,’M’) F 52750 1
GROUP BY dept F 90470 3
 ,sex F 73430 3
ORDER BY sex; M 75750 2
 M 41250 1
 M 148670 6

Figure 443, GROUP BY on non-displayed field

One can also do a GROUP BY on a derived field, which may, or may not be, in the statement
SELECT list. This is an amazingly stupid thing to do:

SELECT SUM(salary) AS salary ANSWER
 ,SMALLINT(COUNT(*)) AS #rows ============
FROM employee_view SALARY #ROWS
WHERE d1 <> ’X’ ------ -----
GROUP BY SUBSTR(dept,3,1) 128500 3
HAVING COUNT(*) <> 99; 353820 13

Figure 444, GROUP BY on derived field, not shown

DB2 UDB/V8.1 Cookbook ©

Order By, Group By, and Having 163

One can not refer to the name of a derived column in a GROUP BY statement. Instead, one
has to repeat the actual derivation code. One can however refer to the new column name in an
ORDER BY:

SELECT SUBSTR(dept,3,1) AS wpart ANSWER
 ,SUM(salary) AS salary ==================
 ,SMALLINT(COUNT(*)) AS #rows WPART SALARY #ROWS
FROM employee_view ----- ------ -----
GROUP BY SUBSTR(dept,3,1) 1 353820 13
ORDER BY wpart DESC; 0 128500 3

Figure 445, GROUP BY on derived field, shown

GROUPING SETS Statement

The GROUPING SETS statement enable one to get multiple GROUP BY result sets from a
single statement. It is important to understand the difference between nested (i.e. in secondary
parenthesis), and non-nested GROUPING SETS sub-phrases:

• A nested list of columns works as a simple GROUP BY.

• A non-nested list of columns works as separate simple GROUP BY statements, which are
then combined in an implied UNION ALL.

GROUP BY GROUPING SETS ((A,B,C)) is equivalent to GROUP BY A
 ,B
 ,C

GROUP BY GROUPING SETS (A,B,C) is equivalent to GROUP BY A
 UNION ALL
 GROUP BY B
 UNION ALL
 GROUP BY C

GROUP BY GROUPING SETS (A,(B,C)) is equivalent to GROUP BY A
 UNION ALL
 GROUP BY B
 ,BY C

Figure 446, GROUPING SETS in parenthesis vs. not

Multiple GROUPING SETS in the same GROUP BY are combined together as if they were
simple fields in a GROUP BY list:

GROUP BY GROUPING SETS (A) is equivalent to GROUP BY A
 ,GROUPING SETS (B) ,B
 ,GROUPING SETS (C) ,C

GROUP BY GROUPING SETS (A) is equivalent to GROUP BY A
 ,GROUPING SETS ((B,C)) ,B
 ,C

GROUP BY GROUPING SETS (A) is equivalent to GROUP BY A
 ,GROUPING SETS (B,C) ,B
 UNION ALL
 GROUP BY A
 ,C

Figure 447, Multiple GROUPING SETS

One can mix simple expressions and GROUPING SETS in the same GROUP BY:

GROUP BY A is equivalent to GROUP BY A
 ,GROUPING SETS ((B,C)) ,B
 ,C

Figure 448, Simple GROUP BY expression and GROUPING SETS combined

 Graeme Birchall ©

164 Group By and Having

Repeating the same field in two parts of the GROUP BY will result in different actions de-
pending on the nature of the repetition. The second field reference is ignored if a standard
GROUP BY is being made, and used if multiple GROUP BY statements are implied:

GROUP BY A is equivalent to GROUP BY A
 ,B ,B
 ,GROUPING SETS ((B,C)) ,C

GROUP BY A is equivalent to GROUP BY A
 ,B ,B
 ,GROUPING SETS (B,C) ,C
 UNION ALL
 GROUP BY A
 ,B

GROUP BY A is equivalent to GROUP BY A
 ,B ,B
 ,C ,C
 ,GROUPING SETS (B,C) UNION ALL
 GROUP BY A
 ,B
 ,C

Figure 449, Mixing simple GROUP BY expressions and GROUPING SETS

A single GROUPING SETS statement can contain multiple sets of implied GROUP BY
phrases (obviously). These are combined using implied UNION ALL statements:

GROUP BY GROUPING SETS ((A,B,C) is equivalent to GROUP BY A
 ,(A,B) ,B
 ,(C)) ,C
 UNION ALL
 GROUP BY A
 ,B
 UNION ALL
 GROUP BY C

GROUP BY GROUPING SETS ((A) is equivalent to GROUP BY A
 ,(B,C) UNION ALL
 ,(A) GROUP BY B
 ,A ,C
 ,((C))) UNION ALL
 GROUP BY A
 UNION ALL
 GROUP BY A
 UNION ALL
 GROUP BY C

Figure 450, GROUPING SETS with multiple components

The null-field list "()" can be used to get a grand total. This is equivalent to not having the
GROUP BY at all.

GROUP BY GROUPING SETS ((A,B,C) is equivalent to GROUP BY A
 ,(A,B) ,B
 ,(A) ,C
 ,()) UNION ALL
 GROUP BY A
 ,B
is equivalent to UNION ALL
 GROUP BY A
 UNION ALL
ROLLUP(A,B,C) grand-totl

Figure 451, GROUPING SET with multiple components, using grand-total

The above GROUPING SETS statement is equivalent to a ROLLUP(A,B,C), while the next
is equivalent to a CUBE(A,B,C):

DB2 UDB/V8.1 Cookbook ©

Order By, Group By, and Having 165

GROUP BY GROUPING SETS ((A,B,C) is equivalent to GROUP BY A
 ,(A,B) ,B
 ,(A,C) ,C
 ,(B,C) UNION ALL
 ,(A) GROUP BY A
 ,(B) ,B
 ,(C) UNION ALL
 ,()) GROUP BY A
 ,C
 UNION ALL
 GROUP BY B
is equivalent to ,C
 UNION ALL
 GROUP BY A
 UNION ALL
CUBE(A,B,C) GROUP BY B
 UNION ALL
 GROUP BY C
 UNION ALL
 grand-totl

Figure 452, GROUPING SET with multiple components, using grand-total

SQL Examples

This first example has two GROUPING SETS. Because the second is in nested parenthesis,
the result is the same as a simple three-field group by:

SELECT d1 ANSWER
 ,dept ==============================
 ,sex D1 DEPT SEX SAL #R DF WF SF
 ,SUM(salary) AS sal -- ---- --- ------ -- -- -- --
 ,SMALLINT(COUNT(*)) AS #r A A00 F 52750 1 0 0 0
 ,GROUPING(d1) AS f1 A A00 M 75750 2 0 0 0
 ,GROUPING(dept) AS fd B B01 M 41250 1 0 0 0
 ,GROUPING(sex) AS fs C C01 F 90470 3 0 0 0
FROM employee_view D D11 F 73430 3 0 0 0
GROUP BY GROUPING SETS (d1) D D11 M 148670 6 0 0 0
 ,GROUPING SETS ((dept,sex))
ORDER BY d1
 ,dept
 ,sex;

Figure 453, Multiple GROUPING SETS, making one GROUP BY

NOTE: The GROUPING(field-name) column function is used in these examples to identify
what rows come from which particular GROUPING SET. A value of 1 indicates that the cor-
responding data field is null because the row is from of a GROUPING SET that does not in-
volve this row. Otherwise, the value is zero.

In the next query, the second GROUPING SET is not in nested-parenthesis. The query is
therefore equivalent to GROUP BY D1, DEPT UNION ALL GROUP BY D1, SEX:

SELECT d1 ANSWER
 ,dept ==============================
 ,sex D1 DEPT SEX SAL #R F1 FD FS
 ,SUM(salary) AS sal -- ---- --- ------ -- -- -- --
 ,SMALLINT(COUNT(*)) AS #r A A00 - 128500 3 0 0 1
 ,GROUPING(d1) AS f1 A - F 52750 1 0 1 0
 ,GROUPING(dept) AS fd A - M 75750 2 0 1 0
 ,GROUPING(sex) AS fs B B01 - 41250 1 0 0 1
FROM employee_view B - M 41250 1 0 1 0
GROUP BY GROUPING SETS (d1) C C01 - 90470 3 0 0 1
 ,GROUPING SETS (dept,sex) C - F 90470 3 0 1 0
ORDER BY d1 D D11 - 222100 9 0 0 1
 ,dept D - F 73430 3 0 1 0
 ,sex; D - M 148670 6 0 1 0

Figure 454, Multiple GROUPING SETS, making two GROUP BY results

 Graeme Birchall ©

166 Group By and Having

It is generally unwise to repeat the same field in both ordinary GROUP BY and GROUPING
SETS statements, because the result is often rather hard to understand. To illustrate, the fol-
lowing two queries differ only in their use of nested-parenthesis. Both of them repeat the
DEPT field:

• In the first, the repetition is ignored, because what is created is an ordinary GROUP BY
on all three fields.

• In the second, repetition is important, because two GROUP BY statements are implicitly
generated. The first is on D1 and DEPT. The second is on D1, DEPT, and SEX.

SELECT d1 ANSWER
 ,dept ==============================
 ,sex D1 DEPT SEX SAL #R F1 FD FS
 ,SUM(salary) AS sal ------------------------------
 ,SMALLINT(COUNT(*)) AS #r A A00 F 52750 1 0 0 0
 ,GROUPING(d1) AS f1 A A00 M 75750 2 0 0 0
 ,GROUPING(dept) AS fd B B01 M 41250 1 0 0 0
 ,GROUPING(sex) AS fs C C01 F 90470 3 0 0 0
FROM employee_view D D11 F 73430 3 0 0 0
GROUP BY d1 D D11 M 148670 6 0 0 0
 ,dept
 ,GROUPING SETS ((dept,sex))
ORDER BY d1
 ,dept
 ,sex;

Figure 455, Repeated field essentially ignored

SELECT d1 ANSWER
 ,dept ==============================
 ,sex D1 DEPT SEX SAL #R F1 FD FS
 ,SUM(salary) AS sal ------------------------------
 ,SMALLINT(COUNT(*)) AS #r A A00 F 52750 1 0 0 0
 ,GROUPING(d1) AS f1 A A00 M 75750 2 0 0 0
 ,GROUPING(dept) AS fd A A00 - 128500 3 0 0 1
 ,GROUPING(sex) AS fs B B01 M 41250 1 0 0 0
FROM employee_view B B01 - 41250 1 0 0 1
GROUP BY d1 C C01 F 90470 3 0 0 0
 ,DEPT C C01 - 90470 3 0 0 1
 ,GROUPING SETS (dept,sex) D D11 F 73430 3 0 0 0
ORDER BY d1 D D11 M 148670 6 0 0 0
 ,dept D D11 - 222100 9 0 0 1
 ,sex;

Figure 456, Repeated field impacts query result

The above two queries can be rewritten as follows:

GROUP BY d1 is equivalent to GROUP BY d1
 ,dept ,dept
 ,GROUPING SETS ((dept,sex)) sex

GROUP BY d1 is equivalent to GROUP BY d1
 ,dept ,dept
 ,GROUPING SETS (dept,sex) sex
 UNION ALL
 GROUP BY d1
 ,dept
 ,dept

Figure 457, Repeated field impacts query result

NOTE: Repetitions of the same field in a GROUP BY (as is done above) are ignored during
query processing. Therefore GROUP BY D1, DEPT, DEPT, SEX is the same as GROUP BY
D1, DEPT, SEX.

DB2 UDB/V8.1 Cookbook ©

Order By, Group By, and Having 167

ROLLUP Statement

A ROLLUP expression displays sub-totals for the specified fields. This is equivalent to doing
the original GROUP BY, and also doing more groupings on sets of the left-most columns.

GROUP BY ROLLUP(A,B,C) ===> GROUP BY GROUPING SETS((A,B,C)
 ,(A,B)
 ,(A)
 ,())

GROUP BY ROLLUP(C,B) ===> GROUP BY GROUPING SETS((C,B)
 ,(C)
 ,())

GROUP BY ROLLUP(A) ===> GROUP BY GROUPING SETS((A)
 ,())

Figure 458, ROLLUP vs. GROUPING SETS

Imagine that we wanted to GROUP BY, but not ROLLUP one field in a list of fields. To do
this, we simply combine the field to be removed with the next more granular field:

GROUP BY ROLLUP(A,(B,C)) ===> GROUP BY GROUPING SETS((A,B,C)
 ,(A)
 ,())

Figure 459, ROLLUP vs. GROUPING SETS

Multiple ROLLUP statements in the same GROUP BY act independently of each other:

GROUP BY ROLLUP(A) ===> GROUP BY GROUPING SETS((A,B,C)
 ,ROLLUP(B,C) ,(A,B)
 ,(A)
 ,(B,C)
 ,(B)
 ,())

Figure 460, ROLLUP vs. GROUPING SETS

SQL Examples

Here is a standard GROUP BY that gets no sub-totals:

SELECT dept ANSWER
 ,SUM(salary) AS salary ====================
 ,SMALLINT(COUNT(*)) AS #rows DEPT SALARY #ROWS FD
 ,GROUPING(dept) AS fd ---- ------ ----- --
FROM employee_view A00 128500 3 0
GROUP BY dept B01 41250 1 0
ORDER BY dept; C01 90470 3 0
 D11 222100 9 0

Figure 461, Simple GROUP BY

Imagine that we wanted to also get a grand total for the above. Below is an example of using
the ROLLUP statement to do this:

SELECT dept ANSWER
 ,SUM(salary) AS salary ====================
 ,SMALLINT(COUNT(*)) AS #rows DEPT SALARY #ROWS FD
 ,GROUPING(dept) AS FD ---- ------ ----- --
FROM employee_view A00 128500 3 0
GROUP BY ROLLUP(dept) B01 41250 1 0
ORDER BY dept; C01 90470 3 0
 D11 222100 9 0
 - 482320 16 1

Figure 462, GROUP BY with ROLLUP

NOTE: The GROUPING(field-name) function that is selected in the above example returns a
one when the output row is a summary row, else it returns a zero.

 Graeme Birchall ©

168 Group By and Having

Alternatively, we could do things the old-fashioned way and use a UNION ALL to combine
the original GROUP BY with an all-row summary:

SELECT dept ANSWER
 ,SUM(salary) AS salary ====================
 ,SMALLINT(COUNT(*)) AS #rows DEPT SALARY #ROWS FD
 ,GROUPING(dept) AS fd ---- ------ ----- --
FROM employee_view A00 128500 3 0
GROUP BY dept B01 41250 1 0
UNION ALL C01 90470 3 0
SELECT CAST(NULL AS CHAR(3)) AS dept D11 222100 9 0
 ,SUM(salary) AS salary - 482320 16 1
 ,SMALLINT(COUNT(*)) AS #rows
 ,CAST(1 AS INTEGER) AS fd
FROM employee_view
ORDER BY dept;

Figure 463, ROLLUP done the old-fashioned way

Specifying a field both in the original GROUP BY, and in a ROLLUP list simply results in
every data row being returned twice. In other words, the result is garbage:

SELECT dept ANSWER
 ,SUM(salary) AS salary ====================
 ,SMALLINT(COUNT(*)) AS #rows DEPT SALARY #ROWS FD
 ,GROUPING(dept) AS fd ---- ------ ----- --
FROM employee_view A00 128500 3 0
GROUP BY dept A00 128500 3 0
 ,ROLLUP(dept) B01 41250 1 0
ORDER BY dept; B01 41250 1 0
 C01 90470 3 0
 C01 90470 3 0
 D11 222100 9 0
 D11 222100 9 0

Figure 464, Repeating a field in GROUP BY and ROLLUP (error)

Below is a graphic representation of why the data rows were repeated above. Observe that
two GROUP BY statements were, in effect, generated:

GROUP BY dept => GROUP BY dept => GROUP BY dept
 ,ROLLUP(dept) ,GROUPING SETS((dept) UNION ALL
 ,()) GROUP BY dept
 ,()

Figure 465, Repeating a field, explanation

In the next example the GROUP BY, is on two fields, with the second also being rolled up:

SELECT dept ANSWER
 ,sex ===========================
 ,SUM(salary) AS salary DEPT SEX SALARY #ROWS FD FS
 ,SMALLINT(COUNT(*)) AS #rows ---- --- ------ ----- -- --
 ,GROUPING(dept) AS fd A00 F 52750 1 0 0
 ,GROUPING(sex) AS fs A00 M 75750 2 0 0
FROM employee_view A00 - 128500 3 0 1
GROUP BY dept B01 M 41250 1 0 0
 ,ROLLUP(sex) B01 - 41250 1 0 1
ORDER BY dept C01 F 90470 3 0 0
 ,sex; C01 - 90470 3 0 1
 D11 F 73430 3 0 0
 D11 M 148670 6 0 0
 D11 - 222100 9 0 1

Figure 466, GROUP BY on 1st field, ROLLUP on 2nd

The next example does a ROLLUP on both the DEPT and SEX fields, which means that we
will get rows for the following:

• The work-department and sex field combined (i.e. the original raw GROUP BY).

DB2 UDB/V8.1 Cookbook ©

Order By, Group By, and Having 169

• A summary for all sexes within an individual work-department.

• A summary for all work-departments (i.e. a grand-total).

SELECT dept ANSWER
 ,sex ===========================
 ,SUM(salary) AS salary DEPT SEX SALARY #ROWS FD FS
 ,SMALLINT(COUNT(*)) AS #rows ---- --- ------ ----- -- --
 ,GROUPING(dept) AS fd A00 F 52750 1 0 0
 ,GROUPING(sex) AS fs A00 M 75750 2 0 0
FROM employee_view A00 - 128500 3 0 1
GROUP BY ROLLUP(dept B01 M 41250 1 0 0
 ,sex) B01 - 41250 1 0 1
ORDER BY dept C01 F 90470 3 0 0
 ,sex; C01 - 90470 3 0 1
 D11 F 73430 3 0 0
 D11 M 148670 6 0 0
 D11 - 222100 9 0 1
 - - 482320 16 1 1

Figure 467, ROLLUP on DEPT, then SEX

In the next example we have reversed the ordering of fields in the ROLLUP statement. To
make things easier to read, we have also altered the ORDER BY sequence. Now get an indi-
vidual row for each sex and work-department value, plus a summary row for each sex:, plus a
grand-total row:

SELECT sex ANSWER
 ,dept ===========================
 ,SUM(salary) AS salary SEX DEPT SALARY #ROWS FD FS
 ,SMALLINT(COUNT(*)) AS #rows --- ---- ------ ----- -- --
 ,GROUPING(dept) AS fd F A00 52750 1 0 0
 ,GROUPING(sex) AS fs F C01 90470 3 0 0
FROM employee_view F D11 73430 3 0 0
GROUP BY ROLLUP(sex F - 216650 7 1 0
 ,dept) M A00 75750 2 0 0
ORDER BY sex M B01 41250 1 0 0
 ,dept; M D11 148670 6 0 0
 M - 265670 9 1 0
 - - 482320 16 1 1

Figure 468, ROLLUP on SEX, then DEPT

The next statement is the same as the prior, but it uses the logically equivalent GROUPING
SETS syntax:

SELECT sex ANSWER
 ,dept ===========================
 ,SUM(salary) AS salary SEX DEPT SALARY #ROWS FD FS
 ,SMALLINT(COUNT(*)) AS #rows --- ---- ------ ----- -- --
 ,GROUPING(dept) AS fd F A00 52750 1 0 0
 ,GROUPING(sex) AS fs F C01 90470 3 0 0
FROM employee_view F D11 73430 3 0 0
GROUP BY GROUPING SETS ((sex, dept) F - 216650 7 1 0
 ,(sex) M A00 75750 2 0 0
 ,()) M B01 41250 1 0 0
ORDER BY sex M D11 148670 6 0 0
 ,dept; M - 265670 9 1 0
 - - 482320 16 1 1

Figure 469, ROLLUP on SEX, then DEPT

The next example has two independent rollups:

• The first generates a summary row for each sex.

• The second generates a summary row for each work-department.

 Graeme Birchall ©

170 Group By and Having

The two together make a (single) combined summary row of all matching data. This query is
the same as a UNION of the two individual rollups, but it has the advantage of being done in
a single pass of the data. The result is the same as a CUBE of the two fields:

SELECT sex ANSWER
 ,dept ===========================
 ,SUM(salary) AS salary SEX DEPT SALARY #ROWS FD FS
 ,SMALLINT(COUNT(*)) AS #rows --- ---- ------ ----- -- --
 ,GROUPING(dept) AS fd F A00 52750 1 0 0
 ,GROUPING(sex) AS fs F C01 90470 3 0 0
FROM employee_view F D11 73430 3 0 0
GROUP BY ROLLUP(sex) F - 216650 7 1 0
 ,ROLLUP(dept) M A00 75750 2 0 0
ORDER BY sex M B01 41250 1 0 0
 ,dept; M D11 148670 6 0 0
 M - 265670 9 1 0
 - A00 128500 3 0 1
 - B01 41250 1 0 1
 - C01 90470 3 0 1
 - D11 222100 9 0 1
 - - 482320 16 1 1

Figure 470, Two independent ROLLUPS

Below we use an inner set of parenthesis to tell the ROLLUP to treat the two fields as one,
which causes us to only get the detailed rows, and the grand-total summary:

SELECT dept ANSWER
 ,sex ===========================
 ,SUM(salary) AS salary DEPT SEX SALARY #ROWS FD FS
 ,SMALLINT(COUNT(*)) AS #rows ---- --- ------ ----- -- --
 ,GROUPING(dept) AS fd A00 F 52750 1 0 0
 ,GROUPING(sex) AS fs A00 M 75750 2 0 0
FROM employee_view B01 M 41250 1 0 0
GROUP BY ROLLUP((dept,sex)) C01 F 90470 3 0 0
ORDER BY dept D11 F 73430 3 0 0
 ,sex; D11 M 148670 6 0 0
 - - 482320 16 1 1

Figure 471, Combined-field ROLLUP

The HAVING statement can be used to refer to the two GROUPING fields. For example, in
the following query, we eliminate all rows except the grand total:

SELECT SUM(salary) AS salary ANSWER
 ,SMALLINT(COUNT(*)) AS #rows ============
FROM employee_view SALARY #ROWS
GROUP BY ROLLUP(sex ------ -----
 ,dept) 482320 16
HAVING GROUPING(dept) = 1
 AND GROUPING(sex) = 1
ORDER BY salary;

Figure 472, Use HAVING to get only grand-total row

Below is a logically equivalent SQL statement:

SELECT SUM(salary) AS salary ANSWER
 ,SMALLINT(COUNT(*)) AS #rows ============
FROM employee_view SALARY #ROWS
GROUP BY GROUPING SETS(()); ------ -----
 482320 16

Figure 473, Use GROUPING SETS to get grand-total row

Here is another:

DB2 UDB/V8.1 Cookbook ©

Order By, Group By, and Having 171

SELECT SUM(salary) AS salary ANSWER
 ,SMALLINT(COUNT(*)) AS #rows ============
FROM employee_view SALARY #ROWS
GROUP BY (); ------ -----
 482320 16

Figure 474, Use GROUP BY to get grand-total row

And another:

SELECT SUM(salary) AS salary ANSWER
 ,SMALLINT(COUNT(*)) AS #rows ============
FROM employee_view; SALARY #ROWS
 ------ -----
 482320 16

Figure 475, Get grand-total row directly

CUBE Statement

A CUBE expression displays a cross-tabulation of the sub-totals for any specified fields. As
such, it generates many more totals than the similar ROLLUP.

GROUP BY CUBE(A,B,C) ===> GROUP BY GROUPING SETS((A,B,C)
 ,(A,B)
 ,(A,C)
 ,(B,C)
 ,(A)
 ,(B)
 ,(C)
 ,())

GROUP BY CUBE(C,B) ===> GROUP BY GROUPING SETS((C,B)
 ,(C)
 ,(B)
 ,())

GROUP BY CUBE(A) ===> GROUP BY GROUPING SETS((A)
 ,())

Figure 476, CUBE vs. GROUPING SETS

As with the ROLLLUP statement, any set of fields in nested parenthesis is treated by the
CUBE as a single field:

GROUP BY CUBE(A,(B,C)) ===> GROUP BY GROUPING SETS((A,B,C)
 ,(B,C)
 ,(A)
 ,())

Figure 477, CUBE vs. GROUPING SETS

Having multiple CUBE statements is allowed, but very, very silly:

GROUP BY CUBE(A,B) ==> GROUPING SETS((A,B,C),(A,B),(A,B,C),(A,B)
 ,CUBE(B,C) ,(A,B,C),(A,B),(A,C),(A)
 ,(B,C),(B),(B,C),(B)
 ,(B,C),(B),(C),())

Figure 478, CUBE vs. GROUPING SETS

Obviously, the above is a lot of GROUPING SETS, and even more underlying GROUP BY
statements. Think of the query as the Cartesian Product of the two CUBE statements, which
are first resolved down into the following two GROUPING SETS:

((A,B),(A),(B),())

((B,C),(B),(C),())

 Graeme Birchall ©

172 Group By and Having

SQL Examples

Below is a standard CUBE statement:

SELECT d1 ANSWER
 ,dept ==============================
 ,sex D1 DEPT SEX SAL #R F1 FD FS
 ,INT(SUM(salary)) AS sal -- ---- --- ------ -- -- -- --
 ,SMALLINT(COUNT(*)) AS #r A A00 F 52750 1 0 0 0
 ,GROUPING(d1) AS f1 A A00 M 75750 2 0 0 0
 ,GROUPING(dept) AS fd A A00 - 128500 3 0 0 1
 ,GROUPING(sex) AS fs A - F 52750 1 0 1 0
FROM employee_view A - M 75750 2 0 1 0
GROUP BY CUBE(d1, dept, sex) A - - 128500 3 0 1 1
ORDER BY d1 B B01 M 41250 1 0 0 0
 ,dept B B01 - 41250 1 0 0 1
 ,sex; B - M 41250 1 0 1 0
 B - - 41250 1 0 1 1
 C C01 F 90470 3 0 0 0
 C C01 - 90470 3 0 0 1
 C - F 90470 3 0 1 0
 C - - 90470 3 0 1 1
 D D11 F 73430 3 0 0 0
 D D11 M 148670 6 0 0 0
 D D11 - 222100 9 0 0 1
 D - F 73430 3 0 1 0
 D - M 148670 6 0 1 0
 D - - 222100 9 0 1 1
 - A00 F 52750 1 1 0 0
 - A00 M 75750 2 1 0 0
 - A00 - 128500 3 1 0 1
 - B01 M 41250 1 1 0 0
 - B01 - 41250 1 1 0 1
 - C01 F 90470 3 1 0 0
 - C01 - 90470 3 1 0 1
 - D11 F 73430 3 1 0 0
 - D11 M 148670 6 1 0 0
 - D11 - 222100 9 1 0 1
 - - F 216650 7 1 1 0
 - - M 265670 9 1 1 0
 - - - 482320 16 1 1 1

Figure 479, CUBE example

Here is the same query expressed as GROUPING SETS;

SELECT d1 ANSWER
 ,dept ==============================
 ,sex D1 DEPT SEX SAL #R F1 FD FS
 ,INT(SUM(salary)) AS sal -- ---- --- ------ -- -- -- --
 ,SMALLINT(COUNT(*)) AS #r A A00 F 52750 1 0 0 0
 ,GROUPING(d1) AS f1 A A00 M 75750 2 0 0 0
 ,GROUPING(dept) AS fd etc... (same as prior query)
 ,GROUPING(sex) AS fs
FROM employee_view
GROUP BY GROUPING SETS ((d1, dept, sex)
 ,(d1,dept)
 ,(d1,sex)
 ,(dept,sex)
 ,(d1)
 ,(dept)
 ,(sex)
 ,())
ORDER BY d1
 ,dept
 ,sex;

Figure 480, CUBE expressed using multiple GROUPING SETS

DB2 UDB/V8.1 Cookbook ©

Order By, Group By, and Having 173

Here is the same CUBE statement expressed as a ROLLUP, plus the required additional
GROUPING SETS:

SELECT d1 ANSWER
 ,dept ==============================
 ,sex D1 DEPT SEX SAL #R F1 FD FS
 ,INT(SUM(salary)) AS sal -- ---- --- ------ -- -- -- --
 ,SMALLINT(COUNT(*)) AS #r A A00 F 52750 1 0 0 0
 ,GROUPING(d1) AS f1 A A00 M 75750 2 0 0 0
 ,GROUPING(dept) AS fd etc... (same as prior query)
 ,GROUPING(sex) AS fs
FROM employee_view
GROUP BY GROUPING SETS (ROLLUP(d1, dept, sex)
 ,(dept, sex)
 ,(sex, dept)
 ,(d1, sex))
ORDER BY d1
 ,dept
 ,sex;

Figure 481, CUBE expressed using ROLLUP and GROUPING SETS

A CUBE on a list of columns in nested parenthesis acts as if the set of columns was only one
field. The result is that one gets a standard GROUP BY (on the listed columns), plus a row
with the grand-totals:

SELECT d1 ANSWER
 ,dept ==============================
 ,sex D1 DEPT SEX SAL #R F1 FD FS
 ,INT(SUM(salary)) AS sal ------------------------------
 ,SMALLINT(COUNT(*)) AS #r A A00 F 52750 1 0 0 0
 ,GROUPING(d1) AS f1 A A00 M 75750 2 0 0 0
 ,GROUPING(dept) AS fd B B01 M 41250 1 0 0 0
 ,GROUPING(sex) AS fs C C01 F 90470 3 0 0 0
FROM employee_VIEW D D11 F 73430 3 0 0 0
GROUP BY CUBE((d1, dept, sex)) D D11 M 148670 6 0 0 0
ORDER BY d1 - - - 482320 16 1 1 1
 ,dept
 ,sex;

Figure 482, CUBE on compound fields

The above query is resolved thus:

GROUP BY CUBE((A,B,C) => GROUP BY GROUING SETS ((A,B,C) => GROUP BY A
 ,()) ,B
 ,C
 UNION ALL
 GROUP BY()

Figure 483, CUBE on compound field, explanation

Complex Grouping Sets - Done Easy

Many of the more complicated SQL statements illustrated above are essentially unreadable
because it is very hard to tell what combinations of fields are being rolled up, and what are
not. There ought to be a more user-friendly way and, fortunately, there is. The CUBE com-
mand can be used to roll up everything. Then one can use ordinary SQL predicates to select
only those totals and sub-totals that one wants to display.

NOTE: Queries with multiple complicated ROLLUP and/or GROUPING SET statements
sometimes fail to compile. In which case, this method can be used to get the answer.

To illustrate this technique, consider the following query. It summarizes the data in the sam-
ple view by three fields:

 Graeme Birchall ©

174 Group By and Having

SELECT d1 AS d1 ANSWER
 ,dept AS dpt ==================
 ,sex AS sx D1 DPT SX SAL R
 ,INT(SUM(salary)) AS sal -- --- -- ------ -
 ,SMALLINT(COUNT(*)) AS r A A00 F 52750 1
FROM employee_VIEW A A00 M 75750 2
GROUP BY d1 B B01 M 41250 1
 ,dept C C01 F 90470 3
 ,sex D D11 F 73430 3
ORDER BY 1,2,3; D D11 M 148670 6

Figure 484, Basic GROUP BY example

Now imagine that we want to extend the above query to get the following sub-total rows:

DESIRED SUB-TOTALS EQUIVILENT TO
================== =====================================
D1, DEPT, and SEX. GROUP BY GROUPING SETS ((d1,dept,sex)
D1 and DEPT. ,(d1,dept)
D1 and SEX. ,(d1,sex)
D1. ,(d1)
SEX. ,(sex)
Grand total. EQUIVILENT TO ,())
 =======================
 GROUP BY ROLLUP(d1,dept)
 ,ROLLUP(sex)

Figure 485, Sub-totals that we want to get

Rather than use either of the syntaxes shown on the right above, below we use the CUBE ex-
pression to get all sub-totals, and then select those that we want:

SELECT *
FROM (SELECT d1 AS d1
 ,dept AS dpt
 ,sex AS sx
 ,INT(SUM(salary)) AS sal
 ,SMALLINT(COUNT(*)) AS #r
 ,SMALLINT(GROUPING(d1)) AS g1
 ,SMALLINT(GROUPING(dept)) AS gd
 ,SMALLINT(GROUPING(sex)) AS gs
 FROM EMPLOYEE_VIEW ANSWER
 GROUP BY CUBE(d1,dept,sex) ============================
)AS xxx D1 DPT SX SAL #R G1 GD GS
WHERE (g1,gd,gs) = (0,0,0) -- --- -- ------ -- -- -- --
 OR (g1,gd,gs) = (0,0,1) A A00 F 52750 1 0 0 0
 OR (g1,gd,gs) = (0,1,0) A A00 M 75750 2 0 0 0
 OR (g1,gd,gs) = (0,1,1) A A00 - 128500 3 0 0 1
 OR (g1,gd,gs) = (1,1,0) A - F 52750 1 0 1 0
 OR (g1,gd,gs) = (1,1,1) A - M 75750 2 0 1 0
ORDER BY 1,2,3; A - - 128500 3 0 1 1
 B B01 M 41250 1 0 0 0
 B B01 - 41250 1 0 0 1
 B - M 41250 1 0 1 0
 B - - 41250 1 0 1 1
 C C01 F 90470 3 0 0 0
 C C01 - 90470 3 0 0 1
 C - F 90470 3 0 1 0
 C - - 90470 3 0 1 1
 D D11 F 73430 3 0 0 0
 D D11 M 148670 6 0 0 0
 D D11 - 222100 9 0 0 1
 D - F 73430 3 0 1 0
 D - M 148670 6 0 1 0
 D - - 222100 9 0 1 1
 - - F 216650 7 1 1 0
 - - M 265670 9 1 1 0
 - - - 482320 16 1 1 1

Figure 486, Get lots of sub-totals, using CUBE

DB2 UDB/V8.1 Cookbook ©

Order By, Group By, and Having 175

In the above query, the GROUPING function (see page 71) is used to identify what fields are
being summarized on each row. A value of one indicates that the field is being summarized;
while a value of zero means that it is not. Only the following combinations are kept:

(G1,GD,GS) = (0,0,0) <== D1, DEPT, SEX
(G1,GD,GS) = (0,0,1) <== D1, DEPT
(G1,GD,GS) = (0,1,0) <== D1, SEX
(G1,GD,GS) = (0,1,1) <== D1,
(G1,GD,GS) = (1,1,0) <== SEX,
(G1,GD,GS) = (1,1,1) <== grand total

Figure 487, Predicates used - explanation

Here is the same query written using two ROLLUP expressions. You can be the judge as to
which is the easier to understand:

SELECT d1 ANSWER
 ,dept =====================
 ,sex D1 DEPT SEX SAL #R
 ,INT(SUM(salary)) AS sal -- ---- --- ------ --
 ,SMALLINT(COUNT(*)) AS #r A A00 F 52750 1
FROM employee_view A A00 M 75750 2
GROUP BY ROLLUP(d1,dept) A A00 - 128500 3
 ,ROLLUP(sex) A - F 52750 1
ORDER BY 1,2,3; A - M 75750 2
 A - - 128500 3
 B B01 M 41250 1
 B B01 - 41250 1
 B - M 41250 1
 B - - 41250 1
 C C01 F 90470 3
 C C01 - 90470 3
 C - F 90470 3
 C - - 90470 3
 D D11 F 73430 3
 D D11 M 148670 6
 D D11 - 222100 9
 D - F 73430 3
 D - M 148670 6
 D - - 222100 9
 - - F 216650 7
 - - M 265670 9
 - - - 482320 16

Figure 488, Get lots of sub-totals, using ROLLUP

Group By and Order By

One should never assume that the result of a GROUP BY will be a set of appropriately or-
dered rows because DB2 may choose to use a "strange" index for the grouping so as to avoid
doing a row sort. For example, if one says "GROUP BY C1, C2" and the only suitable index
is on C2 descending and then C1, the data will probably come back in index-key order.

SELECT dept, job
 ,COUNT(*)
FROM staff
GROUP BY dept, job
ORDER BY dept, job;

Figure 489, GROUP BY with ORDER BY

NOTE: Always code an ORDER BY if there is a need for the rows returned from the query to
be specifically ordered - which there usually is.

 Graeme Birchall ©

176 Group By and Having

Group By in Join

We want to select those rows in the STAFF table where the average SALARY for the em-
ployee’s DEPT is greater than $18,000. Answering this question requires using a JOIN and
GROUP BY in the same statement. The GROUP BY will have to be done first, then its’ result
will be joined to the STAFF table.

There are two syntactically different, but technically similar, ways to write this query. Both
techniques use a temporary table, but the way by which this is expressed differs. In the first
example, we shall use a common table expression:

WITH staff2 (dept, avgsal) AS ANSWER
 (SELECT dept =================
 ,AVG(salary) ID NAME DEPT
 FROM staff --- -------- ----
 GROUP BY dept 160 Molinare 10
 HAVING AVG(salary) > 18000 210 Lu 10
) 240 Daniels 10
SELECT a.id 260 Jones 10
 ,a.name
 ,a.dept
FROM staff a
 ,staff2 b
WHERE a.dept = b.dept
ORDER BY a.id;

Figure 490, GROUP BY on one side of join - using common table expression

In the next example, we shall use a full-select:

SELECT a.id ANSWER
 ,a.name =================
 ,a.dept ID NAME DEPT
FROM staff a --- -------- ----
 ,(SELECT dept AS dept 160 Molinare 10
 ,AVG(salary) AS avgsal 210 Lu 10
 FROM staff 240 Daniels 10
 GROUP BY dept 260 Jones 10
 HAVING AVG(salary) > 18000
)AS b
WHERE a.dept = b.dept
ORDER BY a.id;

Figure 491, GROUP BY on one side of join - using full-select

COUNT and No Rows

When there are no matching rows, the value returned by the COUNT depends upon whether
this is a GROUP BY in the SQL statement or not:

SELECT COUNT(*) AS c1 ANSWER
FROM staff ======
WHERE id < 1; 0

SELECT COUNT(*) AS c1 ANSWER
FROM staff ======
WHERE id < 1 no row
GROUP BY id;

Figure 492, COUNT and No Rows

See page 320 for a comprehensive discussion of what happens when no rows match.

DB2 UDB/V8.1 Cookbook ©

Joins 177

Joins
A join is used to relate sets of rows in two or more logical tables. The tables are always joined
on a row-by-row basis using whatever join criteria are provided in the query. The result of a
join is always a new, albeit possibly empty, set of rows.

In a join, the matching rows are joined side-by-side to make the result table. By contrast, in a
union (see page 213) the matching rows are joined (in a sense) one-above-the-other to make
the result table.

Why Joins Matter

The most important data in a relational database is not that stored in the individual rows.
Rather, it is the implied relationships between sets of related rows. For example, individual
rows in an EMPLOYEE table may contain the employee ID and salary - both of which are
very important data items. However, it is the set of all rows in the same table that gives the
gross wages for the whole company, and it is the (implied) relationship between the EM-
PLOYEE and DEPARTMENT tables that enables one to get a breakdown of employees by
department and/or division.

Joins are important because one uses them to tease the relationships out of the database. They
are also important because they are very easy to get wrong.

Sample Views

CREATE VIEW STAFF_V1 AS STAFF_V1 STAFF_V2
SELECT ID, NAME +-----------+ +---------+
FROM STAFF |ID|NAME | |ID|JOB |
WHERE ID BETWEEN 10 AND 30; |--|--------| |--|------|
 |10|Sanders | |20|Sales |
CREATE VIEW STAFF_V2 AS |20|Pernal | |30|Clerk |
SELECT ID, JOB |30|Marenghi| |30|Mgr |
FROM STAFF +-----------+ |40|Sales |
WHERE ID BETWEEN 20 AND 50 |50|Mgr |
UNION ALL +---------+
SELECT ID, ’Clerk’ AS JOB
FROM STAFF
WHERE ID = 30;

Figure 493, Sample Views used in Join Examples

Observe that the above two views have the following characteristics:

• Both views contain rows that have no corresponding ID in the other view.

• In the V2 view, there are two rows for ID of 30.

Join Syntax
DB2 UDB SQL comes with two quite different ways to represent a join. Both syntax styles
will be shown throughout this section though, in truth, one of the styles is usually the better,
depending upon the situation.

The first style, which is only really suitable for inner joins, involves listing the tables to be
joined in a FROM statement. A comma separates each table name. A subsequent WHERE
statement constrains the join.

 Graeme Birchall ©

178 Join Syntax

 SELECT ... FROM table name

 correlation name

 ,

 WHERE join and other predicates

Figure 494, Join Syntax #1

Here are some sample joins:

SELECT V1.ID JOIN ANSWER
 ,V1.NAME =================
 ,V2.JOB ID NAME JOB
FROM STAFF_V1 V1 -- -------- -----
 ,STAFF_V2 V2 20 Pernal Sales
WHERE V1.ID = V2.ID 30 Marenghi Clerk
ORDER BY V1.ID 30 Marenghi Mgr
 ,V2.JOB;

Figure 495, Sample two-table join

SELECT V1.ID JOIN ANSWER
 ,V2.JOB =================
 ,V3.NAME ID JOB NAME
FROM STAFF_V1 V1 -- ----- --------
 ,STAFF_V2 V2 30 Clerk Marenghi
 ,STAFF_V1 V3 30 Mgr Marenghi
WHERE V1.ID = V2.ID
 AND V2.ID = V3.ID
 AND V3.NAME LIKE ’M%’
ORDER BY V1.NAME
 ,V2.JOB;

Figure 496, Sample three-table join

The second join style, which is suitable for both inner and outer joins, involves joining the
tables two at a time, listing the type of join as one goes. ON conditions constrain the join
(note: there must be at least one), while WHERE conditions are applied after the join and
constrain the result.

 SELECT ... FROM table name

 c. name

 join predicates

 WHERE join & other predicates

 JOIN table name ON

 INNER

 LEFT

 RIGHT

 FULL

 OUTER

Figure 497, Join Syntax #2

The following sample joins are logically equivalent to the two given above:

SELECT V1.ID JOIN ANSWER
 ,V1.NAME =================
 ,V2.JOB ID NAME JOB
FROM STAFF_V1 V1 -- -------- -----
INNER JOIN 20 Pernal Sales
 STAFF_V2 V2 30 Marenghi Clerk
ON V1.ID = V2.ID 30 Marenghi Mgr
ORDER BY V1.ID
 ,V2.JOB;

Figure 498, Sample two-table inner join

DB2 UDB/V8.1 Cookbook ©

Joins 179

SELECT V1.ID STAFF_V1 STAFF_V2
 ,V2.JOB +-----------+ +---------+
 ,V3.NAME |ID|NAME | |ID|JOB |
FROM STAFF_V1 V1 |--|--------| |--|------|
JOIN |10|Sanders | |20|Sales |
 STAFF_V2 V2 |20|Pernal | |30|Clerk |
ON V1.ID = V2.ID |30|Marenghi| |30|Mgr |
JOIN +-----------+ |40|Sales |
 STAFF_V1 V3 |50|Mgr |
ON V2.ID = V3.ID JOIN ANSWER +---------+
WHERE V3.NAME LIKE ’M%’ =================
ORDER BY V1.NAME ID JOB NAME
 ,V2.JOB; -- ----- --------
 30 Clerk Marenghi
 30 Mgr Marenghi

Figure 499, Sample three-table inner join

ON vs. WHERE

A join written using the second syntax style shown above can have either, or both, ON and
WHERE checks. These two types of check work quite differently:

• WHERE checks are used to filter rows, and to define the nature of the join. Only those
rows that match all WHERE checks are returned.

• ON checks define the nature of the join. They are used to categorize rows as either joined
or not-joined, rather than to exclude rows from the answer-set, though they may do this in
some situations.

Let illustrate this difference with a simple, if slightly silly, left outer join:

SELECT * ANSWER
FROM STAFF_V1 V1 ====================
LEFT OUTER JOIN ID NAME ID JOB
 STAFF_V2 V2 -- -------- -- -----
ON 1 = 1 10 Sanders - -
AND V1.ID = V2.ID 20 Pernal 20 Sales
ORDER BY V1.ID 30 Marenghi 30 Clerk
 ,V2.JOB; 30 Marenghi 30 Mgr

Figure 500, Sample Views used in Join Examples

Now lets replace the second ON check with a WHERE check:

SELECT * ANSWER
FROM STAFF_V1 V1 ====================
LEFT OUTER JOIN ID NAME ID JOB
 STAFF_V2 V2 -- -------- -- -----
ON 1 = 1 20 Pernal 20 Sales
WHERE V1.ID = V2.ID 30 Marenghi 30 Clerk
ORDER BY V1.ID 30 Marenghi 30 Mgr
 ,V2.JOB;

Figure 501, Sample Views used in Join Examples

In the first example above, all rows were retrieved from the V1 view. Then, for each row, the
two ON checks were used to find matching rows in the V2 view. In the second query, all rows
were again retrieved from the V1 view. Then each V1 row was joined to every row in the V2
view using the (silly) ON check. Finally, the WHERE check was applied to filter out all pairs
that do not match on ID.

Can an ON check ever exclude rows? The answer is complicated:

• In an inner join, an ON check can exclude rows because it is used to define the nature of
the join and, by definition, in an inner join only matching rows are returned.

 Graeme Birchall ©

180 Join Types

• In a partial outer join, an ON check on the originating table does not exclude rows. It
simply categorizes each row as participating in the join or not.

• In a partial outer join, an ON check on the table to be joined to can exclude rows because
if the row fails the test, it does not match the join.

• In a full outer join, an ON check never excludes rows. It simply categorizes them as
matching the join or not.

Each of the above principles will be demonstrated as we look at the different types of join.

Join Types
A generic join matches one row with another to create a new compound row. Joins can be
categorized by the nature of the match between the joined rows. In this section we shall dis-
cuss each join type and how to code it in SQL.

Inner Join

An inner-join is another name for a standard join in which two sets of columns are joined by
matching those rows that have equal data values. Most of the joins that one writes will proba-
bly be of this kind and, assuming that suitable indexes have been created, they will almost
always be very efficient.

STAFF_V1 STAFF_V2 INNER-JOIN ANSWER
+-----------+ +---------+ ====================
|ID|NAME | |ID|JOB | Join on ID ID NAME ID JOB
|--|--------| |--|------| ==========> -- -------- -- -----
|10|Sanders | |20|Sales | 20 Pernal 20 Sales
|20|Pernal | |30|Clerk | 30 Marenghi 30 Clerk
|30|Marenghi| |30|Mgr | 30 Marenghi 30 Mgr
+-----------+ |40|Sales |
 |50|Mgr |
 +---------+

Figure 502, Example of Inner Join

SELECT * ANSWER
FROM STAFF_V1 V1 ====================
 ,STAFF_V2 V2 ID NAME ID JOB
WHERE V1.ID = V2.ID -- -------- -- -----
ORDER BY V1.ID 20 Pernal 20 Sales
 ,V2.JOB; 30 Marenghi 30 Clerk
 30 Marenghi 30 Mgr

Figure 503, Inner Join SQL (1 of 2)

SELECT * ANSWER
FROM STAFF_V1 V1 ====================
INNER JOIN ID NAME ID JOB
 STAFF_V2 V2 -- -------- -- -----
ON V1.ID = V2.ID 20 Pernal 20 Sales
ORDER BY V1.ID 30 Marenghi 30 Clerk
 ,V2.JOB; 30 Marenghi 30 Mgr

Figure 504, Inner Join SQL (2 of 2)

ON and WHERE Usage

In an inner join only, an ON and a WHERE check work much the same way. Both define the
nature of the join, and because in an inner join, only matching rows are returned, both act to
exclude all rows that do not match the join.

DB2 UDB/V8.1 Cookbook ©

Joins 181

Below is an inner join that uses an ON check to exclude managers:

SELECT * ANSWER
FROM STAFF_V1 V1 ====================
INNER JOIN ID NAME ID JOB
 STAFF_V2 V2 -- -------- -- -----
ON V1.ID = V2.ID 20 Pernal 20 Sales
AND V2.JOB <> ’Mgr’ 30 Marenghi 30 Clerk
ORDER BY V1.ID
 ,V2.JOB;

Figure 505, Inner join, using ON check

Here is the same query written using a WHERE check

SELECT * ANSWER
FROM STAFF_V1 V1 ====================
INNER JOIN ID NAME ID JOB
 STAFF_V2 V2 -- -------- -- -----
ON V1.ID = V2.ID 20 Pernal 20 Sales
WHERE V2.JOB <> ’Mgr’ 30 Marenghi 30 Clerk
ORDER BY V1.ID
 ,V2.JOB;

Figure 506, Inner join, using WHERE check

Left Outer Join

A left outer join is the same as saying that I want all of the rows in the first table listed, plus
any matching rows in the second table:

STAFF_V1 STAFF_V2 LEFT-OUTER-JOIN ANSWER
+-----------+ +---------+ ======================
|ID|NAME | |ID|JOB | ID NAME ID JOB
|--|--------| |--|------| =========> -- -------- -- -----
|10|Sanders | |20|Sales | 10 Sanders - -
|20|Pernal | |30|Clerk | 20 Pernal 20 Sales
|30|Marenghi| |30|Mgr | 30 Marenghi 30 Clerk
+-----------+ |40|Sales | 30 Marenghi 30 Mgr
 |50|Mgr |
 +---------+

Figure 507, Example of Left Outer Join

SELECT *
FROM STAFF_V1 V1
LEFT OUTER JOIN
 STAFF_V2 V2
ON V1.ID = V2.ID
ORDER BY 1,4;

Figure 508, Left Outer Join SQL (1 of 2)

It is possible to code a left outer join using the standard inner join syntax (with commas be-
tween tables), but it is a lot of work:

SELECT V1.* <== This join gets all
 ,V2.* rows in STAFF_V1
FROM STAFF_V1 V1 that match rows
 ,STAFF_V2 V2 in STAFF_V2.
WHERE V1.ID = V2.ID
UNION
SELECT V1.* <== This query gets
 ,CAST(NULL AS SMALLINT) AS ID all the rows in
 ,CAST(NULL AS CHAR(5)) AS JOB STAFF_V1 with no
FROM STAFF_V1 V1 matching rows
WHERE V1.ID NOT IN in STAFF_V2.
 (SELECT ID FROM STAFF_V2)
ORDER BY 1,4;

Figure 509, Left Outer Join SQL (2 of 2)

 Graeme Birchall ©

182 Join Types

ON and WHERE Usage

In any type of join, a WHERE check works as if the join is an inner join. If no row matches,
then no row is returned, regardless of what table the predicate refers to. By contrast, in a left
or right outer join, an ON check works differently, depending on what table field it refers to:

• If it refers to a field in the table being joined to, it determines whether the related row
matches the join or not.

• If it refers to a field in the table being joined from, it determines whether the related row
finds a match or not. Regardless, the row will be returned.

In the next example, those rows in the table being joined to (i.e. the V2 view) that match on
ID, and that are not for a manager are joined to:

SELECT * ANSWER
FROM STAFF_V1 V1 ====================
LEFT OUTER JOIN ID NAME ID JOB
 STAFF_V2 V2 -- -------- -- -----
ON V1.ID = V2.ID 10 Sanders - -
AND V2.JOB <> ’Mgr’ 20 Pernal 20 Sales
ORDER BY V1.ID 30 Marenghi 30 Clerk
 ,V2.JOB;

Figure 510, ON check on table being joined to

If we rewrite the above query using a WHERE check we will lose a row (of output) because
the check is applied after the join is done, and a null JOB does not match:

SELECT * ANSWER
FROM STAFF_V1 V1 ====================
LEFT OUTER JOIN ID NAME ID JOB
 STAFF_V2 V2 -- -------- -- -----
ON V1.ID = V2.ID 20 Pernal 20 Sales
WHERE V2.JOB <> ’Mgr’ 30 Marenghi 30 Clerk
ORDER BY V1.ID
 ,V2.JOB;

Figure 511, WHERE check on table being joined to (1 of 2)

We could make the WHERE equivalent to the ON, if we also checked for nulls:

SELECT * ANSWER
FROM STAFF_V1 V1 ====================
LEFT OUTER JOIN ID NAME ID JOB
 STAFF_V2 V2 -- -------- -- -----
ON V1.ID = V2.ID 10 Sanders - -
WHERE (V2.JOB <> ’Mgr’ 20 Pernal 20 Sales
 OR V2.JOB IS NULL) 30 Marenghi 30 Clerk
ORDER BY V1.ID
 ,V2.JOB;

Figure 512, WHERE check on table being joined to (2 of 2)

In the next example, those rows in the table being joined from (i.e. the V1 view) that match
on ID and have a NAME > ’N’ participate in the join. Note however that V1 rows that do not
participate in the join (i.e. ID = 30) are still returned:

SELECT * ANSWER
FROM STAFF_V1 V1 ====================
LEFT OUTER JOIN ID NAME ID JOB
 STAFF_V2 V2 -- -------- -- -----
ON V1.ID = V2.ID 10 Sanders - -
AND V1.NAME > ’N’ 20 Pernal 20 Sales
ORDER BY V1.ID 30 Marenghi - -
 ,V2.JOB;

Figure 513, ON check on table being joined from

DB2 UDB/V8.1 Cookbook ©

Joins 183

If we rewrite the above query using a WHERE check (on NAME) we will lose a row because
now the check excludes rows from the answer-set, rather than from participating in the join:

SELECT * ANSWER
FROM STAFF_V1 V1 ====================
LEFT OUTER JOIN ID NAME ID JOB
 STAFF_V2 V2 -- -------- -- -----
ON V1.ID = V2.ID 10 Sanders - -
WHERE V1.NAME > ’N’ 20 Pernal 20 Sales
ORDER BY V1.ID
 ,V2.JOB;

Figure 514, WHERE check on table being joined from

Unlike in the previous example, there is no way to alter the above WHERE check to make it
logically equivalent to the prior ON check. The ON and the WHERE are applied at different
times and for different purposes, and thus do completely different things.

Right Outer Join

A right outer join is the inverse of a left outer join. One gets every row in the second table
listed, plus any matching rows in the first table:

STAFF_V1 STAFF_V2 RIGHT-OUTER-JOIN ANSWER
+-----------+ +---------+ =======================
|ID|NAME | |ID|JOB | ID NAME ID JOB
|--|--------| |--|------| =========> -- -------- -- -----
|10|Sanders | |20|Sales | 20 Pernal 20 Sales
|20|Pernal | |30|Clerk | 30 Marenghi 30 Clerk
|30|Marenghi| |30|Mgr | 30 Marenghi 30 Mgr
+-----------+ |40|Sales | - - 40 Sales
 |50|Mgr | - - 50 Mgr
 +---------+

Figure 515, Example of Right Outer Join

SELECT * ANSWER
FROM STAFF_V1 V1 ====================
RIGHT OUTER JOIN ID NAME ID JOB
 STAFF_V2 V2 -- -------- -- -----
ON V1.ID = V2.ID 20 Pernal 20 Sales
ORDER BY V2.ID 30 Marenghi 30 Clerk
 ,V2.JOB; 30 Marenghi 30 Mgr
 - - 40 Sales
 - - 50 Mgr

Figure 516, Right Outer Join SQL (1 of 2)

It is also possible to code a right outer join using the standard inner join syntax:

SELECT V1.* ANSWER
 ,V2.* ====================
FROM STAFF_V1 V1 ID NAME ID JOB
 ,STAFF_V2 V2 -- -------- -- -----
WHERE V1.ID = V2.ID 20 Pernal 20 Sales
UNION 30 Marenghi 30 Clerk
SELECT CAST(NULL AS SMALLINT) AS ID 30 Marenghi 30 Mgr
 ,CAST(NULL AS VARCHAR(9)) AS NAME - - 40 Sales
 ,V2.* - - 50 Mgr
FROM STAFF_V2 V2
WHERE V2.ID NOT IN
 (SELECT ID FROM STAFF_V1)
ORDER BY 3,4;

Figure 517, Right Outer Join SQL (2 of 2)

 Graeme Birchall ©

184 Join Types

ON and WHERE Usage

The rules for ON and WHERE usage are the same in a right outer join as they are for a left
outer join (see page 182), except that the relevant tables are reversed.

Full Outer Joins

A full outer join occurs when all of the matching rows in two tables are joined, and there is
also returned one copy of each non-matching row in both tables.

STAFF_V1 STAFF_V2 FULL-OUTER-JOIN ANSWER
+-----------+ +---------+ ======================
|ID|NAME | |ID|JOB | ID NAME ID JOB
|--|--------| |--|------| =========> -- -------- -- -----
|10|Sanders | |20|Sales | 10 Sanders - -
|20|Pernal | |30|Clerk | 20 Pernal 20 Sales
|30|Marenghi| |30|Mgr | 30 Marenghi 30 Clerk
+-----------+ |40|Sales | 30 Marenghi 30 Mgr
 |50|Mgr | - - 40 Sales
 +---------+ - - 50 Mgr

Figure 518, Example of Full Outer Join

SELECT * ANSWER
FROM STAFF_V1 V1 ====================
FULL OUTER JOIN ID NAME ID JOB
 STAFF_V2 V2 -- -------- -- -----
ON V1.ID = V2.ID 10 Sanders - -
ORDER BY V1.ID 20 Pernal 20 Sales
 ,V2.ID 30 Marenghi 30 Clerk
 ,V2.JOB; 30 Marenghi 30 Mgr
 - - 40 Sales
 - - 50 Mgr

Figure 519, Full Outer Join SQL

Here is the same done using the standard inner join syntax:

SELECT V1.* ANSWER
 ,V2.* ====================
FROM STAFF_V1 V1 ID NAME ID JOB
 ,STAFF_V2 V2 -- -------- -- -----
WHERE V1.ID = V2.ID 10 Sanders - -
UNION 20 Pernal 20 Sales
SELECT V1.* 30 Marenghi 30 Clerk
 ,CAST(NULL AS SMALLINT) AS ID 30 Marenghi 30 Mgr
 ,CAST(NULL AS CHAR(5)) AS JOB - - 40 Sales
FROM STAFF_V1 V1 - - 50 Mgr
WHERE V1.ID NOT IN
 (SELECT ID FROM STAFF_V2)
UNION
SELECT CAST(NULL AS SMALLINT) AS ID
 ,CAST(NULL AS VARCHAR(9)) AS NAME
 ,V2.*
FROM STAFF_V2 V2
WHERE V2.ID NOT IN
 (SELECT ID FROM STAFF_V1)
ORDER BY 1,3,4;

Figure 520, Full Outer Join SQL

The above is reasonably hard to understand when two tables are involved, and it goes down
hill fast as more tables are joined. Avoid.

ON and WHERE Usage

In a full outer join, an ON check is quite unlike a WHERE check in that it never results in a
row being excluded from the answer set. All it does is categorize the input row as being either

DB2 UDB/V8.1 Cookbook ©

Joins 185

matching or non-matching. For example, in the following full outer join, the ON check joins
those rows with equal key values:

SELECT * ANSWER
FROM STAFF_V1 V1 ====================
FULL OUTER JOIN ID NAME ID JOB
 STAFF_V2 V2 -- -------- -- -----
ON V1.ID = V2.ID 10 Sanders - -
ORDER BY V1.ID 20 Pernal 20 Sales
 ,V2.ID 30 Marenghi 30 Clerk
 ,V2.JOB; 30 Marenghi 30 Mgr
 - - 40 Sales
 - - 50 Mgr

Figure 521, Full Outer Join, match on keys

In the next example, we have deemed that only those IDs that match, and that also have a
value greater than 20, are a true match:

SELECT * ANSWER
FROM STAFF_V1 V1 ====================
FULL OUTER JOIN ID NAME ID JOB
 STAFF_V2 V2 -- -------- -- -----
ON V1.ID = V2.ID 10 Sanders - -
AND V1.ID > 20 20 Pernal - -
ORDER BY V1.ID 30 Marenghi 30 Clerk
 ,V2.ID 30 Marenghi 30 Mgr
 ,V2.JOB; - - 20 Sales
 - - 40 Sales
 - - 50 Mgr

Figure 522, Full Outer Join, match on keys > 20

Observe how in the above statement we added a predicate, and we got more rows! This is
because in an outer join an ON predicate never removes rows. It simply categorizes them as
being either matching or non-matching. If they match, it joins them. If they don’t, it passes
them through.

In the next example, nothing matches. Consequently, every row is returned individually. This
query is logically similar to doing a UNION ALL on the two views:

SELECT * ANSWER
FROM STAFF_V1 V1 ====================
FULL OUTER JOIN ID NAME ID JOB
 STAFF_V2 V2 -- -------- -- -----
ON V1.ID = V2.ID 10 Sanders - -
AND +1 = -1 20 Pernal - -
ORDER BY V1.ID 30 Marenghi - -
 ,V2.ID - - 20 Sales
 ,V2.JOB; - - 30 Clerk
 - - 30 Mgr
 - - 40 Sales
 - - 50 Mgr

Figure 523, Full Outer Join, match on keys (no rows match)

ON checks are somewhat like WHERE checks in that they have two purposes. Within a table,
they are used to categorize rows as being either matching or non-matching. Between tables,
they are used to define the fields that are to be joined on.

In the prior example, the first ON check defined the fields to join on, while the second join
identified those fields that matched the join. Because nothing matched (due to the second
predicate), everything fell into the "outer join" category. This means that we can remove the
first ON check without altering the answer set:

 Graeme Birchall ©

186 Join Types

SELECT * ANSWER
FROM STAFF_V1 V1 ====================
FULL OUTER JOIN ID NAME ID JOB
 STAFF_V2 V2 -- -------- -- -----
ON +1 = -1 10 Sanders - -
ORDER BY V1.ID 20 Pernal - -
 ,V2.ID 30 Marenghi - -
 ,V2.JOB; - - 20 Sales
 - - 30 Clerk
 - - 30 Mgr
 - - 40 Sales
 - - 50 Mgr

Figure 524, Full Outer Join, don’t match on keys (no rows match)

What happens if everything matches and we don’t identify the join fields? The result in a Car-
tesian Product:

SELECT * ANSWER
FROM STAFF_V1 V1 ====================
FULL OUTER JOIN ID NAME ID JOB
 STAFF_V2 V2 -- -------- -- -----
ON +1 <> -1 10 Sanders 20 Sales
ORDER BY V1.ID 10 Sanders 30 Clerk
 ,V2.ID 10 Sanders 30 Mgr
 ,V2.JOB; 10 Sanders 40 Sales
 10 Sanders 50 Mgr
 20 Pernal 20 Sales
STAFF_V1 STAFF_V2 20 Pernal 30 Clerk
+-----------+ +---------+ 20 Pernal 30 Mgr
|ID|NAME | |ID|JOB | 20 Pernal 40 Sales
|--|--------| |--|------| 20 Pernal 50 Mgr
|10|Sanders | |20|Sales | 30 Marenghi 20 Sales
|20|Pernal | |30|Clerk | 30 Marenghi 30 Clerk
|30|Marenghi| |30|Mgr | 30 Marenghi 30 Mgr
+-----------+ |40|Sales | 30 Marenghi 40 Sales
 |50|Mgr | 30 Marenghi 50 Mgr
 +---------+

Figure 525, Full Outer Join, don’t match on keys (all rows match)

In an outer join, WHERE predicates behave as if they were written for an inner join. In par-
ticular, they always do the following:

• WHERE predicates defining join fields enforce an inner join on those fields.

• WHERE predicates on non-join fields are applied after the join, which means that when
they are used on not-null fields, they negate the outer join.

Here is an example of a WHERE join predicate turning an outer join into an inner join:

SELECT * ANSWER
FROM STAFF_V1 V1 ====================
FULL JOIN ID NAME ID JOB
 STAFF_V2 V2 -- -------- -- -----
ON V1.ID = V2.ID 20 Pernal 20 Sales
WHERE V1.ID = V2.ID 30 Marenghi 30 Clerk
ORDER BY 1,3,4; 30 Marenghi 30 Mgr

Figure 526, Full Outer Join, turned into an inner join by WHERE

To illustrate some of the complications that WHERE checks can cause, imagine that we want
to do a FULL OUTER JOIN on our two test views (see below), limiting the answer to those
rows where the "V1 ID" field is less than 30. There are several ways to express this query,
each giving a different answer:

DB2 UDB/V8.1 Cookbook ©

Joins 187

STAFF_V1 STAFF_V2
+-----------+ +---------+ ANSWER
|ID|NAME | |ID|JOB | OUTER-JOIN CRITERIA ============
|--|--------| |--|------| ==================> ???, DEPENDS
|10|Sanders | |20|Sales | V1.ID = V2.ID
|20|Pernal | |30|Clerk | V1.ID < 30
|30|Marenghi| |30|Mgr |
+-----------+ |40|Sales |
 |50|Mgr |
 +---------+

Figure 527, Outer join V1.ID < 30, sample data

In our first example, the "V1.ID < 30" predicate is applied after the join, which effectively
eliminates all "V2" rows that don’t match (because their "V1.ID" value is null):

SELECT * ANSWER
FROM STAFF_V1 V1 ====================
FULL JOIN ID NAME ID JOB
 STAFF_V2 V2 -- -------- -- -----
ON V1.ID = V2.ID 10 Sanders - -
WHERE V1.ID < 30 20 Pernal 20 Sales
ORDER BY 1,3,4;

Figure 528, Outer join V1.ID < 30, check applied in WHERE (after join)

In the next example the "V1.ID < 30" check is done during the outer join where it does not
any eliminate rows, but rather limits those that match in the two views:

SELECT * ANSWER
FROM STAFF_V1 V1 ====================
FULL JOIN ID NAME ID JOB
 STAFF_V2 V2 -- -------- -- -----
ON V1.ID = V2.ID 10 Sanders - -
AND V1.ID < 30 20 Pernal 20 Sales
ORDER BY 1,3,4; 30 Marenghi - -
 - - 30 Clerk
 - - 30 Mgr
 - - 40 Sales
 - - 50 Mgr

Figure 529, Outer join V1.ID < 30, check applied in ON (during join)

Imagine that what really wanted to have the "V1.ID < 30" check to only apply to those rows
in the "V1" table. Then one has to apply the check before the join, which requires the use of a
nested-table expression:

SELECT * ANSWER
FROM (SELECT * ====================
 FROM STAFF_V1 ID NAME ID JOB
 WHERE ID < 30) AS V1 -- -------- -- -----
FULL OUTER JOIN 10 Sanders - -
 STAFF_V2 V2 20 Pernal 20 Sales
ON V1.ID = V2.ID - - 30 Clerk
ORDER BY 1,3,4; - - 30 Mgr
 - - 40 Sales
 - - 50 Mgr

Figure 530, Outer join V1.ID < 30, check applied in WHERE (before join)

Observe how in the above query we still got a row back with an ID of 30, but it came from
the "V2" table. This makes sense, because the WHERE condition had been applied before we
got to this table.

There are several incorrect ways to answer the above question. In the first example, we shall
keep all non-matching V2 rows by allowing to pass any null V1.ID values:

 Graeme Birchall ©

188 Join Types

SELECT * ANSWER
FROM STAFF_V1 V1 ====================
FULL OUTER JOIN ID NAME ID JOB
 STAFF_V2 V2 -- -------- -- -----
ON V1.ID = V2.ID 10 Sanders - -
WHERE V1.ID < 30 20 Pernal 20 Sales
 OR V1.ID IS NULL - - 40 Sales
ORDER BY 1,3,4; - - 50 Mgr

Figure 531, Outer join V1.ID < 30, (gives wrong answer - see text)

There are two problems with the above query: First, it is only appropriate to use when the
V1.ID field is defined as not null, which it is in this case. Second, we lost the row in the V2
table where the ID equaled 30. We can fix this latter problem, by adding another check, but
the answer is still wrong:

SELECT * ANSWER
FROM STAFF_V1 V1 ====================
FULL OUTER JOIN ID NAME ID JOB
 STAFF_V2 V2 -- -------- -- -----
ON V1.ID = V2.ID 10 Sanders - -
WHERE V1.ID < 30 20 Pernal 20 Sales
 OR V1.ID = V2.ID 30 Marenghi 30 Clerk
 OR V1.ID IS NULL 30 Marenghi 30 Mgr
ORDER BY 1,3,4; - - 40 Sales
 - - 50 Mgr

Figure 532, Outer join V1.ID < 30, (gives wrong answer - see text)

The last two checks in the above query ensure that every V2 row is returned. But they also
have the affect of returning the NAME field from the V1 table whenever there is a match.
Given our intentions, this should not happen.

SUMMARY: Query WHERE conditions are applied after the join. When used in an outer
join, this means that they applied to all rows from all tables. In effect, this means that any
WHERE conditions in a full outer join will, in most cases, turn it into a form of inner join.

Cartesian Product

A Cartesian Product is a form of inner join, where the join predicates either do not exist, or
where they do a poor job of matching the keys in the joined tables.

STAFF_V1 STAFF_V2 CARTESIAN-PRODUCT
+-----------+ +---------+ ====================
|ID|NAME | |ID|JOB | ID NAME ID JOB
|--|--------| |--|------| =========> -- -------- -- -----
|10|Sanders | |20|Sales | ID NAME ID JOB
|20|Pernal | |30|Clerk | -- -------- -- -----
|30|Marenghi| |30|Mgr | 10 Sanders 20 Sales
+-----------+ |40|Sales | 10 Sanders 30 Clerk
 |50|Mgr | 10 Sanders 30 Mgr
 +---------+ 10 Sanders 40 Sales
 10 Sanders 50 Mgr
 20 Pernal 20 Sales
 20 Pernal 30 Clerk
 20 Pernal 30 Mgr
 20 Pernal 40 Sales
 20 Pernal 50 Mgr
 30 Marenghi 20 Sales
 30 Marenghi 30 Clerk
 30 Marenghi 30 Mgr
 30 Marenghi 40 Sales
 30 Marenghi 50 Mgr

Figure 533, Example of Cartesian Product

Writing a Cartesian Product is simplicity itself. One simply omits the WHERE conditions:

DB2 UDB/V8.1 Cookbook ©

Joins 189

SELECT *
FROM STAFF_V1 V1
 ,STAFF_V2 V2
ORDER BY V1.ID
 ,V2.ID
 ,V2.JOB;

Figure 534, Cartesian Product SQL (1 of 2)

One way to reduce the likelihood of writing a full Cartesian Product is to always use the in-
ner/outer join style. With this syntax, an ON predicate is always required. There is however
no guarantee that the ON will do any good. Witness the following example:

SELECT *
FROM STAFF_V1 V1
INNER JOIN
 STAFF_V2 V2
ON ’A’ <> ’B’
ORDER BY V1.ID
 ,V2.ID
 ,V2.JOB;

Figure 535, Cartesian Product SQL (2 of 2)

A Cartesian Product is almost always the wrong result. There are very few business situations
where it makes sense to use the kind of SQL shown above. The good news is that few people
ever make the mistake of writing the above. But partial Cartesian Products are very common,
and they are also almost always incorrect. Here is an example:

SELECT V2A.ID ANSWER
 ,V2A.JOB ===========
 ,V2B.ID ID JOB ID
FROM STAFF_V2 V2A -- ----- --
 ,STAFF_V2 V2B 20 Sales 20
WHERE V2A.JOB = V2B.JOB 20 Sales 40
 AND V2A.ID < 40 30 Clerk 30
ORDER BY V2A.ID 30 Mgr 30
 ,V2B.ID; 30 Mgr 50

Figure 536, Partial Cartesian Product SQL

In the above example we joined the two views by JOB, which is not a unique key. The result
was that for each JOB value, we got a mini Cartesian Product.

Cartesian Products are at their most insidious when the result of the (invalid) join is feed into
a GROUP BY or DISTINCT statement that removes all of the duplicate rows. Below is an
example where the only clue that things are wrong is that the count is incorrect:

SELECT V2.JOB ANSWER
 ,COUNT(*) AS #ROWS ===========
FROM STAFF_V1 V1 JOB #ROWS
 ,STAFF_V2 V2 ----- -----
GROUP BY V2.JOB Clerk 3
ORDER BY #ROWS Mgr 6
 ,V2.JOB; Sales 6

Figure 537, Partial Cartesian Product SQL, with GROUP BY

To really mess up with a Cartesian Product you may have to join more than one table. Note
however that big tables are not required. For example, a Cartesian Product of five 100-row
tables will result in 10,000,000,000 rows being returned.

HINT: A good rule of thumb to use when writing a join is that for all of the tables (except
one) there should be equal conditions on all of the fields that make up the various unique
keys. If this is not true then it is probable that some kind Cartesian Product is being done and
the answer may be wrong.

 Graeme Birchall ©

190 Join Notes

Join Notes

Using the COALESCE Function

If you don’t like working with nulls, but you need to do outer joins, then life is tough. In an
outer join, fields in non-matching rows are given null values as placeholders. Fortunately,
these nulls can be eliminated using the COALESCE function.

The COALESCE function can be used to combine multiple fields into one, and/or to elimi-
nate null values where they occur. The result of the COALESCE is always the first non-null
value encountered. In the following example, the two ID fields are combined, and any null
NAME values are replaced with a question mark.

SELECT COALESCE(V1.ID,V2.ID) AS ID ANSWER
 ,COALESCE(V1.NAME,’?’) AS NAME =================
 ,V2.JOB ID NAME JOB
FROM STAFF_V1 V1 -- -------- -----
FULL OUTER JOIN 10 Sanders -
 STAFF_V2 V2 20 Pernal Sales
ON V1.ID = V2.ID 30 Marenghi Clerk
ORDER BY V1.ID 30 Marenghi Mgr
 ,V2.JOB; 40 ? Sales
 50 ? Mgr

Figure 538, Use of COALESCE function in outer join

Listing non-matching rows only

Imagine that we wanted to do an outer join on our two test views, only getting those rows that
do not match. This is a surprisingly hard query to write.

STAFF_V1 STAFF_V2 ANSWER
+-----------+ +---------+ NON-MATCHING ===================
|ID|NAME | |ID|JOB | OUTER-JOIN ID NAME ID JOB
|--|--------| |--|------| ===========> -- ------- -- -----
|10|Sanders | |20|Sales | 10 Sanders - -
|20|Pernal | |30|Clerk | - - 40 Sales
|30|Marenghi| |30|Mgr | - - 50 Mgr
+-----------+ |40|Sales |
 |50|Mgr |
 +---------+

Figure 539, Example of outer join, only getting the non-matching rows

One way to express the above is to use the standard inner-join syntax:

SELECT V1.* <== Get all the rows
 ,CAST(NULL AS SMALLINT) AS ID in STAFF_V1 that
 ,CAST(NULL AS CHAR(5)) AS JOB have no matching
FROM STAFF_V1 V1 row in STAFF_V2.
WHERE V1.ID NOT IN
 (SELECT ID FROM STAFF_V2)
UNION
SELECT CAST(NULL AS SMALLINT) AS ID <== Get all the rows
 ,CAST(NULL AS VARCHAR(9)) AS NAME in STAFF_V2 that
 ,V2.* have no matching
FROM STAFF_V2 V2 row in STAFF_V1.
WHERE V2.ID NOT IN
 (SELECT ID FROM STAFF_V1)
ORDER BY 1,3,4;

Figure 540, Outer Join SQL, getting only non-matching rows

DB2 UDB/V8.1 Cookbook ©

Joins 191

The above question can also be expressed using the outer-join syntax, but it requires the use
of two nested-table expressions. These are used to assign a label field to each table. Only
those rows where either of the two labels are null are returned:

SELECT *
FROM (SELECT V1.* ,’V1’ AS FLAG FROM STAFF_V1 V1) AS V1
FULL OUTER JOIN
 (SELECT V2.* ,’V2’ AS FLAG FROM STAFF_V2 V2) AS V2
ON V1.ID = V2.ID
WHERE V1.FLAG IS NULL ANSWER
 OR V2.FLAG IS NULL =============================
ORDER BY V1.ID ID NAME FLAG ID JOB FLAG
 ,V2.ID -- ------- ---- -- ----- ----
 ,V2.JOB; 10 Sanders V1 - - -
 - - - 40 Sales V2
 - - - 50 Mgr V2

Figure 541, Outer Join SQL, getting only non-matching rows

Alternatively, one can use two common table expressions to do the same job:

WITH
 V1 AS (SELECT V1.* ,’V1’ AS FLAG FROM STAFF_V1 V1)
,V2 AS (SELECT V2.* ,’V2’ AS FLAG FROM STAFF_V2 V2)
SELECT *
FROM V1 V1 ANSWER
FULL OUTER JOIN =============================
 V2 V2 ID NAME FLAG ID JOB FLAG
ON V1.ID = V2.ID -- ------- ---- -- ----- ----
WHERE V1.FLAG IS NULL 10 Sanders V1 - - -
 OR V2.FLAG IS NULL - - - 40 Sales V2
ORDER BY V1.ID, V2.ID, V2.JOB; - - - 50 Mgr V2

Figure 542, Outer Join SQL, getting only non-matching rows

If either or both of the input tables have a field that is defined as not null, then label fields can
be discarded. For example, in our test tables, the two ID fields will suffice:

SELECT * STAFF_V1 STAFF_V2
FROM STAFF_V1 V1 +-----------+ +---------+
FULL OUTER JOIN |ID|NAME | |ID|JOB |
 STAFF_V2 V2 |--|--------| |--|------|
ON V1.ID = V2.ID |10|Sanders | |20|Sales |
WHERE V1.ID IS NULL |20|Pernal | |30|Clerk |
 OR V2.ID IS NULL |30|Marenghi| |30|Mgr |
ORDER BY V1.ID +-----------+ |40|Sales |
 ,V2.ID |50|Mgr |
 ,V2.JOB; +---------+

Figure 543, Outer Join SQL, getting only non-matching rows

Join in SELECT Phrase

Imagine that we want to get selected rows from the V1 view, and for each matching row, get
the corresponding JOB from the V2 view - if there is one:

STAFF_V1 STAFF_V2 ANSWER
+-----------+ +---------+ LEFT OUTER JOIN ===================
|ID|NAME | |ID|JOB | ==============> ID NAME ID JOB
|--|--------| |--|------| V1.ID = V2.ID -- ------- -- -----
|10|Sanders | |20|Sales | V1.ID <> 30 10 Sanders - -
|20|Pernal | |30|Clerk | 20 Pernal 20 Sales
|30|Marenghi| |30|Mgr |
+-----------+ |40|Sales |
 |50|Mgr |
 +---------+

Figure 544, Left outer join example

 Graeme Birchall ©

192 Join Notes

Here is one way to express the above as a query:

SELECT V1.ID ANSWER
 ,V1.NAME =================
 ,V2.JOB ID NAME JOB
FROM STAFF_V1 V1 -- -------- -----
LEFT OUTER JOIN 10 Sanders -
 STAFF_V2 V2 20 Pernal Sales
ON V1.ID = V2.ID
WHERE V1.ID <> 30
ORDER BY V1.ID ;

Figure 545, Outer Join done in FROM phrase of SQL

Below is a logically equivalent left outer join with the join placed in the SELECT phrase of
the SQL statement. In this query, for each matching row in STAFF_V1, the join (i.e. the
nested table expression) will be done:

SELECT V1.ID ANSWER
 ,V1.NAME =================
 ,(SELECT V2.JOB ID NAME JB
 FROM STAFF_V2 V2 -- -------- -----
 WHERE V1.ID = V2.ID) AS JB 10 Sanders -
FROM STAFF_V1 V1 20 Pernal Sales
WHERE V1.ID <> 30
ORDER BY V1.ID;

Figure 546, Outer Join done in SELECT phrase of SQL

Certain rules apply when using the above syntax:

• The nested table expression in the SELECT is applied after all other joins and sub-queries
(i.e. in the FROM section of the query) are done.

• The nested table expression acts as a left outer join.

• Only one column and row (at most) can be returned by the expression.

• If no row is returned, the result is null.

Given the above restrictions, the following query will fail because more than one V2 row is
returned for every V1 row (for ID = 30):

SELECT V1.ID ANSWER
 ,V1.NAME =================
 ,(SELECT V2.JOB ID NAME JB
 FROM STAFF_V2 V2 -- -------- -----
 WHERE V1.ID = V2.ID) AS JB 10 Sanders -
FROM STAFF_V1 V1 20 Pernal Sales
ORDER BY V1.ID; <error>

Figure 547, Outer Join done in SELECT phrase of SQL - gets error

To make the above query work for all IDs, we have to decide which of the two matching JOB
values for ID 30 we want. Let us assume that we want the maximum:

SELECT V1.ID ANSWER
 ,V1.NAME =================
 ,(SELECT MAX(V2.JOB) ID NAME JB
 FROM STAFF_V2 V2 -- -------- -----
 WHERE V1.ID = V2.ID) AS JB 10 Sanders -
FROM STAFF_V1 V1 20 Pernal Sales
ORDER BY V1.ID; 30 Marenghi Mgr

Figure 548, Outer Join done in SELECT phrase of SQL - fixed

The above is equivalent to the following query:

DB2 UDB/V8.1 Cookbook ©

Joins 193

SELECT V1.ID ANSWER
 ,V1.NAME =================
 ,MAX(V2.JOB) AS JB ID NAME JB
FROM STAFF_V1 V1 -- -------- -----
LEFT OUTER JOIN 10 Sanders -
 STAFF_V2 V2 20 Pernal Sales
ON V1.ID = V2.ID 30 Marenghi Mgr
GROUP BY V1.ID
 ,V1.NAME
ORDER BY V1.ID ;

Figure 549, Same as prior query - using join and GROUP BY

The above query is rather misleading because someone unfamiliar with the data may not un-
derstand why the NAME field is in the GROUP BY. Obviously, it is not there to remove any
rows, it simply needs to be there because of the presence of the MAX function. Therefore, the
preceding query is better because it is much easier to understand. It is also probably more
efficient.

CASE Usage

The SELECT expression can be placed in a CASE statement if needed. To illustrate, in the
following query we get the JOB from the V2 view, except when the person is a manager, in
which case we get the NAME from the corresponding row in the V1 view:

SELECT V2.ID ANSWER
 ,CASE ===========
 WHEN V2.JOB <> ’Mgr’ ID J2
 THEN V2.JOB -- --------
 ELSE (SELECT V1.NAME 20 Sales
 FROM STAFF_V1 V1 30 Clerk
 WHERE V1.ID = V2.ID) 30 Marenghi
 END AS J2 40 Sales
FROM STAFF_V2 V2 50 -
ORDER BY V2.ID
 ,J2;

Figure 550, Sample Views used in Join Examples

Multiple Columns

If you want to retrieve two columns using this type of join, you need to have two independent
nested table expressions:

SELECT V2.ID ANSWER
 ,V2.JOB ====================
 ,(SELECT V1.NAME ID JOB NAME N2
 FROM STAFF_V1 V1 -- ----- -------- --
 WHERE V2.ID = V1.ID) 20 Sales Pernal 6
 ,(SELECT LENGTH(V1.NAME) AS N2 30 Clerk Marenghi 8
 FROM STAFF_V1 V1 30 Mgr Marenghi 8
 WHERE V2.ID = V1.ID) 40 Sales - -
FROM STAFF_V2 V2 50 Mgr - -
ORDER BY V2.ID
 ,V2.JOB;

Figure 551, Outer Join done in SELECT, 2 columns

An easier way to do the above is to write an ordinary left outer join with the joined columns
in the SELECT list. To illustrate this, the next query is logically equivalent to the prior:

 Graeme Birchall ©

194 Join Notes

SELECT V2.ID ANSWER
 ,V2.JOB ====================
 ,V1.NAME ID JOB NAME N2
 ,LENGTH(V1.NAME) AS N2 -- ----- -------- --
FROM STAFF_V2 V2 20 Sales Pernal 6
LEFT OUTER JOIN 30 Clerk Marenghi 8
 STAFF_V1 V1 30 Mgr Marenghi 8
ON V2.ID = V1.ID 40 Sales - -
ORDER BY V2.ID 50 Mgr - -
 ,V2.JOB;

Figure 552, Outer Join done in FROM, 2 columns

Column Functions

This join style lets one easily mix and match individual rows with the results of column func-
tions. For example, the following query returns a running SUM of the ID column:

SELECT V1.ID ANSWER
 ,V1.NAME ==================
 ,(SELECT SUM(X1.ID) ID NAME SUM_ID
 FROM STAFF_V1 X1 -- -------- ------
 WHERE X1.ID <= V1.ID 10 Sanders 10
)AS SUM_ID 20 Pernal 30
FROM STAFF_V1 V1 30 Marenghi 60
ORDER BY V1.ID
 ,V2.JOB;

Figure 553, Running total, using JOIN in SELECT

An easier way to do the same as the above is to use an OLAP function:

SELECT V1.ID ANSWER
 ,V1.NAME ==================
 ,SUM(ID) OVER(ORDER BY ID) AS SUM_ID ID NAME SUM_ID
FROM STAFF_V1 V1 -- -------- ------
ORDER BY V1.ID; 10 Sanders 10
 20 Pernal 30
 30 Marenghi 60

Figure 554, Running total, using OLAP function

Predicates and Joins, a Lesson

Imagine that one wants to get all of the rows in STAFF_V1, and to also join those matching
rows in STAFF_V2 where the JOB begins with an ’S’:

STAFF_V1 STAFF_V2 ANSWER
+-----------+ +---------+ =================
|ID|NAME | |ID|JOB | OUTER-JOIN CRITERIA ID NAME JOB
|--|--------| |--|------| ==================> -- -------- -----
|10|Sanders | |20|Sales | V1.ID = V2.ID 10 Sanders -
|20|Pernal | |30|Clerk | V2.JOB LIKE ’S%’ 20 Pernal Sales
|30|Marenghi| |30|Mgr | 30 Marenghi -
+-----------+ |40|Sales |
 |50|Mgr |
 +---------+

Figure 555, Outer join, with WHERE filter

The first query below gives the wrong answer. It is wrong because the WHERE is applied
after the join, so eliminating some of the rows in the STAFF_V1 table:

DB2 UDB/V8.1 Cookbook ©

Joins 195

SELECT V1.ID ANSWER (WRONG)
 ,V1.NAME =================
 ,V2.JOB ID NAME JOB
FROM STAFF_V1 V1 -- -------- -----
LEFT OUTER JOIN 20 Pernal Sales
 STAFF_V2 V2
ON V1.ID = V2.ID
WHERE V2.JOB LIKE ’S%’
ORDER BY V1.ID
 ,V2.JOB;

Figure 556, Outer Join, WHERE done after - wrong

In the next query, the WHERE is moved into a nested table expression - so it is done before
the join (and against STAFF_V2 only), thus giving the correct answer:

SELECT V1.ID ANSWER
 ,V1.NAME =================
 ,V2.JOB ID NAME JOB
FROM STAFF_V1 V1 -- -------- -----
LEFT OUTER JOIN 10 Sanders -
 (SELECT * 20 Pernal Sales
 FROM STAFF_V2 30 Marenghi -
 WHERE JOB LIKE ’S%’
)AS V2
ON V1.ID = V2.ID
ORDER BY V1.ID
 ,V2.JOB;

Figure 557, Outer Join, WHERE done before - correct

The next query does the join in the SELECT phrase. In this case, whatever predicates are in
the nested table expression apply to STAFF_V2 only, so we get the correct answer:

SELECT V1.ID ANSWER
 ,V1.NAME =================
 ,(SELECT V2.JOB ID NAME JOB
 FROM STAFF_V2 V2 -- -------- -----
 WHERE V1.ID = V2.ID 10 Sanders -
 AND V2.JOB LIKE ’S%’) 20 Pernal Sales
FROM STAFF_V1 V1 30 Marenghi -
ORDER BY V1.ID
 ,JOB;

Figure 558, Outer Join, WHERE done independently - correct

Joins - Things to Remember

• You get nulls in an outer join, whether you want them or not, because the fields in non-
matching rows are set to null. If they bug you, use the COALESCE function to remove
them. See page 190 for an example.

• From a logical perspective, all WHERE conditions are applied after the join. For per-
formance reasons, DB2 may apply some checks before the join, especially in an inner
join, where doing this cannot affect the result set.

• All WHERE conditions that join tables act as if they are doing an inner join, even when
they are written in an outer join.

• The ON checks in a full outer join never remove rows. They simply determine what rows
are matching versus not (see page 184). To eliminate rows in an outer join, one must use
a WHERE condition.

• The ON checks in a partial outer join work differently, depending on whether they are
against fields in the table being joined to, or joined from (see page 182).

 Graeme Birchall ©

196 Join Notes

• A Cartesian Product is not an outer join. It is a poorly matching inner join. By contrast, a
true outer join gets both matching rows, and non-matching rows.

• The NODENUMBER and PARTITION functions cannot be used in an outer join. These
functions only work on rows in real tables.

When the join is defined in the SELECT part of the query (see page 191), it is done after any
other joins and/or sub-queries specified in the FROM phrase. And it acts as if it is a left outer
join.

Complex Joins

When one joins multiple tables using an outer join, one must consider carefully what exactly
what one wants to do, because the answer that one gets will depend upon how one writes the
query. To illustrate, the following query first gets a set of rows from the employee table, and
then joins (from the employee table) to both the activity and photo tables:

SELECT eee.empno ANSWER
 ,aaa.projno ==========================
 ,aaa.actno EMPNO PROJNO ACTNO FORMAT
 ,ppp.photo_format AS format ------ ------ ----- ------
FROM employee eee 000010 MA2110 10 -
LEFT OUTER JOIN 000070 - - -
 emp_act aaa 000130 - - bitmap
ON eee.empno = aaa.empno 000150 MA2112 60 bitmap
AND aaa.emptime = 1 000150 MA2112 180 bitmap
AND aaa.projno LIKE ’M%1%’ 000160 MA2113 60 -
LEFT OUTER JOIN
 emp_photo ppp
ON eee.empno = ppp.empno
AND ppp.photo_format LIKE ’b%’
WHERE eee.lastname LIKE ’%A%’
 AND eee.empno < ’000170’
 AND eee.empno <> ’000030’
ORDER BY eee.empno;

Figure 559, Join from Employee to Activity and Photo

Observe that we got photo data, even when there was no activity data. This is because both
tables were joined directly from the employee table. In the next query, we will again start at
the employee table, then join to the activity table, and then from the activity table join to the
photo table. We will not get any photo data, if the employee has no activity:

SELECT eee.empno ANSWER
 ,aaa.projno ==========================
 ,aaa.actno EMPNO PROJNO ACTNO FORMAT
 ,ppp.photo_format AS format ------ ------ ----- ------
FROM employee eee 000010 MA2110 10 -
LEFT OUTER JOIN 000070 - - -
 emp_act aaa 000130 - - -
ON eee.empno = aaa.empno 000150 MA2112 60 bitmap
AND aaa.emptime = 1 000150 MA2112 180 bitmap
AND aaa.projno LIKE ’M%1%’ 000160 MA2113 60 -
LEFT OUTER JOIN
 emp_photo ppp
ON aaa.empno = ppp.empno
AND ppp.photo_format LIKE ’b%’
WHERE eee.lastname LIKE ’%A%’
 AND eee.empno < ’000170’
 AND eee.empno <> ’000030’
ORDER BY eee.empno;

Figure 560, Join from Employee to Activity, then from Activity to Photo

The only difference between the above two queries is the first line of the second ON.

DB2 UDB/V8.1 Cookbook ©

Joins 197

Outer Join followed by Inner Join

Mixing and matching inner and outer joins in the same query can cause one to get the wrong
answer. To illustrate, the next query has an inner join, followed by an outer join, followed by
an inner join. We are trying to do the following:

• Get a list of matching departments - based on some local predicates.

• For each matching department, get the related employees. If no employees exist, do not
list the department (i.e. inner join).

• For each employee found, list their matching activities, if any (i.e. left outer join).

• For each activity found, only list it if its project-name contains the letter "Q" (i.e. inner
join between activity and project).

Below is the wrong way to write this query. It is wrong because the final inner join (between
activity and project) turns the preceding outer join into an inner join. This causes an employee
to not show when there are no matching projects:

SELECT ddd.deptno AS dp#
 ,eee.empno
 ,aaa.projno
 ,ppp.projname
FROM (SELECT *
 FROM department
 WHERE deptname LIKE ’%A%’
 AND deptname NOT LIKE ’%U%’
 AND deptno < ’E’
)AS ddd
INNER JOIN
 employee eee
ON ddd.deptno = eee.workdept
AND eee.lastname LIKE ’%A%’
LEFT OUTER JOIN
 emp_act aaa
ON aaa.empno = eee.empno
AND aaa.emptime <= 0.5
INNER JOIN
 project ppp
ON aaa.projno = ppp.projno
AND ppp.projname LIKE ’%Q%’
ORDER BY ddd.deptno
 ,eee.empno ANSWER
 ,aaa.projno; ================================
 DP# EMPNO PROJNO PROJNAME
 --- ------ ------ --------------
 C01 000030 IF1000 QUERY SERVICES
 C01 000130 IF1000 QUERY SERVICES

Figure 561, Complex join - wrong

As was stated above, we really want to get all matching employees, and their related activities
(projects). If an employee has no matching activates, we still want to see the employee.

The next query gets the correct answer by putting the inner join between the activity and pro-
ject tables in parenthesis, and then doing an outer join to the combined result:

 Graeme Birchall ©

198 Join Notes

SELECT ddd.deptno AS dp#
 ,eee.empno
 ,xxx.projno
 ,xxx.projname
FROM (SELECT *
 FROM department
 WHERE deptname LIKE ’%A%’
 AND deptname NOT LIKE ’%U%’
 AND deptno < ’E’
)AS ddd
INNER JOIN
 employee eee
ON ddd.deptno = eee.workdept
AND eee.lastname LIKE ’%A%’
LEFT OUTER JOIN
 (SELECT aaa.empno
 ,aaa.emptime
 ,aaa.projno
 ,ppp.projname
 FROM emp_act aaa
 INNER JOIN
 project ppp
 ON aaa.projno = ppp.projno
 AND ppp.projname LIKE ’%Q%’
)AS xxx
ON xxx.empno = eee.empno
AND xxx.emptime <= 0.5
ORDER BY ddd.deptno
 ,eee.empno ANSWER
 ,xxx.projno; ================================
 DP# EMPNO PROJNO PROJNAME
 --- ------ ------ --------------
 C01 000030 IF1000 QUERY SERVICES
 C01 000130 IF1000 QUERY SERVICES
 D21 000070 - -
 D21 000240 - -

Figure 562, Complex join - right

The lesson to be learnt here is that if a subsequent inner join acts upon data in a preceding
outer join, then it, in effect, turns the former into an inner join.

DB2 UDB/V8.1 Cookbook ©

Sub-Query 199

Sub-Query
Sub-queries are hard to use, tricky to tune, and often do some strange things. Consequently, a
lot of people try to avoid them, but this is stupid because sub-queries are really, really, useful.
Using a relational database and not writing sub-queries is almost as bad as not doing joins.

A sub-query is a special type of full-select that is used to relate one table to another without
actually doing a join. For example, it lets one select all of the rows in one table where some
related value exists, or does not exist, in another table.

Sample Tables

Two tables will be used in this section. Please note that the second sample table has a mixture
of null and not-null values:

CREATE TABLE table1 TABLE1 TABLE2
(t1a CHAR(1) NOT NULL +-------+ +-----------+
,t1b CHAR(2) NOT NULL |T1A|T1B| |T2A|T2B|T2C|
,PRIMARY KEY(t1a)); |---|---| |---|---|---|
COMMIT; |A |AA | |A |A |A |
 |B |BB | |B |A | - |
CREATE TABLE table2 |C |CC | +-----------+
(t2a CHAR(1) NOT NULL +-------+ "-" = null
,t2b CHAR(1) NOT NULL
,t2c CHAR(1));

INSERT INTO table1 VALUES (’A’,’AA’),(’B’,’BB’),(’C’,’CC’);
INSERT INTO table2 VALUES (’A’,’A’,’A’),(’B’,’A’,NULL);

Figure 563, Sample tables used in sub-query examples

Sub-query Flavours

Sub-query Syntax

A sub-query compares an expression against a full-select. The type of comparison done is a
function of which, if any, keyword is used:

=, <, >, <>, etcexpression (subselect)

NOT

 SOME
 ANY
 ALL

 EXISTS
 IN

Figure 564, Sub-query syntax diagram

The result of doing a sub-query check can be any one of the following:

• True, in which case the current row being processed is returned.

• False, in which case the current row being processed is rejected.

• Unknown, which is functionally equivalent to false.

• A SQL error, due to an invalid comparison.

 Graeme Birchall ©

200 Sub-query Flavours

No Keyword Sub-Query

One does not have to provide a SOME, or ANY, or IN, or any other keyword, when writing a
sub-query. But if one does not, there are three possible results:

• If no row in the sub-query result matches, the answer is false.

• If one row in the sub-query result matches, the answer is true.

• If more than one row in the sub-query result matches, you get a SQL error.

In the example below, the T1A field in TABLE1 is checked to see if it equals the result of the
sub-query (against T2A in TABLE2). For the value "A" there is a match, while for the values
"B" and "C" there is no match:

SELECT * ANSWER
FROM table1 =======
WHERE t1a = T1A T1B
 (SELECT t2a --- --
 FROM table2 A aa
 WHERE t2a = ’A’);

 SUB-Q TABLE1 TABLE2
 RESLT +-------+ +-----------+
 +---+ |T1A|T1B| |T2A|T2B|T2C|
 |T2A| |---|---| |---|---|---|
 |---| |A |AA | |A |A |A |
 |A | |B |BB | |B |A | - |
 +---+ |C |CC | +-----------+
 +-------+ "-" = null

Figure 565, No keyword sub-query, works

The next example gets a SQL error. The sub-query returns two rows, which the "=l" check
cannot process. Had an "= ANY" or an "= SOME" check been used instead, the query would
have worked fine:

SELECT * ANSWER
FROM table1 =======
WHERE t1a = <error>
 (SELECT t2a
 FROM table2);
 SUB-Q TABLE1 TABLE2
 RESLT +-------+ +-----------+
 +---+ |T1A|T1B| |T2A|T2B|T2C|
 |T2A| |---|---| |---|---|---|
 |---| |A |AA | |A |A |A |
 |A | |B |BB | |B |A | - |
 |B | |C |CC | +-----------+
 +---+ +-------+ "-" = null

Figure 566, No keyword sub-query, fails

NOTE: There is almost never a valid reason for coding a sub-query that does not use an
appropriate sub-query keyword. Do not do the above.

SOME/ANY Keyword Sub-Query

When a SOME or ANY sub-query check is used, there are two possible results:

• If any row in the sub-query result matches, the answer is true.

• If the sub-query result is empty, or all nulls, the answer is false.

• If no value found in the sub-query result matches, the answer is also false.

DB2 UDB/V8.1 Cookbook ©

Sub-Query 201

The query below compares the current T1A value against the sub-query result three times.
The first row (i.e. T1A = "A") fails the test, while the next two rows pass:

SELECT * ANSWER SUB-Q TABLE1 TABLE2
FROM table1 ======= RESLT +-------+ +-----------+
WHERE t1a > ANY T1A T1B +---+ |T1A|T1B| |T2A|T2B|T2C|
 (SELECT t2a --- -- |T2A| |---|---| |---|---|---|
 FROM table2); B BB |---| |A |AA | |A |A |A |
 C CC |A | |B |BB | |B |A | - |
 |B | |C |CC | +-----------+
 +---+ +-------+ "-" = null

Figure 567, ANY sub-query

When an ANY or ALL sub-query check is used with a "greater than" or similar expression (as
opposed to an "equal" or a "not equal" expression) then the check can be considered similar to
evaluating the MIN or the MAX of the sub-query result set. The following table shows what
type of sub-query check equates to what type of column function:

SUB-QUERY CHECK EQUIVALENT COLUMN FUNCTION
================ ============================
> ANY(sub-qurey) > MINIMUM(sub-query results)
< ANY(sub-query) < MAXIMUM(sub-query results)

> ALL(sub-query) > MAXIMUM(sub-query results)
< ALL(sub-query) < MINIMUM(sub-query results)

Figure 568, ANY and ALL vs. column functions

All Keyword Sub-Query

When an ALL sub-query check is used, there are two possible results:

• If all rows in the sub-query result match, the answer is true.

• If there are no rows in the sub-query result, the answer is also true.

• If any row in the sub-query result does not match, or is null, the answer is false.

Below is a typical example of the ALL check usage. Observe that a TABLE1 row is returned
only if the current T1A value equals all of the rows in the sub-query result:

SELECT * ANSWER SUB-Q
FROM table1 ======= RESLT
WHERE t1a = ALL T1A T1B +---+
 (SELECT t2b --- -- |T2B|
 FROM table2 A aa |---|
 WHERE t2b >= ’A’); |A |
 |A |
 +---+

Figure 569, ALL sub-query, with non-empty sub-query result

When the sub-query result consists of zero rows (i.e. an empty set) then all rows processed in
TABLE1 are deemed to match:

SELECT * ANSWER SUB-Q
FROM table1 ======= RESLT
WHERE t1a = ALL T1A T1B +---+
 (SELECT t2b --- -- |T2B|
 FROM table2 A aa |---|
 WHERE t2b >= ’X’); B BB +---+
 C CC

Figure 570, ALL sub-query, with empty sub-query result

The above may seem a little unintuitive, but it actually makes sense, and is in accordance with
how the NOT EXISTS sub-query (see page 203) handles a similar situation.

 Graeme Birchall ©

202 Sub-query Flavours

Imagine that one wanted to get a row from TABLE1 where the T1A value matched all of the
sub-query result rows, but if the latter was an empty set (i.e. no rows), one wanted to get a
non-match. Try this:

SELECT * ANSWER
FROM table1 ======
WHERE t1a = ALL 0 rows
 (SELECT t2b
 FROM table2 SQ-#1 SQ-#2 TABLE1 TABLE2
 WHERE t2b >= ’X’) RESLT RESLT +-------+ +-----------+
 AND 0 <> +---+ +---+ |T1A|T1B| |T2A|T2B|T2C|
 (SELECT COUNT(*) |T2B| |(*)| |---|---| |---|---|---|
 FROM table2 |---| |---| |A |AA | |A |A |A |
 WHERE t2b >= ’X’); +---+ |0 | |B |BB | |B |A | - |
 +---+ |C |CC | +-----------+
 +-------+ "-" = null

Figure 571, ALL sub-query, with extra check for empty set

Two sub-queries are done above: The first looks to see if all matching values in the sub-query
equal the current T1A value. The second confirms that the number of matching values in the
sub-query is not zero.

WARNING: Observe that the ANY sub-query check returns false when used against an
empty set, while a similar ALL check returns true.

EXISTS Keyword Sub-Query

So far, we have been taking a value from the TABLE1 table and comparing it against one or
more rows in the TABLE2 table. The EXISTS phrase does not compare values against rows,
rather it simply looks for the existence or non-existence of rows in the sub-query result set:

• If the sub-query matches on one or more rows, the result is true.

• If the sub-query matches on no rows, the result is false.

Below is an EXISTS check that, given our sample data, always returns true:

SELECT * ANSWER TABLE1 TABLE2
FROM table1 ======= +-------+ +-----------+
WHERE EXISTS T1A T1B |T1A|T1B| |T2A|T2B|T2C|
 (SELECT * --- -- |---|---| |---|---|---|
 FROM table2); A aa |A |AA | |A |A |A |
 B BB |B |BB | |B |A | - |
 C CC |C |CC | +-----------+
 +-------+ "-" = null

Figure 572, EXISTS sub-query, always returns a match

Below is an EXISTS check that, given our sample data, always returns false:

SELECT * ANSWER
FROM table1 ======
WHERE EXISTS 0 rows
 (SELECT *
 FROM table2
 WHERE t2b >= ’X’);

Figure 573, EXISTS sub-query, always returns a non-match

When using an EXISTS check, it doesn’t matter what field, if any, is selected in the sub-query
SELECT phrase. What is important is whether the sub-query returns a row or not. If it does,
the sub-query returns true. Having said this, the next query is an example of an EXISTS sub-
query that will always return true, because even when no matching rows are found in the sub-
query, the SELECT COUNT(*) statement will return something (i.e. a zero). Arguably, this
query is logically flawed:

DB2 UDB/V8.1 Cookbook ©

Sub-Query 203

SELECT * ANSWER TABLE1 TABLE2
FROM table1 ======= +-------+ +-----------+
WHERE EXISTS T1A T1B |T1A|T1B| |T2A|T2B|T2C|
 (SELECT COUNT(*) --- -- |---|---| |---|---|---|
 FROM table2 A aa |A |AA | |A |A |A |
 WHERE t2b = ’X’); B BB |B |BB | |B |A | - |
 C CC |C |CC | +-----------+
 +-------+ "-" = null

Figure 574, EXISTS sub-query, always returns a match

NOT EXISTS Keyword Sub-query

The NOT EXISTS phrases looks for the non-existence of rows in the sub-query result set:

• If the sub-query matches on no rows, the result is true.

• If the sub-query has rows, the result is false.

We can use a NOT EXISTS check to create something similar to an ALL check, but with one
very important difference. The two checks will handle nulls differently. To illustrate, consider
the following two queries, both of which will return a row from TABLE1 only when it equals
all of the matching rows in TABLE2:

SELECT * ANSWERS TABLE1 TABLE2
FROM table1 ======= +-------+ +-----------+
WHERE NOT EXISTS T1A T1B |T1A|T1B| |T2A|T2B|T2C|
 (SELECT * --- --- |---|---| |---|---|---|
 FROM table2 A aa |A |AA | |A |A |A |
 WHERE t2c >= ’A’ |B |BB | |B |A | - |
 AND t2c <> t1a); |C |CC | +-----------+
 +-------+ "-" = null

SELECT *
FROM table1
WHERE t1a = ALL
 (SELECT t2c
 FROM table2
 WHERE t2c >= ’A’);

Figure 575, NOT EXISTS vs. ALL, ignore nulls, find match

The above two queries are very similar. Both define a set of rows in TABLE2 where the T2C
value is greater than or equal to "A", and then both look for matching TABLE2 rows that are
not equal to the current T1A value. If a row is found, the sub-query is false.

What happens when no TABLE2 rows match the ">=" predicate? As is shown below, both of
our test queries treat an empty set as a match:

SELECT * ANSWERS TABLE1 TABLE2
FROM table1 ======= +-------+ +-----------+
WHERE NOT EXISTS T1A T1B |T1A|T1B| |T2A|T2B|T2C|
 (SELECT * --- --- |---|---| |---|---|---|
 FROM table2 A aa |A |AA | |A |A |A |
 WHERE t2c >= ’X’ B BB |B |BB | |B |A | - |
 AND t2c <> t1a); C CC |C |CC | +-----------+
 +-------+ "-" = null

SELECT *
FROM table1
WHERE t1a = ALL
 (SELECT t2c
 FROM table2
 WHERE t2c >= ’X’);

Figure 576, NOT EXISTS vs. ALL, ignore nulls, no match

 Graeme Birchall ©

204 Sub-query Flavours

One might think that the above two queries are logically equivalent, but they are not. As is
shown below, they return different results when the sub-query answer set can include nulls:

SELECT * ANSWER TABLE1 TABLE2
FROM table1 ======= +-------+ +-----------+
WHERE NOT EXISTS T1A T1B |T1A|T1B| |T2A|T2B|T2C|
 (SELECT * --- --- |---|---| |---|---|---|
 FROM table2 A aa |A |AA | |A |A |A |
 WHERE t2c <> t1a); |B |BB | |B |A | - |
 |C |CC | +-----------+
 +-------+ "-" = null
SELECT * ANSWER
FROM table1 =======
WHERE t1a = ALL no rows
 (SELECT t2c
 FROM table2);

Figure 577, NOT EXISTS vs. ALL, process nulls

A sub-query can only return true or false, but a DB2 field value can either match (i.e. be true),
or not match (i.e. be false), or be unknown. It is the differing treatment of unknown values
that is causing the above two queries to differ:

• In the ALL sub-query, each value in T1A is checked against all of the values in T2C. The
null value is checked, deemed to differ, and so the sub-query always returns false.

• In the NOT EXISTS sub-query, each value in T1A is used to find those T2C values that
are not equal. For the T1A values "B" and "C", the T2C value "A" does not equal, so the
NOT EXISTS check will fail. But for the T1A value "A", there are no "not equal" values
in T2C, because a null value does not "not equal" a literal. So the NOT EXISTS check
will pass.

The following three queries list those T2C values that do "not equal" a given T1A value:

SELECT * SELECT * SELECT *
FROM table2 FROM table2 FROM table2
WHERE t2c <> ’A’; WHERE t2c <> ’B’; WHERE t2c <> ’C’;

ANSWER ANSWER ANSWER
=========== =========== ===========
T2A T2B T2C T2A T2B T2C T2A T2B T2C
--- --- --- --- --- --- --- --- ---
no rows A A A A A A

Figure 578, List of values in T2C <> T1A value

To make a NOT EXISTS sub-query that is logically equivalent to the ALL sub-query that we
have used above, one can add an additional check for null T2C values:

SELECT * ANSWER TABLE1 TABLE2
FROM table1 ======= +-------+ +-----------+
WHERE NOT EXISTS no rows |T1A|T1B| |T2A|T2B|T2C|
 (SELECT * |---|---| |---|---|---|
 FROM table2 |A |AA | |A |A |A |
 WHERE t2c <> t1a |B |BB | |B |A | - |
 OR t2c IS NULL); |C |CC | +-----------+
 +-------+ "-" = null

Figure 579, NOT EXISTS - same as ALL

One problem with the above query is that it is not exactly obvious. Another is that the two
T2C predicates will have to be fenced in with parenthesis if other predicates (on TABLE2)
exist. For these reasons, use an ALL sub-query when that is what you mean to do.

DB2 UDB/V8.1 Cookbook ©

Sub-Query 205

IN Keyword Sub-Query

The IN sub-query check is similar to the ANY and SOME checks:

• If any row in the sub-query result matches, the answer is true.

• If the sub-query result is empty, the answer is false.

• If no row in the sub-query result matches, the answer is also false.

• If all of the values in the sub-query result are null, the answer is false.

Below is an example that compares the T1A and T2A columns. Two rows match:

SELECT * ANSWER TABLE1 TABLE2
FROM table1 ======= +-------+ +-----------+
WHERE t1a IN T1A T1B |T1A|T1B| |T2A|T2B|T2C|
 (SELECT t2a --- -- |---|---| |---|---|---|
 FROM table2); A aa |A |AA | |A |A |A |
 B BB |B |BB | |B |A | - |
 |C |CC | +-----------+
 +-------+ "-" = null

Figure 580, IN sub-query example, two matches

In the next example, no rows match because the sub-query result is an empty set:

SELECT * ANSWER
FROM table1 ======
WHERE t1a IN 0 rows
 (SELECT t2a
 FROM table2
 WHERE t2a >= ’X’);

Figure 581, IN sub-query example, no matches

The IN, ANY, SOME, and ALL checks all look for a match. Because one null value does not
equal another null value, having a null expression in the "top" table causes the sub-query to
always returns false:

SELECT * ANSWERS TABLE2
FROM table2 =========== +-----------+
WHERE t2c IN T2A T2B T2C |T2A|T2B|T2C|
 (SELECT t2c --- --- --- |---|---|---|
 FROM table2); A A A |A |A |A |
 |B |A | - |
SELECT * +-----------+
FROM table2 "-" = null
WHERE t2c = ANY
 (SELECT t2c
 FROM table2);

Figure 582, IN and = ANY sub-query examples, with nulls

NOT IN Keyword Sub-Queries

Sub-queries that look for the non-existence of a row work largely as one would expect, except
when a null value in involved. To illustrate, consider the following query, where we want to
see if the current T1A value is not in the set of T2C values:

SELECT * ANSWER TABLE1 TABLE2
FROM table1 ====== +-------+ +-----------+
WHERE t1a NOT IN 0 rows |T1A|T1B| |T2A|T2B|T2C|
 (SELECT t2c |---|---| |---|---|---|
 FROM table2); |A |AA | |A |A |A |
 |B |BB | |B |A | - |
 |C |CC | +-----------+
 +-------+ "-" = null

Figure 583, NOT IN sub-query example, no matches

 Graeme Birchall ©

206 Sub-query Flavours

Observe that the T1A values "B" and "C" are obviously not in T2C, yet they are not returned.
The sub-query result set contains the value null, which causes the NOT IN check to return
unknown, which equates to false.

The next example removes the null values from the sub-query result, which then enables the
NOT IN check to find the non-matching values:

SELECT * ANSWER TABLE1 TABLE2
FROM table1 ======= +-------+ +-----------+
WHERE t1a NOT IN T1A T1B |T1A|T1B| |T2A|T2B|T2C|
 (SELECT t2c --- -- |---|---| |---|---|---|
 FROM table2 B BB |A |AA | |A |A |A |
 WHERE t2c IS NOT NULL); C CC |B |BB | |B |A | - |
 |C |CC | +-----------+
 +-------+ "-" = null

Figure 584, NOT IN sub-query example, matches

Another way to find the non-matching values while ignoring any null rows in the sub-query,
is to use an EXISTS check in a correlated sub-query:

SELECT * ANSWER TABLE1 TABLE2
FROM table1 ======= +-------+ +-----------+
WHERE NOT EXISTS T1A T1B |T1A|T1B| |T2A|T2B|T2C|
 (SELECT * --- -- |---|---| |---|---|---|
 FROM table2 B BB |A |AA | |A |A |A |
 WHERE t1a = t2c); C CC |B |BB | |B |A | - |
 |C |CC | +-----------+
 +-------+ "-" = null

Figure 585, NOT EXISTS sub-query example, matches

Correlated vs. Uncorrelated Sub-Queries

With the exception of the very last example above, all of the sub-queries shown so far have
been uncorrelated. An uncorrelated sub-query is one where the predicates in the sub-query
part of SQL statement have no direct relationship to the current row being processed in the
"top" table (hence uncorrelated). The following sub-query is uncorrelated:

SELECT * ANSWER TABLE1 TABLE2
FROM table1 ======= +-------+ +-----------+
WHERE t1a IN T1A T1B |T1A|T1B| |T2A|T2B|T2C|
 (SELECT t2a --- -- |---|---| |---|---|---|
 FROM table2); A aa |A |AA | |A |A |A |
 B BB |B |BB | |B |A | - |
 |C |CC | +-----------+
 +-------+ "-" = null

Figure 586, Uncorrelated sub-query

A correlated sub-query is one where the predicates in the sub-query part of the SQL statement
cannot be resolved without reference to the row currently being processed in the "top" table
(hence correlated). The following query is correlated:

SELECT * ANSWER TABLE1 TABLE2
FROM table1 ======= +-------+ +-----------+
WHERE t1a IN T1A T1B |T1A|T1B| |T2A|T2B|T2C|
 (SELECT t2a --- -- |---|---| |---|---|---|
 FROM table2 A aa |A |AA | |A |A |A |
 WHERE t1a = t2a); B BB |B |BB | |B |A | - |
 |C |CC | +-----------+
 +-------+ "-" = null

Figure 587, Correlated sub-query

Below is another correlated sub-query. Because the same table is being referred to twice, cor-
relation names have to be used to delineate which column belongs to which table:

DB2 UDB/V8.1 Cookbook ©

Sub-Query 207

SELECT * ANSWER TABLE2
FROM table2 aa =========== +-----------+
WHERE EXISTS T2A T2B T2C |T2A|T2B|T2C|
 (SELECT * --- --- --- |---|---|---|
 FROM table2 bb A A A |A |A |A |
 WHERE aa.t2a = bb.t2b); |B |A | - |
 +-----------+
 "-" = null

Figure 588,Correlated sub-query, with correlation names

Which is Faster

In general, if there is a suitable index on the sub-query table, use a correlated sub-query. Else,
use an uncorrelated sub-query. However, there are several very important exceptions to this
rule, and some queries can only be written one way.

NOTE: The DB2 optimizer is not as good at choosing the best access path for sub-queries
as it is with joins. Be prepared to spend some time doing tuning.

Multi-Field Sub-Queries

Imagine that you want to compare multiple items in your sub-query. The following examples
use an IN expression and a correlated EXISTS sub-query to do two equality checks:

SELECT * ANSWER TABLE1 TABLE2
FROM table1 ====== +-------+ +-----------+
WHERE (t1a,t1b) IN 0 rows |T1A|T1B| |T2A|T2B|T2C|
 (SELECT t2a, t2b |---|---| |---|---|---|
 FROM table2); |A |AA | |A |A |A |
 |B |BB | |B |A | - |
 |C |CC | +-----------+
 +-------+ "-" = null
SELECT * ANSWER
FROM table1 ======
WHERE EXISTS 0 rows
 (SELECT *
 FROM table2
 WHERE t1a = t2a
 AND t1b = t2b);

Figure 589, Multi-field sub-queries, equal checks

Observe that to do a multiple-value IN check, you put the list of expressions to be compared
in parenthesis, and then select the same number of items in the sub-query.

An IN phrase is limited because it can only do an equality check. By contrast, use whatever
predicates you want in an EXISTS correlated sub-query to do other types of comparison:

SELECT * ANSWER TABLE1 TABLE2
FROM table1 ======= +-------+ +-----------+
WHERE EXISTS T1A T1B |T1A|T1B| |T2A|T2B|T2C|
 (SELECT * --- -- |---|---| |---|---|---|
 FROM table2 A aa |A |AA | |A |A |A |
 WHERE t1a = t2a B BB |B |BB | |B |A | - |
 AND t1b >= t2b); |C |CC | +-----------+
 +-------+ "-" = null

Figure 590, Multi-field sub-query, with non-equal check

Nested Sub-Queries

Some business questions may require that the related SQL statement be written as a series of
nested sub-queries. In the following example, we are after all employees in the EMPLOYEE
table who have a salary that is greater than the maximum salary of all those other employees
that do not work on a project with a name beginning ’MA’.

 Graeme Birchall ©

208 Usage Examples

SELECT empno ANSWER
 ,lastname =========================
 ,salary EMPNO LASTNAME SALARY
FROM employee ------ --------- --------
WHERE salary > 000010 HAAS 52750.00
 (SELECT MAX(salary) 000110 LUCCHESSI 46500.00
 FROM employee
 WHERE empno NOT IN
 (SELECT empno
 FROM emp_act
 WHERE projno LIKE ’MA%’))
ORDER BY 1;

Figure 591, Nested Sub-Queries

Usage Examples
In this section we will use various sub-queries to compare our two test tables - looking for
those rows where none, any, ten, or all values match.

Beware of Nulls

The presence of null values greatly complicates sub-query usage. Not allowing for them when
they are present can cause one to get what is arguably a wrong answer. And do not assume
that just because you don’t have any nullable fields that you will never therefore encounter a
null value. The DEPTNO table in the Department table is defined as not null, but in the fol-
lowing query, the maximum DEPTNO that is returned will be null:

SELECT COUNT(*) AS #rows ANSWER
 ,MAX(deptno) AS maxdpt =============
FROM department #ROWS MAXDEPT
WHERE deptname LIKE ’Z%’ ----- -------
ORDER BY 1; 0 null

Figure 592, Getting a null value from a not null field

True if NONE Match

Find all rows in TABLE1 where there are no rows in TABLE2 that have a T2C value equal to
the current T1A value in the TABLE1 table:

SELECT * TABLE1 TABLE2
FROM table1 t1 +-------+ +-----------+
WHERE 0 = |T1A|T1B| |T2A|T2B|T2C|
 (SELECT COUNT(*) |---|---| |---|---|---|
 FROM table2 t2 |A |AA | |A |A |A |
 WHERE t1.t1a = t2.t2c); |B |BB | |B |A | - |
 |C |CC | +-----------+
SELECT * +-------+ "-" = null
FROM table1 t1
WHERE NOT EXISTS
 (SELECT * ANSWER
 FROM table2 t2 =======
 WHERE t1.t1a = t2.t2c); T1A T1B
 --- ---
SELECT * B BB
FROM table1 C CC
WHERE t1a NOT IN
 (SELECT t2c
 FROM table2
 WHERE t2c IS NOT NULL);

Figure 593, Sub-queries, true if none match

DB2 UDB/V8.1 Cookbook ©

Sub-Query 209

Observe that in the last statement above we eliminated the null rows from the sub-query. Had
this not been done, the NOT IN check would have found them and then returned a result of
"unknown" (i.e. false) for all of rows in the TABLE1A table.

Using a Join

Another way to answer the same problem is to use a left outer join, going from TABLE1 to
TABLE2 while matching on the T1A and T2C fields. Get only those rows (from TABLE1)
where the corresponding T2C value is null:

SELECT t1.* ANSWER
FROM table1 t1 =======
LEFT OUTER JOIN T1A T1B
 table2 t2 --- ---
ON t1.t1a = t2.t2c B BB
WHERE t2.t2c IS NULL; C CC

Figure 594, Outer join, true if none match

True if ANY Match

Find all rows in TABLE1 where there are one, or more, rows in TABLE2 that have a T2C
value equal to the current T1A value:

SELECT * TABLE1 TABLE2
FROM table1 t1 +-------+ +-----------+
WHERE EXISTS |T1A|T1B| |T2A|T2B|T2C|
 (SELECT * |---|---| |---|---|---|
 FROM table2 t2 |A |AA | |A |A |A |
 WHERE t1.t1a = t2.t2c); |B |BB | |B |A | - |
 |C |CC | +-----------+
SELECT * +-------+ "-" = null
FROM table1 t1
WHERE 1 <=
 (SELECT COUNT(*) ANSWER
 FROM table2 t2 =======
 WHERE t1.t1a = t2.t2c); T1A T1B
 --- ---
SELECT * A aa
FROM table1
WHERE t1a = ANY
 (SELECT t2c
 FROM table2);

SELECT *
FROM table1
WHERE t1a = SOME
 (SELECT t2c
 FROM table2);

SELECT *
FROM table1
WHERE t1a IN
 (SELECT t2c
 FROM table2);

Figure 595, Sub-queries, true if any match

Of all of the above queries, the second query is almost certainly the worst performer. All of
the others can, and probably will, stop processing the sub-query as soon as it encounters a
single matching value. But the sub-query in the second statement has to count all of the
matching rows before it return either a true or false indicator.

 Graeme Birchall ©

210 Usage Examples

Using a Join

This question can also be answered using an inner join. The trick is to make a list of distinct
T2C values, and then join that list to TABLE1 using the T1A column. Several variations on
this theme are given below:

WITH t2 AS TABLE1 TABLE2
(SELECT DISTINCT t2c +-------+ +-----------+
 FROM table2 |T1A|T1B| |T2A|T2B|T2C|
) |---|---| |---|---|---|
SELECT t1.* |A |AA | |A |A |A |
FROM table1 t1 |B |BB | |B |A | - |
 ,t2 |C |CC | +-----------+
WHERE t1.t1a = t2.t2c; +-------+ "-" = null

SELECT t1.*
FROM table1 t1 ANSWER
 ,(SELECT DISTINCT t2c =======
 FROM table2 T1A T1B
)AS t2 --- ---
WHERE t1.t1a = t2.t2c; A aa

SELECT t1.*
FROM table1 t1
INNER JOIN
 (SELECT DISTINCT t2c
 FROM table2
)AS t2
ON t1.t1a = t2.t2c;

Figure 596, Joins, true if any match

True if TEN Match

Find all rows in TABLE1 where there are exactly ten rows in TABLE2 that have a T2B value
equal to the current T1A value in the TABLE1 table:

SELECT * TABLE1 TABLE2
FROM table1 t1 +-------+ +-----------+
WHERE 10 = |T1A|T1B| |T2A|T2B|T2C|
 (SELECT COUNT(*) |---|---| |---|---|---|
 FROM table2 t2 |A |AA | |A |A |A |
 WHERE t1.t1a = t2.t2b); |B |BB | |B |A | - |
 |C |CC | +-----------+
SELECT * +-------+ "-" = null
FROM table1
WHERE EXISTS
 (SELECT t2b ANSWER
 FROM table2 ======
 WHERE t1a = t2b 0 rows
 GROUP BY t2b
 HAVING COUNT(*) = 10);

SELECT *
FROM table1
WHERE t1a IN
 (SELECT t2b
 FROM table2
 GROUP BY t2b
 HAVING COUNT(*) = 10);

Figure 597, Sub-queries, true if ten match (1 of 2)

The first two queries above use a correlated sub-query. The third is uncorrelated. The next
query, which is also uncorrelated, is guaranteed to befuddle your coworkers. It uses a multi-
field IN (see page 207 for more notes) to both check T2B and the count at the same time:

DB2 UDB/V8.1 Cookbook ©

Sub-Query 211

SELECT * ANSWER
FROM table1 ======
WHERE (t1a,10) IN 0 rows
 (SELECT t2b, COUNT(*)
 FROM table2
 GROUP BY t2b);

Figure 598, Sub-queries, true if ten match (2 of 2)

Using a Join

To answer this generic question using a join, one simply builds a distinct list of T2B values
that have ten rows, and then joins the result to TABLE1:

WITH t2 AS TABLE1 TABLE2
 (SELECT t2b +-------+ +-----------+
 FROM table2 |T1A|T1B| |T2A|T2B|T2C|
 GROUP BY t2b |---|---| |---|---|---|
 HAVING COUNT(*) = 10 |A |AA | |A |A |A |
) |B |BB | |B |A | - |
SELECT t1.* |C |CC | +-----------+
FROM table1 t1 +-------+ "-" = null
 ,t2
WHERE t1.t1a = t2.t2b;

 ANSWER
SELECT t1.* ======
FROM table1 t1 0 rows
 ,(SELECT t2b
 FROM table2
 GROUP BY t2b
 HAVING COUNT(*) = 10
)AS t2
WHERE t1.t1a = t2.t2b;

SELECT t1.*
FROM table1 t1
INNER JOIN
 (SELECT t2b
 FROM table2
 GROUP BY t2b
 HAVING COUNT(*) = 10
)AS t2
ON t1.t1a = t2.t2b;

Figure 599, Joins, true if ten match

True if ALL match

Find all rows in TABLE1 where all matching rows in TABLE2 have a T2B value equal to the
current T1A value in the TABLE1 table. Before we show some SQL, we need to decide what
to do about nulls and empty sets:

• When nulls are found in the sub-query, we can either deem that their presence makes the
relationship false, which is what DB2 does, or we can exclude nulls from our analysis.

• When there are no rows found in the sub-query, we can either say that the relationship is
false, or we can do as DB2 does, and say that the relationship is true.

See page 201 for a detailed discussion of the above issues.

The next two queries use the basic DB2 logic for dealing with empty sets; In other words, if
no rows are found by the sub-query, then the relationship is deemed to be true. Likewise, the
relationship is also true if all rows found by the sub-query equal the current T1A value:

 Graeme Birchall ©

212 Usage Examples

SELECT * TABLE1 TABLE2
FROM table1 +-------+ +-----------+
WHERE t1a = ALL |T1A|T1B| |T2A|T2B|T2C|
 (SELECT t2b |---|---| |---|---|---|
 FROM table2); |A |AA | |A |A |A |
 |B |BB | |B |A | - |
SELECT * |C |CC | +-----------+
FROM table1 +-------+ "-" = null
WHERE NOT EXISTS
 (SELECT * ANSWER
 FROM table2 =======
 WHERE t1a <> t2b); T1A T1B
 --- ---
 A aa

Figure 600, Sub-queries, true if all match, find rows

The next two queries are the same as the prior, but an extra predicate has been included in the
sub-query to make it return an empty set. Observe that now all TABLE1 rows match:

SELECT * ANSWER
FROM table1 =======
WHERE t1a = ALL T1A T1B
 (SELECT t2b --- ---
 FROM table2 A aa
 WHERE t2b >= ’X’); B BB
 C CC
SELECT *
FROM table1
WHERE NOT EXISTS
 (SELECT *
 FROM table2
 WHERE t1a <> t2b
 AND t2b >= ’X’);

Figure 601, Sub-queries, true if all match, empty set

False if no Matching Rows

The next two queries differ from the above in how they address empty sets. The queries will
return a row from TABLE1 if the current T1A value matches all of the T2B values found in
the sub-query, but they will not return a row if no matching values are found:

SELECT * TABLE1 TABLE2
FROM table1 +-------+ +-----------+
WHERE t1a = ALL |T1A|T1B| |T2A|T2B|T2C|
 (SELECT t2b |---|---| |---|---|---|
 FROM table2 |A |AA | |A |A |A |
 WHERE t2b >= ’X’) |B |BB | |B |A | - |
 AND 0 <> |C |CC | +-----------+
 (SELECT COUNT(*) +-------+ "-" = null
 FROM table2
 WHERE t2b >= ’X’); ANSWER
 ======
SELECT * 0 rows
FROM table1
WHERE t1a IN
 (SELECT MAX(t2b)
 FROM table2
 WHERE t2b >= ’X’
 HAVING COUNT(DISTINCT t2b) = 1);

Figure 602, Sub-queries, true if all match, and at least one value found

Both of the above statements have flaws: The first processes the TABLE2 table twice, which
not only involves double work, but also requires that the sub-query predicates be duplicated.
The second statement is just plain strange.

DB2 UDB/V8.1 Cookbook ©

Union, Intersect, and Except 213

Union, Intersect, and Except
A UNION, EXCEPT, or INTERCEPT expression combines sets of columns into new sets of
columns. An illustration of what each operation does with a given set of data is shown below:

 R1 R1 R1 R1 R1 R1
 UNION UNION INTERSECT INTERSECT EXCEPT EXCEPT
 R2 ALL R2 ALL R2 ALL
R1 R2 R2 R2 R2
-- -- ----- ----- --------- ----- ------ ------
A A A A A A E A
A A B A B A C
A B C A C B C
B B D A B E
B B E A C
C C B
C D B
C B
E B
 B
 C
 C
 C
 C
 D
 E

Figure 603, Examples of Union, Except, and Intersect

WARNING: Unlike the UNION and INTERSECT operations, the EXCEPT statement is not
commutative. This means that "A EXCEPT B" is not the same as "B EXCEPT A".

Syntax Diagram

 SELECT statement UNION

 VALUES statement

 SELECT statement

 VALUES statement UNION ALL

 EXCEPT

 EXCEPT ALL

 INTERSECT

 INTERSECT ALL

Figure 604, Union, Except, and Intersect syntax

Sample Views

CREATE VIEW R1 (R1)
 AS VALUES (’A’),(’A’),(’A’),(’B’),(’B’),(’C’),(’C’),(’C’),(’E’);
CREATE VIEW R2 (R2)
 AS VALUES (’A’),(’A’),(’B’),(’B’),(’B’),(’C’),(’D’); ANSWER
 ======
SELECT R1 R1 R2
FROM R1 -- --
ORDER BY R1; A A
 A A
SELECT R2 A B
FROM R2 B B
ORDER BY R2; B B
 C C
 C D
 C
 E

Figure 605, Query sample views

 Graeme Birchall ©

214 Usage Notes

Usage Notes

Union & Union All

A UNION operation combines two sets of columns and removes duplicates. The UNION
ALL expression does the same but does not remove the duplicates.

SELECT R1 R1 R2 UNION UNION ALL
FROM R1 -- -- ===== =========
UNION A A A A
SELECT R2 A A B A
FROM R2 A B C A
ORDER BY 1; B B D A
 B B E A
 C C B
SELECT R1 C D B
FROM R1 C B
UNION ALL E B
SELECT R2 B
FROM R2 C
ORDER BY 1; C
 C
 C
 D
 E

Figure 606, Union and Union All SQL

NOTE: Recursive SQL requires that there be a UNION ALL phrase between the two main
parts of the statement. The UNION ALL, unlike the UNION, allows for duplicate output
rows which is what often comes out of recursive processing.

Intersect & Intersect All

An INTERSECT operation retrieves the matching set of distinct values (not rows) from two
columns. The INTERSECT ALL returns the set of matching individual rows.

SELECT R1 R1 R2 INTERSECT INTERSECT ALL
FROM R1 -- -- ========= =============
INTERSECT A A A A
SELECT R2 A A B A
FROM R2 A B C B
ORDER BY 1; B B B
 B B C
SELECT R1 C C
FROM R1 C D
INTERSECT ALL C
SELECT R2 E
FROM R2
ORDER BY 1;

Figure 607, Intersect and Intersect All SQL

An INTERSECT and/or EXCEPT operation is done by matching ALL of the columns in the
top and bottom result-sets. In other words, these are row, not column, operations. It is not
possible to only match on the keys, yet at the same time, also fetch non-key columns. To do
this, one needs to use a sub-query.

Except & Except All

An EXCEPT operation retrieves the set of distinct data values (not rows) that exist in the first
the table but not in the second. The EXCEPT ALL returns the set of individual rows that exist
only in the first table.

DB2 UDB/V8.1 Cookbook ©

Union, Intersect, and Except 215

SELECT R1 R1 R1
FROM R1 EXCEPT EXCEPT ALL
EXCEPT R1 R2 R2 R2
SELECT R2 -- -- ===== ==========
FROM R2 A A E A
ORDER BY 1; A A C
 A B C
SELECT R1 B B E
FROM R1 B B
EXCEPT ALL C C
SELECT R2 C D
FROM R2 C
ORDER BY 1; E

Figure 608, Except and Except All SQL (R1 on top)

Because the EXCEPT operation is not commutative, using it in the reverse direction (i.e. R2
to R1 instead of R1 to R2) will give a different result:

SELECT R2 R2 R2
FROM R2 EXCEPT EXCEPT ALL
EXCEPT R1 R2 R1 R1
SELECT R1 -- -- ===== ==========
FROM R1 A A D B
ORDER BY 1; A A D
 A B
SELECT R2 B B
FROM R2 B B
EXCEPT ALL C C
SELECT R1 C D
FROM R1 C
ORDER BY 1; E

Figure 609, Except and Except All SQL (R2 on top)

NOTE: Only the EXCEPT operation is not commutative. Both the UNION and the INTER-
SECT operations work the same regardless of which table is on top or on bottom.

Precedence Rules

When multiple operations are done in the same SQL statement, there are precedence rules:

• Operations in parenthesis are done first.

• INTERSECT operations are done before either UNION or EXCEPT.

• Operations of equal worth are done from top to bottom.

The next example illustrates how parenthesis can be used change the processing order:

SELECT R1 (SELECT R1 SELECT R1 R1 R2
FROM R1 FROM R1 FROM R1 -- --
UNION UNION UNION A A
SELECT R2 SELECT R2 (SELECT R2 A A
FROM R2 FROM R2 FROM R2 A B
EXCEPT)EXCEPT EXCEPT B B
SELECT R2 SELECT R2 SELECT R2 B B
FROM R2 FROM R2 FROM R2 C C
ORDER BY 1; ORDER BY 1;)ORDER BY 1; C D
 C
 E
ANSWER ANSWER ANSWER
====== ====== ======
E E A
 B
 C
 E

Figure 610, Use of parenthesis in Union

 Graeme Birchall ©

216 Usage Notes

Unions and Views

Imagine that one has a series of tables that track sales data, with one table for each year. One
can define a view that is the UNION ALL of these tables, so that a user would see them as a
single object. Such a view can support inserts, updates, and deletes, as long as each table in
the view has a constraint that distinguishes it from all the others. Below is an example:

CREATE TABLE SALES_DATA_2002
(SALES_DATE DATE NOT NULL
,DAILY_SEQ# INTEGER NOT NULL
,CUST_ID INTEGER NOT NULL
,AMOUNT DEC(10,2) NOT NULL
,INVOICE# INTEGER NOT NULL
,SALES_REP CHAR(10) NOT NULL
,CONSTRAINT C CHECK (YEAR(SALES_DATE) = 2002)
,PRIMARY KEY (SALES_DATE, DAILY_SEQ#));

CREATE TABLE SALES_DATA_2003
(SALES_DATE DATE NOT NULL
,DAILY_SEQ# INTEGER NOT NULL
,CUST_ID INTEGER NOT NULL
,AMOUNT DEC(10,2) NOT NULL
,INVOICE# INTEGER NOT NULL
,SALES_REP CHAR(10) NOT NULL
,CONSTRAINT C CHECK (YEAR(SALES_DATE) = 2003)
,PRIMARY KEY (SALES_DATE, DAILY_SEQ#));

CREATE VIEW SALES_DATA AS
SELECT *
FROM SALES_DATA_2002
UNION ALL
SELECT *
FROM SALES_DATA_2003;

Figure 611, Define view to combine yearly tables

Below is some SQL that changes the contents of the above view:

INSERT INTO SALES_DATA VALUES (’2002-11-22’,1,123,100.10,996,’SUE’)
 ,(’2002-11-22’,2,123,100.10,997,’JOHN’)
 ,(’2003-01-01’,1,123,100.10,998,’FRED’)
 ,(’2003-01-01’,2,123,100.10,999,’FRED’);

UPDATE SALES_DATA
SET AMOUNT = AMOUNT / 2
WHERE SALES_REP = ’JOHN’;

DELETE
FROM SALES_DATA
WHERE SALES_DATE = ’2003-01-01’
 AND DAILY_SEQ# = 2;

Figure 612, Insert, update, and delete using view

Below is the view contents, after the above is run:

SALES_DATE DAILY_SEQ# CUST_ID AMOUNT INVOICE# SALES_REP
---------- ---------- ------- ------ -------- ---------
01/01/2003 1 123 100.10 998 FRED
11/22/2002 1 123 100.10 996 SUE
11/22/2002 2 123 50.05 997 JOHN

Figure 613, View contents after insert, update, delete

DB2 UDB/V8.1 Cookbook ©

Materialized Query Tables 217

Materialized Query Tables
A materialized query table contains the results of a query. The DB2 optimizer knows this and
can, if appropriate, redirect a query that is against the source table, or tables, to use instead the
materialized query table instead. This can make the query run much faster.

The following statement defines a materialized query table:

CREATE TABLE staff_summary AS
 (SELECT dept
 ,COUNT(*) AS count_rows
 ,SUM(id) AS sum_id
 FROM staff
 GROUP BY dept)
DATA INITIALLY DEFERRED REFRESH IMMEDIATE;

Figure 614, Sample materialized query table DDL

Below on the left is a query that is very similar to the one used in the above CREATE. The
DB2 optimizer can convert this query into the optimized equivalent on the right, which uses
the materialized query table. Because (in this case) the data in the materialized query table is
maintained in sync with the source table, both statements will return the same answer.

ORIGINAL QUERY OPTIMIZED QUERY
============== =================================
SELECT dept SELECT Q1.dept AS "dept"
 ,AVG(id) ,Q1.sum_id / Q1.count_rows
FROM staff FROM staff_summary AS Q1
GROUP BY dept

Figure 615, Original and optimized queries

When used appropriately, materialized query tables can result in dramatic improvements in
query performance. For example, if in the above STAFF table there was, on average, about
5,000 rows per individual department, referencing the STAFF_SUMMARY table instead of
the STAFF table in the sample query might be about 1,000 times faster.

Usage Notes
A materialized query table is defined using a variation of the standard CREATE TABLE
statement. Instead of providing an element list, one supplies a SELECT statement, and de-
fines the refresh option:

 SUMMARY

 table-name

 (select stmt)

 CREATE TABLE AS

 DATA INITIALLY DEFERRED REFRESH DEFERRED
 IMMEDIATE

 ENABLE QUREY OPTIMIZATION

 DISABLE QUREY OPTIMIZATION

 MAINTAINED BY SYSTEM

 MAINTAINED BY USER

Figure 616, Materialized query table DDL, syntax diagram

Below is a typical materialized query table definition:

 Graeme Birchall ©

218 Usage Notes

CREATE TABLE emp_summary AS
 (SELECT workdept AS dept
 ,sex AS sex
 ,COUNT_BIG(*) AS num_rows
 ,COUNT(salary) AS num_salary
 ,SUM(salary) AS sum_salary
 ,GROUPING(workdept) AS fd
 ,GROUPING(sex) AS fs
 FROM employee
 WHERE job = ’MANAGER’
 AND lastname LIKE ’%S%’
 GROUP BY CUBE(workdept, sex)
)DATA INITIALLY DEFERRED REFRESH IMMEDIATE
ENABLE QUERY OPTIMIZATION
MAINTAINED BY SYSTEM;

Figure 617, Typical materialized query table definition

Refresh Options

• REFRESH DEFERRED: The data is refreshed whenever one does a REFRESH TABLE.
At this point, DB2 will first delete all of the existing rows in the table, then run the select
statement defined in the CREATE to (you guessed it) repopulate.

• REFRESH IMMEDIATE: Once created, this type of table has to be refreshed once using
the REFRESH statement. From then on, DB2 will maintain the materialized query table
in sync with the source table as changes are made to the latter.

Materialized query tables that are defined REFRESH IMMEDIATE are obviously the most
useful in that the data in them is always current. But they may cost quite a bit to maintain.

Query Optimization Options

• ENABLE: The table is used for query optimization when appropriate. This is the default.
The table can also be queried directly.

• DISABLE: The table will not be used for query optimization. It can be queried directly.

Maintain Options

• SYSTEM: The data in the materialized query table is maintained by the system. This is
the default.

• USER: The user is allowed to perform insert, update, and delete operations against the
materialized query table. The table cannot be refreshed. This type of table can be used
when you want to maintain your own materialized query table (e.g. using triggers) to
support features not provided by DB2. The table can also be defined to enable query op-
timization, but the optimizer will probably never use it as a substitute for a real table.

Options vs. Actions

The following table compares materialized query table options to subsequent actions:

MATERIALIZED QUERY TABLE ALLOWABLE ACTIONS ON TABLE
========================== =====================================
REFRESH MAINTAINED BY REFRESH TABLE INSERT/UPDATE/DELETE
========= ============= ============= ====================
DEFERRED SYSTEM yes no
 USER no yes
IMMEDIATE SYSTEM yes no

Figure 618, Materialized query table options vs. allowable actions

DB2 UDB/V8.1 Cookbook ©

Materialized Query Tables 219

Select Statement Restrictions

Various restrictions apply to the select statement used to define the materialized query table:

Refresh Deferred Tables

• The query must be a valid SELECT statement.

• Every column selected must have a name.

• An ORDER BY is not allowed.

• Reference to a typed table or typed view is not allowed.

• Reference to declared temporary table is not allowed.

• Reference to a nickname or materialized query table is not allowed.

• Reference to a system catalogue table is not allowed. Reference to an explain table is al-
lowed, but is impudent.

• Reference to NODENUMBER, PARTITION, or any other function that depends on
physical characteristics, is not allowed.

• Reference to a datalink type is not allowed.

• Functions that have an external action are not allowed.

• Scalar functions, or functions written in SQL, are not allowed. So SUM(SALARY) is
fine, but SUM(INT(SALARY)) is not allowed.

Refresh Immediate Tables

All of the above restrictions apply, plus the following:

• If the query references more than one table or view, it must define as inner join, yet not
use the INNER JOIN syntax (i.e. must use old style).

• The SELECT statement must contain a GROUP BY, unless REPLICATED is specified,
in which case a GROUP BY is not allowed.

• The SELECT must have a COUNT(*) or COUNT_BIG(*) column.

• Besides the COUNT and COUNT_BIG, the only other column functions supported are
SUM and GROUPING - all with the DISTINCT phrase. Any field that allows nulls, and
that is summed, but also have a COUNT(column name) function defined.

• Any field in the GROUP BY list must be in the SELECT list.

• The table must have at least one unique index defined, and the SELECT list must include
(amongst other things) all the columns of this index.

• Grouping sets, CUBE an ROLLUP are allowed. The GROUP BY items and associated
GROUPING column functions in the select list must for a unique key of the result set.

• The HAVING clause is not allowed.

• The DISTINCT clause is not allowed.

• Non-deterministic functions are not allowed.

• Special registers are not allowed.

 Graeme Birchall ©

220 Usage Notes

• If REPLICATED is specified, the table must have a unique key.

Refresh Deferred Tables

A materialized query table defined REFRESH DEFERRED can be periodically updated using
the REFRESH TABLE command. Below is an example of a such a table that has one row per
qualifying department in the STAFF table:

CREATE TABLE staff_names AS
 (SELECT dept
 ,COUNT(*) AS count_rows
 ,SUM(salary) AS sum_salary
 ,AVG(salary) AS avg_salary
 ,MAX(salary) AS max_salary
 ,MIN(salary) AS min_salary
 ,STDDEV(salary) AS std_salary
 ,VARIANCE(salary) AS var_salary
 ,CURRENT TIMESTAMP AS last_change
 FROM staff
 WHERE TRANSLATE(name) LIKE ’%A%’
 AND salary > 10000
 GROUP BY dept
 HAVING COUNT(*) = 1
)DATA INITIALLY DEFERRED REFRESH DEFERRED;

Figure 619, Refresh deferred materialized query table DDL

Using a Refreshed Deferred Table

Unless told otherwise, the DB2 optimizer will not use a materialized query table that is de-
fined refresh deferred, because it cannot guarantee that the data in the table is up to date. If it
is desired that such a table be referenced when appropriate, one has to set the REFRESH
AGE special register to a non-zero value:

 number

 host-var

 SET CURRENT REFRESH AGE
 =

 ANY

Figure 620, Refresh age command, syntax

The number referred to above is a 26-digit decimal value that is as a timestamp duration, but
without the microsecond component. Only two values are allowed:

• 0: Only use those materialized query tables defined refresh immediate.

• 99,999,999,999,999: Use all valid materialized query tables (same as ANY).

Below is the SET command in action:

SET CURRENT REFRESH AGE 0;
SET CURRENT REFRESH AGE = ANY;
SET CURRENT REFRESH AGE = 99999999999999;

Figure 621, Set refresh age command

One can select the CURRENT REFRESH AGE special register to see what the value is:

SELECT CURRENT REFRESH AGE AS age_ts
 ,CURRENT TIMESTAMP AS current_ts
FROM sysibm.sysdummy1;

Figure 622, Selecting refresh age

One can also query the DB2 catalogue to get list of all materialized query tables, and what
their refresh option is:

DB2 UDB/V8.1 Cookbook ©

Materialized Query Tables 221

SELECT CHAR(tabschema,10) AS schema
 ,CHAR(tabname,20) AS table
 ,type
 ,refresh
 ,refresh_time
 ,card AS #rows
 ,DATE(create_time) AS create_dt
 ,DATE(stats_time) AS stats_dt
FROM syscat.tables
WHERE type = ’S’
ORDER BY 1,2;

Figure 623, List all materialized query tables

Refresh Immediate Tables

A materialized query table defined REFRESH IMMEDIATE is automatically maintained in
sync with the source table by DB2. As with any materialized query table, it is defined by re-
ferring to a query. Below is a table that refers to a single source table:

CREATE TABLE emp_summary AS
 (SELECT emp.workdept
 ,COUNT(*) AS num_rows
 ,COUNT(emp.salary) AS num_salary
 ,SUM(emp.salary) AS sum_salary
 ,COUNT(emp.comm) AS num_comm
 ,SUM(emp.comm) AS sum_comm
 FROM employee emp
 GROUP BY emp.workdept
)DATA INITIALLY DEFERRED REFRESH IMMEDIATE;

Figure 624, Refresh immediate materialized query table DDL

Below is a query that can use the above materialized query table in place of the base table:

SELECT emp.workdept
 ,DEC(SUM(emp.salary),8,2) AS sum_sal
 ,DEC(AVG(emp.salary),7,2) AS avg_sal
 ,SMALLINT(COUNT(emp.comm)) AS #comms
 ,SMALLINT(COUNT(*)) AS #emps
FROM employee emp
WHERE emp.workdept > ’C’
GROUP BY emp.workdept
HAVING COUNT(*) <> 5
 AND SUM(emp.salary) > 50000
ORDER BY sum_sal DESC;

Figure 625, Query that uses materialized query table (1 of 3)

The next query can also use the materialized query table. This time, the data returned from the
materialized query table is qualified by checking against a sub-query:

SELECT emp.workdept
 ,COUNT(*) AS #rows
FROM employee emp
WHERE emp.workdept IN
 (SELECT deptno
 FROM department
 WHERE deptname LIKE ’%S%’)
GROUP BY emp.workdept
HAVING SUM(salary) > 50000;

Figure 626, Query that uses materialized query table (2 of 3)

This last example uses the materialized query table in a nested table expression:

 Graeme Birchall ©

222 Usage Notes

SELECT #emps
 ,DEC(SUM(sum_sal),9,2) AS sal_sal
 ,SMALLINT(COUNT(*)) AS #depts
FROM (SELECT emp.workdept
 ,DEC(SUM(emp.salary),8,2) AS sum_sal
 ,MAX(emp.salary) AS max_sal
 ,SMALLINT(COUNT(*)) AS #emps
 FROM employee emp
 GROUP BY emp.workdept
)AS XXX
GROUP BY #emps
HAVING COUNT(*) > 1
ORDER BY #emps
FETCH FIRST 3 ROWS ONLY
OPTIMIZE FOR 3 ROWS;

Figure 627, Query that uses materialized query table (3 of 3)

Queries that don’t use Materialized Query Table

Below is a query that can not use the EMP_SUMMARY table because of the reference to the
MAX function. Ironically, this query is exactly the same as the nested table expression above,
but in the prior example the MAX is ignored because it is never actually selected:

SELECT emp.workdept
 ,DEC(SUM(emp.salary),8,2) AS sum_sal
 ,MAX(emp.salary) AS max_sal
FROM employee emp
GROUP BY emp.workdept;

Figure 628, Query that doesn’t use materialized query table (1 of 2)

The following query can’t use the materialized query table because of the DISTINCT clause:

SELECT emp.workdept
 ,DEC(SUM(emp.salary),8,2) AS sum_sal
 ,COUNT(DISTINCT salary) AS #salaries
FROM employee emp
GROUP BY emp.workdept;

Figure 629, Query that doesn’t use materialized query table (2 of 2)

Usage Notes and Restrictions

• A materialized query table must be refreshed before it can be queried. If the table is de-
fined refresh immediate, then the table will be maintained automatically after the initial
refresh.

• Make sure to commit after doing a refresh. The refresh does not have an implied commit.

• Run RUNSTATS after refreshing a materialized query table.

• One can not load data into materialized query tables.

• One can not directly update materialized query tables.

To refresh a materialized query table, use either of the following commands:

REFRESH TABLE emp_summary;
COMMIT;

SET INTEGRITY FOR emp_summary iMMEDIATE CHECKED;
COMMIT;

Figure 630, Materialized query table refresh commands

DB2 UDB/V8.1 Cookbook ©

Materialized Query Tables 223

Multi-table Materialized Query Tables

Single-table materialized query tables save having to look at individual rows to resolve a
GROUP BY. Multi-table materialized query tables do this, and also avoid having to resolve a
join.

CREATE TABLE dept_emp_summary AS
 (SELECT emp.workdept
 ,dpt.deptname
 ,COUNT(*) AS num_rows
 ,COUNT(emp.salary) AS num_salary
 ,SUM(emp.salary) AS sum_salary
 ,COUNT(emp.comm) AS num_comm
 ,SUM(emp.comm) AS sum_comm
 FROM employee emp
 ,department dpt
 WHERE dpt.deptno = emp.workdept
 GROUP BY emp.workdept
 ,dpt.deptname
)DATA INITIALLY DEFERRED REFRESH IMMEDIATE;

Figure 631, Multi-table materialized query table DDL

The following query is resolved using the above materialized query table:

SELECT d.deptname
 ,d.deptno
 ,DEC(AVG(e.salary),7,2) AS avg_sal
 ,SMALLINT(COUNT(*)) AS #emps
FROM department d
 ,employee e
WHERE e.workdept = d.deptno
 AND d.deptname LIKE ’%S%’
GROUP BY d.deptname
 ,d.deptno
HAVING SUM(e.comm) > 4000
ORDER BY avg_sal DESC;

Figure 632, Query that uses materialized query table

Here is the SQL that DB2 generated internally to get the answer:

SELECT Q2.$C0 AS "deptname"
 ,Q2.$C1 AS "deptno"
 ,Q2.$C2 AS "avg_sal"
 ,Q2.$C3 AS "#emps"
FROM (SELECT Q1.deptname AS $C0
 ,Q1.workdept AS $C1
 ,DEC((Q1.sum_salary / Q1.num_salary),7,2) AS $C2
 ,SMALLINT(Q1.num_rows) AS $C3
 FROM dept_emp_summary AS Q1
 WHERE (Q1.deptname LIKE ’%S%’)
 AND (4000 < Q1.sum_comm)
)AS Q2
ORDER BY Q2.$C2 DESC;

Figure 633, DB2 generated query to use materialized query table

Rules and Restrictions

• The join must be an inner join, and it must be written in the old style syntax.

• Every table accessed in the join (except one?) must have a unique index.

• The join must not be a Cartesian product.

• The GROUP BY must include all of the fields that define the unique key for every table
(except one?) in the join.

 Graeme Birchall ©

224 Usage Notes

Three-table Example

CREATE TABLE dpt_emp_act_sumry AS
 (SELECT emp.workdept
 ,dpt.deptname
 ,emp.empno
 ,emp.firstnme
 ,SUM(act.emptime) AS sum_time
 ,COUNT(act.emptime) AS num_time
 ,COUNT(*) AS NUM_ROWS
 FROM department dpt
 ,employee emp
 ,emp_act act
 WHERE dpt.deptno = emp.workdept
 AND emp.empno = act.empno
 GROUP BY emp.workdept
 ,dpt.deptname
 ,emp.empno
 ,emp.firstnme
)DATA INITIALLY DEFERRED REFRESH IMMEDIATE;

Figure 634, Three-table materialized query table DDL

Now for a query that will use the above:

SELECT d.deptno
 ,d.deptname
 ,DEC(AVG(a.emptime),5,2) AS avg_time
FROM department d
 ,employee e
 ,emp_act a
WHERE d.deptno = e.workdept
 AND e.empno = a.empno
 AND d.deptname LIKE ’%S%’
 AND e.firstnme LIKE ’%S%’
GROUP BY d.deptno
 ,d.deptname
ORDER BY 3 DESC;

Figure 635, Query that uses materialized query table

And here is the DB2 generated SQL:

SELECT Q4.$C0 AS "deptno"
 ,Q4.$C1 AS "deptname"
 ,Q4.$C2 AS "avg_time"
FROM (SELECT Q3.$C3 AS $C0
 ,Q3.$C2 AS $C1
 ,DEC((Q3.$C1 / Q3.$C0),5,2) AS $C2
 FROM (SELECT SUM(Q2.$C2) AS $C0
 ,SUM(Q2.$C3) AS $C1
 ,Q2.$C0 AS $C2
 ,Q2.$C1 AS $C3
 FROM (SELECT Q1.deptname AS $C0
 ,Q1.workdept AS $C1
 ,Q1.num_time AS $C2
 ,Q1.sum_time AS $C3
 FROM dpt_emp_act_sumry AS Q1
 WHERE (Q1.firstnme LIKE ’%S%’)
 AND (Q1.DEPTNAME LIKE ’%S%’)
)AS Q2
 GROUP BY Q2.$C1
 ,Q2.$C0
)AS Q3
)AS Q4
ORDER BY Q4.$C2 DESC;

Figure 636, DB2 generated query to use materialized query table

DB2 UDB/V8.1 Cookbook ©

Materialized Query Tables 225

Indexes on Materialized Query Tables

To really make things fly, one can add indexes to the materialized query table columns. DB2
will then use these indexes to locate the required data. Certain restrictions apply:

• Unique indexes are not allowed.

• The materialized query table must not be in a "check pending" status when the index is
defined. Run a refresh to address this problem.

Below are some indexes for the DPT_EMP_ACT_SUMRY table that was defined above:

CREATE INDEX dpt_emp_act_sumx1
 ON dpt_emp_act_sumry
 (workdept
 ,deptname
 ,empno
 ,firstnme);

CREATE INDEX dpt_emp_act_sumx2
 ON dpt_emp_act_sumry
 (num_rows);

Figure 637, Indexes for DPT_EMP_ACT_SUMRY materialized query table table

The next query will use the first index (i.e. on WORKDEPT):

SELECT d.deptno
 ,d.deptname
 ,e.empno
 ,e.firstnme
 ,INT(AVG(a.emptime)) AS avg_time
FROM department d
 ,employee e
 ,emp_act a
WHERE d.deptno = e.workdept
 AND e.empno = a.empno
 AND d.deptno LIKE ’D%’
GROUP BY d.deptno
 ,d.deptname
 ,e.empno
 ,e.firstnme
ORDER BY 1,2,3,4;

Figure 638, Sample query that use WORKDEPT index

The next query will use the second index (i.e. on NUM_ROWS):

SELECT d.deptno
 ,d.deptname
 ,e.empno
 ,e.firstnme
 ,COUNT(*) AS #acts
FROM department d
 ,employee e
 ,emp_act a
WHERE d.deptno = e.workdept
 AND e.empno = a.empno
GROUP BY d.deptno
 ,d.deptname
 ,e.empno
 ,e.firstnme
HAVING COUNT(*) > 4
ORDER BY 1,2,3,4;

Figure 639, Sample query that uses NUM_ROWS index

 Graeme Birchall ©

226 Usage Notes

Organizing by Dimensions

The following materialized query table is organized (clustered) by the two columns that are
referred to in the GROUP BY. Under the covers, DB2 will also create a dimension index on
each column, and a block index on both columns combined:

CREATE TABLE emp_sum AS
 (SELECT workdept
 ,job
 ,SUM(salary) AS sum_sal
 ,COUNT(*) AS #emps
 ,GROUPING(workdept) AS grp_dpt
 ,GROUPING(job) AS grp_job
 FROM employee
 GROUP BY CUBE(workdept
 ,job))
DATA INITIALLY DEFERRED REFRESH DEFERRED
ORGANIZE BY DIMENSIONS (workdept, job)
IN tsempsum;

Figure 640, Materialized query table organized by dimensions

WARNING: Multi-dimensional tables may perform very poorly when created in the default
tablespace, or in a system-maintained tablespace. Use a database-maintained tablespace
with the right extent size, and/or run the DB2EMPFA command.

Don’t forget to run RUNSTATS!

Using Staging Tables

A staging table can be used to incrementally maintain a materialized query table that has been
defined refresh deferred. Using a staging table can result in a significant performance saving
(during the refresh) if the source table is very large, and is not changed very often.

NOTE: To use a staging table, the SQL statement used to define the target materialized query
table must follow the rules that apply for a table that is defined refresh immediate - even
though it is defined refresh deferred.

The staging table CREATE statement has the following components:

• The name of the staging table.

• A list of columns (with no attributes) in the target materialized query table. The column
names do not have to match those in the target table.

• Either two or three additional columns with specific names- as provided by DB2.

• The name of the target materialized query table.

To illustrate, below is a typical materialized query table:

CREATE TABLE emp_sumry AS
 (SELECT workdept AS dept
 ,COUNT(*) AS #rows
 ,COUNT(salary) AS #sal
 ,SUM(salary) AS sum_sal
 FROM employee emp
 GROUP BY emp.workdept
)DATA INITIALLY DEFERRED REFRESH DEFERRED;

Figure 641, Sample materialized query table

Here is a staging table for the above:

DB2 UDB/V8.1 Cookbook ©

Materialized Query Tables 227

CREATE TABLE emp_sumry_s
 (dept
 ,num_rows
 ,num_sal
 ,sum_sal
 ,GLOBALTRANSID
 ,GLOBALTRANSTIME
)FOR emp_sumry PROPAGATE IMMEDIATE;

Figure 642, Staging table for the above materialized query table

Additional Columns

The two, or three, additional columns that every staging table must have are as follows:

• GLOBALTRANSID: The global transaction ID for each propagated row.

• GLOBALTRANSTIME: The transaction timestamp

• OPERATIONTYPE: The operation type (i.e. insert, update, or delete). This column is
needed if the target materialized query table does not contain a GROUP BY statement.

Using a Staging Table

To activate the staging table one must first use the SET INTEGRITY command to remove the
check pending flag, and then do a full refresh of the target materialized query table. After this
is done, the staging table will record all changes to the source table.

Use the refresh incremental command to apply the changes recorded in the staging table to
the target materialized query table.

SET INTEGRITY FOR emp_sumry_s STAGING IMMEDIATE UNCHECKED;
REFRESH TABLE emp_sumry;

<< make changes to the source table (i.e. employee) >>

REFRESH TABLE emp_sumry INCREMENTAL;

Figure 643, Enabling and the using a staging table

• A multi-row update (or insert, or delete) uses the same CURRENT TIMESTAMP for all
rows changed, and for all invoked triggers. Therefore, the #CHANGING_SQL field is
only incremented when a new timestamp value is detected.

 Graeme Birchall ©

228 Usage Notes

DB2 UDB/V8.1 Cookbook ©

Identity Columns and Sequences 229

Identity Columns and Sequences
Imagine that one has an INVOICE table that records invoices generated. Also imagine that
one wants every new invoice that goes into this table to get an invoice number value that is
part of a unique and unbroken sequence of ascending values - assigned in the order that the
invoices are generated. So if the highest invoice number is currently 12345, then the next in-
voice will get 12346, and then 12347, and so on.

There is almost never a valid business reason for requiring such an unbroken sequence of val-
ues. Regardless, some people want this feature, and it can, up to a point, be implemented in
DB2. In this chapter we will describe how to do it.

Identity Columns
One can define a column in a DB2 table as an "identity column". This column, which must be
numeric (note: fractional fields not allowed), will be incremented by a fixed constant each
time a new row is inserted. Below is a syntax diagram for that part of a CREATE TABLE
statement that refers to an identity column definition:

 GENERATED

 column name

) numeric constant

 data type

 ALWAYS

 BY DEFAULT
 AS IDENTITY

 START WITH (

 INCREMENT BY

 CACHE 20

 1

 1

 numeric constant

 NO CACHE

 CACHE integer constant

 MINVALUE numeric constant

 NO MINVALUE

 MAXVALUE numeric constant

 NO MAXVALUE

 CYCLE

 NO CYCLE

 ORDER

 NO ORDER

Figure 644, Identity Column syntax

 Graeme Birchall ©

230 Identity Columns

Below is an example of a typical invoice table that uses an identity column that starts at one,
and then goes ever upwards:

CREATE TABLE INVOICE_DATA
(INVOICE# INTEGER NOT NULL
 GENERATED ALWAYS AS IDENTITY
 (START WITH 1
 ,INCREMENT BY 1
 ,NO MAXVALUE
 ,NO CYCLE
 ,ORDER)
,SALE_DATE DATE NOT NULL
,CUSTOMER_ID CHAR(20) NOT NULL
,PRODUCT_ID INTEGER NOT NULL
,QUANTITY INTEGER NOT NULL
,PRICE DECIMAL(18,2) NOT NULL
,PRIMARY KEY (INVOICE#));

Figure 645, Identity column, sample table

Rules and Restrictions

Identity columns come in one of two general flavors:

• The value is always generated by DB2.

• The value is generated by DB2 only if the user does not provide a value (i.e. by default).
This configuration is typically used when the input is coming from an external source
(e.g. data propagation).

Rules

• There can only be one identity column per table.

• The field cannot be updated if it is defined "generated always".

• The column type must be numeric and must not allow fractional values. Any integer type
is OK. Decimal is also fine, as long as the scale is zero. Floating point is a no-no.

• The identity column value is generated before any BEFORE triggers are applied. Use a
trigger transition variable to see the value.

• A unique index is not required on the identity column, but it is a good idea. Certainly, if
the value is being created by DB2, then a non-unique index is a fairly stupid idea.

• Unlike triggers, identity column logic is invoked and used during a LOAD. However, a
load-replace will not reset the identity column value. Use the RESTART command (see
below) to do this. An identity column is not affected by a REORG.

Syntax Notes

• START WITH defines the start value, which can be any valid integer value. If no start
value is provided, then the default is the MINVALUE for ascending sequences, and the
MAXVALUE for descending sequences. If this value is also not provided, then the de-
fault is 1.

• INCREMENT BY defines the interval between consecutive values. This can be any valid
integer value, though using zero is pretty silly. The default is 1.

• MINVALUE defines (for ascending sequences) the value that the sequence will start at if
no start value is provided. It is also the value that an ascending sequence will begin again
at after it reaches the maximum and loops around. If no minimum value is provided, then

DB2 UDB/V8.1 Cookbook ©

Identity Columns and Sequences 231

after reaching the maximum the sequence will begin again at the start value. If that is also
not defined, then the sequence will begin again at 1, which is the default start value.

• For descending sequences, it is the minimum value that will be used before the sequence
loops around, and starts again at the maximum value.

• MAXVALUE defines (for ascending sequences) the value that a sequence will stop at,
and then go back to the minimum value. For descending sequences, it is the start value (if
no start value is provided), and also the restart value - if the sequence reaches the mini-
mum and loops around.

• CYCLE defines whether the sequence should cycle about when it reaches the maximum
value (for an ascending sequences), or whether it should stop. The default is no cycle.

• CACHE defines whether or not to allocate sequences values in chunks, and thus to save
on log writes. The default is no cache, which means that every row inserted causes a log
write (to save the current value).

• If a cache value (from 2 to 20) is provided, then the new values are assigned to a common
pool in blocks. Each insert user takes from the pool, and only when all of the values are
used is a new block (of values) allocated and a log write done. If the table is deactivated,
either normally or otherwise, then the values in the current block are discarded, resulting
in gaps in the sequence. Gaps in the sequence of values also occur when an insert is sub-
sequently rolled back, so they cannot be avoided. But don’t use the cache if you want to
try and avoid them.

• ORDER defines whether all new rows inserted are assigned a sequence number in the
order that they were inserted. The default is no, which means that occasionally a row that
is inserted after another may get a slightly lower sequence number. This is the default.

Sequence Examples

The following example uses all of the defaults to start a sequence at one, and then to go up in
increments of one. The inserts will finally die when they reach the maximum allowed value
for the field type (i.e. for small integer = 32K).

CREATE TABLE TEST_DATA KEY# FIELD - VALUES ASSIGNED
(KEY# SMALLINT NOT NULL ============================
 GENERATED ALWAYS AS IDENTITY 1 2 3 4 5 6 7 8 9 10 11 etc.
,DAT1 SMALLINT NOT NULL
,TS1 TIMESTAMP NOT NULL
,PRIMARY KEY(KEY#));

Figure 646, Identity column, ascending sequence

The next example defines a sequence that goes down in increments of -3:

CREATE TABLE TEST_DATA KEY# FIELD - VALUES ASSIGNED
(KEY# SMALLINT NOT NULL ============================
 GENERATED ALWAYS AS IDENTITY 6 3 0 -3 -6 -9 -12 -15 etc.
 (START WITH 6
 ,INCREMENT BY -3
 ,NO CYCLE
 ,NO CACHE
 ,ORDER)
,DAT1 SMALLINT NOT NULL
,TS1 TIMESTAMP NOT NULL
,PRIMARY KEY(KEY#));

Figure 647, Identity column, descending sequence

 Graeme Birchall ©

232 Identity Columns

The next example, which is amazingly stupid, goes nowhere fast. A primary key cannot be
defined on this table:

CREATE TABLE TEST_DATA KEY# VALUES ASSIGNED
(KEY# SMALLINT NOT NULL ============================
 GENERATED ALWAYS AS IDENTITY 123 123 123 123 123 123 etc.
 (START WITH 123
 ,MAXVALUE 124
 ,INCREMENT BY 0
 ,NO CYCLE
 ,NO ORDER)
,DAT1 SMALLINT NOT NULL
,TS1 TIMESTAMP NOT NULL);

Figure 648, Identity column, dumb sequence

The next example uses every odd number up to the maximum (i.e. 6), then loops back to the
minimum value, and goes through the even numbers, ad-infinitum:

CREATE TABLE TEST_DATA KEY# VALUES ASSIGNED
(KEY# SMALLINT NOT NULL ============================
 GENERATED ALWAYS AS IDENTITY 1 3 5 2 4 6 2 4 6 2 4 6 etc.
 (START WITH 1
 ,INCREMENT BY 2
 ,MAXVALUE 6
 ,MINVALUE 2
 ,CYCLE
 ,NO CACHE
 ,ORDER)
,DAT1 SMALLINT NOT NULL
,TS1 TIMESTAMP NOT NULL);

Figure 649, Identity column, odd values, then even, then stuck

Usage Examples

Below is the DDL for a simplified invoice table where the primary key is an identity column.
Observe that the invoice# is always generated by DB2:

CREATE TABLE INVOICE_DATA
(INVOICE# INTEGER NOT NULL
 GENERATED ALWAYS AS IDENTITY
 (START WITH 100
 ,INCREMENT BY 1
 ,NO CYCLE
 ,ORDER)
,SALE_DATE DATE NOT NULL
,CUSTOMER_ID CHAR(20) NOT NULL
,PRODUCT_ID INTEGER NOT NULL
,QUANTITY INTEGER NOT NULL
,PRICE DECIMAL(18,2) NOT NULL
,PRIMARY KEY (INVOICE#));

Figure 650, Identity column, definition

One cannot provide an input value for the invoice# when inserting into the above table.
Therefore, one must either use a default placeholder, or leave the column out of the insert. An
example of both techniques is given below:

INSERT INTO INVOICE_DATA
VALUES (DEFAULT,’2001-11-22’,’ABC’,123,100,10);

INSERT INTO INVOICE_DATA
(SALE_DATE,CUSTOMER_ID,PRODUCT_ID,QUANTITY,PRICE)
VALUES (’2001-11-23’,’DEF’,123,100,10);

Figure 651, Invoice table, sample inserts

Below is the state of the table after the above two inserts:

DB2 UDB/V8.1 Cookbook ©

Identity Columns and Sequences 233

INVOICE# SALE_DATE CUSTOMER_ID PRODUCT_ID QUANTITY PRICE
-------- ---------- ----------- ---------- -------- -----
 100 11/22/2001 ABC 123 100 10.00
 101 11/23/2001 DEF 123 100 10.00

Figure 652, Invoice table, after inserts

Altering Identity Column Options

Imagine that the application is happily collecting invoices in the above table, but your silly
boss is unhappy because not enough invoices, as measured by the ever-ascending invoice#
value, are being generated per unit of time. We can improve things without actually fixing
any difficult business problems by simply altering the invoice# current value and the incre-
ment using the ALTER TABLE ... RESTART command:

ALTER TABLE INVOICE_DATA
ALTER COLUMN INVOICE#
 RESTART WITH 1000
 SET INCREMENT BY 2;

Figure 653, Invoice table, restart identity column value

Now imagine that we insert two more rows thus:

INSERT INTO INVOICE_DATA
VALUES (DEFAULT,’2001-11-24’,’XXX’,123,100,10)
 ,(DEFAULT,’2001-11-25’,’YYY’,123,100,10);

Figure 654, Invoice table, more sample inserts

Our mindless management will now see this data:

INVOICE# SALE_DATE CUSTOMER_ID PRODUCT_ID QUANTITY PRICE
-------- ---------- ----------- ---------- -------- -----
 100 11/22/2001 ABC 123 100 10.00
 101 11/23/2001 DEF 123 100 10.00
 1000 11/24/2001 XXX 123 100 10.00
 1002 11/25/2001 YYY 123 100 10.00

Figure 655, Invoice table, after second inserts

Alter Usage Notes

As the following diagram shows, all of the identity column options can be changed using the
ALTER TABLE command:

 numeric constant

 RESTART

 SET INCREMENT BY numeric constant

 MINVALUE numeric constant

 NO MINVALUE SET

 MAXVALUE numeric constant

 NO MAXVALUE SET

 CYCLE

 NO CYCLE SET

 ORDER

 NO ORDER SET

Figure 656, Identity Column alter syntax

 Graeme Birchall ©

234 Identity Columns

Restarting the identity column start number to a lower number, or to a higher number if the
increment is a negative value, can result in the column getting duplicate values. This can also
occur if the increment value is changed from positive to negative, or vice-versa. If no value is
provided for the restart option, the sequence restarts at the previously defined start value.

Gaps in the Sequence

If an identity column is generated always, and no cache is used, and the increment value is 1,
then there will usually be no gaps in the sequence of assigned values. But gaps can occur if an
insert is subsequently rolled out instead of being committed. Below is an illustration of this
problem:

CREATE TABLE CUSTOMERS
(CUST# INTEGER NOT NULL
 GENERATED ALWAYS AS IDENTITY (NO CACHE)
,CNAME CHAR(10) NOT NULL
,CTYPE CHAR(03) NOT NULL
,PRIMARY KEY (CUST#));
COMMIT;

INSERT INTO CUSTOMERS
VALUES (DEFAULT,’FRED’,’XXX’);

SELECT * <<< ANSWER
FROM CUSTOMERS ===================
ORDER BY 1; CUST# CNAME CTYPE
 ----- ----- -----
ROLLBACK; 1 FRED XXX

INSERT INTO CUSTOMERS
VALUES (DEFAULT,’FRED’,’XXX’);

SELECT * <<< ANSWER
FROM CUSTOMERS ===================
ORDER BY 1; CUST# CNAME CTYPE
 ----- ----- -----
COMMIT; 2 FRED XXX

Figure 657, Overriding the default identity value

One advantage of DB2’s identity column implementation is that the value allocation process
is not a point of contention in the table. Subsequent users do not have to wait for the first user
to do a commit before they can insert their own rows.

Roll Your Own - no Gaps in Sequence

If one really, really, needs to have a sequence of values with no gaps, then one can do it using
a trigger, but there are costs, in processing time, concurrency, and functionality. To illustrate
how to do it, consider the following table:

CREATE TABLE SALES_INVOICE
(INVOICE# INTEGER NOT NULL
,SALE_DATE DATE NOT NULL
,CUSTOMER_ID CHAR(20) NOT NULL
,PRODUCT_ID INTEGER NOT NULL
,QUANTITY INTEGER NOT NULL
,PRICE DECIMAL(18,2) NOT NULL
,PRIMARY KEY (INVOICE#));

Figure 658, Sample table, roll your own sequence#

DB2 UDB/V8.1 Cookbook ©

Identity Columns and Sequences 235

The following trigger will be invoked before each row is inserted into the above table. It sets
the new invoice# value to be the current highest invoice# value in the table, plus one:

CREATE TRIGGER SALES_INSERT
NO CASCADE BEFORE
INSERT ON SALES_INVOICE
REFERENCING NEW AS NNN
FOR EACH ROW
MODE DB2SQL
 SET NNN.INVOICE# =
 (SELECT COALESCE(MAX(INVOICE#),0) + 1
 FROM SALES_INVOICE);

Figure 659, Sample trigger, roll your own sequence#

The good news about the above setup is that it will never result in gaps in the sequence of
values. In particular, if a newly inserted row is rolled back after the insert is done, the next
insert will simply use the same invoice# value. But there is also bad news:

• Only one user can insert at a time, because the select (in the trigger) needs to see the
highest invoice# in the table in order to complete.

• Multiple rows cannot be inserted in a single SQL statement (i.e. a mass insert). The trig-
ger is invoked before the rows are actually inserted, one row at a time, for all rows. Each
row would see the same, already existing, high invoice#, so the whole insert would die
due to a duplicate row violation.

• There may be a tiny, tiny chance that if two users were to begin an insert at exactly the
same time that they would both see the same high invoice# (in the before trigger), and so
the last one to complete (i.e. to add a pointer to the unique invoice# index) would get a
duplicate-row violation.

Below are some inserts to the above table. Ignore the values provided in the first field - they
are replaced in the trigger. And observe that the third insert is rolled out:

INSERT INTO SALES_INVOICE VALUES (0,’2001-06-22’,’ABC’,123,10,1);
INSERT INTO SALES_INVOICE VALUES (0,’2001-06-23’,’DEF’,453,10,1);
COMMIT;

INSERT INTO SALES_INVOICE VALUES (0,’2001-06-24’,’XXX’,888,10,1);
ROLLBACK;

INSERT INTO SALES_INVOICE VALUES (0,’2001-06-25’,’YYY’,999,10,1);
COMMIT;
 ANSWER
 ==
 INVOICE# SALE_DATE CUSTOMER_ID PRODUCT_ID QUANTITY PRICE
 -------- ---------- ----------- ---------- -------- -----
 1 06/22/2001 ABC 123 10 1.00
 2 06/23/2001 DEF 453 10 1.00
 3 06/25/2001 YYY 999 10 1.00

Figure 660, Sample inserts, roll your own sequence#

IDENTITY_VAL_LOCAL Function

Imagine that one has just inserted a row, and one now wants to find out what value DB2 gave
the identity column. One calls the IDENTITY_VAL_LOCAL function to find out. The result
is a decimal (31.0) field. Certain rules apply:

• The function returns null if the user has not done a single-row insert in the current unit of
work. Therefore, the function has to be invoked before one does a commit. Having said
this, in some versions of DB2 it seems to work fine after a commit.

 Graeme Birchall ©

236 Identity Columns

• If the user inserts multiple rows into table(s) having identity columns in the same unit of
work, the result will be the value obtained from the last single-row insert. The result will
be null if there was none.

• Multiple-row inserts are ignored by the function. So if the user first inserts one row, and
then separately inserts two rows (in a single SQL statement), the function will return the
identity column value generated during the first insert.

• The function cannot be called in a trigger or SQL function. To get the current identity
column value in an insert trigger, use the trigger transition variable for the column. The
value, and thus the transition variable, is defined before the trigger is begun.

• If invoked inside an insert statement (i.e. as an input value), the value will be taken from
the most recent (previous) single-row insert done in the same unit of work. The result will
be null if there was none.

• The value returned by the function is unpredictable if the prior single-row insert failed. It
may be the value from the insert before, or it may be the value given to the failed insert.

• The function is non-deterministic, which means that the result is determined at fetch time
(i.e. not at open) when used in a cursor. So if one fetches a row from a cursor, and then
does an insert, the next fetch may get a different value from the prior.

• The value returned by the function may not equal the value in the table - if either a trigger
or an update has changed the field since the value was generated. This can only occur if
the identity column is defined as being "generated by default". An identity column that is
"generated always" cannot be updated.

• When multiple users are inserting into the same table concurrently, each will see their
own most recent identity column value. They cannot see each other’s.

Below are two examples of the function in use. Observe that the second invocation (done af-
ter the commit) returned a value, even though it is supposed to return null:

CREATE TABLE INVOICE_TABLE
(INVOICE# INTEGER NOT NULL
 GENERATED ALWAYS AS IDENTITY
,SALE_DATE DATE NOT NULL
,CUSTOMER_ID CHAR(20) NOT NULL
,PRODUCT_ID INTEGER NOT NULL
,QUANTITY INTEGER NOT NULL
,PRICE DECIMAL(18,2) NOT NULL
,PRIMARY KEY (INVOICE#));
COMMIT;

INSERT INTO INVOICE_TABLE
VALUES (DEFAULT,’2000-11-22’,’ABC’,123,100,10);

WITH TEMP (ID) AS <<< ANSWER
(VALUES (IDENTITY_VAL_LOCAL())) ======
SELECT * ID
FROM TEMP; ----
 1
COMMIT;

WITH TEMP (ID) AS <<< ANSWER
(VALUES (IDENTITY_VAL_LOCAL())) ======
SELECT * ID
FROM TEMP; ----
 1

Figure 661, IDENTITY_VAL_LOCAL function examples

DB2 UDB/V8.1 Cookbook ©

Identity Columns and Sequences 237

In the next example, two separate inserts are done on the table defined above. The first inserts
a single row, and so sets the function value to "2". The second is a multi-row insert, and so is
ignored by the function:

INSERT INTO INVOICE_TABLE
VALUES (DEFAULT,’2000-11-23’,’ABC’,123,100,10);

INSERT INTO INVOICE_TABLE
VALUES (DEFAULT,’2000-11-24’,’ABC’,123,100,10)
 ,(DEFAULT,’2000-11-25’,’ABC’,123,100,10); ANSWER
 ==================
SELECT INVOICE# AS INV# INV# SALE_DATE ID
 ,SALE_DATE ---- ---------- --
 ,IDENTITY_VAL_LOCAL() AS ID 1 11/22/2000 2
FROM INVOICE_TABLE 2 11/23/2000 2
ORDER BY 1; 3 11/24/2000 2
COMMIT; 4 11/25/2000 2

Figure 662, IDENTITY_VAL_LOCAL function examples

One can also use the function to get the most recently inserted single row:

SELECT INVOICE# AS INV# ANSWER
 ,SALE_DATE ==================
 ,IDENTITY_VAL_LOCAL() AS ID INV# SALE_DATE ID
FROM INVOICE_TABLE ---- ---------- --
WHERE ID = IDENTITY_VAL_LOCAL(); 2 11/23/2000 2

Figure 663, IDENTITY_VAL_LOCAL usage in predicate

Sequences
A sequence is almost the same as an identity column, except that it is an object that exists
outside of any particular table.

CREATE SEQUENCE FRED SEQ# VALUES ASSIGNED
 AS DECIMAL(31) ====================
 START WITH 100 100 102 104 106 etc.
 INCREMENT BY 2
 NO MINVALUE
 NO MAXVALUE
 NO CYCLE
 CACHE 20
 ORDER;

Figure 664, Create sequence

The options and defaults for a sequence are exactly the same as those for an identity column
(see page 230). Likewise, one can alter a sequence in much the same way as one would alter
the status of an identity column:

ALTER SEQUENCE FRED SEQ# VALUES ASSIGNED
 RESTART WITH -55 ====================
 INCREMENT BY -5 -55 -60 -65 -70 etc.
 MINVALUE -1000
 MAXVALUE +1000
 NO CACHE
 NO ORDER
 CYCLE;

Figure 665, Alter sequence attributes

The only sequence attribute that one cannot change with the ALTER command is the field
type that is used to hold the current value.

 Graeme Birchall ©

238 Sequences

Getting the Sequence Value

There is no concept of a current sequence value. Instead one can either retrieve the next or the
previous value (if there is one). And any reference to the next value will invariably cause the
sequence to be incremented. The following example illustrates this:

CREATE SEQUENCE FRED; ANSWER
COMMIT; ======
 SEQ#
WITH TEMP1 (N1) AS ----
(VALUES 1 1
 UNION ALL 2
 SELECT N1 + 1 3
 FROM TEMP1 4
 WHERE N1 < 5 5
)
SELECT NEXTVAL FOR FRED AS SEQ#
FROM TEMP1;

Figure 666, Selecting the NEXTVAL

Rules and Restrictions

• One retrieves the next or previous value using a "NEXTVAL FOR sequence-name", or a
"PREVVAL for sequence-name" call.

• A NEXTVAL call generates and returns the next value in the sequence. Thus, each call
will consume the returned value, and this remains true even if the statement that did the
retrieval subsequently fails or is rolled back.

• A PREVVAL call returns the most recently generated value for the specified sequence
for the current connection. Unlike when getting the next value, getting the prior value
does not alter the state of the sequence, so multiple calls can retrieve the same value. If
no NEXTVAL reference (to the target sequence) has been made for the current connec-
tion, any attempt to get the prior will result in a SQL error.

• The NEXTVAL and PREVVAL can be used in the following statements:

• SELECT INTO statement (within the select clause), as long as there is no DISTINCT,
GROUP BY, UNION, EXECPT, or INTERSECT.

• INSERT statement - with restrictions.

• UPDATE statement - with restrictions.

• SET host variable statement.

• The NEXTVAL can be used in a trigger, but the PREVVAL cannot.

• The NEXTVAL and PREVVAL cannot be used in the following statements:

• Join condition of a full outer join.

• Anywhere in a CREATE TABLE or CREATE VIEW statement.

• The NEXTVAL cannot be used in the following statements:

• CASE expression

• Join condition of a join.

• Parameter list of an aggregate function.

DB2 UDB/V8.1 Cookbook ©

Identity Columns and Sequences 239

• SELECT statement where there is an outer select that contains a DISTINCT, GROUP
BY, UNION, EXCEPT, or INTERSECT.

• Most sub-queries.

There are many more usage restrictions, but you presumably get the picture. See the DB2
SQL Reference for the complete list.

Usage Examples

Below a sequence is defined, then various next and previous values are retrieved:

CREATE SEQUENCE FRED; ANSWERS
COMMIT; =======

WITH TEMP1 (PRV) AS ===> PRV
(VALUES (PREVVAL FOR FRED)) ---
SELECT * <error>
FROM TEMP1;

WITH TEMP1 (NXT) AS ===> NXT
(VALUES (NEXTVAL FOR FRED)) ---
SELECT * 1
FROM TEMP1;

WITH TEMP1 (PRV) AS ===> PRV
(VALUES (PREVVAL FOR FRED)) ---
SELECT * 1
FROM TEMP1;

WITH TEMP1 (N1) AS ===> NXT PRV
(VALUES 1 --- ---
 UNION ALL 2 1
 SELECT N1 + 1 3 1
 FROM TEMP1 4 1
 WHERE N1 < 5 5 1
) 6 1
SELECT NEXTVAL FOR FRED AS NXT
 ,PREVVAL FOR FRED AS PRV
FROM TEMP1;

Figure 667, Use of NEXTVAL and PREVVAL expressions

One does not actually have to fetch a NEXTVAL result in order to increment the underlying
sequence. In the next example, some of the rows processed are thrown away halfway thru the
query, but their usage still affects the answer (of the subsequent query):

CREATE SEQUENCE FRED; ANSWERS
COMMIT; =======

WITH TEMP1 AS ===> ID NXT
(SELECT ID -- ---
 ,NEXTVAL FOR FRED AS NXT 50 5
 FROM STAFF
 WHERE ID < 100
)
SELECT *
FROM TEMP1
WHERE ID = 50;

WITH TEMP1 (NXT, PRV) AS ===> NXT PRV
(VALUES (NEXTVAL FOR FRED --- ---
 ,PREVVAL FOR FRED)) 10 9
SELECT *
FROM TEMP1;

Figure 668, NEXTVAL values used but not retrieved

 Graeme Birchall ©

240 Sequences

Multi-table Usage

Imagine that one wanted to maintain a unique sequence of values over multiple tables. One
can do this by creating a before insert trigger on each table that replaces whatever value the
user provides with the current one from a common sequence. Below is an example:

CREATE SEQUENCE CUST#
 START WITH 1
 INCREMENT BY 1
 NO MAXVALUE
 NO CYCLE
 ORDER;

CREATE TABLE US_CUSTOMER
(CUST# INTEGER NOT NULL
,CNAME CHAR(10) NOT NULL
,FRST_SALE DATE NOT NULL
,#SALES INTEGER NOT NULL
,PRIMARY KEY (CUST#));

CREATE TRIGGER US_CUST_INS
NO CASCADE BEFORE INSERT ON US_CUSTOMER
REFERENCING NEW AS NNN
FOR EACH ROW MODE DB2SQL
SET NNN.CUST# = NEXTVAL FOR CUST#;

CREATE TABLE INTL_CUSTOMER
(CUST# INTEGER NOT NULL
,CNAME CHAR(10) NOT NULL
,FRST_SALE DATE NOT NULL
,#SALES INTEGER NOT NULL
,PRIMARY KEY (CUST#));

CREATE TRIGGER INTL_CUST_INS
NO CASCADE BEFORE INSERT ON INTL_CUSTOMER
REFERENCING NEW AS NNN
FOR EACH ROW MODE DB2SQL
SET NNN.CUST# = NEXTVAL FOR CUST#;

Figure 669, Create tables that use a common sequence

If we now insert some rows into the above tables, we shall find that customer numbers are
assigned in the correct order, thus:

INSERT INTO US_CUSTOMER (CNAME, FRST_SALE, #SALES)
VALUES (’FRED’,’2002-10-22’,1)
 ,(’JOHN’,’2002-10-23’,1);

INSERT INTO INTL_CUSTOMER (CNAME, FRST_SALE, #SALES)
VALUES (’SUE’,’2002-11-12’,2)
 ,(’DEB’,’2002-11-13’,2);
COMMIT;
 ANSWERS
 =============================
SELECT * CUST# CNAME FRST_SALE #SALES
FROM US_CUSTOMER ----- ----- ---------- ------
ORDER BY CUST# 1 FRED 10/22/2002 1
 2 JOHN 10/23/2002 1

SELECT * CUST# CNAME FRST_SALE #SALES
FROM INTL_CUSTOMER ----- ----- ---------- ------
ORDER BY CUST#; 3 SUE 11/12/2002 2
 4 DEB 11/13/2002 2

Figure 670, Insert into tables with common sequence

DB2 UDB/V8.1 Cookbook ©

Identity Columns and Sequences 241

One of the advantages of a standalone sequence over a functionally similar identity column is
that one can use a PREVVAL expression to get the most recent value assigned (to the user),
even if the previous usage was during a multi-row insert. Thus, after doing the above inserts,
we can run the following query:

WITH TEMP (PREV) AS ANSWER
(VALUES (PREVVAL FOR CUST#)) ======
SELECT * PREV
FROM TEMP; ----
 4

Figure 671, Get previous value - select

The following does the same as the above, but puts the result in a host variable:

VALUES PREVVAL FOR CUST# INTO :host-var
Figure 672, Get previous value - into host-variable

Using the above, we cannot find out how many rows were inserted in the most recent insert,
nor to which table the insert was done. And we cannot even be sure that the value is correct,
because the insert may have been rolled back after the value was assigned.

Counting Deletes

In the next example, two sequences are created: One records the number of rows deleted from
a table, while the other records the number of delete statements run against the same:

CREATE SEQUENCE DELETE_ROWS
 START WITH 1
 INCREMENT BY 1
 NO MAXVALUE
 NO CYCLE
 ORDER;

CREATE SEQUENCE DELETE_STMTS
 START WITH 1
 INCREMENT BY 1
 NO MAXVALUE
 NO CYCLE
 ORDER;

CREATE TABLE CUSTOMER
(CUST# INTEGER NOT NULL
,CNAME CHAR(10) NOT NULL
,FRST_SALE DATE NOT NULL
,#SALES INTEGER NOT NULL
,PRIMARY KEY (CUST#));

CREATE TRIGGER CUST_DEL_ROWS
AFTER DELETE ON CUSTOMER
FOR EACH ROW MODE DB2SQL
 WITH TEMP1 (N1) AS (VALUES(1))
 SELECT NEXTVAL FOR DELETE_ROWS
 FROM TEMP1;

CREATE TRIGGER CUST_DEL_STMTS
AFTER DELETE ON CUSTOMER
FOR EACH STATEMENT MODE DB2SQL
 WITH TEMP1 (N1) AS (VALUES(1))
 SELECT NEXTVAL FOR DELETE_STMTS
 FROM TEMP1;

Figure 673, Count deletes done to table

Be aware that the second trigger will be run, and thus will update the sequence, regardless of
whether a row was found to delete or not.

 Graeme Birchall ©

242 Sequences

Identity Columns vs. Sequences - a Comparison

First to compare the two types of sequences:

• Only one identity column is allowed per table, whereas a single table can have multiple
sequences and/or multiple references to the same sequence.

• Identity columns are not supported in databases with multiple partitions.

• Identity column sequences cannot span multiple tables. Sequences can.

• Sequences require triggers to automatically maintain column values (e.g. during inserts)
in tables. Identity columns do not.

• Sequences can be incremented during inserts, updates, deletes (via triggers), or selects,
whereas identity columns only get incremented during inserts.

• Sequences can be incremented (via triggers) once per row, or once per statement. Identity
columns are always updated per row inserted.

• Sequences can be dropped and created independent of any tables that they might be used
to maintain values in. Identity columns are part of the table definition.

• Identity columns are supported by the load utility. Trigger induced sequences are not.

Now to compare the expressions that get the current status:

• The IDENTITY_VAL_LOCAL function returns null if no inserts to tables with identity
columns have been done by the current user. In an equivalent situation, the PREVVAL
expression gets a nasty SQL error.

• The IDENTITY_VAL_LOCAL function ignores multi-row inserts (without telling you).
In a similar situation, the PREVVAL expression returns the last value generated.

• One cannot tell to which table an IDENTITY_VAL_LOCAL function result refers to.
This can be a problem in one insert invokes another insert (via a trigger), which puts are
row in another table with its own identity column. By contrast, in the PREVVAL func-
tion one explicitly identifies the sequence to be read.

• There is no equivalent of the NEXTVAL expression for identity columns.

DB2 UDB/V8.1 Cookbook ©

Temporary Tables 243

Temporary Tables

Introduction
How one defines a temporary table depends in part upon how often, and for how long, one
intends to use it:

• Within a query, single use.

• Within a query, multiple uses.

• For multiple queries in one unit of work.

• For multiple queries, over multiple units of work, in one thread.

Single Use in Single Statement

If one intends to use a temporary table just once, it can be defined as a nested table expres-
sion. In the following example, we use a temporary table to sequence the matching rows in
the STAFF table by descending salary. We then select the 2nd through 3rd rows:

SELECT id
 ,salary
FROM (SELECT s.*
 ,ROW_NUMBER() OVER(ORDER BY salary DESC) AS sorder
 FROM staff s
 WHERE id < 200 ANSWER
)AS xxx =============
WHERE sorder BETWEEN 2 AND 3 ID SALARY
ORDER BY id; --- --------
 50 20659.80
 140 21150.00

Figure 674, Nested Table Expression

NOTE: A fullselect in parenthesis followed by a correlation name (see above) is also
called a nested table expression.

Here is another way to express the same:

WITH xxx (id, salary, sorder) AS
(SELECT ID
 ,salary
 ,ROW_NUMBER() OVER(ORDER BY salary DESC) AS sorder
 FROM staff
 WHERE id < 200
) ANSWER
SELECT id =============
 ,salary ID SALARY
FROM xxx --- --------
WHERE sorder BETWEEN 2 AND 3 50 20659.80
ORDER BY id; 140 21150.00

Figure 675, Common Table Expression

Multiple Use in Single Statement

Imagine that one wanted to get the percentage contribution of the salary in some set of rows
in the STAFF table - compared to the total salary for the same. The only way to do this is to
access the matching rows twice; Once to get the total salary (i.e. just one row), and then again
to join the total salary value to each individual salary - to work out the percentage.

 Graeme Birchall ©

244 Introduction

Selecting the same set of rows twice in a single query is generally unwise because repeating
the predicates increases the likelihood of typos being made. In the next example, the desired
rows are first placed in a temporary table. Then the sum salary is calculated and placed in
another temporary table. Finally, the two temporary tables are joined to get the percentage:

WITH ANSWER
rows_wanted AS ================================
 (SELECT * ID NAME SALARY SUM_SAL PCT
 FROM staff -- ------- -------- -------- ---
 WHERE id < 100 70 Rothman 16502.83 34504.58 47
 AND UCASE(name) LIKE ’%T%’ 90 Koonitz 18001.75 34504.58 52
),
sum_salary AS
 (SELECT SUM(salary) AS sum_sal
 FROM rows_wanted)
SELECT id
 ,name
 ,salary
 ,sum_sal
 ,INT((salary * 100) / sum_sal) AS pct
FROM rows_wanted
 ,sum_salary
ORDER BY id;

Figure 676, Common Table Expression

Multiple Use in Multiple Statements

To refer to a temporary table in multiple SQL statements in the same thread, one has to define
a declared global temporary table. An example follows:

DECLARE GLOBAL TEMPORARY TABLE session.fred
(dept SMALLINT NOT NULL
,avg_salary DEC(7,2) NOT NULL
,num_emps SMALLINT NOT NULL)
ON COMMIT PRESERVE ROWS;
COMMIT;

INSERT INTO session.fred
SELECT dept
 ,AVG(salary)
 ,COUNT(*) ANSWER#1
FROM staff ========
WHERE id > 200 CNT
GROUP BY dept; ---
COMMIT; 4

SELECT COUNT(*) AS cnt
FROM session.fred; ANSWER#2
 ==========================
DELETE FROM session.fred DEPT AVG_SALARY NUM_EMPS
WHERE dept > 80; ---- ---------- --------
 10 20168.08 3
SELECT * 51 15161.43 3
FROM session.fred; 66 17215.24 5

Figure 677, Declared Global Temporary Table

Unlike an ordinary table, a declared global temporary table is not defined in the DB2 cata-
logue. Nor is it sharable by other users. It only exists for the duration of the thread (or less)
and can only be seen by the person who created it. For more information, see page 251.

DB2 UDB/V8.1 Cookbook ©

Temporary Tables 245

Temporary Tables - in Statement
Three general syntaxes are used to define temporary tables in a query:

• Use a WITH phrase at the top of the query to define a common table expression.

• Define a full-select in the FROM part of the query.

• Define a full-select in the SELECT part of the query.

The following three queries, which are logically equivalent, illustrate the above syntax styles.
Observe that the first two queries are explicitly defined as left outer joins, while the last one is
implicitly a left outer join:

WITH staff_dept AS ANSWER
(SELECT dept AS dept# ==========================
 ,MAX(salary) AS max_sal ID DEPT SALARY MAX_SAL
 FROM staff --- ---- -------- --------
 WHERE dept < 50 10 20 18357.50 18357.50
 GROUP BY dept 190 20 14252.75 18357.50
) 200 42 11508.60 18352.80
SELECT id 220 51 17654.50 -
 ,dept
 ,salary
 ,max_sal
FROM staff
LEFT OUTER JOIN
 staff_dept
ON dept = dept#
WHERE name LIKE ’S%’
ORDER BY id;

Figure 678, Identical query (1 of 3) - using Common Table Expression

SELECT id ANSWER
 ,dept ==========================
 ,salary ID DEPT SALARY MAX_SAL
 ,max_sal --- ---- -------- --------
FROM staff 10 20 18357.50 18357.50
LEFT OUTER JOIN 190 20 14252.75 18357.50
 (SELECT dept AS dept# 200 42 11508.60 18352.80
 ,MAX(salary) AS max_sal 220 51 17654.50 -
 FROM staff
 WHERE dept < 50
 GROUP BY dept
)AS STAFF_dept
ON dept = dept#
WHERE name LIKE ’S%’
ORDER BY id;

Figure 679, Identical query (2 of 3) - using full-select in FROM

SELECT id ANSWER
 ,dept ==========================
 ,salary ID DEPT SALARY MAX_SAL
 ,(SELECT MAX(salary) --- ---- -------- --------
 FROM staff s2 10 20 18357.50 18357.50
 WHERE s1.dept = s2.dept 190 20 14252.75 18357.50
 AND s2.dept < 50 200 42 11508.60 18352.80
 GROUP BY dept) 220 51 17654.50 -
 AS max_sal
FROM staff s1
WHERE name LIKE ’S%’
ORDER BY id;

Figure 680, Identical query (3 of 3) - using full-select in SELECT

 Graeme Birchall ©

246 Temporary Tables - in Statement

Common Table Expression

A common table expression is a named temporary table that is retained for the duration of a
SQL statement. There can be many temporary tables in a single SQL statement. Each must
have a unique name and be defined only once.

All references to a temporary table (in a given SQL statement run) return the same result.
This is unlike tables, views, or aliases, which are derived each time they are called. Also
unlike tables, views, or aliases, temporary tables never contain indexes.

WITH identifier AS (

 ,

 (col. names)
) select stmt

 values stmt

Figure 681, Common Table Expression Syntax

Certain rules apply to common table expressions:

• Column names must be specified if the expression is recursive, or if the query invoked
returns duplicate column names.

• The number of column names (if any) that are specified must match the number of col-
umns returned.

• If there is more than one common-table-expression, latter ones (only) can refer to the
output from prior ones. Cyclic references are not allowed.

• A common table expression with the same name as a real table (or view) will replace the
real table for the purposes of the query. The temporary and real tables cannot be referred
to in the same query.

• Temporary table names must follow standard DB2 table naming standards.

• Each temporary table name must be unique within a query.

• Temporary tables cannot be used in sub-queries.

Select Examples

In this first query, we don’t have to list the field names (at the top) because every field already
has a name (given in the SELECT):

WITH temp1 AS ANSWER
(SELECT MAX(name) AS max_name ==================
 ,MAX(dept) AS max_dept MAX_NAME MAX_DEPT
 FROM staff --------- --------
) Yamaguchi 84
SELECT *
FROM temp1;

Figure 682, Common Table Expression, using named fields

In this next example, the fields being selected are unnamed, so names have to be specified in
the WITH statement:

WITH temp1 (max_name,max_dept) AS ANSWER
(SELECT MAX(name) ==================
 ,MAX(dept) MAX_NAME MAX_DEPT
 FROM staff --------- --------
) Yamaguchi 84
SELECT *
FROM temp1;

Figure 683, Common Table Expression, using unnamed fields

DB2 UDB/V8.1 Cookbook ©

Temporary Tables 247

A single query can have multiple common-table-expressions. In this next example we use two
expressions to get the department with the highest average salary:

WITH ANSWER
temp1 AS ==========
 (SELECT dept MAX_AVG
 ,AVG(salary) AS avg_sal ----------
 FROM staff 20865.8625
 GROUP BY dept),
temp2 AS
 (SELECT MAX(avg_sal) AS max_avg
 FROM temp1)
SELECT *
FROM temp2;

Figure 684, Query with two common table expressions

FYI, the exact same query can be written using nested table expressions thus:

SELECT * ANSWER
FROM (SELECT MAX(avg_sal) AS max_avg ==========
 FROM (SELECT dept MAX_AVG
 ,AVG(salary) AS avg_sal ----------
 FROM staff 20865.8625
 GROUP BY dept
)AS temp1
)AS temp2;

Figure 685, Same as prior example, but using nested table expressions

The next query first builds a temporary table, then derives a second temporary table from the
first, and then joins the two temporary tables together. The two tables refer to the same set of
rows, and so use the same predicates. But because the second table was derived from the first,
these predicates only had to be written once. This greatly simplified the code:

WITH temp1 AS ANSWER
(SELECT id ==========================
 ,name ID DEPT SALARY MAX_SAL
 ,dept --- ---- -------- --------
 ,salary 10 20 18357.50 18357.50
 FROM staff 190 20 14252.75 18357.50
 WHERE id < 300 200 42 11508.60 11508.60
 AND dept <> 55 220 51 17654.50 17654.50
 AND name LIKE ’S%’
 AND dept NOT IN
 (SELECT deptnumb
 FROM org
 WHERE division = ’SOUTHERN’
 OR location = ’HARTFORD’)
)
,temp2 AS
(SELECT dept
 ,MAX(salary) AS max_sal
 FROM temp1
 GROUP BY dept
)
SELECT t1.id
 ,t1.dept
 ,t1.salary
 ,t2.max_sal
FROM temp1 t1
 ,temp2 t2
WHERE t1.dept = t2.dept
ORDER BY t1.id;

Figure 686, Deriving second temporary table from first

 Graeme Birchall ©

248 Temporary Tables - in Statement

Insert Usage

A common table expression can be used to an insert-select-from statement to build all or part
of the set of rows that are inserted:

INSERT INTO staff
WITH temp1 (max1) AS
(SELECT MAX(id) + 1
 FROM staff
)
SELECT max1,’A’,1,’B’,2,3,4
FROM temp1;

Figure 687, Insert using common table expression

As it happens, the above query can be written equally well in the raw:

INSERT INTO staff
SELECT MAX(id) + 1
 ,’A’,1,’B’,2,3,4
FROM staff;

Figure 688, Equivalent insert (to above) without common table expression

Full-Select

A full-select is an alternative way to define a temporary table. Instead of using a WITH clause
at the top of the statement, the temporary table definition is embedded in the body of the SQL
statement. Certain rules apply:

• When used in a select statement, a full-select can either be generated in the FROM part of
the query - where it will return a temporary table, or in the SELECT part of the query -
where it will return a column of data.

• When the result of a full-select is a temporary table (i.e. in FROM part of a query), the
table must be provided with a correlation name.

• When the result of a full-select is a column of data (i.e. in SELECT part of query), each
reference to the temporary table must only return a single value.

Full-Select in FROM Phrase

The following query uses a nested table expression to get the average of an average - in this
case the average departmental salary (an average in itself) per division:

SELECT division
 ,DEC(AVG(dept_avg),7,2) AS div_dept
 ,COUNT(*) AS #dpts
 ,SUM(#emps) AS #emps
FROM (SELECT division
 ,dept
 ,AVG(salary) AS dept_avg
 ,COUNT(*) AS #emps
 FROM staff ANSWER
 ,org ==============================
 WHERE dept = deptnumb DIVISION DIV_DEPT #DPTS #EMPS
 GROUP BY division --------- -------- ----- -----
 ,dept Corporate 20865.86 1 4
)AS xxx Eastern 15670.32 3 13
GROUP BY division; Midwest 15905.21 2 9
 Western 16875.99 2 9

Figure 689, Nested column function usage

The next query illustrates how multiple full-selects can be nested inside each other:

DB2 UDB/V8.1 Cookbook ©

Temporary Tables 249

SELECT id ANSWER
FROM (SELECT * ======
 FROM (SELECT id, years, salary ID
 FROM (SELECT * ---
 FROM (SELECT * 170
 FROM staff 180
 WHERE dept < 77 230
)AS t1
 WHERE id < 300
)AS t2
 WHERE job LIKE ’C%’
)AS t3
 WHERE salary < 18000
)AS t4
WHERE years < 5;

Figure 690, Nested full-selects

A very common usage of a full-select is to join a derived table to a real table. In the following
example, the average salary for each department is joined to the individual staff row:

SELECT a.id ANSWER
 ,a.dept =========================
 ,a.salary ID DEPT SALARY AVG_DEPT
 ,DEC(b.avgsal,7,2) AS avg_dept -- ---- -------- --------
FROM staff a 10 20 18357.50 16071.52
LEFT OUTER JOIN 20 20 18171.25 16071.52
 (SELECT dept AS dept 30 38 17506.75 -
 ,AVG(salary) AS avgsal
 FROM staff
 GROUP BY dept
 HAVING AVG(salary) > 16000
)AS b
ON a.dept = b.dept
WHERE a.id < 40
ORDER BY a.id;

Figure 691, Join full-select to real table

Table Function Usage

If the full-select query has a reference to a row in a table that is outside of the full-select, then
it needs to be written as a TABLE function call. In the next example, the preceding "A" table
is referenced in the full-select, and so the TABLE function call is required:

SELECT a.id ANSWER
 ,a.dept =========================
 ,a.salary ID DEPT SALARY DEPTSAL
 ,b.deptsal -- ---- -------- --------
FROM staff a 10 20 18357.50 64286.10
 ,TABLE 20 20 18171.25 64286.10
 (SELECT b.dept 30 38 17506.75 77285.55
 ,SUM(b.salary) AS deptsal
 FROM staff b
 WHERE b.dept = a.dept
 GROUP BY b.dept
)AS b
WHERE a.id < 40
ORDER BY a.id;

Figure 692, Full-select with external table reference

Below is the same query written without the reference to the "A" table in the full-select, and
thus without a TABLE function call:

 Graeme Birchall ©

250 Temporary Tables - in Statement

SELECT a.id ANSWER
 ,a.dept =========================
 ,a.salary ID DEPT SALARY DEPTSAL
 ,b.deptsal -- ---- -------- --------
FROM staff a 10 20 18357.50 64286.10
 ,(SELECT b.dept 20 20 18171.25 64286.10
 ,SUM(b.salary) AS deptsal 30 38 17506.75 77285.55
 FROM staff b
 GROUP BY b.dept
)AS b
WHERE a.id < 40
 AND b.dept = a.dept
ORDER BY a.id;

Figure 693, Full-select without external table reference

Any externally referenced table in a full-select must be defined in the query syntax (starting at
the first FROM statement) before the full-select. Thus, in the first example above, if the "A"
table had been listed after the "B" table, then the query would have been invalid.

Full-Select in SELECT Phrase

A full-select that returns a single column and row can be used in the SELECT part of a query:

SELECT id ANSWER
 ,salary ====================
 ,(SELECT MAX(salary) ID SALARY MAXSAL
 FROM staff -- -------- --------
) AS maxsal 10 18357.50 22959.20
FROM staff a 20 18171.25 22959.20
WHERE id < 60 30 17506.75 22959.20
ORDER BY id; 40 18006.00 22959.20
 50 20659.80 22959.20

Figure 694, Use an uncorrelated Full-Select in a SELECT list

A full-select in the SELECT part of a statement must return only a single row, but it need not
always be the same row. In the following example, the ID and SALARY of each employee is
obtained - along with the max SALARY for the employee’s department.

SELECT id ANSWER
 ,salary ====================
 ,(SELECT MAX(salary) ID SALARY MAXSAL
 FROM staff b -- -------- --------
 WHERE a.dept = b.dept 10 18357.50 18357.50
) AS maxsal 20 18171.25 18357.50
FROM staff a 30 17506.75 18006.00
WHERE id < 60 40 18006.00 18006.00
ORDER BY id; 50 20659.80 20659.80

Figure 695, Use a correlated Full-Select in a SELECT list

SELECT id ANSWER
 ,dept ==================================
 ,salary ID DEPT SALARY 4 5
 ,(SELECT MAX(salary) -- ---- -------- -------- --------
 FROM staff b 10 20 18357.50 18357.50 22959.20
 WHERE b.dept = a.dept) 20 20 18171.25 18357.50 22959.20
 ,(SELECT MAX(salary) 30 38 17506.75 18006.00 22959.20
 FROM staff) 40 38 18006.00 18006.00 22959.20
FROM staff a 50 15 20659.80 20659.80 22959.20
WHERE id < 60
ORDER BY id;

Figure 696, Use correlated and uncorrelated Full-Selects in a SELECT list

INSERT Usage

The following query uses both an uncorrelated and correlated full-select in the query that
builds the set of rows to be inserted:

DB2 UDB/V8.1 Cookbook ©

Temporary Tables 251

INSERT INTO staff
SELECT id + 1
 ,(SELECT MIN(name)
 FROM staff)
 ,(SELECT dept
 FROM staff s2
 WHERE s2.id = s1.id - 100)
 ,’A’,1,2,3
FROM staff s1
WHERE id =
 (SELECT MAX(id)
 FROM staff);

Figure 697, Full-select in INSERT

UPDATE Usage

The following example uses an uncorrelated full-select to assign a set of workers the average
salary in the company - plus two thousand dollars.

UPDATE staff a ANSWER: SALARY
SET salary = ======= =================
 (SELECT AVG(salary)+ 2000 ID DEPT BEFORE AFTER
 FROM staff) -- ---- -------- --------
WHERE id < 60; 10 20 18357.50 18675.64
 20 20 18171.25 18675.64
 30 38 17506.75 18675.64
 40 38 18006.00 18675.64
 50 15 20659.80 18675.64

Figure 698, Use uncorrelated Full-Select to give workers company AVG salary (+$2000)

The next statement uses a correlated full-select to assign a set of workers the average salary
for their department - plus two thousand dollars. Observe that when there is more than one
worker in the same department, that they all get the same new salary. This is because the full-
select is resolved before the first update was done, not after each.

UPDATE staff a ANSWER: SALARY
SET salary = ======= =================
 (SELECT AVG(salary) + 2000 ID DEPT BEFORE AFTER
 FROM staff b -- ---- -------- --------
 WHERE a.dept = b.dept) 10 20 18357.50 18071.52
WHERE id < 60; 20 20 18171.25 18071.52
 30 38 17506.75 17457.11
 40 38 18006.00 17457.11
 50 15 20659.80 17482.33

Figure 699, Use correlated Full-Select to give workers department AVG salary (+$2000)

NOTE: A full-select is always resolved just once. If it is queried using a correlated expres-
sion, then the data returned each time may differ, but the table remains unchanged.

Declared Global Temporary Tables
If we want to temporarily retain some rows for processing by subsequent SQL statements, we
can use a Declared Global Temporary Table. The type of table only exists until the thread is
terminated (or sooner). It is not defined in the DB2 catalogue, and neither its definition nor its
contents are visible to other users.

 Graeme Birchall ©

252 Declared Global Temporary Tables

INCLUDING IDENTITY
COLUMN ATTRIBUTES

 DEFINITION ONLY

table-name
view-name

fullselect

COLUMN
INCLUDING
EXCLUDING

DEFAULTS

AS

DECLARE GLOBAL TEMPORARY TABLE table-name

)

 (

column-name column-definition

LIKE

(

)

 WITH REPLACE ON COMMIT PRESERVE ROWS

 NOT LOGGED ON COMMIT DELETE ROWS

EXCLUDING IDENTITY
COLUMN ATTRIBUTES

Figure 700, Declared Global Temporary Table syntax

Below is an example of declaring a global temporary table the old fashioned way:

DECLARE GLOBAL TEMPORARY TABLE session.fred
(dept SMALLINT NOT NULL
,avg_salary DEC(7,2) NOT NULL
,num_emps SMALLINT NOT NULL)
ON COMMIT DELETE ROWS;

Figure 701, Declare Global Temporary Table - define columns

In the next example, the temporary table is defined to have exactly the same columns as the
existing STAFF table:

DECLARE GLOBAL TEMPORARY TABLE session.fred
LIKE staff INCLUDING COLUMN DEFAULTS
WITH REPLACE
ON COMMIT PRESERVE ROWS;

Figure 702, Declare Global Temporary Table - like another table

In the next example, the temporary table is defined to have a set of columns that are returned
by a particular select statement. The statement is not actually run at definition time, so any
predicates provided are irrelevant:

DECLARE GLOBAL TEMPORARY TABLE session.fred AS
(SELECT dept
 ,MAX(id) AS max_id
 ,SUM(salary) AS sum_sal
 FROM staff
 WHERE name <> ’IDIOT’
 GROUP BY dept)
DEFINITION ONLY
WITH REPLACE;

Figure 703, Declare Global Temporary Table - like query output

Indexes can be added to temporary tables in order to improve performance and/or to enforce
uniqueness:

DB2 UDB/V8.1 Cookbook ©

Temporary Tables 253

DECLARE GLOBAL TEMPORARY TABLE session.fred
LIKE staff INCLUDING COLUMN DEFAULTS
WITH REPLACE ON COMMIT DELETE ROWS;

CREATE UNIQUE INDEX session.fredx ON Session.fred (id);

INSERT INTO session.fred
SELECT *
FROM staff
WHERE id < 200;
 ANSWER
SELECT COUNT(*) ======
FROM session.fred; 19

COMMIT;
 ANSWER
SELECT COUNT(*) ======
FROM session.fred; 0

Figure 704, Temporary table with index

A temporary table has to be dropped to reuse the same name:

DECLARE GLOBAL TEMPORARY TABLE session.fred
(dept SMALLINT NOT NULL
,avg_salary DEC(7,2) NOT NULL
,num_emps SMALLINT NOT NULL)
ON COMMIT DELETE ROWS;

INSERT INTO session.fred
SELECT dept
 ,AVG(salary)
 ,COUNT(*)
FROM staff
GROUP BY dept;
 ANSWER
SELECT COUNT(*) ======
FROM session.fred; 8

DROP TABLE session.fred;

DECLARE GLOBAL TEMPORARY TABLE session.fred
(dept SMALLINT NOT NULL)
ON COMMIT DELETE ROWS;
 ANSWER
SELECT COUNT(*) ======
FROM session.fred; 0

Figure 705, Dropping a temporary table

Usage Notes

For a complete description of this feature, see the SQL reference. Below are some key points:

• The temporary table name can be any valid DB2 table name. The qualifier, if provided,
must be SESSION. If the qualifier is not provided, it is assumed to be SESSION. If the
temporary table already exists, the WITH REPLACE clause must be used to override it.

• An index can be defined on a global temporary table. The qualifier (i.e. SESSION) must
be explicitly provided.

• Any column type can be used, except the following: BLOB, CLOB, DBCLOB, LONG
VARCHAR, LONG VARGRAPHIC, DATALINK, reference, and structured data types.

• One can choose to preserve or delete (the default) the rows when a commit occurs.

• Standard identity column definitions can be added if desired.

 Graeme Birchall ©

254 Declared Global Temporary Tables

• Changes are not logged.

Before a user can create a declared global temporary table, a USER TEMPORARY table-
space that they have access to, has to be created. A typical definition follows:

CREATE USER TEMPORARY TABLESPACE FRED
MANAGED BY DATABASE
USING (FILE ’C:\DB2\TEMPFRED\FRED1’ 1000
 ,FILE ’C:\DB2\TEMPFRED\FRED2’ 1000
 ,FILE ’C:\DB2\TEMPFRED\FRED3’ 1000);

GRANT USE OF TABLESPACE FRED TO PUBLIC;

Figure 706, Create USER TEMPORARY tablespace

Do NOT use to Hold Output

In general, do not use a Declared Global Temporary Table to hold job output data, especially
if the table is defined ON COMMIT PRESERVE ROWS. If the job fails halfway through, the
contents of the temporary table will be lost. If, prior to the failure, the job had updated and
then committed Production data, it may be impossible to recreate the lost output because the
committed rows cannot be updated twice.

DB2 UDB/V8.1 Cookbook ©

Recursive SQL 255

Recursive SQL
Recursive SQL enables one to efficiently resolve all manner of complex logical structures
that can be really tough to work with using other techniques. On the down side, it is a little
tricky to understand at first and it is occasionally expensive. In this chapter we shall first
show how recursive SQL works and then illustrate some of the really cute things that one use
it for.

Use Recursion To

• Create sample data.

• Select the first "n" rows.

• Generate a simple parser.

• Resolve a Bill of Materials hierarchy.

• Normalize and/or denormalize data structures.

When (Not) to Use Recursion

A good SQL statement is one that gets the correct answer, is easy to understand, and is effi-
cient. Let us assume that a particular statement is correct. If the statement uses recursive SQL,
it is never going to be categorized as easy to understand (though the reading gets much easier
with experience). However, given the question being posed, it is possible that a recursive
SQL statement is the simplest way to get the required answer.

Recursive SQL statements are neither inherently efficient nor inefficient. Because they often
involve a join, it is very important that suitable indexes be provided. Given appropriate in-
dexes, it is quite probable that a recursive SQL statement is the most efficient way to resolve
a particular business problem. It all depends upon the nature of the question: If every row
processed by the query is required in the answer set (e.g. Find all people who work for Bob),
then a recursive statement is likely to very efficient. If only a few of the rows processed by
the query are actually needed (e.g. Find all airline flights from Boston to Dallas, then show
only the five fastest) then the cost of resolving a large data hierarchy (or network), most of
which is immediately discarded, can be very prohibitive.

If one wants to get only a small subset of rows in a large data structure, it is very important
that of the unwanted data is excluded as soon as possible in the processing sequence. Some of
the queries illustrated in this chapter have some rather complicated code in them to do just
this. Also, always be on the lookout for infinitely looping data structures.

Conclusion

Recursive SQL statements can be very efficient, if coded correctly, and if there are suitable
indexes. When either of the above is not true, they can be very slow.

How Recursion Works
Below is a description of a very simple application. The table on the left contains a normal-
ized representation of the hierarchical structure on the right. Each row in the table defines a
relationship displayed in the hierarchy. The PKEY field identifies a parent key, the CKEY

 Graeme Birchall ©

256 How Recursion Works

field has related child keys, and the NUM field has the number of times the child occurs
within the related parent.

HIERARCHY AAA
+---------------+ |
|PKEY |CKEY |NUM| +-----+-----+
|-----|-----|---| | | |
|AAA |BBB | 1| BBB CCC DDD
|AAA |CCC | 5| | |
|AAA |DDD | 20| +-+ +-+--+
|CCC |EEE | 33| | | |
|DDD |EEE | 44| EEE FFF
|DDD |FFF | 5| |
|FFF |GGG | 5| |
+---------------+ GGG

Figure 707, Sample Table description - Recursion

List Dependents of AAA

We want to use SQL to get a list of all the dependents of AAA. This list should include not
only those items like CCC that are directly related, but also values such as GGG, which are
indirectly related. The easiest way to answer this question (in SQL) is to use a recursive SQL
statement that goes thus:

WITH parent (pkey, ckey) AS ANSWER
 (SELECT pkey, ckey ========= PROCESSING
 FROM hierarchy PKEY CKEY SEQUENCE
 WHERE pkey = ’AAA’ ---- ---- ==========
 UNION ALL AAA BBB < 1st pass
 SELECT C.pkey, C.ckey AAA CCC ""
 FROM hierarchy C AAA DDD ""
 ,parent P CCC EEE < 2nd pass
 WHERE P.ckey = C.pkey DDD EEE < 3rd pass
) DDD FFF ""
SELECT pkey, ckey FFF GGG < 4th pass
FROM parent;

Figure 708, SQL that does Recursion

The above statement is best described by decomposing it into its individual components, and
then following of sequence of events that occur:

• The WITH statement at the top defines a temporary table called PARENT.

• The upper part of the UNION ALL is only invoked once. It does an initial population of
the PARENT table with the three rows that have an immediate parent key of AAA .

• The lower part of the UNION ALL is run recursively until there are no more matches to
the join. In the join, the current child value in the temporary PARENT table is joined to
related parent values in the DATA table. Matching rows are placed at the front of the
temporary PARENT table. This recursive processing will stop when all of the rows in the
PARENT table have been joined to the DATA table.

• The SELECT phrase at the bottom of the statement sends the contents of the PARENT
table back to the user’s program.

Another way to look at the above process is to think of the temporary PARENT table as a
stack of data. This stack is initially populated by the query in the top part of the UNION ALL.
Next, a cursor starts from the bottom of the stack and goes up. Each row obtained by the cur-
sor is joined to the DATA table. Any matching rows obtained from the join are added to the
top of the stack (i.e. in front of the cursor). When the cursor reaches the top of the stack, the
statement is done. The following diagram illustrates this process:

DB2 UDB/V8.1 Cookbook ©

Recursive SQL 257

KEY >

KEY >

AAA

BBB

AAA

CCC

AAA

DDD

CCC

EEE

DDD

EEE

DDD

FFF

FFF

GGG

Figure 709, Recursive processing sequence

Notes & Restrictions

• Recursive SQL requires that there be a UNION ALL phrase between the two main parts
of the statement. The UNION ALL, unlike the UNION, allows for duplicate output rows,
which is what often comes out of recursive processing.

• Recursive SQL is usually a fairly efficient. When it involves a join similar to the example
shown above, it is important to make sure that this join is done efficiently. To this end,
suitable indexes should always be provided.

• The output of a recursive SQL is a temporary table (usually). Therefore, all temporary
table usage restrictions also apply to recursive SQL output. See the section titled "Com-
mon Table Expression" for details.

• The output of one recursive expression can be used as input to another recursive expres-
sion in the same SQL statement. This can be very handy if one has multiple logical hier-
archies to traverse (e.g. First find all of the states in the USA, then final all of the cities in
each state).

• Any recursive coding, in any language, can get into an infinite loop - either because of
bad coding, or because the data being processed has a recursive value structure. To pre-
vent your SQL running forever, see the section titled "Halting Recursive Processing" on
page 266.

Sample Table DDL & DML

CREATE TABLE hierarchy
(pkey CHAR(03) NOT NULL
,ckey CHAR(03) NOT NULL
,num SMALLINT NOT NULL
,PRIMARY KEY(pkey, ckey)
,CONSTRAINT dt1 CHECK (pkey <> ckey)
,CONSTRAINT dt2 CHECK (num > 0));
COMMIT;

CREATE UNIQUE INDEX hier_x1 ON hierarchy
(ckey, pkey);
COMMIT;

INSERT INTO hierarchy VALUES
(’AAA’,’BBB’, 1),
(’AAA’,’CCC’, 5),
(’AAA’,’DDD’,20),
(’CCC’,’EEE’,33),
(’DDD’,’EEE’,44),
(’DDD’,’FFF’, 5),
(’FFF’,’GGG’, 5);
COMMIT;

Figure 710, Sample Table DDL - Recursion

 Graeme Birchall ©

258 Introductory Recursion

Introductory Recursion
This section will use recursive SQL statements to answer a series of simple business ques-
tions using the sample HIERARCHY table described on page 257. Be warned that things are
going to get decidedly more complex as we proceed.

List all Children #1

Find all the children of AAA. Don’t worry about getting rid of duplicates, sorting the data, or
any other of the finer details.

WITH parent (ckey) AS ANSWER HIERARCHY
 (SELECT ckey ====== +---------------+
 FROM hierarchy CKEY |PKEY |CKEY |NUM|
 WHERE pkey = ’AAA’ ---- |-----|-----|---|
 UNION ALL BBB |AAA |BBB | 1|
 SELECT C.ckey CCC |AAA |CCC | 5|
 FROM hierarchy C DDD |AAA |DDD | 20|
 ,parent P EEE |CCC |EEE | 33|
 WHERE P.ckey = C.pkey EEE |DDD |EEE | 44|
) FFF |DDD |FFF | 5|
SELECT ckey GGG |FFF |GGG | 5|
FROM parent; +---------------+

Figure 711, List of children of AAA

WARNING: Much of the SQL shown in this section will loop forever if the target database
has a recursive data structure. See page 266 for details on how to prevent this.

The above SQL statement uses standard recursive processing. The first part of the UNION
ALL seeds the temporary table PARENT. The second part recursively joins the temporary
table to the source data table until there are no more matches. The final part of the query dis-
plays the result set.

Imagine that the HIERARCHY table used above is very large and that we also want the above
query to be as efficient as possible. In this case, two indexes are required; The first, on PKEY,
enables the initial select to run efficiently. The second, on CKEY, makes the join in the recur-
sive part of the query efficient. The second index is arguably more important than the first
because the first is only used once, whereas the second index is used for each child of the top-
level parent.

List all Children #2

Find all the children of AAA, include in this list the value AAA itself. To satisfy the latter
requirement we will change the first SELECT statement (in the recursive code) to select the
parent itself instead of the list of immediate children. A DISTINCT is provided in order to
ensure that only one line containing the name of the parent (i.e. "AAA") is placed into the
temporary PARENT table.

NOTE: Before the introduction of recursive SQL processing, it often made sense to define
the top-most level in a hierarchical data structure as being a parent-child of itself. For ex-
ample, the HIERARCHY table might contain a row indicating that "AAA" is a child of
"AAA". If the target table has data like this, add another predicate: C.PKEY <> C.CKEY to
the recursive part of the SQL statement to stop the query from looping forever.

DB2 UDB/V8.1 Cookbook ©

Recursive SQL 259

WITH parent (ckey) AS ANSWER HIERARCHY
 (SELECT DISTINCT pkey ====== +---------------+
 FROM hierarchy CKEY |PKEY |CKEY |NUM|
 WHERE pkey = ’AAA’ ---- |-----|-----|---|
 UNION ALL AAA |AAA |BBB | 1|
 SELECT C.ckey BBB |AAA |CCC | 5|
 FROM hierarchy C CCC |AAA |DDD | 20|
 ,parent P DDD |CCC |EEE | 33|
 WHERE P.ckey = C.pkey EEE |DDD |EEE | 44|
) EEE |DDD |FFF | 5|
SELECT ckey FFF |FFF |GGG | 5|
FROM parent; GGG +---------------+

Figure 712, List all children of AAA

In most, but by no means all, business situations, the above SQL statement is more likely to
be what the user really wanted than the SQL before. Ask before you code.

List Distinct Children

Get a distinct list of all the children of AAA. This query differs from the prior only in the use
of the DISTINCT phrase in the final select.

WITH parent (ckey) AS ANSWER HIERARCHY
 (SELECT DISTINCT pkey ====== +---------------+
 FROM hierarchy CKEY |PKEY |CKEY |NUM|
 WHERE pkey = ’AAA’ ---- |-----|-----|---|
 UNION ALL AAA |AAA |BBB | 1|
 SELECT C.ckey BBB |AAA |CCC | 5|
 FROM hierarchy C CCC |AAA |DDD | 20|
 ,parent P DDD |CCC |EEE | 33|
 WHERE P.ckey = C.pkey EEE |DDD |EEE | 44|
) FFF |DDD |FFF | 5|
SELECT DISTINCT ckey GGG |FFF |GGG | 5|
FROM parent; +---------------+

Figure 713, List distinct children of AAA

The next thing that we want to do is build a distinct list of children of AAA that we can then
use to join to other tables. To do this, we simply define two temporary tables. The first does
the recursion and is called PARENT. The second, called DISTINCT_PARENT, takes the
output from the first and removes duplicates.

WITH parent (ckey) AS ANSWER HIERARCHY
 (SELECT DISTINCT pkey ====== +---------------+
 FROM hierarchy CKEY |PKEY |CKEY |NUM|
 WHERE pkey = ’AAA’ ---- |-----|-----|---|
 UNION ALL AAA |AAA |BBB | 1|
 SELECT C.ckey BBB |AAA |CCC | 5|
 FROM hierarchy C CCC |AAA |DDD | 20|
 ,parent P DDD |CCC |EEE | 33|
 WHERE P.ckey = C.pkey EEE |DDD |EEE | 44|
), FFF |DDD |FFF | 5|
distinct_parent (ckey) AS GGG |FFF |GGG | 5|
 (SELECT DISTINCT ckey +---------------+
 FROM parent
)
SELECT ckey
FROM distinct_parent;

Figure 714, List distinct children of AAA

Show Item Level

Get a list of all the children of AAA. For each value returned, show its level in the logical
hierarchy relative to AAA.

 Graeme Birchall ©

260 Introductory Recursion

WITH parent (ckey, lvl) AS ANSWER AAA
 (SELECT DISTINCT pkey, 0 ======== |
 FROM hierarchy CKEY LVL +-----+-----+
 WHERE pkey = ’AAA’ ---- --- | | |
 UNION ALL AAA 0 BBB CCC DDD
 SELECT C.ckey, P.lvl +1 BBB 1 | |
 FROM hierarchy C CCC 1 +-+ +-+--+
 ,parent P DDD 1 | | |
 WHERE P.ckey = C.pkey EEE 2 EEE FFF
) EEE 2 |
SELECT ckey, lvl FFF 2 |
FROM parent; GGG 3 GGG

Figure 715, Show item level in hierarchy

The above statement has a derived integer field called LVL. In the initial population of the
temporary table this level value is set to zero. When subsequent levels are reached, this value
in incremented by one.

Select Certain Levels

Get a list of all the children of AAA that are less than three levels below AAA.

WITH parent (ckey, lvl) AS ANSWER HIERARCHY
 (SELECT DISTINCT pkey, 0 ======== +---------------+
 FROM hierarchy CKEY LVL |PKEY |CKEY |NUM|
 WHERE pkey = ’AAA’ ---- --- |-----|-----|---|
 UNION ALL AAA 0 |AAA |BBB | 1|
 SELECT C.ckey, P.lvl +1 BBB 1 |AAA |CCC | 5|
 FROM hierarchy C CCC 1 |AAA |DDD | 20|
 ,parent P DDD 1 |CCC |EEE | 33|
 WHERE P.ckey = C.pkey EEE 2 |DDD |EEE | 44|
) EEE 2 |DDD |FFF | 5|
SELECT ckey, lvl FFF 2 |FFF |GGG | 5|
FROM parent +---------------+
WHERE lvl < 3;

Figure 716, Select rows where LEVEL < 3

The above statement has two main deficiencies:

• It will run forever if the database contains an infinite loop.

• It may be inefficient because it resolves the whole hierarchy before discarding those lev-
els that are not required.

To get around both of these problems, we can move the level check up into the body of the
recursive statement. This will stop the recursion from continuing as soon as we reach the tar-
get level. We will have to add "+ 1" to the check to make it logically equivalent:

WITH parent (ckey, lvl) AS ANSWER AAA
 (SELECT DISTINCT pkey, 0 ======== |
 FROM hierarchy CKEY LVL +-----+-----+
 WHERE pkey = ’AAA’ ---- --- | | |
 UNION ALL AAA 0 BBB CCC DDD
 SELECT C.ckey, P.lvl +1 BBB 1 | |
 FROM hierarchy C CCC 1 +-+ +-+--+
 ,parent P DDD 1 | | |
 WHERE P.ckey = C.pkey EEE 2 EEE FFF
 AND P.lvl+1 < 3 EEE 2 |
) FFF 2 |
SELECT ckey, lvl GGG
FROM parent;

Figure 717, Select rows where LEVEL < 3

DB2 UDB/V8.1 Cookbook ©

Recursive SQL 261

The only difference between this statement and the one before is that the level check is now
done in the recursive part of the statement. This new level-check predicate has a dual func-
tion: It gives us the answer that we want, and it stops the SQL from running forever if the
database happens to contain an infinite loop (e.g. DDD was also a parent of AAA).

One problem with this general statement design is that it can not be used to list only that data
which pertains to a certain lower level (e.g. display only level 3 data). To answer this kind of
question efficiently we can combine the above two queries, having appropriate predicates in
both places (see next).

Select Explicit Level

Get a list of all the children of AAA that are exactly two levels below AAA.

WITH parent (ckey, lvl) AS ANSWER HIERARCHY
 (SELECT DISTINCT pkey, 0 ======== +---------------+
 FROM hierarchy CKEY LVL |PKEY |CKEY |NUM|
 WHERE pkey = ’AAA’ ---- --- |-----|-----|---|
 UNION ALL EEE 2 |AAA |BBB | 1|
 SELECT C.ckey, P.lvl +1 EEE 2 |AAA |CCC | 5|
 FROM hierarchy C FFF 2 |AAA |DDD | 20|
 ,parent P |CCC |EEE | 33|
 WHERE P.ckey = C.pkey |DDD |EEE | 44|
 AND P.lvl+1 < 3 |DDD |FFF | 5|
) |FFF |GGG | 5|
SELECT ckey, lvl +---------------+
FROM parent
WHERE lvl = 2;

Figure 718, Select rows where LEVEL = 2

In the recursive part of the above statement all of the levels up to and including that which is
required are obtained. All undesired lower levels are then removed in the final select.

Trace a Path - Use Multiple Recursions

Multiple recursive joins can be included in a single query. The joins can run independently, or
the output from one recursive join can be used as input to a subsequent. Such code enables
one to do the following:

• Expand multiple hierarchies in a single query. For example, one might first get a list of
all departments (direct and indirect) in a particular organization, and then use the depart-
ment list as a seed to find all employees (direct and indirect) in each department.

• Go down, and then up, a given hierarchy in a single query. For example, one might want
to find all of the children of AAA, and then all of the parents. The combined result is the
list of objects that AAA is related to via a direct parent-child path.

• Go down the same hierarchy twice, and then combine the results to find the matches, or
the non-matches. This type of query might be used to, for example, see if two companies
own shares in the same subsidiary.

The next example recursively searches the HIERARCHY table for all values that are either a
child or a parent (direct or indirect) of the object DDD. The first part of the query gets the list
of children, the second part gets the list of parents (but never the value DDD itself), and then
the results are combined.

 Graeme Birchall ©

262 Introductory Recursion

WITH children (kkey, lvl) AS ANSWER AAA
 (SELECT ckey, 1 ======== |
 FROM hierarchy KKEY LVL +-----+-----+
 WHERE pkey = ’DDD’ ---- --- | | |
 UNION ALL AAA -1 BBB CCC DDD
 SELECT H.ckey, C.lvl + 1 EEE 1 | |
 FROM hierarchy H FFF 1 +-+ +-+--+
 ,children C GGG 2 | | |
 WHERE H.pkey = C.kkey EEE FFF
) |
,parents (kkey, lvl) AS |
 (SELECT pkey, -1 GGG
 FROM hierarchy
 WHERE ckey = ’DDD’
 UNION ALL
 SELECT H.pkey, P.lvl - 1
 FROM hierarchy H
 ,parents P
 WHERE H.ckey = P.kkey
)
SELECT kkey ,lvl
FROM children
UNION ALL
SELECT kkey ,lvl
FROM parents;

Figure 719, Find all children and parents of DDD

Extraneous Warning Message

Some recursive SQL statements generate the following warning when the DB2 parser has
reason to suspect that the statement may run forever:

SQL0347W The recursive common table expression "GRAEME.TEMP1" may contain an
infinite loop. SQLSTATE=01605

The text that accompanies this message provides detailed instructions on how to code recur-
sive SQL so as to avoid getting into an infinite loop. The trouble is that even if you do exactly
as told you may still get the silly message. To illustrate, the following two SQL statements
are almost identical. Yet the first gets a warning and the second does not:

WITH temp1 (n1) AS ANSWER
 (SELECT id ======
 FROM staff N1
 WHERE id = 10 --
 UNION ALL warn
 SELECT n1 +10 10
 FROM temp1 20
 WHERE n1 < 50 30
) 40
SELECT * 50
FROM temp1;

Figure 720, Recursion - with warning message

WITH temp1 (n1) AS ANSWER
 (SELECT INT(id) ======
 FROM staff N1
 WHERE id = 10 --
 UNION ALL 10
 SELECT n1 +10 20
 FROM temp1 30
 WHERE n1 < 50 40
) 50
SELECT *
FROM temp1;

Figure 721, Recursion - without warning message

DB2 UDB/V8.1 Cookbook ©

Recursive SQL 263

If you know what you are doing, ignore the message.

Logical Hierarchy Flavours
Before getting into some of the really nasty stuff, we best give a brief overview of the various
kinds of logical hierarchy that exist in the real world and how each is best represented in a
relational database.

Some typical data hierarchy flavours are shown below. Note that the three on the left form
one, mutually exclusive, set and the two on the right another. Therefore, it is possible for a
particular hierarchy to be both divergent and unbalanced (or balanced), but not both divergent
and convergent.

DIVERGENT CONVERGENT RECURSIVE BALANCED UNBALANCED
========= ========== ========= ======== ==========

 AAA AAA AAA<--+ AAA AAA
 | | | | | |
 +-+-+ +-+-+ +-+-+ | +-+-+ +-+-+
 | | | | | | | | | | |
BBB CCC BBB CCC BBB CCC>+ BBB CCC BBB CCC
 | | | | | | |
 +-+-+ +-+-+-+ +-+-+ | +---+ +-+-+
 | | | | | | | | | | |
 DDD EEE DDD EEE DDD EEE DDD EEE FFF DDD EEE

Figure 722, Hierarchy Flavours

Divergent Hierarchy

In this flavour of hierarchy, no object has more than one parent. Each object can have none,
one, or more than one, dependent child objects. Physical objects (e.g. Geographic entities)
tend to be represented in this type of hierarchy.

This type of hierarchy will often incorporate the concept of different layers in the hierarchy
referring to differing kinds of object - each with its own set of attributes. For example, a Geo-
graphic hierarchy might consist of countries, states, cities, and street addresses.

A single table can be used to represent this kind of hierarchy in a fully normalized form. One
field in the table will be the unique key, another will point to the related parent. Other fields
in the table may pertain either to the object in question, or to the relationship between the ob-
ject and its parent. For example, in the following table the PRICE field has the price of the
object, and the NUM field has the number of times that the object occurs in the parent.

OBJECTS_RELATES AAA
+---------------------+ |
|KEYO |PKEY |NUM|PRICE| +-----+-----+
|-----|-----|---|-----| | | |
|AAA | | | $10| BBB CCC DDD
|BBB |AAA | 1| $21| |
|CCC |AAA | 5| $23| +--+--+
|DDD |AAA | 20| $25| | |
|EEE |DDD | 44| $33| EEE FFF
|FFF |DDD | 5| $34| |
|GGG |FFF | 5| $44| |
+---------------------+ GGG

Figure 723, Divergent Hierarchy - Table and Layout

 Graeme Birchall ©

264 Logical Hierarchy Flavours

Some database designers like to make the arbitrary judgment that every object has a parent,
and in those cases where there is no "real" parent, the object considered to be a parent of it-
self. In the above table, this would mean that AAA would be defined as a parent of AAA.
Please appreciate that this judgment call does not affect the objects that the database repre-
sents, but it can have a dramatic impact on SQL usage and performance.

Prior to the introduction of recursive SQL, defining top level objects as being self-parenting
was sometimes a good idea because it enabled one to resolve a hierarchy using a simple join
without unions. This same process is now best done with recursive SQL. Furthermore, if ob-
jects in the database are defined as self-parenting, the recursive SQL will get into an infinite
loop unless extra predicates are provided.

Convergent Hierarchy

NUMBER OF TABLES: A convergent hierarchy has many-to-many relationships that re-
quire two tables for normalized data storage. The other hierarchy types require but a sin-
gle table.

In this flavour of hierarchy, each object can have none, one, or more than one, parent and/or
dependent child objects. Convergent hierarchies are often much more difficult to work with
than similar divergent hierarchies. Logical entities, or man-made objects, (e.g. Company Di-
visions) often have this type of hierarchy.

Two tables are required in order to represent this kind of hierarchy in a fully normalized form.
One table describes the object, and the other describes the relationships between the objects.

OBJECTS RELATIONSHIPS AAA
+-----------+ +---------------+ |
|KEYO |PRICE| |PKEY |CKEY |NUM| +-----+-----+
|-----|-----| |-----|-----|---| | | |
|AAA | $10| |AAA |BBB | 1| BBB CCC DDD
|BBB | $21| |AAA |CCC | 5| | |
|CCC | $23| |AAA |DDD | 20| +-+ +-+--+
|DDD | $25| |CCC |EEE | 33| | | |
|EEE | $33| |DDD |EEE | 44| EEE FFF
|FFF | $34| |DDD |FFF | 5| |
|GGG | $44| |FFF |GGG | 5| |
+-----------+ +---------------+ GGG

Figure 724, Convergent Hierarchy - Tables and Layout

One has to be very careful when resolving a convergent hierarchy to get the answer that the
user actually wanted. To illustrate, if we wanted to know how many children AAA has in the
above structure the "correct" answer could be six, seven, or eight. To be precise, we would
need to know if EEE should be counted twice and if AAA is considered to be a child of itself.

Recursive Hierarchy

WARNING: Recursive data hierarchies will cause poorly written recursive SQL statements
to run forever. See the section titled "Halting Recursive Processing" on page 266 for de-
tails on how to prevent this, and how to check that a hierarchy is not recursive.

In this flavour of hierarchy, each object can have none, one, or more than one parent. Also,
each object can be a parent and/or a child of itself via another object, or via itself directly. In
the business world, this type of hierarchy is almost always wrong. When it does exist, it is
often because a standard convergent hierarchy has gone a bit haywire.

This database design is exactly the same as the one for a convergent hierarchy. Two tables are
(usually) required in order to represent the hierarchy in a fully normalized form. One table
describes the object, and the other describes the relationships between the objects.

DB2 UDB/V8.1 Cookbook ©

Recursive SQL 265

OBJECTS RELATIONSHIPS AAA <------+
+-----------+ +---------------+ | |
|KEYO |PRICE| |PKEY |CKEY |NUM| +-----+-----+ |
|-----|-----| |-----|-----|---| | | | |
|AAA | $10| |AAA |BBB | 1| BBB CCC DDD>-+
|BBB | $21| |AAA |CCC | 5| | |
|CCC | $23| |AAA |DDD | 20| +-+ +-+--+
|DDD | $25| |CCC |EEE | 33| | | |
|EEE | $33| |DDD |AAA | 99| EEE FFF
|FFF | $34| |DDD |FFF | 5| |
|GGG | $44| |DDD |EEE | 44| |
+-----------+ |FFF |GGG | 5| GGG
 +---------------+

Figure 725, Recursive Hierarchy - Tables and Layout

Prior to the introduction of recursive SQL, it took some non-trivial coding root out recursive
data structures in convergent hierarchies. Now it is a no-brainer, see page 266 for details.

Balanced & Unbalanced Hierarchies

In some logical hierarchies the distance, in terms of the number of intervening levels, from
the top parent entity to its lowest-level child entities is the same for all legs of the hierarchy.
Such a hierarchy is considered to be balanced. An unbalanced hierarchy is one where the dis-
tance from a top-level parent to a lowest-level child is potentially different for each leg of the
hierarchy.

 AAA << Balanced hierarchy AAA
 | Unbalanced hierarchy >> |
 +-----+-----+ +---+----+
 | | | | | |
BBB CCC DDD | CCC DDD
 | | | | | |
 | | +-+-+ | +-+ +-+-+
 | | | | | | | |
EEE FFF GGG HHH FFF GGG HHH
 |
 |
 III

Figure 726, Balanced and Unbalanced Hierarchies

Balanced hierarchies often incorporate the concept of levels, where a level is a subset of the
values in the hierarchy that are all of the same time and are also the same distance from the
top level parent. For example, in the balanced hierarchy above each of the three levels shown
might refer to a different category of object (e.g. country, state, city). By contrast, in the un-
balanced hierarchy above is probable that the objects being represented are all of the same
general category (e.g. companies that own other companies).

Divergent hierarchies are the most likely to be balanced. Furthermore, balanced and/or diver-
gent hierarchies are the kind that are most often used to do data summation at various inter-
mediate levels. For example, a hierarchy of countries, states, and cities, is likely to be summa-
rized at any level.

Data & Pointer Hierarchies

The difference between a data and a pointer hierarchy is not one of design, but of usage. In a
pointer schema, the main application tables do not store a description of the logical hierarchy.
Instead, they only store the base data. Separate to the main tables are one, or more, related
tables that define which hierarchies each base data row belongs to.

 Graeme Birchall ©

266 Halting Recursive Processing

Typically, in a pointer hierarchy, the main data tables are much larger and more active than
the hierarchical tables. A banking application is a classic example of this usage pattern. There
is often one table that contains core customer information and several related tables that en-
able one to do analysis by customer category.

A data hierarchy is an altogether different beast. An example would be a set of tables that
contain information on all that parts that make up an aircraft. In this kind of application the
most important information in the database is often that which pertains to the relationships
between objects. These tend to be very complicated often incorporating the attributes: quan-
tity, direction, and version.

Recursive processing of a data hierarchy will often require that one does a lot more than just
find all dependent keys. For example, to find the gross weight of an aircraft from such a data-
base one will have to work with both the quantity and weight of all dependent objects. Those
objects that span sub-assembles (e.g. a bolt connecting to engine to the wing) must not be
counted twice, missed out, nor assigned to the wrong sub-grouping. As always, such ques-
tions are essentially easy to answer, the trick is to get the right answer.

Halting Recursive Processing
One occasionally encounters recursive hierarchical data structures (i.e. where the parent item
points to the child, which then points back to the parent). This section describes how to write
recursive SQL statements that can process such structures without running forever. There are
three general techniques that one can use:

• Stop processing after reaching a certain number of levels.

• Keep a record of where you have been, and if you ever come back, either fail or in some
other way stop recursive processing.

• Keep a record of where you have been, and if you ever come back, simply ignore that
row and keep on resolving the rest of hierarchy.

Sample Table DDL & DML

The following table is a normalized representation of the recursive hierarchy on the right.
Note that AAA and DDD are both a parent and a child of each other.

TROUBLE AAA <------+
+---------+ | |
|PKEY|CKEY| +-----+-----+ |
|----|----| | | | |
|AAA |BBB | BBB CCC DDD>-+
|AAA |CCC | | |
|AAA |DDD | +-+ +-+--+
|CCC |EEE | | | |
|DDD |AAA | <=== This row EEE FFF
|DDD |FFF | points back to |
|DDD |EEE | the hierarchy |
|FFF |GGG | parent. GGG
+---------+

Figure 727, Recursive Hierarchy - Sample Table and Layout

Below is the DDL and DML that was used to create the above table.

DB2 UDB/V8.1 Cookbook ©

Recursive SQL 267

CREATE TABLE trouble
(pkey CHAR(03) NOT NULL
,ckey CHAR(03) NOT NULL);

CREATE UNIQUE INDEX tble_x1 ON trouble (pkey, ckey);
CREATE UNIQUE INDEX tble_x2 ON trouble (ckey, pkey);

INSERT INTO trouble VALUES
(’AAA’,’BBB’),
(’AAA’,’CCC’),
(’AAA’,’DDD’),
(’CCC’,’EEE’),
(’DDD’,’AAA’),
(’DDD’,’EEE’),
(’DDD’,’FFF’),
(’FFF’,’GGG’);

Figure 728, Sample Table DDL - Recursive Hierarchy

Other Loop Types

In the above table, the beginning object (i.e. AAA) is part of the data loop. This type of loop
can be detected using simpler SQL than what is given here. But a loop that does not include
the beginning object (e.g. AAA points to BBB, which points to CCC, which points back to
BBB) requires the somewhat complicated SQL that is used in this section.

Stop After "n" Levels

Find all the children of AAA. In order to avoid running forever, stop after four levels.

WITH parent (pkey, ckey, lvl) AS ANSWER TROUBLE
 (SELECT DISTINCT ============= +---------+
 pkey PKEY CKEY LVL |PKEY|CKEY|
 ,pkey ---- ---- --- |----|----|
 ,0 AAA AAA 0 |AAA |BBB |
 FROM trouble AAA BBB 1 |AAA |CCC |
 WHERE pkey = ’AAA’ AAA CCC 1 |AAA |DDD |
 UNION ALL AAA DDD 1 |CCC |EEE |
 SELECT C.pkey CCC EEE 2 |DDD |AAA |
 ,C.ckey DDD AAA 2 |DDD |FFF |
 ,P.lvl + 1 DDD EEE 2 |DDD |EEE |
 FROM trouble C DDD FFF 2 |FFF |GGG |
 ,parent P AAA BBB 3 +---------+
 WHERE P.ckey = C.pkey AAA CCC 3
 AND P.lvl + 1 < 4 AAA DDD 3
) FFF GGG 3
SELECT *
FROM parent;

Figure 729, Stop Recursive SQL after "n" levels

In order for the above statement to get the right answer, we need to know before beginning
the maximum number of valid dependent levels (i.e. non-looping) there are in the hierarchy.
This information is then incorporated into the recursive predicate (see: P.LVI + 1 < 4).

If the number of levels is not known, and we guess wrong, we may not find all the children of
AAA. For example, if we had stopped at "2" in the above query, we would not have found the
child GGG.

A more specific disadvantage of the above statement is that the list of children contains dupli-
cates. These duplicates include those specific values that compose the infinite loop (i.e. AAA
and DDD), and also any children of either of the above.

 Graeme Birchall ©

268 Halting Recursive Processing

Stop When Loop Found

A far better way to stop recursive processing is to halt when, and only when, we determine
that we have been to the target row previously. To do this, we need to maintain a record of
where we have been, and then check this record against the current key value in each row
joined to. DB2 does not come with an in-built function that can do this checking, so we shall
define our own.

Define Function

Below is the definition code for a user-defined DB2 function that is very similar to the stan-
dard LOCATE function. It searches for one string in another, block by block. For example, if
one was looking for the string "ABC", this function would search the first three bytes, then
the next three bytes, and so on. If a match is found, the function returns the relevant block
number, else zero.

CREATE FUNCTION LOCATE_BLOCK(searchstr VARCHAR(30000)
 ,lookinstr VARCHAR(30000))
RETURNS INTEGER
BEGIN ATOMIC
 DECLARE lookinlen, searchlen INT;
 DECLARE locatevar, returnvar INT DEFAULT 0;
 DECLARE beginlook INT DEFAULT 1;
 SET lookinlen = LENGTH(lookinstr);
 SET searchlen = LENGTH(searchstr);
 WHILE locatevar = 0 AND
 beginlook <= lookinlen DO
 SET locatevar = LOCATE(searchstr,SUBSTR(lookinstr
 ,beginlook
 ,searchlen));
 SET beginlook = beginlook + searchlen;
 SET returnvar = returnvar + 1;
 END WHILE;
 IF locatevar = 0 THEN
 SET returnvar = 0;
 END IF;
 RETURN returnvar;
END

Figure 730, LOCATE_BLOCK user defined function

Below is an example of the function in use. Observe that the function did not find the string
"th" in the name "Smith" because the two characters did not start in an position that was some
multiple of the length of the test string:

SELECT id ANSWER
 ,NAME =================
 ,LOCATE(’th’,name) AS L1 ID NAME L1 L2
 ,LOCATE_BLOCK(’th’,name) AS L2 --- ------- -- --
FROM staff 70 Rothman 3 2
WHERE LOCATE(’th’,name) > 1; 220 Smith 4 0

Figure 731, LOCATE_BLOCK function example

NOTE: The LOCATE_BLOCK function shown above is the minimalist version, without any
error checking. If it were used in a Production environment, it would have checks for nulls,
and for various invalid input values.

Use Function

Now all we need to do is build a string, as we do the recursion, that holds every key value that
has previously been accessed. This can be done using simple concatenation:

DB2 UDB/V8.1 Cookbook ©

Recursive SQL 269

WITH parent (pkey, ckey, lvl, path, loop) AS
 (SELECT DISTINCT
 pkey
 ,pkey ANSWER
 ,0 ===============================
 ,VARCHAR(pkey,20) PKEY CKEY LVL PATH LOOP
 ,0 ---- ---- --- ------------ ----
 FROM trouble AAA AAA 0 AAA 0
 WHERE pkey = ’AAA’ AAA BBB 1 AAABBB 0
 UNION ALL AAA CCC 1 AAACCC 0
 SELECT C.pkey AAA DDD 1 AAADDD 0
 ,C.ckey CCC EEE 2 AAACCCEEE 0
 ,P.lvl + 1 DDD AAA 2 AAADDDAAA 1
 ,P.path || C.ckey DDD EEE 2 AAADDDEEE 0
 ,LOCATE_BLOCK(C.ckey,P.path) DDD FFF 2 AAADDDFFF 0
 FROM trouble C AAA BBB 3 AAADDDAAABBB 0
 ,parent P AAA CCC 3 AAADDDAAACCC 0
 WHERE P.ckey = C.pkey AAA DDD 3 AAADDDAAADDD 2
 AND P.lvl + 1 < 4 FFF GGG 3 AAADDDFFFGGG 0
)
SELECT *
FROM parent; TROUBLE
 +---------+ AAA <------+
 |PKEY|CKEY| | | | |
 |----|----| +-----+-----+ |
 |AAA |BBB | | | | |
 |AAA |CCC | BBB CCC DDD>-+
 |AAA |DDD | | |
 |CCC |EEE | +-+ +-+--+
 This row ===> |DDD |AAA | | | |
 points back to |DDD |FFF | EEE FFF
 the hierarchy |DDD |EEE | |
 parent. |FFF |GGG | |
 +---------+ GGG

Figure 732, Show path, and rows in loop

Now we can get rid of the level check, and instead use the LOCATE_BLOCK function to
avoid loops in the data:

WITH parent (pkey, ckey, lvl, path) AS ANSWER
 (SELECT DISTINCT ==========================
 pkey PKEY CKEY LVL PATH
 ,pkey ---- ----- -- ------------
 ,0 AAA AAA 0 AAA
 ,VARCHAR(pkey,20) AAA BBB 1 AAABBB
 FROM trouble AAA CCC 1 AAACCC
 WHERE pkey = ’AAA’ AAA DDD 1 AAADDD
 UNION ALL CCC EEE 2 AAACCCEEE
 SELECT C.pkey DDD EEE 2 AAADDDEEE
 ,C.ckey DDD FFF 2 AAADDDFFF
 ,P.lvl + 1 FFF GGG 3 AAADDDFFFGGG
 ,P.path || C.ckey
 FROM trouble C
 ,parent P
 WHERE P.ckey = C.pkey
 AND LOCATE_BLOCK(C.ckey,P.path) = 0
)
SELECT *
FROM parent;

Figure 733, Use LOCATE_BLOCK function to stop recursion

The next query is the same as the previous, except that instead of excluding all loops from the
answer-set, it marks them as such, and gets the first item, but goes no further;

 Graeme Birchall ©

270 Halting Recursive Processing

WITH parent (pkey, ckey, lvl, path, loop) AS
 (SELECT DISTINCT
 pkey
 ,pkey
 ,0
 ,VARCHAR(pkey,20) ANSWER
 ,0 ===============================
 FROM trouble PKEY CKEY LVL PATH LOOP
 WHERE pkey = ’AAA’ ---- ---- --- ------------ ----
 UNION ALL AAA AAA 0 AAA 0
 SELECT C.pkey AAA BBB 1 AAABBB 0
 ,C.ckey AAA CCC 1 AAACCC 0
 ,P.lvl + 1 AAA DDD 1 AAADDD 0
 ,P.path || C.ckey CCC EEE 2 AAACCCEEE 0
 ,LOCATE_BLOCK(C.ckey,P.path) DDD AAA 2 AAADDDAAA 1
 FROM trouble C DDD EEE 2 AAADDDEEE 0
 ,parent P DDD FFF 2 AAADDDFFF 0
 WHERE P.ckey = C.pkey FFF GGG 3 AAADDDFFFGGG 0
 AND P.loop = 0
)
SELECT *
FROM parent;

Figure 734, Use LOCATE_BLOCK function to stop recursion

The next query tosses in another predicate (in the final select) to only list those rows that
point back to a previously processed parent:

WITH parent (pkey, ckey, lvl, path, loop) AS ANSWER
 (SELECT DISTINCT =========
 pkey PKEY CKEY
 ,pkey ---- ----
 ,0 DDD AAA
 ,VARCHAR(pkey,20)
 ,0
 FROM trouble
 WHERE pkey = ’AAA’
 UNION ALL
 SELECT C.pkey
 ,C.ckey TROUBLE
 ,P.lvl + 1 +---------+
 ,P.path || C.ckey |PKEY|CKEY|
 ,LOCATE_BLOCK(C.ckey,P.path) |----|----|
 FROM trouble C |AAA |BBB |
 ,parent P |AAA |CCC |
 WHERE P.ckey = C.pkey |AAA |DDD |
 AND P.loop = 0 |CCC |EEE |
) This row ===> |DDD |AAA |
SELECT pkey points back to |DDD |FFF |
 ,ckey the hierarchy |DDD |EEE |
FROM parent parent. |FFF |GGG |
WHERE loop > 0; +---------+

Figure 735,List rows that point back to a parent

To delete the offending rows from the table, all one has to do is insert the above values into a
temporary table, then delete those rows in the TROUBLE table that match. However, before
one does this, one has decide which rows are the ones that should not be there.

In the above query, we started processing at AAA, and then said that any row that points back
to AAA, or to some child or AAA, is causing a loop. We thus identified the row from DDD to
AAA as being a problem. But if we had started at the value DDD, we would have said instead
that the row from AAA to DDD was the problem. The point to remember her is that the row
you decide to delete is a consequence of the row that you decided to define as your starting
point.

DB2 UDB/V8.1 Cookbook ©

Recursive SQL 271

DECLARE GLOBAL TEMPORARY TABLE SESSION.del_list
(pkey CHAR(03) NOT NULL
,ckey CHAR(03) NOT NULL)
ON COMMIT PRESERVE ROWS;

INSERT INTO SESSION.del_list
WITH parent (pkey, ckey, lvl, path, loop) AS
 (SELECT DISTINCT
 pkey
 ,pkey
 ,0 TROUBLE
 ,VARCHAR(pkey,20) +---------+
 ,0 |PKEY|CKEY|
 FROM trouble |----|----|
 WHERE pkey = ’AAA’ |AAA |BBB |
 UNION ALL |AAA |CCC |
 SELECT C.pkey |AAA |DDD |
 ,C.ckey |CCC |EEE |
 ,P.lvl + 1 This row ===> |DDD |AAA |
 ,P.path || C.ckey points back to |DDD |FFF |
 ,LOCATE_BLOCK(C.ckey,P.path) the hierarchy |DDD |EEE |
 FROM trouble C parent. |FFF |GGG |
 ,parent P +---------+
 WHERE P.ckey = C.pkey
 AND P.loop = 0 AAA <------+
) | |
SELECT pkey +-----+-----+ |
 ,ckey | | | |
FROM parent BBB CCC DDD>-+
WHERE loop > 0; | |
 +-+ +-+--+
DELETE | | |
FROM trouble EEE FFF
WHERE (pkey,ckey) IN |
 (SELECT pkey, ckey |
 FROM SESSION.del_list); GGG

Figure 736, Delete rows that loop back to a parent

Working with Other Key Types

The LOCATE_BLOCK solution shown above works fine, as long as the key in question is a
fixed length character field. If it isn’t, it can be converted to one, depending on what it is:

• Cast VARCHAR columns as type CHAR.

• Convert other field types to character using the HEX function.

Keeping the Hierarchy Clean

Rather that go searching for loops, one can toss in a couple of triggers that will prevent the
table from every getting data loops in the first place. There will be one trigger for inserts, and
another for updates. Both will have the same general logic:

• For each row inserted/updated, retain the new PKEY value.

• Recursively scan the existing rows, starting with the new CKEY value.

• Compare each existing CKEY value retrieved to the new PKEY value. If it matches, the
changed row will cause a loop, so flag an error.

• If no match is found, allow the change.

Here is the insert trigger:

 Graeme Birchall ©

272 Halting Recursive Processing

CREATE TRIGGER TBL_INS TROUBLE
NO CASCADE BEFORE INSERT ON trouble +---------+
REFERENCING NEW AS NNN This trigger |PKEY|CKEY|
FOR EACH ROW MODE DB2SQL would reject |----|----|
 WITH temp (pkey, ckey) AS insertion of |AAA |BBB |
 (VALUES (NNN.pkey this row. |AAA |CCC |
 ,NNN.ckey) | |AAA |DDD |
 UNION ALL | |CCC |EEE |
 SELECT TTT.pkey +---> |DDD |AAA |
 ,CASE |DDD |FFF |
 WHEN TTT.ckey = TBL.pkey |DDD |EEE |
 THEN RAISE_ERROR(’70001’,’LOOP FOUND’) |FFF |GGG |
 ELSE TBL.ckey +---------+
 END
 FROM trouble TBL
 ,temp TTT
 WHERE TTT.ckey = TBL.pkey
)
 SELECT *
 FROM temp;

Figure 737, INSERT trigger

Here is the update trigger:

CREATE TRIGGER TBL_UPD
NO CASCADE BEFORE UPDATE OF pkey, ckey ON trouble
REFERENCING NEW AS NNN
FOR EACH ROW MODE DB2SQL
 WITH temp (pkey, ckey) AS
 (VALUES (NNN.pkey
 ,NNN.ckey)
 UNION ALL
 SELECT TTT.pkey
 ,CASE
 WHEN TTT.ckey = TBL.pkey
 THEN RAISE_ERROR(’70001’,’LOOP FOUND’)
 ELSE TBL.ckey
 END
 FROM trouble TBL
 ,temp TTT
 WHERE TTT.ckey = TBL.pkey
)
 SELECT *
 FROM temp;

Figure 738, UPDATE trigger

Given the above preexisting TROUBLE data (absent the DDD to AAA row), the following
statements would be rejected by the above triggers:

INSERT INTO trouble VALUES(’GGG’,’AAA’);

UPDATE trouble SET ckey = ’AAA’ WHERE pkey = ’FFF’;
UPDATE trouble SET pkey = ’GGG’ WHERE ckey = ’DDD’;

Figure 739, Invalid DML statements

Observe that neither of the above triggers use the LOCATE_BLOCK function to find a loop.
This is because these triggers are written assuming that the table is currently loop free. If this
is not the case, they may run forever.

The LOCATE_BLOCK function enables one to check every row processed, to see if one has
been to that row before. In the above triggers, only the start position is checked for loops. So
if there was a loop that did not encompass the start position, the LOCATE_BLOCK check
would find it, but the code used in the triggers would not.

DB2 UDB/V8.1 Cookbook ©

Recursive SQL 273

Clean Hierarchies and Efficient Joins

Introduction

One of the more difficult problems in any relational database system involves joining across
multiple hierarchical data structures. The task is doubly difficult when one or more of the hi-
erarchies involved is a data structure that has to be resolved using recursive processing. In this
section, we will describe how one can use a mixture of tables and triggers to answer this kind
of query very efficiently.

A typical question might go as follows: Find all matching rows where the customer is in some
geographic region, and the item sold is in some product category, and person who made the
sale is in some company sub-structure. If each of these qualifications involves expanding a
hierarchy of object relationships of indeterminate and/or nontrivial depth, then a simple join
or standard data denormalization will not work.

In DB2, one can answer this kind of question by using recursion to expand each of the data
hierarchies. Then the query would join (sans indexes) the various temporary tables created by
the recursive code to whatever other data tables needed to be accessed. Unfortunately, the
performance will probably be lousy.

Alternatively, one can often efficiently answer this general question using a set of suitably
indexed summary tables that are an expanded representation of each data hierarchy. With
these tables, the DB2 optimizer can much more efficiently join to other data tables, and so
deliver suitable performance.

In this section, we will show how to make these summary tables and, because it is a prerequi-
site, also show how to ensure that the related base tables do not have recursive data structures.
Two solutions will be described: One that is simple and efficient, but which stops updates to
key values. And another that imposes fewer constraints, but which is a bit more complicated.

Limited Update Solution

Below on the left is a hierarchy of data items. This is a typical unbalanced, non-recursive data
hierarchy. In the center is a normalized representation of this hierarchy. The only thing that is
perhaps a little unusual here is that an item at the top of a hierarchy (e.g. AAA) is deemed to
be a parent of itself. On the right is an exploded representation of the same hierarchy.

 HIERARCHY#1 EXPLODED#1
AAA +--------------------+ +-------------+
 | |KEYY|PKEY|DATA | |PKEY|CKEY|LVL|
BBB |----|----|----------| |----|----|---|
 | |AAA |AAA |SOME DATA | |AAA |AAA | 0|
 +-----+ |BBB |AAA |MORE DATA | |AAA |BBB | 1|
 | | |CCC |BBB |MORE JUNK | |AAA |CCC | 2|
CCC EEE |DDD |CCC |MORE JUNK | |AAA |DDD | 3|
 | |EEE |BBB |JUNK DATA | |AAA |EEE | 2|
DDD +--------------------+ |BBB |BBB | 0|
 |BBB |CCC | 1|
 |BBB |DDD | 2|
 |BBB |EEE | 1|
 |CCC |CCC | 0|
 |CCC |DDD | 1|
 |DDD |DDD | 0|
 |EEE |EEE | 0|
 +-------------+

Figure 740, Data Hierarchy, with normalized and exploded representations

 Graeme Birchall ©

274 Clean Hierarchies and Efficient Joins

Below is the CREATE code for the above normalized table and a dependent trigger:

CREATE TABLE hierarchy#1
(keyy CHAR(3) NOT NULL
,pkey CHAR(3) NOT NULL
,data VARCHAR(10)
,CONSTRAINT hierarchy11 PRIMARY KEY(keyy)
,CONSTRAINT hierarchy12 FOREIGN KEY(pkey)
 REFERENCES hierarchy#1 (keyy) ON DELETE CASCADE);

CREATE TRIGGER HIR#1_UPD
NO CASCADE BEFORE UPDATE OF pkey ON hierarchy#1
REFERENCING NEW AS NNN
 OLD AS OOO
FOR EACH ROW MODE DB2SQL
WHEN (NNN.pkey <> OOO.pkey)
 SIGNAL SQLSTATE ’70001’ (’CAN NOT UPDATE pkey’);

Figure 741, Hierarchy table that does not allow updates to PKEY

Note the following:

• The KEYY column is the primary key, which ensures that each value must be unique,
and that this field can not be updated.

• The PKEY column is a foreign key of the KEYY column. This means that this field must
always refer to a valid KEYY value. This value can either be in another row (if the new
row is being inserted at the bottom of an existing hierarchy), or in the new row itself (if a
new independent data hierarchy is being established).

• The ON DELETE CASCADE referential integrity rule ensures that when a row is de-
leted, all dependent rows are also deleted.

• The TRIGGER prevents any updates to the PKEY column. This is a BEFORE trigger,
which means that it stops the update before it is applied to the database.

All of the above rules and restrictions act to prevent either an insert or an update for ever act-
ing on any row that is not at the bottom of a hierarchy. Consequently, it is not possible for a
hierarchy to ever exist that contains a loop of multiple data items.

Creating an Exploded Equivalent

Once we have ensured that the above table can never have recursive data structures, we can
define a dependent table that holds an exploded version of the same hierarchy. Triggers will
be used to keep the two tables in sync. Here is the CREATE code for the table:

CREATE TABLE exploded#1
(pkey CHAR(4) NOT NULL
,ckey CHAR(4) NOT NULL
,lvl SMALLINT NOT NULL
,PRIMARY KEY(pkey,ckey));

Figure 742, Exploded table CREATE statement

The following trigger deletes all dependent rows from the exploded table whenever a row is
deleted from the hierarchy table:

CREATE TRIGGER EXP#1_DEL
AFTER DELETE ON hierarchy#1
REFERENCING OLD AS OOO
FOR EACH ROW MODE DB2SQL
 DELETE
 FROM exploded#1
 WHERE ckey = OOO.keyy;

Figure 743, Trigger to maintain exploded table after delete in hierarchy table

DB2 UDB/V8.1 Cookbook ©

Recursive SQL 275

The next trigger is run every time a row is inserted into the hierarchy table. It uses recursive
code to scan the hierarchy table upwards, looking for all parents of the new row. The result-
set is then inserted into the exploded table:

CREATE TRIGGER EXP#1_INS HIERARCHY#1 EXPLODED#1
AFTER INSERT ON hierarchy#1 +--------------+ +-------------+
REFERENCING NEW AS NNN |KEYY|PKEY|DATA| |PKEY|CKEY|LVL|
FOR EACH ROW MODE DB2SQL |----|----|----| |----|----|---|
 INSERT |AAA |AAA |S...| |AAA |AAA | 0|
 INTO exploded#1 |BBB |AAA |M...| |AAA |BBB | 1|
 WITH temp(pkey, ckey, lvl) AS |CCC |BBB |M...| |AAA |CCC | 2|
 (VALUES (NNN.keyy |DDD |CCC |M...| |AAA |DDD | 3|
 ,NNN.keyy |EEE |BBB |J...| |AAA |EEE | 2|
 ,0) +--------------+ |BBB |BBB | 0|
 UNION ALL |BBB |CCC | 1|
 SELECT N.pkey |BBB |DDD | 2|
 ,NNN.keyy |BBB |EEE | 1|
 ,T.lvl +1 |CCC |CCC | 0|
 FROM temp T |CCC |DDD | 1|
 ,hierarchy#1 N |DDD |DDD | 0|
 WHERE N.keyy = T.pkey |EEE |EEE | 0|
 AND N.keyy <> N.pkey +-------------+
)
 SELECT *
 FROM temp;

Figure 744, Trigger to maintain exploded table after insert in hierarchy table

There is no update trigger because updates are not allowed to the hierarchy table.

Querying the Exploded Table

Once supplied with suitable indexes, the exploded table can be queried like any other table. It
will always return the current state of the data in the related hierarchy table.

SELECT *
FROM exploded#1
WHERE pkey = :host-var
ORDER BY pkey
 ,ckey
 ,lvl;

Figure 745, Querying the exploded table

Full Update Solution

Not all applications want to limit updates to the data hierarchy as was done above. In particu-
lar, they may want the user to be able to move an object, and all its dependents, from one
valid point (in a data hierarchy) to another. This means that we cannot prevent valid updates
to the PKEY value.

Below is the CREATE statement for a second hierarchy table. The only difference between
this table and the previous one is that there is now an ON UPDATE RESTRICT clause. This
prevents updates to PKEY that do not point to a valid KEYY value – either in another row, or
in the row being updated:

CREATE TABLE hierarchy#2
(keyy CHAR(3) NOT NULL
,pkey CHAR(3) NOT NULL
,data VARCHAR(10)
,CONSTRAINT NO_loopS21 PRIMARY KEY(keyy)
,CONSTRAINT NO_loopS22 FOREIGN KEY(pkey)
 REFERENCES hierarchy#2 (keyy) ON DELETE CASCADE
 ON UPDATE RESTRICT);

Figure 746, Hierarchy table that allows updates to PKEY

 Graeme Birchall ©

276 Clean Hierarchies and Efficient Joins

The previous hierarchy table came with a trigger that prevented all updates to the PKEY field.
This table comes instead with a trigger than checks to see that such updates do not result in a
recursive data structure. It starts out at the changed row, then works upwards through the
chain of PKEY values. If it ever comes back to the original row, it flags an error:

CREATE TRIGGER HIR#2_UPD HIERARCHY#2
NO CASCADE BEFORE UPDATE OF pkey ON hierarchy#2 +--------------+
REFERENCING NEW AS NNN |KEYY|PKEY|DATA|
 OLD AS OOO |----|----|----|
FOR EACH ROW MODE DB2SQL |AAA |AAA |S...|
WHEN (NNN.pkey <> OOO.pkey |BBB |AAA |M...|
 AND NNN.pkey <> NNN.keyy) |CCC |BBB |M...|
 WITH temp (keyy, pkey) AS |DDD |CCC |M...|
 (VALUES (NNN.keyy |EEE |BBB |J...|
 ,NNN.pkey) +--------------+
 UNION ALL
 SELECT LP2.keyy
 ,CASE
 WHEN LP2.keyy = NNN.keyy
 THEN RAISE_ERROR(’70001’,’LOOP FOUND’)
 ELSE LP2.pkey
 END
 FROM hierarchy#2 LP2
 ,temp TMP
 WHERE TMP.pkey = LP2.keyy
 AND TMP.keyy <> TMP.pkey
)
 SELECT *
 FROM temp;

Figure 747, Trigger to check for recursive data structures before update of PKEY

NOTE: The above is a BEFORE trigger, which means that it gets run before the change is
applied to the database. By contrast, the triggers that maintain the exploded table are all
AFTER triggers. In general, one uses before triggers check for data validity, while after
triggers are used to propagate changes.

Creating an Exploded Equivalent

The following exploded table is exactly the same as the previous. It will be maintained in
sync with changes to the related hierarchy table:

CREATE TABLE exploded#2
(pkey CHAR(4) NOT NULL
,ckey CHAR(4) NOT NULL
,lvl SMALLINT NOT NULL
,PRIMARY KEY(pkey,ckey));

Figure 748, Exploded table CREATE statement

Three triggers are required to maintain the exploded table in sync with the related hierarchy
table. The first two, which handle deletes and inserts, are the same as what were used previ-
ously. The last, which handles updates, is new (and quite tricky).

The following trigger deletes all dependent rows from the exploded table whenever a row is
deleted from the hierarchy table:

CREATE TRIGGER EXP#2_DEL
AFTER DELETE ON hierarchy#2
REFERENCING OLD AS OOO
FOR EACH ROW MODE DB2SQL
 DELETE
 FROM exploded#2
 WHERE ckey = OOO.keyy;

Figure 749, Trigger to maintain exploded table after delete in hierarchy table

DB2 UDB/V8.1 Cookbook ©

Recursive SQL 277

The next trigger is run every time a row is inserted into the hierarchy table. It uses recursive
code to scan the hierarchy table upwards, looking for all parents of the new row. The result-
set is then inserted into the exploded table:

CREATE TRIGGER EXP#2_INS HIERARCHY#2 EXPLODED#2
AFTER INSERT ON hierarchy#2 +--------------+ +-------------+
REFERENCING NEW AS NNN |KEYY|PKEY|DATA| |PKEY|CKEY|LVL|
FOR EACH ROW MODE DB2SQL |----|----|----| |----|----|---|
 INSERT |AAA |AAA |S...| |AAA |AAA | 0|
 INTO exploded#2 |BBB |AAA |M...| |AAA |BBB | 1|
 WITH temp(pkey, ckey, lvl) AS |CCC |BBB |M...| |AAA |CCC | 2|
 (SELECT NNN.keyy |DDD |CCC |M...| |AAA |DDD | 3|
 ,NNN.keyy |EEE |BBB |J...| |AAA |EEE | 2|
 ,0 +--------------+ |BBB |BBB | 0|
 FROM hierarchy#2 |BBB |CCC | 1|
 WHERE keyy = NNN.keyy |BBB |DDD | 2|
 UNION ALL |BBB |EEE | 1|
 SELECT N.pkey |CCC |CCC | 0|
 ,NNN.keyy |CCC |DDD | 1|
 ,T.lvl +1 |DDD |DDD | 0|
 FROM temp T |EEE |EEE | 0|
 ,hierarchy#2 N +-------------+
 WHERE N.keyy = T.pkey
 AND N.keyy <> N.pkey
)
 SELECT *
 FROM temp;

Figure 750, Trigger to maintain exploded table after insert in hierarchy table

The next trigger is run every time a PKEY value is updated in the hierarchy table. It deletes
and then reinserts all rows pertaining to the updated object, and all it’s dependents. The code
goes as follows:

Delete all rows that point to children of the row being updated. The row being updated is also
considered to be a child.

In the following insert, first use recursion to get a list of all of the children of the row that has
been updated. Then work out the relationships between all of these children and all of their
parents. Insert this second result-set back into the exploded table.

CREATE TRIGGER EXP#2_UPD
AFTER UPDATE OF pkey ON hierarchy#2
REFERENCING OLD AS OOO
 NEW AS NNN
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC
 DELETE
 FROM exploded#2
 WHERE ckey IN
 (SELECT ckey
 FROM exploded#2
 WHERE pkey = OOO.keyy);
 INSERT
 INTO exploded#2
 WITH temp1(ckey) AS
 (VALUES (NNN.keyy)
 UNION ALL
 SELECT N.keyy
 FROM temp1 T
 ,hierarchy#2 N
 WHERE N.pkey = T.ckey
 AND N.pkey <> N.keyy
)

Figure 751, Trigger to run after update of PKEY in hierarchy table (part 1 of 2)

 Graeme Birchall ©

278 Clean Hierarchies and Efficient Joins

 ,temp2(pkey, ckey, lvl) AS
 (SELECT ckey
 ,ckey
 ,0
 FROM temp1
 UNION ALL
 SELECT N.pkey
 ,T.ckey
 ,T.lvl +1
 FROM temp2 T
 ,hierarchy#2 N
 WHERE N.keyy = T.pkey
 AND N.keyy <> N.pkey
)
 SELECT *
 FROM temp2;
END

Figure 752, Trigger to run after update of PKEY in hierarchy table (part 2 of 2)

NOTE: The above trigger lacks a statement terminator because it contains atomic SQL,
which means that the semi-colon can not be used. Choose anything you like.

Querying the Exploded Table

Once supplied with suitable indexes, the exploded table can be queried like any other table. It
will always return the current state of the data in the related hierarchy table.

SELECT *
FROM exploded#2
WHERE pkey = :host-var
ORDER BY pkey
 ,ckey
 ,lvl;

Figure 753, Querying the exploded table

Below are some suggested indexes:

• PKEY, CKEY (already defined as part of the primary key).

• CKEY, PKEY (useful when joining to this table).

DB2 UDB/V8.1 Cookbook ©

Fun with SQL 279

Fun with SQL
In this chapter will shall cover some of the fun things that one can and, perhaps, should not
do, using DB2 SQL. Read on at your own risk.

Creating Sample Data
If every application worked exactly as intended from the first, we would never have any need
for test databases. Unfortunately, one often needs to builds test systems in order to both tune
the application SQL, and to do capacity planning. In this section we shall illustrate how very
large volumes of extremely complex test data can be created using relatively simple SQL
statements.

Good Sample Data is

• Reproducible.

• Easy to make.

• Similar to Production:

• Same data volumes (if needed).

• Same data distribution characteristics.

Create a Row of Data

Select a single column/row entity, but do not use a table or view as the data source.

WITH TEMP1 (COL1) AS ANSWER
(VALUES 0 ======
) COL1
SELECT * ----
FROM TEMP1; 0

Figure 754, Select one row/column using VALUES

The above statement uses the VALUES statement to define a single row/column in the tem-
porary table TEMP1. This table is then selected from.

Create "n" Rows & Columns of Data

Select multiple rows and columns, but do not use a table or view as the data source.

WITH TEMP1 (COL1, COL2, COL3) AS ANSWER
(VALUES (0, ’AA’, 0.00) ==============
 ,(1, ’BB’, 1.11) COL1 COL2 COL3
 ,(2, ’CC’, 2.22) ---- ---- ----
) 0 AA 0.00
SELECT * 1 BB 1.11
FROM TEMP1; 2 CC 2.22

Figure 755, Select multiple rows/columns using VALUES

This statement places three rows and columns of data into the temporary table TEMP1, which
is then selected from. Note that each row of values is surrounded by parenthesis and separated
from the others by a comma.

 Graeme Birchall ©

280 Creating Sample Data

Linear Data Generation

Create the set of integers between zero and one hundred. In this statement we shall use recur-
sive coding to expand a single value into many more.

WITH TEMP1 (COL1) AS ANSWER
(VALUES 0 ======
 UNION ALL COL1
 SELECT COL1 + 1 ----
 FROM TEMP1 0
 WHERE COL1 + 1 < 100 1
) 2
SELECT * 3
FROM TEMP1; etc

Figure 756, Use recursion to get list of one hundred numbers

The first part of the above recursive statement refers to a single row that has the value zero.
Note that no table or view is selected from in this part of the query, the row is defined using a
VALUES phrase. In the second part of the statement the original row is recursively added to
itself ninety nine times.

Tabular Data Generation

Create the complete set of integers between zero and one hundred. Display ten numbers in
each line of output.

WITH TEMP1 (C0,C1,C2,C3,C4,C5,C6,C7,C8,C9) AS
(VALUES (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
 UNION ALL
 SELECT C0+10, C1+10, C2+10, C3+10, C4+10
 ,C5+10, C6+10, C7+10, C8+10, C9+10
 FROM TEMP1
 WHERE C0+10 < 100
)
SELECT *
FROM TEMP1;

Figure 757, Recursive SQL used to make an array of numbers (1 of 2)

The result follows, it is of no functional use, but it looks cute:

 C0 C1 C2 C3 C4 C5 C6 C7 C8 C9
---- ---- ---- ---- ---- ---- ---- ---- ---- ----
 0 1 2 3 4 5 6 7 8 9
 10 11 12 13 14 15 16 17 18 19
 20 21 22 23 24 25 26 27 28 29
 30 31 32 33 34 35 36 37 38 39
 40 41 42 43 44 45 46 47 48 49
 50 51 52 53 54 55 56 57 58 59
 60 61 62 63 64 65 66 67 68 69
 70 71 72 73 74 75 76 77 78 79
 80 81 82 83 84 85 86 87 88 89
 90 91 92 93 94 95 96 97 98 99

Figure 758, Answer - array of numbers made using recursive SQL

Another way to get exactly the same answer is shown below. If differs from the prior SQL in
that most of the arithmetic is deferred until the final select. Both statements do the job equally
well, which one you prefer is mostly a matter of aesthetics.

DB2 UDB/V8.1 Cookbook ©

Fun with SQL 281

WITH TEMP1 (C0) AS
(VALUES (0)
 UNION ALL
 SELECT C0+10
 FROM TEMP1
 WHERE C0+10 < 100
)
SELECT C0
 ,C0+1 AS C1, C0+2 AS C2, C0+3 AS C3, C0+4 AS C4, C0+5 AS C5
 ,C0+6 AS C6, C0+7 AS C7, C0+8 AS C8, C0+9 AS C9
FROM TEMP1;

Figure 759, Recursive SQL used to make an array of numbers (2 of 2)

Cosine vs. Degree - Table of Values

Create a report that shows the cosine of every angle between zero and ninety degrees (accu-
rate to one tenth of a degree).

WITH TEMP1 (DEGREE) AS
(VALUES SMALLINT(0)
 UNION ALL
 SELECT SMALLINT(DEGREE + 1)
 FROM TEMP1
 WHERE DEGREE < 89
)
SELECT DEGREE
 ,DEC(COS(RADIANS(DEGREE + 0.0)),4,3) AS POINT0
 ,DEC(COS(RADIANS(DEGREE + 0.1)),4,3) AS POINT1
 ,DEC(COS(RADIANS(DEGREE + 0.2)),4,3) AS POINT2
 ,DEC(COS(RADIANS(DEGREE + 0.3)),4,3) AS POINT3
 ,DEC(COS(RADIANS(DEGREE + 0.4)),4,3) AS POINT4
 ,DEC(COS(RADIANS(DEGREE + 0.5)),4,3) AS POINT5
 ,DEC(COS(RADIANS(DEGREE + 0.6)),4,3) AS POINT6
 ,DEC(COS(RADIANS(DEGREE + 0.7)),4,3) AS POINT7
 ,DEC(COS(RADIANS(DEGREE + 0.8)),4,3) AS POINT8
 ,DEC(COS(RADIANS(DEGREE + 0.9)),4,3) AS POINT9
FROM TEMP1;

Figure 760, SQL to make Cosine vs. Degree table

The answer (part of) follows:

DEGREE POINT0 POINT1 POINT2 POINT3 POINT4 POINT5 POINT6 POINT7 etc....
------ ------ ------ ------ ------ ------ ------ ------ ------
 0 1.000 0.999 0.999 0.999 0.999 0.999 0.999 0.999
 1 1.000 0.999 0.999 0.999 0.999 0.999 0.999 0.999
 2 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999
 3 0.999 0.999 0.999 0.999 0.999 0.999 0.998 0.998
 4 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.997
 5 0.997 0.997 0.997 0.997 0.997 0.996 0.996 0.996
 6 0.994 0.994 0.994 0.993 0.993 0.993 0.993 0.993
 7 0.992 0.992 0.992 0.991 0.991 0.991 0.991 0.990
 8 0.990 0.990 0.989 0.989 0.989 0.989 0.988 0.988
 .
 .
 88 0.052 0.050 0.048 0.047 0.045 0.043 0.041 0.040
 89 0.034 0.033 0.031 0.029 0.027 0.026 0.024 0.022

Figure 761, Cosine vs. Degree SQL output

Make Reproducible Random Data

So far, all we have done is create different sets of fixed data. These are usually not suitable
for testing purposes because they are too consistent. To mess things up a bit we need to use
the RAND function which generates random numbers in the range of zero to one inclusive. In
the next example we will get a (reproducible) list of five random numeric values:

 Graeme Birchall ©

282 Creating Sample Data

WITH TEMP1 (S1, R1) AS ANSWER
(VALUES (0, RAND(1)) ============
 UNION ALL SEQ# RAN1
 SELECT S1+1, RAND() ---- -----
 FROM TEMP1 0 0.001
 WHERE S1+1 < 5 1 0.563
) 2 0.193
SELECT SMALLINT(S1) AS SEQ# 3 0.808
 ,DECIMAL(R1,5,3) AS RAN1 4 0.585
FROM TEMP1;

Figure 762, Use RAND to create pseudo-random numbers

The initial invocation of the RAND function above is seeded with the value 1. Subsequent
invocations of the same function (in the recursive part of the statement) use the initial value to
generate a reproducible set of pseudo-random numbers.

Using the GENERATE_UNIQUE function

With a bit of data manipulation, the GENERATE_UNIQUE function can be used (instead of
the RAND function) to make suitably random test data. The are advantages and disadvantages
to using both functions:

• The GENERATE_UNIQUE function makes data that is always unique. The RAND func-
tion only outputs one of 32,000 distinct values.

• The RAND function can make reproducible random data, while the GENER-
ATE_UNIQUE function can not.

See the description of the GENERATE_UNIQUE function (see page 116) for an example of
how to use it to make random data.

Make Random Data - Different Ranges

There are several ways to mess around with the output from the RAND function: We can use
simple arithmetic to alter the range of numbers generated (e.g. convert from 0 to 10 to 0 to
10,000). We can alter the format (e.g. from FLOAT to DECIMAL). Lastly, we can make
fewer, or more, distinct random values (e.g. from 32K distinct values down to just 10). All of
this is done below:

WITH TEMP1 (S1, R1) AS ANSWER
(VALUES (0, RAND(2)) ========================
 UNION ALL SEQ# RAN2 RAN1 RAN3
 SELECT S1+1, RAND() ---- ---- ------ ----
 FROM TEMP1 0 13 0.0013 0
 WHERE S1+1 < 5 1 8916 0.8916 8
) 2 7384 0.7384 7
SELECT SMALLINT(S1) AS SEQ# 3 5430 0.5430 5
 ,SMALLINT(R1*10000) AS RAN2 4 8998 0.8998 8
 ,DECIMAL(R1,6,4) AS RAN1
 ,SMALLINT(R1*10) AS RAN3
FROM TEMP1;

Figure 763, Make differing ranges of random numbers

Make Random Data - Different Flavours

The RAND function generates random numbers. To get random character data one has to
convert the RAND output into a character. There are several ways to do this. The first method
shown below uses the CHR function to convert a number in the range: 65 to 90 into the AS-
CII equivalent: "A" to "Z". The second method uses the CHAR function to translate a number
into the character equivalent.

DB2 UDB/V8.1 Cookbook ©

Fun with SQL 283

WITH TEMP1 (S1, R1) AS ANSWER
(VALUES (0, RAND(2)) ===================
 UNION ALL SEQ# RAN2 RAN3 RAN4
 SELECT S1+1, RAND() ---- ---- ---- ----
 FROM TEMP1 0 65 A 65
 WHERE S1+1 < 5 1 88 X 88
) 2 84 T 84
SELECT SMALLINT(S1) AS SEQ# 3 79 O 79
 ,SMALLINT(R1*26+65) AS RAN2 4 88 X 88
 ,CHR(SMALLINT(R1*26+65)) AS RAN3
 ,CHAR(SMALLINT(R1*26)+65) AS RAN4
FROM TEMP1;

Figure 764, Converting RAND output from number to character

Make Random Data - Varying Distribution

In the real world, there is a tendency for certain data values to show up much more frequently
than others. Likewise, separate fields in a table usually have independent semi-random data
distribution patterns. In the next statement we create four independently random fields. The
first has the usual 32K distinct values evenly distributed in the range of zero to one. The sec-
ond is the same, except that it has many more distinct values (approximately 32K squared).
The third and fourth have random numbers that are skewed towards the low end of the range
with average values of 0.25 and 0.125 respectively.

WITH TEMP1 (S1,R1,R2,R3,R4) AS ANSWER
(VALUES (0 ==============================
 ,RAND(2) S# RAN1 RAN2 RAN3 RAN4
 ,RAND()+(RAND()/1E5) -- ------ ------ ------ ------
 ,RAND()* RAND() 0 1373 169599 182618 215387
 ,RAND()* RAND()* RAND()) 1 326700 445273 539604 357592
 UNION ALL 2 909848 981267 7140 81553
 SELECT S1 + 1 3 454573 577320 309318 166436
 ,RAND() 4 875942 257823 207873 9628
 ,RAND()+(RAND()/1E5)
 ,RAND()* RAND()
 ,RAND()* RAND()* RAND()
 FROM TEMP1
 WHERE S1 + 1 < 5
)
SELECT SMALLINT(S1) AS S#
 ,INTEGER(R1*1E6) AS RAN1, INTEGER(R2*1E6) AS RAN2
 ,INTEGER(R3*1E6) AS RAN3, INTEGER(R4*1E6) AS RAN4
FROM TEMP1;

Figure 765, Create RAND data with different distributions

Make Test Table & Data

So far, all we have done in this chapter is use SQL to select sets of rows. Now we shall create
a Production-like table for performance testing purposes. We will then insert 10,000 rows of
suitably lifelike test data into the table. The DDL, with constraints and index definitions, fol-
lows. The important things to note are:

• The EMP# and the SOCSEC# must both be unique.

• The JOB_FTN, FST_NAME, and LST_NAME fields must all be non-blank.

• The SOCSEC# must have a special format.

• The DATE_BN must be greater than 1900.

Several other fields must be within certain numeric ranges.

 Graeme Birchall ©

284 Creating Sample Data

CREATE TABLE PERSONNEL
(EMP# INTEGER NOT NULL
,SOCSEC# CHAR(11) NOT NULL
,JOB_FTN CHAR(4) NOT NULL
,DEPT SMALLINT NOT NULL
,SALARY DECIMAL(7,2) NOT NULL
,DATE_BN DATE NOT NULL WITH DEFAULT
,FST_NAME VARCHAR(20)
,LST_NAME VARCHAR(20)
,CONSTRAINT PEX1 PRIMARY KEY (EMP#)
,CONSTRAINT PE01 CHECK (EMP# > 0)
,CONSTRAINT PE02 CHECK (LOCATE(’ ’,SOCSEC#) = 0)
,CONSTRAINT PE03 CHECK (LOCATE(’-’,SOCSEC#,1) = 4)
,CONSTRAINT PE04 CHECK (LOCATE(’-’,SOCSEC#,5) = 7)
,CONSTRAINT PE05 CHECK (JOB_FTN <> ’’)
,CONSTRAINT PE06 CHECK (DEPT BETWEEN 1 AND 99)
,CONSTRAINT PE07 CHECK (SALARY BETWEEN 0 AND 99999)
,CONSTRAINT PE08 CHECK (FST_NAME <> ’’)
,CONSTRAINT PE09 CHECK (LST_NAME <> ’’)
,CONSTRAINT PE10 CHECK (DATE_BN >= ’1900-01-01’));
COMMIT;

CREATE UNIQUE INDEX PEX2 ON PERSONNEL (SOCSEC#);
CREATE UNIQUE INDEX PEX3 ON PERSONNEL (DEPT, EMP#);
COMMIT;

Figure 766, Production-like test table DDL

Now we shall populate the table. The SQL shall be described in detail latter. For the moment,
note the four RAND fields. These contain, independently generated, random numbers which
are used to populate the other data fields.

INSERT INTO PERSONNEL
WITH TEMP1 (S1,R1,R2,R3,R4) AS
(VALUES (0
 ,RAND(2)
 ,RAND()+(RAND()/1E5)
 ,RAND()* RAND()
 ,RAND()* RAND()* RAND())
 UNION ALL
 SELECT S1 + 1
 ,RAND()
 ,RAND()+(RAND()/1E5)
 ,RAND()* RAND()
 ,RAND()* RAND()* RAND()
 FROM TEMP1
 WHERE S1 < 10000
)
SELECT 100000 + S1
 ,SUBSTR(DIGITS(INT(R2*988+10)),8) || ’-’ ||
 SUBSTR(DIGITS(INT(R1*88+10)),9) || ’-’ ||
 TRANSLATE(SUBSTR(DIGITS(S1),7),’9873450126’,’0123456789’)
 ,CASE
 WHEN INT(R4*9) > 7 THEN ’MGR’
 WHEN INT(R4*9) > 5 THEN ’SUPR’
 WHEN INT(R4*9) > 3 THEN ’PGMR’
 WHEN INT(R4*9) > 1 THEN ’SEC’
 ELSE ’WKR’
 END
 ,INT(R3*98+1)
 ,DECIMAL(R4*99999,7,2)
 ,DATE(’1930-01-01’) + INT(50-(R4*50)) YEARS
 + INT(R4*11) MONTHS
 + INT(R4*27) DAYS

Figure 767, Production-like test table INSERT (part 1 of 2)

DB2 UDB/V8.1 Cookbook ©

Fun with SQL 285

 ,CHR(INT(R1*26+65))|| CHR(INT(R2*26+97))|| CHR(INT(R3*26+97))||
 CHR(INT(R4*26+97))|| CHR(INT(R3*10+97))|| CHR(INT(R3*11+97))
 ,CHR(INT(R2*26+65))||
 TRANSLATE(CHAR(INT(R2*1E7)),’aaeeiibmty’,’0123456789’)
FROM TEMP1;

Figure 768, Production-like test table INSERT (part 2 of 2)

Some sample data follows:

EMP# SOCSEC# JOB_ DEPT SALARY DATE_BN F_NME L_NME
------ ----------- ---- ---- --------- ---------- --------- ---------
100000 484-10-9999 WKR 47 13.63 01/01/1979 Ammaef Mimytmbi
100001 449-38-9998 SEC 53 35758.87 04/10/1962 Ilojff Liiiemea
100002 979-90-9997 WKR 1 8155.23 01/03/1975 Xzacaa Zytaebma
100003 580-50-9993 WKR 31 16643.50 02/05/1971 Lpiedd Pimmeeat
100004 264-87-9994 WKR 21 962.87 01/01/1979 Wgfacc Geimteei
100005 661-84-9995 WKR 19 4648.38 01/02/1977 Wrebbc Rbiybeet
100006 554-53-9990 WKR 8 375.42 01/01/1979 Mobaaa Oiiaiaia
100007 482-23-9991 SEC 36 23170.09 03/07/1968 Emjgdd Mimtmamb
100008 536-41-9992 WKR 6 10514.11 02/03/1974 Jnbcaa Nieebayt

Figure 769, Production-like test table, Sample Output

In order to illustrate some of the tricks that one can use when creating such data, each field
above was calculated using a different schema:

• The EMP# is a simple ascending number.

• The SOCSEC# field presented three problems: It had to be unique, it had to be random
with respect to the current employee number, and it is a character field with special lay-
out constraints (see the DDL on page 284).

• To make it random, the first five digits were defined using two of the temporary random
number fields. To try and ensure that it was unique, the last four digits contain part of the
employee number with some digit-flipping done to hide things. Also, the first random
number used is the one with lots of unique values. The special formatting that this field
required is addressed by making everything in pieces and then concatenating.

• The JOB FUNCTION is determined using the fourth (highly skewed) random number.
This ensures that we get many more workers than managers.

• The DEPT is derived from another, somewhat skewed, random number with a range of
values from one to ninety nine.

• The SALARY is derived using the same, highly skewed, random number that was used
for the job function calculation. This ensures that theses two fields have related values.

• The BIRTH DATE is a random date value somewhere between 1930 and 1981.

• The FIRST NAME is derived using seven independent invocation of the CHR function,
each of which is going to give a somewhat different result.

• The LAST NAME is (mostly) made by using the TRANSLATE function to convert a
large random number into a corresponding character value. The output is skewed towards
some of the vowels and the lower-range characters during the translation.

 Graeme Birchall ©

286 Time-Series Processing

Time-Series Processing
The following table holds data for a typical time-series application. Observe is that each row
has both a beginning and ending date, and that there are three cases where there is a gap be-
tween the end-date of one row and the begin-date of the next (with the same key).

CREATE TABLE TIME_SERIES
(KYY CHAR(03) NOT NULL
,BGN_DT DATE NOT NULL
,END_DT DATE NOT NULL
,CONSTRAINT TSX1 PRIMARY KEY(KYY,BGN_DT)
,CONSTRAINT TSC1 CHECK (KYY <> ’’)
,CONSTRAINT TSC2 CHECK (BGN_DT <= END_DT));
COMMIT;

INSERT INTO TIME_SERIES VALUES
(’AAA’,’1995-10-01’,’1995-10-04’),
(’AAA’,’1995-10-06’,’1995-10-06’),
(’AAA’,’1995-10-07’,’1995-10-07’),
(’AAA’,’1995-10-15’,’1995-10-19’),
(’BBB’,’1995-10-01’,’1995-10-01’),
(’BBB’,’1995-10-03’,’1995-10-03’);

Figure 770, Sample Table DDL - Time Series

Find Overlapping Rows

We want to find any cases where the begin-to-end date range of one row overlaps another
with the same key value. In our test database, this query will return no rows.

The following diagram illustrates what we are trying to find. The row at the top (shown as a
bold line) is overlapped by each of the four lower rows, but the nature of the overlap differs in
each case.

ROW ROW

ROW

ROW

ROW
 time

Figure 771, Overlapping Time-Series rows - Definition

WARNING: When writing SQL to check overlapping data ranges, make sure that all pos-
sible types of overlap (see diagram above) are tested. Some simpler SQL statements
work with some flavors of overlap, but not others.

The relevant SQL follows. When reading it, think of the "A" table as being the double line
above and "B" table as being the four overlapping rows shown as single lines.

SELECT KYY ANSWER
 ,BGN_DT =========
 ,END_DT <no rows>
FROM TIME_SERIES A
WHERE EXISTS
 (SELECT *
 FROM TIME_SERIES B
 WHERE A.KYY = B.KYY
 AND A.BGN_DT <> B.BGN_DT
 AND (A.BGN_DT BETWEEN B.BGN_DT AND B.END_DT
 OR B.BGN_DT BETWEEN A.BGN_DT AND A.END_DT))
ORDER BY 1,2;

Figure 772, Find overlapping rows in time-series

DB2 UDB/V8.1 Cookbook ©

Fun with SQL 287

The first predicate in the above sub-query joins the rows together by matching key value. The
second predicate makes sure that one row does not match against itself. The final two predi-
cates look for overlapping date ranges.

The above query relies on the sample table data being valid (as defined by the CHECK con-
straints in the DDL on page 286. This means that the END_DT is always greater than or equal
to the BGN_DT, and each KYY, BGN_DT combination is unique.

Find Gaps in Time-Series

We want to find all those cases in the TIME_SERIES table when the ending of one row is not
exactly one day less than the beginning of the next (if there is a next). The following query
will answer this question. It consists of both a join and a sub-query. In the join (which is done
first), we match each row with every other row that has the same key and a BGN_DT that is
more than one day greater than the current END_DT. Next, the sub-query excludes from the
result those join-rows where there is an intermediate third row.

SELECT A.KYY TIME_SERIES
 ,A.BGN_DT +-------------------------+
 ,A.END_DT |KYY|BGN_DT |END_DT |
 ,B.BGN_DT |---|----------|----------|
 ,B.END_DT |AAA|1995-10-01|1995-10-04|
 ,DAYS(B.BGN_DT) - |AAA|1995-10-06|1995-10-06|
 DAYS(A.END_DT) |AAA|1995-10-07|1995-10-07|
 AS DIFF |AAA|1995-10-15|1995-10-19|
FROM TIME_SERIES A |BBB|1995-10-01|1995-10-01|
 ,TIME_SERIES B |BBB|1995-10-03|1995-10-03|
WHERE A.KYY = B.KYY +-------------------------+
 AND A.END_DT < B.BGN_DT - 1 DAY
 AND NOT EXISTS
 (SELECT *
 FROM TIME_SERIES Z
 WHERE Z.KYY = A.KYY
 AND Z.KYY = B.KYY
 AND Z.BGN_DT > A.BGN_DT
 AND Z.BGN_DT < B.BGN_DT)
ORDER BY 1,2;

Figure 773, Find gap in Time-Series, SQL

KEYCOL BGN_DT END_DT BGN_DT END_DT DIFF
------ ---------- ---------- ---------- ---------- ----
AAA 10/01/1995 10/04/1995 10/06/1995 10/06/1995 2
AAA 10/07/1995 10/07/1995 10/15/1995 10/19/1995 8
BBB 10/01/1995 10/01/1995 10/03/1995 10/03/1995 2

Figure 774, Find gap in Time-Series, Answer

WARNING: If there are many rows per key value, the above SQL will be very inefficient.
This is because the join (done first) does a form of Cartesian Product (by key value) mak-
ing an internal result table that can be very large. The sub-query then cuts this temporary
table down to size by removing results-rows that have other intermediate rows.

Instead of looking at those rows that encompass a gap in the data, we may want to look at the
actual gap itself. To this end, the following SQL differs from the prior in that the SELECT list
has been modified to get the start, end, and duration, of each gap.

 Graeme Birchall ©

288 Time-Series Processing

SELECT A.KYY TIME_SERIES
 ,A.END_DT + 1 DAY +-------------------------+
 AS BGN_GAP |KYY|BGN_DT |END_DT |
 ,B.BGN_DT - 1 DAY |---|----------|----------|
 AS END_GAP |AAA|1995-10-01|1995-10-04|
 ,(DAYS(B.BGN_DT) - |AAA|1995-10-06|1995-10-06|
 DAYS(A.END_DT) - 1) |AAA|1995-10-07|1995-10-07|
 AS GAP_SIZE |AAA|1995-10-15|1995-10-19|
FROM TIME_SERIES A |BBB|1995-10-01|1995-10-01|
 ,TIME_SERIES B |BBB|1995-10-03|1995-10-03|
WHERE A.KYY = B.KYY +-------------------------+
 AND A.END_DT < B.BGN_DT - 1 DAY
 AND NOT EXISTS
 (SELECT *
 FROM TIME_SERIES Z
 WHERE Z.KYY = A.KYY
 AND Z.KYY = B.KYY
 AND Z.BGN_DT > A.BGN_DT
 AND Z.BGN_DT < B.BGN_DT)
ORDER BY 1,2;

Figure 775, Find gap in Time-Series, SQL

KEYCOL BGN_GAP END_GAP GAP_SIZE
------ ---------- ---------- --------
AAA 10/05/1995 10/05/1995 1
AAA 10/08/1995 10/14/1995 7
BBB 10/02/1995 10/02/1995 1

Figure 776, Find gap in Time-Series, Answer

Show Each Day in Gap

Imagine that we wanted to see each individual day in a gap. The following statement does this
by taking the result obtained above and passing it into a recursive SQL statement which then
generates additional rows - one for each day in the gap after the first.

WITH TEMP TIME_SERIES
(KYY, GAP_DT, GSIZE) AS +-------------------------+
(SELECT A.KYY |KYY|BGN_DT |END_DT |
 ,A.END_DT + 1 DAY |---|----------|----------|
 ,(DAYS(B.BGN_DT) - |AAA|1995-10-01|1995-10-04|
 DAYS(A.END_DT) - 1) |AAA|1995-10-06|1995-10-06|
 FROM TIME_SERIES A |AAA|1995-10-07|1995-10-07|
 ,TIME_SERIES B |AAA|1995-10-15|1995-10-19|
 WHERE A.KYY = B.KYY |BBB|1995-10-01|1995-10-01|
 AND A.END_DT < B.BGN_DT - 1 DAY |BBB|1995-10-03|1995-10-03|
 AND NOT EXISTS +-------------------------+
 (SELECT *
 FROM TIME_SERIES Z
 WHERE Z.KYY = A.KYY
 AND Z.KYY = B.KYY ANSWER
 AND Z.BGN_DT > A.BGN_DT =======================
 AND Z.BGN_DT < B.BGN_DT) KEYCOL GAP_DT GSIZE
 UNION ALL ------ ---------- -----
 SELECT KYY AAA 10/05/1995 1
 ,GAP_DT + 1 DAY AAA 10/08/1995 7
 ,GSIZE - 1 AAA 10/09/1995 6
 FROM TEMP AAA 10/10/1995 5
 WHERE GSIZE > 1 AAA 10/11/1995 4
) AAA 10/12/1995 3
SELECT * AAA 10/13/1995 2
FROM TEMP AAA 10/14/1995 1
ORDER BY 1,2; BBB 10/02/1995 1

Figure 777, Show each day in Time-Series gap

DB2 UDB/V8.1 Cookbook ©

Fun with SQL 289

Retaining a Record
In this section, we are going to look at a rather complex table/view/trigger schema that will
enable us to offer several features that are often asked for:

• Record every change to the data in an application (auditing).

• Show the state of the data, as it was, at any point in the past (historical analysis).

• Follow the sequence of changes to any item (e.g. customer) in the database.

• Do "what if" analysis by creating virtual copies of the real world, and then changing them
as desired, without affecting the real-world data.

NOTE: The key sample code needed to illustrate the above concepts will be described be-
low. A more complete example is available from my website.

Recording Changes

Below is a very simple table that records relevant customer data:

CREATE TABLE customer
(cust# INTEGER NOT NULL
,cust_name CHAR(10)
,cust_mgr CHAR(10)
,PRIMARY KEY(cust#));

Figure 778, Customer table

One can insert, update, and delete rows in the above table. The latter two actions destroy data,
and so are incompatible with using this table to see all (prior) states of the data.

One way to record all states of the above table is to create a related customer-history table,
and then to use triggers to copy all changes in the main table to the history table. Below is one
example of such a history table:

CREATE TABLE customer_his
(cust# INTEGER NOT NULL
,cust_name CHAR(10)
,cust_mgr CHAR(10)
,cur_ts TIMESTAMP NOT NULL
,cur_actn CHAR(1) NOT NULL
,cur_user VARCHAR(10) NOT NULL
,prv_cust# INTEGER
,prv_ts TIMESTAMP
,PRIMARY KEY(cust#,cur_ts));

CREATE UNIQUE INDEX customer_his_x1 ON customer_his
(cust#, prv_ts, cur_ts);

Figure 779, Customer-history table

NOTE: The secondary index shown above will make the following view processing, which
looks for a row that replaces the current, much more efficient.

Table Design

The history table has the same fields as the original Customer table, plus the following:

• CUR-TS: The current timestamp of the change.

• CUR-ACTN: The type of change (i.e. insert, update, or delete).

• CUR-USER: The user who made the change (for auditing purposes).

 Graeme Birchall ©

290 Retaining a Record

• PRV-CUST#: The previous customer number. This field enables one follow the sequence
of changes for a given customer. The value is null if the action is an insert.

• PRV-TS: The timestamp of the last time the row was changed (null for inserts).

Observe that this history table does not have an end-timestamp. Rather, each row points back
to the one that it (optionally) replaces. One advantage of such a schema is that there can be a
many-to-one relationship between any given row, and the row, or rows, that replace it. When
we add versions into the mix, this will become important.

Triggers

Below is the relevant insert trigger. It replicates the new customer row in the history table,
along with the new fields. Observe that the two "previous" fields are set to null:

CREATE TRIGGER customer_ins
AFTER
INSERT ON customer
REFERENCING NEW AS nnn
FOR EACH ROW
MODE DB2SQL
 INSERT INTO customer_his VALUES
 (nnn.cust#
 ,nnn.cust_name
 ,nnn.cust_mgr
 ,CURRENT TIMESTAMP
 ,’I’
 ,USER
 ,NULL
 ,NULL);

Figure 780, Insert trigger

Below is the update trigger. Because the customer table does not have a record of when it was
last changed, we have to get this value from the history table - using a sub-query to find the
most recent row:

CREATE TRIGGER customer_upd
AFTER
UPDATE ON customer
REFERENCING NEW AS nnn
 OLD AS ooo
FOR EACH ROW
MODE DB2SQL
 INSERT INTO customer_his VALUES
 (nnn.cust#
 ,nnn.cust_name
 ,nnn.cust_mgr
 ,CURRENT TIMESTAMP
 ,’U’
 ,USER
 ,ooo.cust#
 ,(SELECT MAX(cur_ts)
 FROM customer_his hhh
 WHERE ooo.cust# = hhh.cust#));

Figure 781, Update trigger

Below is the delete trigger. It is similar to the update trigger, except that the action is different
and we are under no obligation to copy over the old non-key-data columns - but we can if we
wish:

DB2 UDB/V8.1 Cookbook ©

Fun with SQL 291

CREATE TRIGGER customer_del
AFTER
DELETE ON customer
REFERENCING OLD AS ooo
FOR EACH ROW
MODE DB2SQL
 INSERT INTO customer_his VALUES
 (ooo.cust#
 ,NULL
 ,NULL
 ,CURRENT TIMESTAMP
 ,’D’
 ,USER
 ,ooo.cust#
 ,(SELECT MAX(cur_ts)
 FROM customer_his hhh
 WHERE ooo.cust# = hhh.cust#));

Figure 782, Delete trigger

Views

We are now going to define a view that will let the user query the customer-history table - as
if it were the ordinary customer table, but to look at the data as it was at any point in the past.
To enable us to hide all the nasty SQL that is required to do this, we are going to ask that the
user first enter a row into a profile table that has two columns:

• The user’s DB2 USER value.

• The point in time at which the user wants to see the customer data.

Here is the profile table definition:

CREATE TABLE profile
(user_id VARCHAR(10) NOT NULL
,bgn_ts TIMESTAMP NOT NULL DEFAULT ’9999-12-31-24.00.00’
,PRIMARY KEY(user_id));

Figure 783, Profile table

Below is a view that displays the customer data, as it was at the point in time represented by
the timestamp in the profile table. The view shows all customer-history rows, as long as:

• The action was not a delete.

• The current-timestamp is <= the profile timestamp.

• There does not exist any row that "replaces" the current row (and that row has a current
timestamp that is <= to the profile timestamp).

Now for the code:

CREATE VIEW customer_vw AS
SELECT hhh.*
 ,ppp.bgn_ts
FROM customer_his hhh
 ,profile ppp
WHERE ppp.user_id = USER
 AND hhh.cur_ts <= ppp.bgn_ts
 AND hhh.cur_actn <> ’D’
 AND NOT EXISTS
 (SELECT *
 FROM customer_his nnn
 WHERE nnn.prv_cust# = hhh.cust#
 AND nnn.prv_ts = hhh.cur_ts
 AND nnn.cur_ts <= ppp.bgn_ts);

Figure 784, View of Customer history

 Graeme Birchall ©

292 Retaining a Record

The above sample schema shows just one table, but it can easily be extended to support every
table is a very large application. One could even write some scripts to make the creation of
the history tables, triggers, and views, all but automatic.

Limitations

The above schema has the following limitations:

• Every data table has to have a unique key.

• The cost of every insert, update, and delete, is essentially doubled.

• Data items that are updated very frequently (e.g. customer daily balance) may perform
poorly when queried because many rows will have to be processed in order to find the
one that has not been replaced.

• The view uses the USER special register, which may not be unique per actual user.

Multiple Versions of the World

The next design is similar to the previous, but we are also going to allow users to both see and
change the world - as it was in the past, and as it is now, without affecting the real-world data.
These extra features require a much more complex design:

• We cannot use a base table and a related history table, as we did above. Instead we have
just the latter, and use both views and INSTEAD OF triggers to make the users think that
they are really seeing and/or changing the former.

• We need a version table - to record when the data in each version (i.e. virtual copy of the
real world) separates from the real world data.

• Data integrity features, like referential integrity rules, have to be hand-coded in triggers,
rather that written using standard DB2 code.

Version Table

The following table has one row per version created:

CREATE TABLE version
(vrsn INTEGER NOT NULL
,vrsn_bgn_ts TIMESTAMP NOT NULL
,CONSTRAINT version1 CHECK(vrsn >= 0)
,CONSTRAINT version2 CHECK(vrsn < 1000000000)
,PRIMARY KEY(vrsn));

Figure 785, Version table

The following rules apply to the above:

• Each version has a unique number. Up to one billion can be created.

• Each version must have a begin-timestamp, which records at what point in time it sepa-
rates from the real world. This value must be <= the current time.

• Rows cannot be updated or deleted in this table - only inserted. This rule is necessary to
ensure that we can always trace all changes - in every version.

• The real-world is deemed to have a version number of zero, and a begin-timestamp value
of high-values.

DB2 UDB/V8.1 Cookbook ©

Fun with SQL 293

Profile Table

The following profile table has one row per user (i.e. USER special register) that reads from
or changes the data tables. It records what version the user is currently using (note: the ver-
sion timestamp data is maintained using triggers):

CREATE TABLE profile
(user_id VARCHAR(10) NOT NULL
,vrsn INTEGER NOT NULL
,vrsn_bgn_ts TIMESTAMP NOT NULL
,CONSTRAINT profile1 FOREIGN KEY(vrsn)
 REFERENCES version(vrsn)
 ON DELETE RESTRICT
,PRIMARY KEY(user_id));

Figure 786, Profile table

Customer (data) Table

Below is a typical data table. This one holds customer data:

CREATE TABLE customer_his
(cust# INTEGER NOT NULL
,cust_name CHAR(10) NOT NULL
,cust_mgr CHAR(10)
,cur_ts TIMESTAMP NOT NULL
,cur_vrsn INTEGER NOT NULL
,cur_actn CHAR(1) NOT NULL
,cur_user VARCHAR(10) NOT NULL
,prv_cust# INTEGER
,prv_ts TIMESTAMP
,prv_vrsn INTEGER
,CONSTRAINT customer1 FOREIGN KEY(cur_vrsn)
 REFERENCES version(vrsn)
 ON DELETE RESTRICT
,CONSTRAINT customer2 CHECK(cur_actn IN (’I’,’U’,’D’))
,PRIMARY KEY(cust#,cur_vrsn,cur_ts));

CREATE INDEX customer_x2 ON customer_his
(prv_cust#
,prv_ts
,prv_vrsn);

Figure 787, Customer table

Note the following:

• The first three fields are the only ones that the user will see.

• The users will never update this table directly. They will make changes to a view of the
table, which will then invoke INSTEAD OF triggers.

• The foreign key check (on version) can be removed - if it is forbidden to ever delete any
version. This check stops the removal of versions that have changed data.

• The constraint on CUR_ACTN is just a double-check - to make sure that the triggers that
will maintain this table do not have an error. It can be removed, if desired.

• The secondary index will make the following view more efficient.

The above table has the following hidden fields:

• CUR-TS: The current timestamp of the change.

• CUR-VRSN: The version in which change occurred. Zero implies reality.

• CUR-ACTN: The type of change (i.e. insert, update, or delete).

 Graeme Birchall ©

294 Retaining a Record

• CUR-USER: The user who made the change (for auditing purposes).

• PRV-CUST#: The previous customer number. This field enables one follow the sequence
of changes for a given customer. The value is null if the action is an insert.

• PRV-TS: The timestamp of the last time the row was changed (null for inserts).

• PRV-VRNS: The version of the row being replaced (null for inserts).

Views

The following view displays the current state of the data in the above customer table - based
on the version that the user is currently using:

CREATE VIEW customer_vw AS
SELECT *
FROM customer_his hhh
 ,profile ppp
WHERE ppp.user_id = USER
 AND hhh.cur_actn <> ’D’
 AND ((ppp.vrsn = 0
 AND hhh.cur_vrsn = 0)
 OR (ppp.vrsn > 0
 AND hhh.cur_vrsn = 0
 AND hhh.cur_ts < ppp.vrsn_bgn_ts)
 OR (ppp.vrsn > 0
 AND hhh.cur_vrsn = ppp.vrsn))
 AND NOT EXISTS
 (SELECT *
 FROM customer_his nnn
 WHERE nnn.prv_cust# = hhh.cust#
 AND nnn.prv_ts = hhh.cur_ts
 AND nnn.prv_vrsn = hhh.cur_vrsn
 AND ((ppp.vrsn = 0
 AND nnn.cur_vrsn = 0)
 OR (ppp.vrsn > 0
 AND nnn.cur_vrsn = 0
 AND nnn.cur_ts < ppp.vrsn_bgn_ts)
 OR (ppp.vrsn > 0
 AND nnn.cur_vrsn = ppp.vrsn)));

Figure 788, Customer view - 1 of 2

The above view shows all customer rows, as long as:

• The action was not a delete.

• The version is either zero (i.e. reality), or the user’s current version.

• If the version is reality, then the current timestamp is < the version begin-timestamp (as
duplicated in the profile table).

• There does not exist any row that "replaces" the current row (and that row has a current
timestamp that is <= to the profile (version) timestamp).

To make things easier for the users, we will create another view that sits on top of the above
view. This one only shows the business fields:

CREATE VIEW customer AS
SELECT cust#
 ,cust_name
 ,cust_mgr
FROM customer_vw;

Figure 789, Customer view - 2 of 2

DB2 UDB/V8.1 Cookbook ©

Fun with SQL 295

All inserts, updates, and deletes, are done against the above view, which then propagates
down to the first view, whereupon they are trapped by INSTEAD OF triggers. The changes
are then applied (via the triggers) to the underlying tables.

Insert Trigger

The following INSTEAD OF trigger traps all inserts to the first view above, and then applies
the insert to the underlying table - with suitable modifications:

CREATE TRIGGER customer_ins
INSTEAD OF
INSERT ON customer_vw
REFERENCING NEW AS nnn
FOR EACH ROW
MODE DB2SQL
 INSERT INTO customer_his VALUES
 (nnn.cust#
 ,nnn.cust_name
 ,nnn.cust_mgr
 ,CURRENT TIMESTAMP
 ,(SELECT vrsn
 FROM profile
 WHERE user_id = USER)
 ,CASE
 WHEN 0 < (SELECT COUNT(*)
 FROM customer
 WHERE cust# = nnn.cust#)
 THEN RAISE_ERROR(’71001’,’ERROR: Duplicate cust#’)
 ELSE ’I’
 END
 ,USER
 ,NULL
 ,NULL
 ,NULL);

Figure 790, Insert trigger

Observe the following:

• The basic customer data is passed straight through.

• The current timestamp is obtained from DB2.

• The current version is obtained from the user’s profile-table row.

• A check is done to see if the customer number is unique. One cannot use indexes to en-
force such rules in this schema, so one has to code accordingly.

• The previous fields are all set to null.

Update Trigger

The following INSTEAD OF trigger traps all updates to the first view above, and turns them
into an insert to the underlying table - with suitable modifications:

CREATE TRIGGER customer_upd
INSTEAD OF
UPDATE ON customer_vw
REFERENCING NEW AS nnn
 OLD AS ooo
FOR EACH ROW
MODE DB2SQL
 INSERT INTO customer_his VALUES
 (nnn.cust#

Figure 791, Update trigger, part 1 of 2

 Graeme Birchall ©

296 Retaining a Record

 ,nnn.cust_name
 ,nnn.cust_mgr
 ,CURRENT TIMESTAMP
 ,ooo.vrsn
 ,CASE
 WHEN nnn.cust# <> ooo.cust#
 THEN RAISE_ERROR(’72001’,’ERROR: Cannot change cust#’)
 ELSE ’U’
 END
 ,ooo.user_id
 ,ooo.cust#
 ,ooo.cur_ts
 ,ooo.cur_vrsn);

Figure 792, Update trigger, part 2 of 2

In this particular trigger, updates to the customer number (i.e. business key column) are not
allowed. This rule is not necessary, it simply illustrates how one would write such code if one
so desired.

Delete Trigger

The following INSTEAD OF trigger traps all deletes to the first view above, and turns them
into an insert to the underlying table - with suitable modifications:

CREATE TRIGGER customer_del
INSTEAD OF
DELETE ON customer_vw
REFERENCING OLD AS ooo
FOR EACH ROW
MODE DB2SQL
 INSERT INTO customer_his VALUES
 (ooo.cust#
 ,ooo.cust_name
 ,ooo.cust_mgr
 ,CURRENT TIMESTAMP
 ,ooo.vrsn
 ,’D’
 ,ooo.user_id
 ,ooo.cust#
 ,ooo.cur_ts
 ,ooo.cur_vrsn);

Figure 793, Delete trigger

In Summary

The only thing that the user need see in the above schema in the simplified (second) view that
lists the business data columns. They would insert, update, and delete the rows in this view as
if they were working on a real table. Under the covers, the relevant INSTEAD OF trigger
would convert whatever they did into a suitable insert to the underlying table.

This schema supports the following:

• To do "what if" analysis, all one need do is insert a new row into the version table - with
a begin timestamp that is the current time. This insert creates a virtual copy of every table
in the application, which one can then update as desired.

• To do historical analysis, one simply creates a version with a begin-timestamp that is at
some point in the past. Up to one billion versions are currently supported.

• To switch between versions, all one need do is update one’s row in the profile table.

• One can use recursive SQL (not shown here) to follow the sequence of changes to any
particular item, in any particular version.

DB2 UDB/V8.1 Cookbook ©

Fun with SQL 297

This schema has the following limitations:

• Every data table has to have a unique (business) key.

• Data items that are updated very frequently (e.g. customer daily balance) may perform
poorly when queried because many rows will have to be processed in order to find the
one that has not been replaced.

• The views use the USER special register, which may not be unique per actual user.

• Data integrity features, like referential integrity rules, cascading deletes, and unique key
checks, have to be hand-coded in the INSTEAD OF triggers.

• Getting the triggers right is quite hard. If the target application has many tables, it might
be worthwhile to first create a suitable data-dictionary, and then write a script that gener-
ates as much of the code as possible.

Sample Code

See my website for more detailed sample code using the above application.

Other Fun Things

Convert Character to Numeric

The DOUBLE, DECIMAL, INTEGER, SMALLINT, and BIGINT functions call all be used
to convert a character field into its numeric equivalent:

WITH TEMP1 (C1) AS ANSWER (numbers shortened)
(VALUES ’123 ’,’ 345 ’,’ 567’) =================================
SELECT C1 C1 DBL DEC SML INT
 ,DOUBLE(C1) AS DBL ----- ----------- ----- ---- ----
 ,DECIMAL(C1,3) AS DEC 123 +1.2300E+2 123. 123 123
 ,SMALLINT(C1) AS SML 345 +3.4500E+2 345. 345 345
 ,INTEGER(C1) AS INT 567 +5.6700E+2 567. 567 567
FROM TEMP1;

Figure 794, Covert Character to Numeric - SQL

Not all numeric functions support all character representations of a number. The following
table illustrates what’s allowed and what’s not:

INPUT STRING COMPATIBLE FUNCTIONS
============ ==
" 1234" DOUBLE, DECIMAL, INTEGER, SMALLINT, BIGINT
" 12.4" DOUBLE, DECIMAL
" 12E4" DOUBLE

Figure 795, Acceptable conversion values

Checking the Input

There are several ways to check that the input character string is a valid representation of a
number - before doing the conversion. One simple solution involves converting all digits to
blank, then removing the blanks. If the result is not a zero length string, then the input must
have had a character other than a digit:

 Graeme Birchall ©

298 Other Fun Things

WITH TEMP1 (C1) AS (VALUES ’ 123’,’456 ’,’ 1 2’,’ 33%’,NULL)
SELECT C1
 ,TRANSLATE(C1,’ ’,’1234567890’) AS C2
 ,LENGTH(LTRIM(TRANSLATE(C1,’ ’,’1234567890’))) AS C3
FROM TEMP1;
 ANSWER
 ============
 C1 C2 C3
 ---- ---- --
 123 0
 456 0
 1 2 0
 33% % 1
 - - -

Figure 796, Checking for non-digits

One can also write a user-defined scalar function to check for non-numeric input, which is
what is done below. This function returns "Y" if the following is true:

• The input is not null.

• There are no non-numeric characters in the input.

• The only blanks in the input are to the left of the digits.

• There is only one "+" or "-" sign, and it is next to the left-side blanks, if any.

• There is at least one digit in the input.

Now for the code:

--#SET DELIMITER ! IMPORTANT
 ============
CREATE FUNCTION isnumeric(instr VARCHAR(40)) This example
RETURNS CHAR(1) uses an "!"
BEGIN ATOMIC as the stmt
 DECLARE is_number CHAR(1) DEFAULT ’Y’; delimiter.
 DECLARE bgn_blank CHAR(1) DEFAULT ’Y’;
 DECLARE found_num CHAR(1) DEFAULT ’N’;
 DECLARE found_pos CHAR(1) DEFAULT ’N’;
 DECLARE found_neg CHAR(1) DEFAULT ’N’;
 DECLARE found_dot CHAR(1) DEFAULT ’N’;
 DECLARE ctr SMALLINT DEFAULT 1;
 IF instr IS NULL THEN
 RETURN NULL;
 END IF;
 wloop:
 WHILE ctr <= LENGTH(instr) AND
 is_number = ’Y’
 DO

 --- ERROR CHECKS ---

 IF SUBSTR(instr,ctr,1) NOT IN (’ ’,’.’,’+’,’-’,’0’,’1’,’2’
 ,’3’,’4’,’5’,’6’,’7’,’8’,’9’) THEN
 SET is_number = ’N’;
 ITERATE wloop;
 END IF;
 IF SUBSTR(instr,ctr,1) = ’ ’ AND
 bgn_blank = ’N’ THEN
 SET is_number = ’N’;
 ITERATE wloop;
 END IF;

Figure 797, Check Numeric function, part 1 of 2

DB2 UDB/V8.1 Cookbook ©

Fun with SQL 299

 IF SUBSTR(instr,ctr,1) = ’.’ AND
 found_dot = ’Y’ THEN
 SET is_number = ’N’;
 ITERATE wloop;
 END IF;
 IF SUBSTR(instr,ctr,1) = ’+’ AND
 (found_neg = ’Y’ OR
 bgn_blank = ’N’) THEN
 SET is_number = ’N’;
 ITERATE wloop;
 END IF;
 IF SUBSTR(instr,ctr,1) = ’-’ AND
 (found_neg = ’Y’ OR
 bgn_blank = ’N’) THEN
 SET is_number = ’N’;
 ITERATE wloop;
 END IF;

 --- MAINTAIN FLAGS & CTR ---

 IF SUBSTR(instr,ctr,1) IN (’0’,’1’,’2’,’3’,’4’
 ,’5’,’6’,’7’,’8’,’9’) THEN
 SET found_num = ’Y’;
 END IF;
 IF SUBSTR(instr,ctr,1) = ’.’ THEN
 SET found_dot = ’Y’;
 END IF;
 IF SUBSTR(instr,ctr,1) = ’+’ THEN
 SET found_pos = ’Y’;
 END IF;
 IF SUBSTR(instr,ctr,1) = ’-’ THEN
 SET found_neg = ’Y’;
 END IF;
 IF SUBSTR(instr,ctr,1) <> ’ ’ THEN
 SET bgn_blank = ’N’;
 END IF;
 SET ctr = ctr + 1;
 END WHILE wloop;
 IF found_num = ’N’ THEN
 SET is_number = ’N’;
 END IF;
 RETURN is_number;
END!

WITH TEMP1 (C1) AS
(VALUES ’ 123’
 ,’+123.45’
 ,’456 ’
 ,’ 10 2 ’
 ,’ -.23’ ANSWER
 ,’++12356’ ====================
 ,’.012349’ C1 C2 C3
 ,’ 33%’ ------- -- ---------
 ,’ ’ 123 Y 123.00000
 ,NULL) +123.45 Y 123.45000
SELECT C1 AS C1 456 N -
 ,isnumeric(C1) AS C2 10 2 N -
 ,CASE -.23 Y -0.23000
 WHEN isnumeric(C1) = ’Y’ ++12356 N -
 THEN DECIMAL(C1,10,6) .012349 Y 0.01234
 ELSE NULL 33% N -
 END AS C3 N -
FROM TEMP1! - - -

Figure 798, Check Numeric function, part 2 of 2

 Graeme Birchall ©

300 Other Fun Things

Convert Number to Character

The CHAR and DIGITS functions can be used to convert a DB2 numeric field to a character
representation of the same, but as the following example demonstrates, both functions return
problematic output:

SELECT d_sal
 ,CHAR(d_sal) AS d_chr
 ,DIGITS(d_sal) AS d_dgt
 ,i_sal
 ,CHAR(i_sal) AS i_chr
 ,DIGITS(i_sal) AS i_dgt
FROM (SELECT DEC(salary - 11000,6,2) AS d_sal
 ,SMALLINT(salary - 11000) AS i_sal
 FROM staff
 WHERE salary > 10000
 AND salary < 12200
)AS xxx ANSWER
ORDER BY d_sal; ===
 D_SAL D_CHR D_DGT I_SAL I_CHR I_DGT
 ------- -------- ------ ----- ----- -----
 -494.10 -0494.10 049410 -494 -494 00494
 -12.00 -0012.00 001200 -12 -12 00012
 508.60 0508.60 050860 508 508 00508
 1009.75 1009.75 100975 1009 1009 01009

Figure 799, CHAR and DIGITS function usage

The DIGITS function discards both the sign indicator and the decimal point, while the CHAR
function output is (annoyingly) left-justified, and (for decimal data) has leading zeros. We can
do better.

Below are three user-defined functions that convert integer data from numeric to character,
displaying the output right-justified, and with a sign indicator if negative. There is one func-
tion for each flavor of integer that is supported in DB2:

CREATE FUNCTION CHAR_RIGHT(inval SMALLINT)
RETURNS CHAR(06)
RETURN RIGHT(CHAR(’’,06) CONCAT RTRIM(CHAR(inval)),06);

CREATE FUNCTION CHAR_RIGHT(inval INTEGER)
RETURNS CHAR(11)
RETURN RIGHT(CHAR(’’,11) CONCAT RTRIM(CHAR(inval)),11);

CREATE FUNCTION CHAR_RIGHT(inval BIGINT)
RETURNS CHAR(20)
RETURN RIGHT(CHAR(’’,20) CONCAT RTRIM(CHAR(inval)),20);

Figure 800, User-defined functions - convert integer to character

Each of the above functions works the same way:

• First, convert the input number to character using the CHAR function.

• Next, use the RTRIM function to remove the right-most blanks.

• Then, concatenate a set number of blanks to the left of the value. The number of blanks
appended depends upon the input type, which is why there are three separate functions.

• Finally, use the RIGHT function to get the right-most "n" characters, where "n" is the
maximum number of digits (plus the sign indicator) supported by the input type.

The next example uses the first of the above functions:

DB2 UDB/V8.1 Cookbook ©

Fun with SQL 301

SELECT i_sal ANSWER
 ,CHAR_RIGHT(i_sal) AS i_chr ===========
FROM (SELECT SMALLINT(salary - 11000) AS i_sal I_SAL I_CHR
 FROM staff ----- -----
 WHERE salary > 10000 -494 -494
 AND salary < 12200 -12 -12
)AS xxx 508 508
ORDER BY i_sal; 1009 1009

Figure 801, Convert SMALLINT to CHAR

Decimal Input

Creating a similar function to handle decimal input is a little more complex. One problem is
that the CHAR function adds zeros to decimal data, which we don’t want. But a more serious
problem is that there are many sizes and scales of decimal input, but we can only make one
function (with a given name) that must support all possible lengths and scales. This is impos-
sible, so we will have to comprise as best we can.

Imagine that we have two decimal fields, one of which has a length and scale of (31,0), while
the other has a length and scale of (31,31). We cannot create a single function that will handle
both input types without either possibly running out of digits (in the first case), or loosing
some precision (in the second case).

NOTE: The fact that one can only have one user-defined function, with a given name, per
DB2 data type, presents a problem for all variable-length data types - notably character,
varchar, and decimal. For character and varchar data, one can address the problem, to
some extent, by using maximum length input and output fields. But decimal data has both
a scale and a length, so there is no way to make an all-purpose decimal function.

Despite all the above, below is a function that converts decimal data to character. It compro-
mises by assuming an input of type decimal(31,12), which should work in most situations:

CREATE FUNCTION CHAR_RIGHT(inval DECIMAL(31,12))
RETURNS CHAR(33)
RETURN CHAR_RIGHT(BIGINT(inval))
CONCAT ’.’
CONCAT SUBSTR(DIGITS(inval - TRUNCATE(inval,0)),20,12);

Figure 802, User-defined functions - covert decimal to character

The function works as follows:

• First, convert the input number to integer using the standard BIGINT function.

• Next, use the previously defined CHAR_RIGHT user-function to convert the BIGINT
data to a right-justified character value.

• Then, add a period (dot) to the back of the output.

• Finally append the digits (converted to character using the standard DIGITS function)
that represent the decimal component of the input.

Below is the function in action:

 Graeme Birchall ©

302 Other Fun Things

SELECT d_sal
 ,CHAR_RIGHT(d_sal) AS d_chr
FROM (SELECT DEC(salary - 11000,6,2) AS d_sal
 FROM staff
 WHERE salary > 10000 ANSWER
 AND salary < 12200 =========================
)AS xxx D_SAL D_CHR
ORDER BY d_sal; ------- -----------------
 -494.10 -494.100000000000
 -12.00 -12.000000000000
 508.60 508.600000000000
 1009.75 1009.750000000000

Figure 803, Convert DECIMAL to CHAR

Floating point data can be processed using the above function, as long as it is first converted
to decimal using the standard DECIMAL function.

Convert Timestamp to Numeric

There is absolutely no sane reason why anyone would want to convert a date, time, or time-
stamp value directly to a number. The only correct way to manipulate such data is to use the
provided date/time functions. But having said that, here is how one does it:

WITH TAB1(TS1) AS
(VALUES CAST(’1998-11-22-03.44.55.123456’ AS TIMESTAMP))

SELECT TS1 => 1998-11-22-03.44.55.123456
 , HEX(TS1) => 19981122034455123456
 , DEC(HEX(TS1),20) => 19981122034455123456.
 ,FLOAT(DEC(HEX(TS1),20)) => 1.99811220344551e+019
 ,REAL (DEC(HEX(TS1),20)) => 1.998112e+019
FROM TAB1;

Figure 804, Covert Timestamp to number

Selective Column Output

There is no way in static SQL to vary the number of columns returned by a select statement.
In order to change the number of columns you have to write a new SQL statement and then
rebind. But one can use CASE logic to control whether or not a column returns any data.

Imagine that you are forced to use static SQL. Furthermore, imagine that you do not always
want to retrieve the data from all columns, and that you also do not want to transmit data over
the network that you do not need. For character columns, we can address this problem by re-
trieving the data only if it is wanted, and otherwise returning to a zero-length string. To illus-
trate, here is an ordinary SQL statement:

SELECT EMPNO
 ,FIRSTNME
 ,LASTNAME
 ,JOB
FROM EMPLOYEE
WHERE EMPNO < ’000100’
ORDER BY EMPNO;

Figure 805, Sample query with no column control

Here is the same SQL statement with each character column being checked against a host-
variable. If the host-variable is 1, the data is returned, otherwise a zero-length string:

DB2 UDB/V8.1 Cookbook ©

Fun with SQL 303

SELECT EMPNO
 ,CASE :host-var-1
 WHEN 1 THEN FIRSTNME
 ELSE ’’
 END AS FIRSTNME
 ,CASE :host-var-2
 WHEN 1 THEN LASTNAME
 ELSE ’’
 END AS LASTNAME
 ,CASE :host-var-3
 WHEN 1 THEN VARCHAR(JOB)
 ELSE ’’
 END AS JOB
FROM EMPLOYEE
WHERE EMPNO < ’000100’
ORDER BY EMPNO;

Figure 806, Sample query with column control

Making Charts Using SQL

Imagine that one had a string of numbers that one wanted to display as a line-bar char. With a
little coding, this is easy to do in SQL:

WITH TEMP1 (COL1) AS (VALUES 12, 22, 33, 16, 0, 44, 15, 15)
SELECT COL1
 ,SUBSTR(TRANSLATE(CHAR(’ ’,50),’*’,’ ’),1,COL1)
 AS PRETTY_CHART
FROM TEMP1;

Figure 807, Make chart using SQL

COL1 PRETTY_CHART
---- --
 12 ************
 22 **********************
 33 *********************************
 16 ****************
 0
 44 **
 15 ***************
 15 ***************

Figure 808, Make charts using SQL, Answer

To create the above graph we first defined a fifty-byte character field. The TRANSLATE
function was then used to convert all blanks in this field to asterisks. Lastly, the field was cut
down to size using the SUBSTR function.

A CASE statement should be used in those situations where one is not sure what will be high-
est value returned from the value being charted. This is needed because DB2 will return a
SQL error if a SUBSTR truncation-end value is greater than the related column length.

WITH TEMP1 (COL1) AS (VALUES 12, 22, 33, 16, 0, 66, 15, 15)
SELECT COL1
 ,CASE
 WHEN COL1 < 48
 THEN SUBSTR(TRANSLATE(CHAR(’ ’,50),’*’,’ ’),1,COL1)
 ELSE TRANSLATE(CHAR(’ ’,47),’*’,’ ’)||’>>>’
 END AS PRETTY_CHART
FROM TEMP1;

Figure 809, Make charts using SQL

 Graeme Birchall ©

304 Other Fun Things

COL1 PRETTY_CHART
---- --
 12 ************
 22 **********************
 33 *********************************
 16 ****************
 0
 66 ***>>>
 15 ***************
 15 ***************

Figure 810, Make charts using SQL, Answer

If the above SQL statement looks a bit intimidating, refer to the description of the SUBSTR
function given on page 138 for a simpler illustration of the same general process.

Multiple Counts in One Pass

The STATS table that is defined on page 116 has a SEX field with just two values, ’F’ (for
female) and ’M’ (for male). To get a count of the rows by sex we can write the following:

SELECT SEX ANSWER >> SEX NUM
 ,COUNT(*) AS NUM --- ---
FROM STATS F 595
GROUP BY SEX M 405
ORDER BY SEX;

Figure 811, Use GROUP BY to get counts

Imagine now that we wanted to get a count of the different sexes on the same line of output.
One, not very efficient, way to get this answer is shown below. It involves scanning the data
table twice (once for males, and once for females) then joining the result.

WITH F (F) AS (SELECT COUNT(*) FROM STATS WHERE SEX = ’F’)
 ,M (M) AS (SELECT COUNT(*) FROM STATS WHERE SEX = ’M’)
SELECT F, M
FROM F, M;

Figure 812, Use Common Table Expression to get counts

It would be more efficient if we answered the question with a single scan of the data table.
This we can do using a CASE statement and a SUM function:

SELECT SUM(CASE SEX WHEN ’F’ THEN 1 ELSE 0 END) AS FEMALE
 ,SUM(CASE SEX WHEN ’M’ THEN 1 ELSE 0 END) AS MALE
FROM STATS;

Figure 813, Use CASE and SUM to get counts

We can now go one step further and also count something else as we pass down the data. In
the following example we get the count of all the rows at the same time as we get the individ-
ual sex counts.

SELECT COUNT(*) AS TOTAL
 ,SUM(CASE SEX WHEN ’F’ THEN 1 ELSE 0 END) AS FEMALE
 ,SUM(CASE SEX WHEN ’M’ THEN 1 ELSE 0 END) AS MALE
FROM STATS;

Figure 814, Use CASE and SUM to get counts

Multiple Counts from the Same Row

Imagine that we want to select from the EMPLOYEE table the following counts presented in
a tabular list with one line per item. In each case, if nothing matches we want to get a zero:

• Those with a salary greater than $20,000

• Those whose first name begins ’ABC%’

DB2 UDB/V8.1 Cookbook ©

Fun with SQL 305

• Those who are male.

• Employees per department.

• A count of all rows.

Note that a given row in the EMPLOYEE table may match more than one of the above crite-
ria. If this were not the case, a simple nested table expression could be used. Instead we will
do the following:

WITH CATEGORY (CAT,SUBCAT,DEPT) AS
(VALUES (’1ST’,’ROWS IN TABLE ’,’’)
 ,(’2ND’,’SALARY > $20K ’,’’)
 ,(’3RD’,’NAME LIKE ABC%’,’’)
 ,(’4TH’,’NUMBER MALES ’,’’)
 UNION
 SELECT ’5TH’,DEPTNAME,DEPTNO
 FROM DEPARTMENT
)
SELECT XXX.CAT AS "CATEGORY"
 ,XXX.SUBCAT AS "SUBCATEGORY/DEPT"
 ,SUM(XXX.FOUND) AS "#ROWS"
FROM (SELECT CAT.CAT
 ,CAT.SUBCAT
 ,CASE
 WHEN EMP.EMPNO IS NULL THEN 0
 ELSE 1
 END AS FOUND
 FROM CATEGORY CAT
 LEFT OUTER JOIN
 EMPLOYEE EMP
 ON CAT.SUBCAT = ’ROWS IN TABLE’
 OR (CAT.SUBCAT = ’NUMBER MALES’
 AND EMP.SEX = ’M’)
 OR (CAT.SUBCAT = ’SALARY > $20K’
 AND EMP.SALARY > 20000)
 OR (CAT.SUBCAT = ’NAME LIKE ABC%’
 AND EMP.FIRSTNME LIKE ’ABC%’)
 OR (CAT.DEPT <> ’’
 AND CAT.DEPT = EMP.WORKDEPT)
)AS XXX
GROUP BY XXX.CAT
 ,XXX.SUBCAT
ORDER BY 1,2;

Figure 815, Multiple counts in one pass, SQL

In the above query, a temporary table is defined and then populated with all of the summation
types. This table is then joined (using a left outer join) to the EMPLOYEE table. Any
matches (i.e. where EMPNO is not null) are given a FOUND value of 1. The output of the
join is then feed into a GROUP BY to get the required counts.

 Graeme Birchall ©

306 Other Fun Things

CATEGORY SUBCATEGORY/DEPT #ROWS
-------- ----------------------------- -----
1ST ROWS IN TABLE 32
2ND SALARY > $20K 25
3RD NAME LIKE ABC% 0
4TH NUMBER MALES 19
5TH ADMINISTRATION SYSTEMS 6
5TH DEVELOPMENT CENTER 0
5TH INFORMATION CENTER 3
5TH MANUFACTURING SYSTEMS 9
5TH OPERATIONS 5
5TH PLANNING 1
5TH SOFTWARE SUPPORT 4
5TH SPIFFY COMPUTER SERVICE DIV. 3
5TH SUPPORT SERVICES 1

Figure 816, Multiple counts in one pass, Answer

Find Missing Rows in Series / Count all Values

One often has a sequence of values (e.g. invoice numbers) from which one needs both found
and not-found rows. This cannot be done using a simple SELECT statement because some of
rows being selected may not actually exist. For example, the following query lists the number
of staff that have worked for the firm for "n" years, but it misses those years during which no
staff joined:

SELECT YEARS ANSWER
 ,COUNT(*) AS #STAFF =============
FROM STAFF YEARS #STAFF
WHERE UCASE(NAME) LIKE ’%E%’ ----- ------
 AND YEARS <= 5 1 1
GROUP BY YEARS; 4 2
 5 3

Figure 817, Count staff joined per year

The simplest way to address this problem is to create a complete set of target values, then do
an outer join to the data table. This is what the following example does:

WITH LIST_YEARS (YEAR#) AS ANSWER
(VALUES (0),(1),(2),(3),(4),(5) ============
) YEARS #STAFF
SELECT YEAR# AS YEARS ----- ------
 ,COALESCE(#STFF,0) AS #STAFF 0 0
FROM LIST_YEARS 1 1
LEFT OUTER JOIN 2 0
 (SELECT YEARS 3 0
 ,COUNT(*) AS #STFF 4 2
 FROM STAFF 5 3
 WHERE UCASE(NAME) LIKE ’%E%’
 AND YEARS <= 5
 GROUP BY YEARS
)AS XXX
ON YEAR# = YEARS
ORDER BY 1;

Figure 818, Count staff joined per year, all years

The use of the VALUES syntax to create the set of target rows, as shown above, gets to be
tedious if the number of values to be made is large. To address this issue, the following ex-
ample uses recursion to make the set of target values:

DB2 UDB/V8.1 Cookbook ©

Fun with SQL 307

WITH LIST_YEARS (YEAR#) AS ANSWER
 (VALUES SMALLINT(0) ============
 UNION ALL YEARS #STAFF
 SELECT YEAR# + 1 ----- ------
 FROM LIST_YEARS 0 0
 WHERE YEAR# < 5) 1 1
SELECT YEAR# AS YEARS 2 0
 ,COALESCE(#STFF,0) AS #STAFF 3 0
FROM LIST_YEARS 4 2
LEFT OUTER JOIN 5 3
 (SELECT YEARS
 ,COUNT(*) AS #STFF
 FROM STAFF
 WHERE UCASE(NAME) LIKE ’%E%’
 AND YEARS <= 5
 GROUP BY YEARS
)AS XXX
ON YEAR# = YEARS
ORDER BY 1;

Figure 819, Count staff joined per year, all years

If one turns the final outer join into a (negative) sub-query, one can use the same general logic
to list those years when no staff joined:

WITH LIST_YEARS (YEAR#) AS ANSWER
 (VALUES SMALLINT(0) ======
 UNION ALL YEAR#
 SELECT YEAR# + 1 -----
 FROM LIST_YEARS 0
 WHERE YEAR# < 5) 2
SELECT YEAR# 3
FROM LIST_YEARS Y
WHERE NOT EXISTS
 (SELECT *
 FROM STAFF S
 WHERE UCASE(S.NAME) LIKE ’%E%’
 AND S.YEARS = Y.YEAR#)
ORDER BY 1;

Figure 820, List years when no staff joined

Normalize Denormalized Data

Imagine that one has a string of text that one wants to break up into individual words. As long
as the word delimiter is fairly basic (e.g. a blank space), one can use recursive SQL to do this
task. One recursively divides the text into two parts (working from left to right). The first part
is the word found, and the second part is the remainder of the text:

 Graeme Birchall ©

308 Other Fun Things

WITH
TEMP1 (ID, DATA) AS
 (VALUES (01,’SOME TEXT TO PARSE.’)
 ,(02,’MORE SAMPLE TEXT.’)
 ,(03,’ONE-WORD.’)
 ,(04,’’)
),
TEMP2 (ID, WORD#, WORD, DATA_LEFT) AS
 (SELECT ID
 ,SMALLINT(1)
 ,SUBSTR(DATA,1,
 CASE LOCATE(’ ’,DATA)
 WHEN 0 THEN LENGTH(DATA)
 ELSE LOCATE(’ ’,DATA)
 END)
 ,LTRIM(SUBSTR(DATA,
 CASE LOCATE(’ ’,DATA)
 WHEN 0 THEN LENGTH(DATA) + 1
 ELSE LOCATE(’ ’,DATA)
 END))
 FROM TEMP1
 WHERE DATA <> ’’
 UNION ALL
 SELECT ID
 ,WORD# + 1
 ,SUBSTR(DATA_LEFT,1,
 CASE LOCATE(’ ’,DATA_LEFT)
 WHEN 0 THEN LENGTH(DATA_LEFT)
 ELSE LOCATE(’ ’,DATA_LEFT)
 END)
 ,LTRIM(SUBSTR(DATA_LEFT,
 CASE LOCATE(’ ’,DATA_LEFT)
 WHEN 0 THEN LENGTH(DATA_LEFT) + 1
 ELSE LOCATE(’ ’,DATA_LEFT)
 END))
 FROM TEMP2
 WHERE DATA_LEFT <> ’’
)
SELECT *
FROM TEMP2
ORDER BY 1,2;

Figure 821, Break text into words - SQL

The SUBSTR function is used above to extract both the next word in the string, and the re-
mainder of the text. If there is a blank byte in the string, the SUBSTR stops (or begins, when
getting the remainder) at it. If not, it goes to (or begins at) the end of the string. CASE logic is
used to decide what to do.

ID WORD# WORD DATA_LEFT
-- ----- --------- --------------
 1 1 SOME TEXT TO PARSE.
 1 2 TEXT TO PARSE.
 1 3 TO PARSE.
 1 4 PARSE.
 2 1 MORE SAMPLE TEXT.
 2 2 SAMPLE TEXT.
 2 3 TEXT.
 3 1 ONE-WORD.

Figure 822, Break text into words - Answer

Denormalize Normalized Data

In the next example, we shall use recursion to string together all of the employee NAME
fields in the STAFF table (by department):

DB2 UDB/V8.1 Cookbook ©

Fun with SQL 309

WITH TEMP1 (DEPT,W#,NAME,ALL_NAMES) AS
(SELECT DEPT
 ,SMALLINT(1)
 ,MIN(NAME)
 ,VARCHAR(MIN(NAME),50)
 FROM STAFF A
 GROUP BY DEPT
 UNION ALL
 SELECT A.DEPT
 ,SMALLINT(B.W#+1)
 ,A.NAME
 ,B.ALL_NAMES || ’ ’ || A.NAME
 FROM STAFF A
 ,TEMP1 B
 WHERE A.DEPT = B.DEPT
 AND A.NAME > B.NAME
 AND A.NAME =
 (SELECT MIN(C.NAME)
 FROM STAFF C
 WHERE C.DEPT = B.DEPT
 AND C.NAME > B.NAME)
)
SELECT DEPT
 ,W#
 ,NAME AS MAX_NAME
 ,ALL_NAMES
FROM TEMP1 D
WHERE W# =
 (SELECT MAX(W#)
 FROM TEMP1 E
 WHERE D.DEPT = E.DEPT)
ORDER BY DEPT;

Figure 823, Denormalize Normalized Data - SQL

The above statement begins by getting the minimum name in each department. It then recur-
sively gets the next to lowest name, then the next, and so on. As we progress, we store the
current name in the temporary NAME field, maintain a count of names added, and append the
same to the end of the ALL_NAMES field. Once we have all of the names, the final SELECT
eliminates from the answer-set all rows, except the last for each department.

DEPT W# MAX_NAME ALL_NAMES
---- -- --------- ---
 10 4 Molinare Daniels Jones Lu Molinare
 15 4 Rothman Hanes Kermisch Ngan Rothman
 20 4 Sneider James Pernal Sanders Sneider
 38 5 Quigley Abrahams Marenghi Naughton O’Brien Quigley
 42 4 Yamaguchi Koonitz Plotz Scoutten Yamaguchi
 51 5 Williams Fraye Lundquist Smith Wheeler Williams
 66 5 Wilson Burke Gonzales Graham Lea Wilson
 84 4 Quill Davis Edwards Gafney Quill

Figure 824, Denormalize Normalized Data - Answer

If there are no suitable indexes, the above query may be horribly inefficient. If this is the case,
one can create a user-defined function to string together the names in a department:

 Graeme Birchall ©

310 Other Fun Things

CREATE FUNCTION list_names(indept SMALLINT) IMPORTANT
RETURNS VARCHAR(50) ============
BEGIN ATOMIC This example
 DECLARE outstr VARCHAR(50) DEFAULT ’’; uses an "!"
 FOR list_names AS as the stmt
 SELECT name delimiter.
 FROM staff
 WHERE dept = indept
 ORDER BY name
 DO
 SET outstr = outstr || name || ’ ’;
 END FOR;
 SET outstr = rtrim(outstr);
 RETURN outstr;
END!

SELECT dept AS DEPT
 ,SMALLINT(cnt) AS W#
 ,mxx AS MAX_NAME
 ,list_names(dept) AS ALL_NAMES
FROM (SELECT dept
 ,COUNT(*) as cnt
 ,MAX(name) AS mxx
 FROM staff
 GROUP BY dept
)as ddd
ORDER BY dept!

Figure 825, Creating a function to denormalize names

Even the above might have unsatisfactory performance - if there is no index on department. If
adding an index to the STAFF table is not an option, it might be faster to insert all of the rows
into a declared temporary table, and then add an index to that.

Reversing Field Contents

DB2 lacks a simple function for reversing the contents of a data field. Fortunately, we can
create a function to do it ourselves.

Input vs. Output

Before we do any data reversing, we have to define what the reversed output should look like
relative to a given input value. For example, if we have a four-digit numeric field, the reverse
of the number 123 could be 321, or it could be 3210. The latter value implies that the input
has a leading zero. It also assumes that we really are working with a four digit field. Likewise,
the reverse of the number 124.45 might be 54.123, or 543.12.

Trailing blanks in character values are a similar problem. Obviously, the reverse of "ABC" is
"CBA", but what is the reverse of "ABC "? There is no specific technical answer to any of
these questions. The correct answer depends upon the business needs of the application.

Below is a user defined function that can reverse the contents of a character field:

DB2 UDB/V8.1 Cookbook ©

Fun with SQL 311

--#SET DELIMITER ! IMPORTANT
 ============
CREATE FUNCTION reverse(instr VARCHAR(50)) This example
RETURNS VARCHAR(50) uses an "!"
BEGIN ATOMIC as the stmt
 DECLARE outstr VARCHAR(50) DEFAULT ’’; delimiter.
 DECLARE curbyte SMALLINT DEFAULT 0;
 SET curbyte = LENGTH(RTRIM(instr));
 WHILE curbyte >= 1 DO
 SET outstr = outstr || SUBSTR(instr,curbyte,1);
 SET curbyte = curbyte - 1;
 END WHILE;
 RETURN outstr;
END!
 ANSWER
SELECT id AS ID ====================
 ,name AS NAME1 ID NAME1 NAME2
 ,reverse(name) AS NAME2 -- -------- -------
FROM staff 10 Sanders srednaS
WHERE id < 40 20 Pernal lanreP
ORDER BY id! 30 Marenghi ihgneraM

Figure 826, Reversing character field

The same function can be used to reverse numeric values, as long as they are positive:

SELECT id AS ID
 ,salary AS SALARY1
 ,DEC(reverse(CHAR(salary)),7,4) AS SALARY2
FROM staff ANSWER
WHERE id < 40 ===================
ORDER BY id; ID SALARY1 SALARY2
 -- -------- -------
 10 18357.50 5.7538
 20 18171.25 52.1718
 30 17506.75 57.6057

Figure 827, Reversing numeric field

Simple CASE logic can be used to deal with negative values (i.e. to move the sign to the front
of the string, before converting back to numeric), if they exist.

Stripping Characters

If all you want to do is remove leading and trailing blanks, the LTRIM and RTRIM functions
can be combined to do the job:

WITH TEMP (TXT) AS ANSWER
(VALUES (’ HAS LEADING BLANKS’) =======================
 ,(’HAS TRAILING BLANKS ’) TXT2 LEN
 ,(’ BLANKS BOTH ENDS ’)) ------------------- ---
SELECT LTRIM(RTRIM(TXT)) AS TXT2 HAS LEADING BLANKS 18
 ,LENGTH(LTRIM(RTRIM(TXT))) AS LEN HAS TRAILING BLANKS 19
FROM TEMP; BLANKS BOTH ENDS 16

Figure 828, Stripping leading and trailing blanks

Writing Your Own STRIP Function

Stripping leading and trailing non-blank characters is a little harder, and is best done by writ-
ing your own function. The following example goes thus:

• Check that a one-byte strip value was provided. Signal an error if not.

• Starting from the left, scan the input string one byte at a time, looking for the character to
be stripped. Stop scanning when something else is found.

• Use the SUBSTR function to trim the input-string - up to the first non-target value found.

 Graeme Birchall ©

312 Other Fun Things

• Starting from the right, scan the left-stripped input string one byte at a time, looking for
the character to be stripped. Stop scanning when something else is found.

• Use the SUBSTR function to trim the right side of the already left-trimmed input string.

• Return the result.

Here is the code:

--#SET DELIMITER !

CREATE FUNCTION strip(in_val VARCHAR(20),in_strip VARCHAR(1))
RETURNS VARCHAR(20)
BEGIN ATOMIC
 DECLARE cur_pos SMALLINT;
 DECLARE stp_flg CHAR(1);
 DECLARE out_val VARCHAR(20);
 IF in_strip = ’’ THEN
 SIGNAL SQLSTATE ’75001’
 SET MESSAGE_TEXT = ’Strip char is zero length’;
 END IF;
 SET cur_pos = 1;
 SET stp_flg = ’Y’;
 WHILE stp_flg = ’Y’ AND cur_pos <= length(in_val) DO
 IF SUBSTR(in_val,cur_pos,1) <> in_strip THEN
 SET stp_flg = ’N’;
 ELSE
 SET cur_pos = cur_pos + 1;
 END IF;
 END WHILE;
 SET out_val = SUBSTR(in_val,cur_pos);
 SET cur_pos = length(out_val);
 SET stp_flg = ’Y’;
 WHILE stp_flg = ’Y’ AND cur_pos >= 1 DO
 IF SUBSTR(out_val,cur_pos,1) <> in_strip THEN
 SET stp_flg = ’N’;
 ELSE
 SET cur_pos = cur_pos - 1; IMPORTANT
 END IF; ============
 END WHILE; This example
 SET out_val = SUBSTR(out_val,1,cur_pos); uses an "!"
 RETURN out_val; as the stmt
END! delimiter.

Figure 829, Define strip function

Here is the above function in action:

WITH word1 (w#, word_val) AS ANSWER
 (VALUES(1,’00 abc 000’) ========================
 ,(2,’0 0 abc’) W# WORD_VAL STP LEN
 ,(3,’ sdbs’) -- ---------- ------ ---
 ,(4,’000 0’) 1 00 abc 000 abc 5
 ,(5,’0000’) 2 0 0 abc 0 abc 6
 ,(6,’0’) 3 sdbs sdbs 5
 ,(7,’a’) 4 000 0 1
 ,(8,’’)) 5 0000 0
SELECT w# 6 0 0
 ,word_val 7 a a 1
 ,strip(word_val,’0’) AS stp 8 0
 ,length(strip(word_val,’0’)) AS len
FROM word1
ORDER BY w#;

Figure 830, Use strip function

DB2 UDB/V8.1 Cookbook ©

Fun with SQL 313

Sort Character Field Contents

The following user-defined scalar function will sort the contents of a character field in either
ascending or descending order. There are two input parameters:

• The input string: As written, the input can be up to 20 bytes long. To sort longer fields,
change the input, output, and OUT-VAL (variable) lengths as desired.

• The sort order (i.e. ’A’ or ’D’).

The function uses a very simple, and not very efficient, bubble-sort. In other words, the input
string is scanned from left to right, comparing two adjacent characters at a time. If they are
not in sequence, they are swapped - and flag indicating this is set on. The scans are repeated
until all of the characters in the string are in order:

--#SET DELIMITER !

CREATE FUNCTION sort_char(in_val VARCHAR(20),sort_dir VARCHAR(1))
RETURNS VARCHAR(20)
BEGIN ATOMIC
 DECLARE cur_pos SMALLINT;
 DECLARE do_sort CHAR(1);
 DECLARE out_val VARCHAR(20);
 IF UCASE(sort_dir) NOT IN (’A’,’D’) THEN
 SIGNAL SQLSTATE ’75001’
 SET MESSAGE_TEXT = ’Sort order not ’’A’’ or ’’D’’’;
 END IF;
 SET out_val = in_val;
 SET do_sort = ’Y’;
 WHILE do_sort = ’Y’ DO
 SET do_sort = ’N’; IMPORTANT
 SET cur_pos = 1; ============
 WHILE cur_pos < length(in_val) DO This example
 IF (UCASE(sort_dir) = ’A’ uses an "!"
 AND SUBSTR(out_val,cur_pos+1,1) < as the stmt
SUBSTR(out_val,cur_pos,1)) delimiter.
 OR (UCASE(sort_dir) = ’D’
 AND SUBSTR(out_val,cur_pos+1,1) >
SUBSTR(out_val,cur_pos,1)) THEN
 SET do_sort = ’Y’;
 SET out_val = CASE
 WHEN cur_pos = 1
 THEN ’’
 ELSE SUBSTR(out_val,1,cur_pos-1)
 END
 CONCAT SUBSTR(out_val,cur_pos+1,1)
 CONCAT SUBSTR(out_val,cur_pos ,1)
 CONCAT
 CASE
 WHEN cur_pos = length(in_val) - 1
 THEN ’’
 ELSE SUBSTR(out_val,cur_pos+2)
 END;
 END IF;
 SET cur_pos = cur_pos + 1;
 END WHILE;
 END WHILE;
 RETURN out_val;
END!

Figure 831, Define sort-char function

Here is the function in action:

 Graeme Birchall ©

314 Other Fun Things

WITH word1 (w#, word_val) AS ANSWER
 (VALUES(1,’12345678’) =============================
 ,(2,’ABCDEFG’) W# WORD_VAL SA SD
 ,(3,’AaBbCc’) -- --------- ------- --------
 ,(4,’abccb’) 1 12345678 12345678 87654321
 ,(5,’’’%#.’) 2 ABCDEFG ABCDEFG GFEDCBA
 ,(6,’bB’) 3 AaBbCc aAbBcC CcBbAa
 ,(7,’a’) 4 abccb abbcc ccbba
 ,(8,’’)) 5 ’%#. .’#% %#’.
SELECT w# 6 bB bB Bb
 ,word_val 7 a a a
 ,sort_char(word_val,’a’) sa 8
 ,sort_char(word_val,’D’) sd
FROM word1
ORDER BY w#;

Figure 832, Use sort-char function

Query Runs for "n" Seconds

Imagine that one wanted some query to take exactly four seconds to run. The following query
does just this - by looping (using recursion) until such time as the current system timestamp is
four seconds greater than the system timestamp obtained at the beginning of the query:

WITH TEMP1 (NUM,TS1,TS2) AS
(VALUES (INT(1)
 ,TIMESTAMP(GENERATE_UNIQUE())
 ,TIMESTAMP(GENERATE_UNIQUE()))
 UNION ALL
 SELECT NUM + 1
 ,TS1
 ,TIMESTAMP(GENERATE_UNIQUE())
 FROM TEMP1
 WHERE TIMESTAMPDIFF(2,CHAR(TS2-TS1)) < 4
)
SELECT MAX(NUM) AS #LOOPS
 ,MIN(TS2) AS BGN_TIMESTAMP
 ,MAX(TS2) AS END_TIMESTAMP
FROM TEMP1;
 ANSWER
 ==
 #LOOPS BGN_TIMESTAMP END_TIMESTAMP
 ------ -------------------------- --------------------------
 58327 2001-08-09-22.58.12.754579 2001-08-09-22.58.16.754634

Figure 833, Run query for four seconds

Observe that the CURRENT TIMESTAMP special register is not used above. It is not appro-
priate for this situation, because it always returns the same value for each invocation within a
single query.

Calculating the Median

The median is defined at that value in a series of values where half of the values are higher to
it and the other half are lower. The median is a useful number to get when the data has a few
very extreme values that skew the average.

If there are an odd number of values in the list, then the median value is the one in the middle
(e.g. if 7 values, the median value is #4). If there is an even number of matching values, there
are two formulas that one can use:

• The most commonly used definition is that the median equals the sum of the two middle
values, divided by two.

• A less often used definition is that the median is the smaller of the two middle values.

DB2 UDB/V8.1 Cookbook ©

Fun with SQL 315

DB2 does not come with a function for calculating the median, but it can be obtained using
the ROW_NUMBER function. This function is used to assign a row number to every match-
ing row, and then one searches for the row with the middle row number.

Using Formula #1

Below is some sample code that gets the median SALARY, by JOB, for some set of rows in
the STAFF table. Two JOB values are referenced - one with seven matching rows, and one
with four. The query logic goes as follows:

• Get the matching set of rows from the STAFF table, and give each row a row-number,
within each JOB value.

• Using the set of rows retrieved above, get the maximum row-number, per JOB value,
then add 1.0, then divide by 2, then add or subtract 0.6. This will give one two values that
encompass a single row-number, if an odd number of rows match, and two row-numbers,
if an even number of rows match.

• Finally, join the one row per JOB obtained in step 2 above to the set of rows retrieved in
step 1 - by common JOB value, and where the row-number is within the high/low range.
The average salary of whatever is retrieved is the median.

Now for the code:

WITH numbered_rows AS
 (SELECT s.*
 ,ROW_NUMBER() OVER(PARTITION BY job
 ORDER BY salary, id) AS row#
 FROM staff s
 WHERE comm > 0
 AND name LIKE ’%e%’),
median_row_num AS
 (SELECT job
 ,(MAX(row# + 1.0) / 2) - 0.5 AS med_lo
 ,(MAX(row# + 1.0) / 2) + 0.5 AS med_hi
 FROM numbered_rows
 GROUP BY job)
SELECT nn.job
 ,DEC(AVG(nn.salary),7,2) AS med_sal
FROM numbered_rows nn ANSWER
 ,median_row_num mr ==============
WHERE nn.job = mr.job JOB MED_SAL
 AND nn.row# BETWEEN mr.med_lo AND mr.med_hi ----- --------
GROUP BY nn.job Clerk 13030.50
ORDER BY nn.job; Sales 17432.10

Figure 834, Calculating the median

IMPORTANT: To get consistent results when using the ROW_NUMBER function, one
must ensure that the ORDER BY column list encompasses the unique key of the table.
Otherwise the row-number values will be assigned randomly - if there are multiple rows
with the same value. In this particular case, the ID has been included in the ORDER BY
list, to address duplicate SALARY values.

The next example is the essentially the same as the prior, but there is additional code that gets
the average SALARY, and a count of the number of matching rows per JOB value. Observe
that all this extra code went in the second step:

 Graeme Birchall ©

316 Other Fun Things

WITH numbered_rows AS
 (SELECT s.*
 ,ROW_NUMBER() OVER(PARTITION BY job
 ORDER BY salary, id) AS row#
 FROM staff s
 WHERE comm > 0
 AND name LIKE ’%e%’),
median_row_num AS
 (SELECT job
 ,(MAX(row# + 1.0) / 2) - 0.5 AS med_lo
 ,(MAX(row# + 1.0) / 2) + 0.5 AS med_hi
 ,DEC(AVG(salary),7,2) AS avg_sal
 ,COUNT(*) AS #rows
 FROM numbered_rows
 GROUP BY job)
SELECT nn.job
 ,DEC(AVG(nn.salary),7,2) AS med_sal
 ,MAX(mr.avg_sal) AS avg_sal
 ,MAX(mr.#rows) AS #r
FROM numbered_rows nn
 ,median_row_num mr ANSWER
WHERE nn.job = mr.job ==========================
 AND nn.row# BETWEEN mr.med_lo JOB MED_SAL AVG_SAL #R
 AND mr.med_hi ----- -------- -------- --
GROUP BY nn.job Clerk 13030.50 12857.56 7
ORDER BY nn.job; Sales 17432.10 17460.93 4

Figure 835, Get median plus average

Using Formula #2

Once again, the following sample code gets the median SALARY, by JOB, for some set of
rows in the STAFF table. Two JOB values are referenced - one with seven matching rows,
and the other with four. In this case, when there are an even number of matching rows, the
smaller of the two middle values is chosen. The logic goes as follows:

• Get the matching set of rows from the STAFF table, and give each row a row-number,
within each JOB value.

• Using the set of rows retrieved above, get the maximum row-number per JOB, then add
1, then divide by 2. This will get the row-number for the row with the median value.

• Finally, join the one row per JOB obtained in step 2 above to the set of rows retrieved in
step 1 - by common JOB and row-number value.

WITH numbered_rows AS
 (SELECT s.*
 ,ROW_NUMBER() OVER(PARTITION BY job
 ORDER BY salary, id) AS row#
 FROM staff s
 WHERE comm > 0
 AND name LIKE ’%e%’),
median_row_num AS
 (SELECT job
 ,MAX(row# + 1) / 2 AS med_row#
 FROM numbered_rows
 GROUP BY job)
SELECT nn.job
 ,nn.salary AS med_sal ANSWER
FROM numbered_rows nn ==============
 ,median_row_num mr JOB MED_SAL
WHERE nn.job = mr.job ----- --------
 AND nn.row# = mr.med_row# Clerk 13030.50
ORDER BY nn.job; Sales 16858.20

Figure 836, Calculating the median

DB2 UDB/V8.1 Cookbook ©

Fun with SQL 317

The next query is the same as the prior, but it uses a sub-query, instead of creating and then
joining to a second temporary table:

WITH numbered_rows AS
 (SELECT s.*
 ,ROW_NUMBER() OVER(PARTITION BY job
 ORDER BY salary, id) AS row#
 FROM staff s
 WHERE comm > 0
 AND name LIKE ’%e%’)
SELECT job
 ,salary AS med_sal
FROM numbered_rows
WHERE (job,row#) IN ANSWER
 (SELECT job ==============
 ,MAX(row# + 1) / 2 JOB MED_SAL
 FROM numbered_rows ----- --------
 GROUP BY job) Clerk 13030.50
ORDER BY job; Sales 16858.20

Figure 837, Calculating the median

The next query lists every matching row in the STAFF table (per JOB), and on each line of
output, shows the median salary:

WITH numbered_rows AS
 (SELECT s.*
 ,ROW_NUMBER() OVER(PARTITION BY job
 ORDER BY salary, id) AS row#
 FROM staff s
 WHERE comm > 0
 AND name LIKE ’%e%’)
SELECT r1.*
 ,(SELECT r2.salary
 FROM numbered_rows r2
 WHERE r2.job = r1.job
 AND r2.row# = (SELECT MAX(r3.row# + 1) / 2
 FROM numbered_rows r3
 WHERE r2.job = r3.job)) AS med_sal
FROM numbered_rows r1
ORDER BY job
 ,salary;

Figure 838, List matching rows and median

 Graeme Birchall ©

318 Other Fun Things

DB2 UDB/V8.1 Cookbook ©

Quirks in SQL 319

Quirks in SQL
One might have noticed by now that not all SQL statements are easy to comprehend. Unfor-
tunately, the situation is perhaps a little worse than you think. In this section we will discuss
some SQL statements that are correct, but which act just a little funny.

Trouble with Timestamps

When does one timestamp not equal another with the same value? The answer is, when one
value uses a 24 hour notation to represent midnight and the other does not. To illustrate, the
following two timestamp values represent the same point in time, but not according to DB2:

WITH TEMP1 (C1,T1,T2) AS (VALUES ANSWER
 (’A’ =========
 ,TIMESTAMP(’1996-05-01-24.00.00.000000’) <no rows>
 ,TIMESTAMP(’1996-05-02-00.00.00.000000’)))
SELECT C1
FROM TEMP1
WHERE T1 = T2;

Figure 839, Timestamp comparison - Incorrect

To make DB2 think that both timestamps are actually equal (which they are), all we have to
do is fiddle around with them a bit:

WITH TEMP1 (C1,T1,T2) AS (VALUES ANSWER
 (’A’ ======
 ,TIMESTAMP(’1996-05-01-24.00.00.000000’) C1
 ,TIMESTAMP(’1996-05-02-00.00.00.000000’))) --
SELECT C1 A
FROM TEMP1
WHERE T1 + 0 MICROSECOND = T2 + 0 MICROSECOND;

Figure 840, Timestamp comparison - Correct

Be aware that, as with everything else in this section, what is shown above is not a bug. It is
the way that it is because it makes perfect sense, even if it is not intuitive.

Using 24 Hour Notation

One might have to use the 24-hour notation, if one needs to record (in DB2) external actions
that happen just before midnight - with the correct date value. To illustrate, imagine that we
have the following table, which records supermarket sales:

CREATE TABLE SUPERMARKET_SALES
(SALES_TS TIMESTAMP NOT NULL
,SALES_VAL DECIMAL(8,2) NOT NULL
,PRIMARY KEY(SALES_TS));

Figure 841, Sample Table

In this application, anything that happens before midnight, no matter how close, is deemed to
have happened on the specified day. So if a transaction comes in with a timestamp value that
is a tiny fraction of a microsecond before midnight, we should record it thus:

INSERT INTO SUPERMARKET_SALES VALUES
(’2003-08-01-24.00.00.000000’,123.45);

Figure 842, Insert row

 Graeme Birchall ©

320

Now, if we want to select all of the rows that are for a given day, we can write this:

SELECT *
FROM SUPERMARKET_SALES
WHERE DATE(SALES_TS) = ’2003-08-01’
ORDER BY SALES_TS;

Figure 843, Select rows for given date

Or this:

SELECT *
FROM SUPERMARKET_SALES
WHERE SALES_TS BETWEEN ’2003-08-01-00.00.00’
 AND ’2003-08-01-24.00.00’
ORDER BY SALES_TS;

Figure 844, Select rows for given date

DB2 will never internally generate a timestamp value that uses the 24 hour notation. But it is
provided so that you can use it yourself, if you need to.

No Rows Match

How many rows to are returned by a query when no rows match the provided predicates? The
answer is that sometimes you get none, and sometimes you get one:

SELECT CREATOR ANSWER
FROM SYSIBM.SYSTABLES ========
WHERE CREATOR = ’ZZZ’; <no row>

Figure 845, Query with no matching rows (1 of 8)

SELECT MAX(CREATOR) ANSWER
FROM SYSIBM.SYSTABLES ======
WHERE CREATOR = ’ZZZ’; <null>

Figure 846, Query with no matching rows (2 of 8)

SELECT MAX(CREATOR) ANSWER
FROM SYSIBM.SYSTABLES ========
WHERE CREATOR = ’ZZZ’ <no row>
HAVING MAX(CREATOR) IS NOT NULL;

Figure 847, Query with no matching rows (3 of 8)

SELECT MAX(CREATOR) ANSWER
FROM SYSIBM.SYSTABLES ========
WHERE CREATOR = ’ZZZ’ <no row>
HAVING MAX(CREATOR) = ’ZZZ’;

Figure 848, Query with no matching rows (4 of 8)

SELECT MAX(CREATOR) ANSWER
FROM SYSIBM.SYSTABLES ========
WHERE CREATOR = ’ZZZ’ <no row>
GROUP BY CREATOR;

Figure 849, Query with no matching rows (5 of 8)

SELECT CREATOR ANSWER
FROM SYSIBM.SYSTABLES ========
WHERE CREATOR = ’ZZZ’ <no row>
GROUP BY CREATOR;

Figure 850, Query with no matching rows (6 of 8)

SELECT COUNT(*) ANSWER
FROM SYSIBM.SYSTABLES ========
WHERE CREATOR = ’ZZZ’ <no row>
GROUP BY CREATOR;

Figure 851, Query with no matching rows (7 of 8)

DB2 UDB/V8.1 Cookbook ©

Quirks in SQL 321

SELECT COUNT(*) ANSWER
FROM SYSIBM.SYSTABLES ======
WHERE CREATOR = ’ZZZ’; 0

Figure 852, Query with no matching rows (8 of 8)

There is a pattern to the above, and it goes thus:

• When there is no column function (e.g. MAX, COUNT) in the SELECT then, if there are
no matching rows, no row is returned.

• If there is a column function in the SELECT, but nothing else, then the query will always
return a row - with zero if the function is a COUNT, and null if it is something else.

• If there is a column function in the SELECT, and also a HAVING phrase in the query, a
row will only be returned if the HAVING predicate is true.

• If there is a column function in the SELECT, and also a GROUP BY phrase in the query,
a row will only be returned if there was one that matched.

Imagine that one wants to retrieve a list of names from the STAFF table, but when no names
match, one wants to get a row/column with the phrase "NO NAMES", rather than zero rows.
The next query does this by first generating a "not found" row using the SYSDUMMY1 table,
and then left-outer-joining to the set of matching rows in the STAFF table. The COALESCE
function will return the STAFF data, if there is any, else the not-found data:

SELECT COALESCE(NAME,NONAME) AS NME ANSWER
 ,COALESCE(SALARY,NOSAL) AS SAL ============
FROM (SELECT ’NO NAME’ AS NONAME NME SAL
 ,0 AS NOSAL ------- ----
 FROM SYSIBM.SYSDUMMY1 NO NAME 0.00
)AS NNN
LEFT OUTER JOIN
 (SELECT *
 FROM STAFF
 WHERE ID < 5
)AS XXX
ON 1 = 1
ORDER BY NAME;

Figure 853, Always get a row, example 1 of 2

The next query is logically the same as the prior, but it uses the WITH phrase to generate the
"not found" row in the SQL statement:

WITH NNN (NONAME, NOSAL) AS ANSWER
(VALUES (’NO NAME’,0)) ============
SELECT COALESCE(NAME,NONAME) AS NME NME SAL
 ,COALESCE(SALARY,NOSAL) AS SAL ------- ----
FROM NNN NO NAME 0.00
LEFT OUTER JOIN
 (SELECT *
 FROM STAFF
 WHERE ID < 5
)AS XXX
ON 1 = 1
ORDER BY NAME;

Figure 854, Always get a row, example 2 of 2

Dumb Date Usage

Imagine that you have some character value that you convert to a DB2 date. The correct way
to do it is given below:

 Graeme Birchall ©

322

SELECT DATE(’2001-09-22’) ANSWER
FROM SYSIBM.SYSDUMMY1; ==========
 09/22/2001

Figure 855, Convert value to DB2 date, right

What happens if you accidentally leave out the quotes in the DATE function? The function
still works, but the result is not correct:

SELECT DATE(2001-09-22) ANSWER
FROM SYSIBM.SYSDUMMY1; ==========
 05/24/0006

Figure 856, Convert value to DB2 date, wrong

Why the 2,000 year difference in the above results? When the DATE function gets a character
string as input, it assumes that it is valid character representation of a DB2 date, and converts
it accordingly. By contrast, when the input is numeric, the function assumes that it represents
the number of days minus one from the start of the current era (i.e. 0001-01-01). In the above
query the input was 2001-09-22, which equals (2001-9)-22, which equals 1970 days.

RAND in Predicate

The following query was written with intentions of getting a single random row out of the
matching set in the STAFF table. Unfortunately, it returned two rows:

SELECT ID ANSWER
 ,NAME ===========
FROM STAFF ID NAME
WHERE ID <= 100 -- --------
 AND ID = (INT(RAND()* 10) * 10) + 10 30 Marenghi
ORDER BY ID; 60 Quigley

Figure 857, Get random rows - Incorrect

The above SQL returned more than one row because the RAND function was reevaluated for
each matching row. Thus the RAND predicate was being dynamically altered as rows were
being fetched.

To illustrate what is going on above, consider the following query. The results of the RAND
function are displayed in the output. Observe that there are multiple rows where the function
output (suitably massaged) matched the ID value. In theory, anywhere between zero and all
rows could match:

WITH TEMP AS ANSWER
(SELECT ID ====================
 ,NAME ID NAME RAN EQL
 ,(INT(RAND(0)* 10) * 10) + 10 AS RAN --- -------- --- ---
 FROM STAFF 10 Sanders 10 Y
 WHERE ID <= 100 20 Pernal 30
) 30 Marenghi 70
SELECT T.* 40 O’Brien 10
 ,CASE ID 50 Hanes 30
 WHEN RAN THEN ’Y’ 60 Quigley 40
 ELSE ’ ’ 70 Rothman 30
 END AS EQL 80 James 100
FROM TEMP T 90 Koonitz 40
ORDER BY ID; 100 Plotz 100 Y

Figure 858, Get random rows - Explanation

Getting "n" Random Rows

There are several ways to always get exactly "n" random rows from a set of matching rows.
In the following example, three rows are required:

DB2 UDB/V8.1 Cookbook ©

Quirks in SQL 323

WITH ANSWER
STAFF_NUMBERED AS ===========
 (SELECT S.* ID NAME
 ,ROW_NUMBER() OVER() AS ROW# --- -------
 FROM STAFF S 10 Sanders
 WHERE ID <= 100 20 Pernal
), 90 Koonitz
COUNT_ROWS AS
 (SELECT MAX(ROW#) AS #ROWS
 FROM STAFF_NUMBERED
),
RANDOM_VALUES (RAN#) AS
 (VALUES (RAND())
 ,(RAND())
 ,(RAND())
),
ROWS_T0_GET AS
 (SELECT INT(RAN# * #ROWS) + 1 AS GET_ROW
 FROM RANDOM_VALUES
 ,COUNT_ROWS
)
SELECT ID
 ,NAME
FROM STAFF_NUMBERED
 ,ROWS_T0_GET
WHERE ROW# = GET_ROW
ORDER BY ID;

Figure 859, Get random rows - Non-distinct

The above query works as follows:

• First, the matching rows in the STAFF table are assigned a row number.

• Second, a count of the total number of matching rows is obtained.

• Third, a temporary table with three random values is generated.

• Fourth, the three random values are joined to the row-count value, resulting in three new
row-number values (of type integer) within the correct range.

• Finally, the three row-number values are joined to the original temporary table.

There are some problems with the above query:

• If more than a small number of random rows are required, the random values cannot be
defined using the VALUES phrase. Some recursive code can do the job.

• In the extremely unlikely event that the RAND function returns the value "one", no row
will match. CASE logic can be used to address this issue.

• Ignoring the problem just mentioned, the above query will always return three rows, but
the rows may not be different rows. Depending on what the three RAND calls generate,
the query may even return just one row - repeated three times.

In contrast to the above query, the following will always return three different random rows:

 Graeme Birchall ©

324

SELECT ID ANSWER
 ,NAME ===========
FROM (SELECT S.* ID NAME
 ,ROW_NUMBER() OVER(ORDER BY RAND()) AS R -- --------
 FROM STAFF S 10 Sanders
 WHERE ID <= 100 40 O’Brien
)AS XXX 60 Quigley
WHERE R <= 3
ORDER BY ID;

Figure 860, Get random rows - Distinct

In this query, the matching rows are first numbered in random order, and then the three rows
with the lowest row number are selected.

Summary of Issues

The lesson to be learnt here is that one must consider exactly how random one wants to be
when one goes searching for a set of random rows:

• Does one want the number of rows returned to be also somewhat random?

• Does one want exactly "n" rows, but it is OK to get the same row twice?

• Does one want exactly "n" distinct (i.e. different) random rows?

Date/Time Manipulation

I once had a table that contained two fields - the timestamp when an event began, and the
elapsed time of the event. To get the end-time of the event, I added the elapsed time to the
begin-timestamp - as in the following SQL:

WITH TEMP1 (BGN_TSTAMP, ELP_SEC) AS
(VALUES (TIMESTAMP(’2001-01-15-01.02.03.000000’), 1.234)
 ,(TIMESTAMP(’2001-01-15-01.02.03.123456’), 1.234)
)
SELECT BGN_TSTAMP
 ,ELP_SEC
 ,BGN_TSTAMP + ELP_SEC SECONDS AS END_TSTAMP
FROM TEMP1;

 ANSWER
 ======
 BGN_TSTAMP ELP_SEC END_TSTAMP
 -------------------------- ------- --------------------------
 2001-01-15-01.02.03.000000 1.234 2001-01-15-01.02.04.000000
 2001-01-15-01.02.03.123456 1.234 2001-01-15-01.02.04.123456

Figure 861, Date/Time manipulation - wrong

As you can see, my end-time is incorrect. In particular, the factional part of the elapsed time
has not been used in the addition. I subsequently found out that DB2 never uses the fractional
part of a number in date/time calculations. So to get the right answer I multiplied my elapsed
time by one million and added microseconds:

DB2 UDB/V8.1 Cookbook ©

Quirks in SQL 325

WITH TEMP1 (BGN_TSTAMP, ELP_SEC) AS
(VALUES (TIMESTAMP(’2001-01-15-01.02.03.000000’), 1.234)
 ,(TIMESTAMP(’2001-01-15-01.02.03.123456’), 1.234)
)
SELECT BGN_TSTAMP
 ,ELP_SEC
 ,BGN_TSTAMP + (ELP_SEC *1E6) MICROSECONDS AS END_TSTAMP
FROM TEMP1;

 ANSWER
 ======
 BGN_TSTAMP ELP_SEC END_TSTAMP
 -------------------------- ------- --------------------------
 2001-01-15-01.02.03.000000 1.234 2001-01-15-01.02.04.234000
 2001-01-15-01.02.03.123456 1.234 2001-01-15-01.02.04.357456

Figure 862, Date/Time manipulation - right

DB2 doesn’t use the fractional part of a number in date/time calculations because such a value
often makes no sense. For example, 3.3 months or 2.2 years are meaningless values - given
that neither a month nor a year has a fixed length.

The Solution

When one has a fractional date/time value (e.g. 5.1 days, 4.2 hours, or 3.1 seconds) that is for
a period of fixed length that one wants to use in a date/time calculation, then one has to con-
vert the value into some whole number of a more precise time period. Thus 5.1 days times
82,800 will give one the equivalent number of seconds and 6.2 seconds times 1E6 (i.e. one
million) will give one the equivalent number of microseconds.

Use of LIKE on VARCHAR

Sometimes one value can be EQUAL to another, but is not LIKE the same. To illustrate, the
following SQL refers to two fields of interest, one CHAR, and the other VARCHAR. Ob-
serve below that both rows in these two fields are seemingly equal:

WITH TEMP1 (C0,C1,V1) AS (VALUES ANSWER
 (’A’,CHAR(’ ’,1),VARCHAR(’ ’,1)), ======
 (’B’,CHAR(’ ’,1),VARCHAR(’’ ,1))) C0
SELECT C0 --
FROM TEMP1 A
WHERE C1 = V1 B
 AND C1 LIKE ’ ’;

Figure 863, Use LIKE on CHAR field

Look what happens when we change the final predicate from matching on C1 to V1. Now
only one row matches our search criteria.

WITH TEMP1 (C0,C1,V1) AS (VALUES ANSWER
 (’A’,CHAR(’ ’,1),VARCHAR(’ ’,1)), ======
 (’B’,CHAR(’ ’,1),VARCHAR(’’ ,1))) C0
SELECT C0 --
FROM TEMP1 A
WHERE C1 = V1
 AND V1 LIKE ’ ’;

Figure 864, Use LIKE on VARCHAR field

To explain, observe that one of the VARCHAR rows above has one blank byte, while the
other has no data. When an EQUAL check is done on a VARCHAR field, the value is padded
with blanks (if needed) before the match. This is why C1 equals C2 for both rows. However,

 Graeme Birchall ©

326

the LIKE check does not pad VARCHAR fields with blanks. So the LIKE test in the second
SQL statement only matched on one row.

The RTRIM function can be used to remove all trailing blanks and so get around this prob-
lem:

WITH TEMP1 (C0,C1,V1) AS (VALUES ANSWER
 (’A’,CHAR(’ ’,1),VARCHAR(’ ’,1)), ======
 (’B’,CHAR(’ ’,1),VARCHAR(’’ ,1))) C0
SELECT C0 --
FROM TEMP1 A
WHERE C1 = V1 B
 AND RTRIM(V1) LIKE ’’;

Figure 865, Use RTRIM to remove trailing blanks

Comparing Weeks

One often wants to compare what happened in part of one year against the same period in
another year. For example, one might compare January sales over a decade period. This may
be a perfectly valid thing to do when comparing whole months, but it rarely makes sense
when comparing weeks or individual days.

The problem with comparing weeks from one year to the next is that the same week (as de-
fined by DB2) rarely encompasses the same set of days. The following query illustrates this
point by showing the set of days that make up week 33 over a ten-year period. Observe that
some years have almost no overlap with the next:

WITH TEMP1 (YYMMDD) AS ANSWER
(VALUES DATE(’2000-01-01’) ==========================
 UNION ALL YEAR MIN_DT MAX_DT
 SELECT YYMMDD + 1 DAY ---- ---------- ----------
 FROM TEMP1 2000 2000-08-06 2000-08-12
 WHERE YYMMDD < ’2010-12-31’ 2001 2001-08-12 2001-08-18
) 2002 2002-08-11 2002-08-17
SELECT YY AS YEAR 2003 2003-08-10 2003-08-16
 ,CHAR(MIN(YYMMDD),ISO) AS MIN_DT 2004 2004-08-08 2004-08-14
 ,CHAR(MAX(YYMMDD),ISO) AS MAX_DT 2005 2005-08-07 2005-08-13
FROM (SELECT YYMMDD 2006 2006-08-13 2006-08-19
 ,YEAR(YYMMDD) YY 2007 2007-08-12 2007-08-18
 ,WEEK(YYMMDD) WK 2008 2008-08-10 2008-08-16
 FROM TEMP1 2009 2009-08-09 2009-08-15
 WHERE WEEK(YYMMDD) = 33 2010 2010-08-08 2010-08-14
)AS XXX
GROUP BY YY
 ,WK;

Figure 866, Comparing week 33 over 10 years

DB2 Truncates, not Rounds

When converting from one numeric type to another where there is a loss of precision, DB2
always truncates not rounds. For this reason, the S1 result below is not equal to the S2 result:

SELECT SUM(INTEGER(SALARY)) AS S1 ANSWER
 ,INTEGER(SUM(SALARY)) AS S2 =============
FROM STAFF; S1 S2
 ------ ------
 583633 583647

Figure 867, DB2 data truncation

If one must do scalar conversions before the column function, use the ROUND function to
improve the accuracy of the result:

DB2 UDB/V8.1 Cookbook ©

Quirks in SQL 327

SELECT SUM(INTEGER(ROUND(SALARY,-1))) AS S1 ANSWER
 ,INTEGER(SUM(SALARY)) AS S2 =============
FROM STAFF; S1 S2
 ------ ------
 583640 583647

Figure 868, DB2 data rounding

CASE Checks in Wrong Sequence

The case WHEN checks are processed in the order that they are found. The first one that
matches is the one used. To illustrate, the following statement will always return the value
’FEM’ in the SXX field:

SELECT LASTNAME ANSWER
 ,SEX =================
 ,CASE LASTNAME SX SXX
 WHEN SEX >= ’F’ THEN ’FEM’ ---------- -- ---
 WHEN SEX >= ’M’ THEN ’MAL’ JEFFERSON M FEM
 END AS SXX JOHNSON F FEM
FROM EMPLOYEE JONES M FEM
WHERE LASTNAME LIKE ’J%’
ORDER BY 1;

Figure 869, Case WHEN Processing - Incorrect

By contrast, in the next statement, the SXX value will reflect the related SEX value:

SELECT LASTNAME ANSWER
 ,SEX =================
 ,CASE LASTNAME SX SXX
 WHEN SEX >= ’M’ THEN ’MAL’ ---------- -- ---
 WHEN SEX >= ’F’ THEN ’FEM’ JEFFERSON M MAL
 END AS SXX JOHNSON F FEM
FROM EMPLOYEE JONES M MAL
WHERE LASTNAME LIKE ’J%’
ORDER BY 1;

Figure 870, Case WHEN Processing - Correct

NOTE: See page 32 for more information on this subject.

Division and Average

The following statement gets two results, which is correct?

SELECT AVG(SALARY) / AVG(COMM) AS A1 ANSWER >>> A1 A2
 ,AVG(SALARY / COMM) AS A2 -- -----
FROM STAFF; 32 61.98

Figure 871, Division and Average

Arguably, either answer could be correct - depending upon what the user wants. In practice,
the first answer is almost always what they intended. The second answer is somewhat flawed
because it gives no weighting to the absolute size of the values in each row (i.e. a big SAL-
ARY divided by a big COMM is the same as a small divided by a small).

Date Output Order

DB2 has a bind option (called DATETIME) that specifies the default output format of date-
time data. This bind option has no impact on the sequence with which date-time data is pre-
sented. It simply defines the output template used. To illustrate, the plan that was used to run
the following SQL defaults to the USA date-time-format bind option. Observe that the month
is the first field printed, but the rows are sequenced by year:

 Graeme Birchall ©

328

SELECT HIREDATE ANSWER
FROM EMPLOYEE ==========
WHERE HIREDATE < ’1960-01-01’ 05/05/1947
ORDER BY 1; 08/17/1949
 05/16/1958

Figure 872, DATE output in year, month, day order

When the CHAR function is used to convert the date-time value into a character value, the
sort order is now a function of the display sequence, not the internal date-time order:

SELECT CHAR(HIREDATE,USA) ANSWER
FROM EMPLOYEE ==========
WHERE HIREDATE < ’1960-01-01’ 05/05/1947
ORDER BY 1; 05/16/1958
 08/17/1949

Figure 873, DATE output in month, day, year order

In general, always bind plans so that date-time values are displayed in the preferred format.
Using the CHAR function to change the format can be unwise.

Ambiguous Cursors

The following pseudo-code will fetch all of the rows in the STAFF table (which has ID’s
ranging from 10 to 350) and, then while still fetching, insert new rows into the same STAFF
table that are the same as those already there, but with ID’s that are 500 larger.

EXEC-SQL
 DECLARE FRED CURSOR FOR
 SELECT *
 FROM STAFF
 WHERE ID < 1000
 ORDER BY ID;
END-EXEC;

EXEC-SQL
 OPEN FRED
END-EXEC;

DO UNTIL SQLCODE = 100;

 EXEC-SQL
 FETCH FRED
 INTO :HOST-VARS
 END-EXEC;

 IF SQLCODE <> 100 THEN DO;
 SET HOST-VAR.ID = HOST-VAR.ID + 500;
 EXEC-SQL
 INSERT INTO STAFF VALUES (:HOST-VARS)
 END-EXEC;
 END-DO;

END-DO;

EXEC-SQL
 CLOSE FRED
END-EXEC;

Figure 874, Ambiguous Cursor

We want to know how many rows will be fetched, and so inserted? The answer is that it de-
pends upon the indexes available. If there is an index on ID, and the cursor uses that index for
the ORDER BY, there will 70 rows fetched and inserted. If the ORDER BY is done using a
row sort (i.e. at OPEN CURSOR time) only 35 rows will be fetched and inserted.

DB2 UDB/V8.1 Cookbook ©

Quirks in SQL 329

Be aware that DB2, unlike some other database products, does NOT (always) retrieve all of
the matching rows at OPEN CURSOR time. Furthermore, understand that this is a good thing
for it means that DB2 (usually) does not process any row that you do not need.

DB2 is very good at always returning the same answer, regardless of the access path used. It
is equally good at giving consistent results when the same logical statement is written in a
different manner (e.g. A=B vs. B=A). What it has never done consistently (and never will) is
guarantee that concurrent read and write statements (being run by the same user) will always
give the same results.

Floating Point Numbers

The following SQL repetitively multiplies a floating-point number by ten:

WITH TEMP (F1) AS
(VALUES FLOAT(1.23456789)
 UNION ALL
 SELECT F1 * 10
 FROM TEMP
 WHERE F1 < 1E18
)
SELECT F1 AS FLOAT1
 ,DEC(F1,19) AS DECIMAL1
 ,BIGINT(F1) AS BIGINT1
FROM TEMP;

Figure 875, Multiply floating-point number by ten, SQL

After a while, things get interesting:

FLOAT1 DECIMAL1 BIGINT1
------------------------ -------------------- -------------------
 +1.23456789000000E+000 1. 1
 +1.23456789000000E+001 12. 12
 +1.23456789000000E+002 123. 123
 +1.23456789000000E+003 1234. 1234
 +1.23456789000000E+004 12345. 12345
 +1.23456789000000E+005 123456. 123456
 +1.23456789000000E+006 1234567. 1234567
 +1.23456789000000E+007 12345678. 12345678
 +1.23456789000000E+008 123456789. 123456788
 +1.23456789000000E+009 1234567890. 1234567889
 +1.23456789000000E+010 12345678900. 12345678899
 +1.23456789000000E+011 123456789000. 123456788999
 +1.23456789000000E+012 1234567890000. 1234567889999
 +1.23456789000000E+013 12345678900000. 12345678899999
 +1.23456789000000E+014 123456789000000. 123456788999999
 +1.23456789000000E+015 1234567890000000. 1234567889999999
 +1.23456789000000E+016 12345678900000000. 12345678899999998
 +1.23456789000000E+017 123456789000000000. 123456788999999984
 +1.23456789000000E+018 1234567890000000000. 1234567889999999744

Figure 876, Multiply floating-point number by ten, answer

Why do the bigint values differ from the original float values? The answer is that they don’t, it
is the decimal values that differ. Because this is not what you see in front of your eyes, we
need to explain. Note that there are no bugs here, everything is working fine.

Perhaps the most insidious problem involved with using floating point numbers is that the
number you see is not always the number that you have. DB2 stores the value internally in
binary format, and when it displays it, it shows a decimal approximation of the underlying
binary value. This can cause you to get very strange results like the following:

 Graeme Birchall ©

330

WITH TEMP (F1,F2) AS
(VALUES (FLOAT(1.23456789E1 * 10 * 10 * 10 * 10 * 10 * 10 * 10)
 ,FLOAT(1.23456789E8)))
SELECT F1
 ,F2
FROM TEMP ANSWER
WHERE F1 <> F2; ===
 F1 F2
 ---------------------- ----------------------
 +1.23456789000000E+008 +1.23456789000000E+008

Figure 877, Two numbers that look equal, but aren’t equal

We can use the HEX function to show that, internally, the two numbers being compared
above are not equal:

WITH TEMP (F1,F2) AS
(VALUES (FLOAT(1.23456789E1 * 10 * 10 * 10 * 10 * 10 * 10 * 10)
 ,FLOAT(1.23456789E8)))
SELECT HEX(F1) AS HEX_F1
 ,HEX(F2) AS HEX_F2
FROM TEMP ANSWER
WHERE F1 <> F2; =================================
 HEX_F1 HEX_F2
 ---------------- ----------------
 FFFFFF53346F9D41 00000054346F9D41

Figure 878, Two numbers that look equal, but aren’t equal, shown in HEX

Now we can explain what is going on in the recursive code shown at the start of this section.
The same value is be displayed using three different methods:

• The floating-point representation (on the left) is really a decimal approximation (done
using rounding) of the underlying binary value.

• When the floating-point data was converted to decimal (in the middle), it was rounded
using the same method that is used when it is displayed directly.

• When the floating-point data was converted to bigint (on the right), no rounding was
done because both formats hold binary values.

In any computer-based number system, when you do division, you can get imprecise results
due to rounding. For example, when you divide 1 by 3 you get "one third", which can not be
stored accurately in either a decimal or a binary number system. Because they store numbers
internally differently, dividing the same number in floating-point vs. decimal can result in
different results. Here is an example:

WITH
 TEMP1 (DEC1, DBL1) AS
 (VALUES (DECIMAL(1),DOUBLE(1)))
,TEMP2 (DEC1, DEC2, DBL1, DBL2) AS
 (SELECT DEC1
 ,DEC1 / 3 AS DEC2
 ,DBL1 ANSWER (1 row returned)
 ,DBL1 / 3 AS DBL2 ==============================
 FROM TEMP1) DEC1 = 1.0
SELECT * DEC2 = 0.33333333333333333333
FROM TEMP2 DBL1 = +1.00000000000000E+000
WHERE DBL2 <> DEC2; DBL2 = +3.33333333333333E-001

Figure 879, Comparing float and decimal division

When you do multiplication of a fractional floating-point number, you can also encounter
rounding differences with respect to decimal. To illustrate this, the following SQL starts with
two numbers that are the same, and then keeps multiplying them by ten:

DB2 UDB/V8.1 Cookbook ©

Quirks in SQL 331

WITH TEMP (F1, D1) AS
(VALUES (FLOAT(1.23456789)
 ,DEC(1.23456789,20,10))
 UNION ALL
 SELECT F1 * 10
 ,D1 * 10
 FROM TEMP
 WHERE F1 < 1E9
)
SELECT F1
 ,D1
 ,CASE
 WHEN D1 = F1 THEN ’SAME’
 ELSE ’DIFF’
 END AS COMPARE
FROM TEMP;

Figure 880, Comparing float and decimal multiplication, SQL

Here is the answer:

F1 D1 COMPARE
---------------------- --------------------- -------
+1.23456789000000E+000 1.2345678900 SAME
+1.23456789000000E+001 12.3456789000 SAME
+1.23456789000000E+002 123.4567890000 DIFF
+1.23456789000000E+003 1234.5678900000 DIFF
+1.23456789000000E+004 12345.6789000000 DIFF
+1.23456789000000E+005 123456.7890000000 DIFF
+1.23456789000000E+006 1234567.8900000000 SAME
+1.23456789000000E+007 12345678.9000000000 DIFF
+1.23456789000000E+008 123456789.0000000000 DIFF
+1.23456789000000E+009 1234567890.0000000000 DIFF

Figure 881, Comparing float and decimal multiplication, answer

As we mentioned earlier, both floating-point and decimal fields have trouble accurately stor-
ing certain fractional values. For example, neither can store "one third". There are also some
numbers that can be stored in decimal, but not in floating-point. One common value is "one
tenth", which as the following SQL shows, is approximated in floating-point:

WITH TEMP (F1) AS ANSWER
(VALUES FLOAT(0.1)) =======================================
SELECT F1 F1 HEX_F1
 ,HEX(F1) AS HEX_F1 ---------------------- ----------------
FROM TEMP; +1.00000000000000E-001 9A9999999999B93F

Figure 882, Internal representation of "one tenth" in floating-point

In conclusion, a floating-point number is, in many ways, only an approximation of a true in-
teger or decimal value. For this reason, this field type should not be used for monetary data,
nor for other data where exact precision is required.

Legally Incorrect SQL

Imagine that we have a cute little view that is defined thus:

CREATE VIEW DAMN_LAWYERS (DB2 ,V5) AS
(VALUES (0001,2)
 ,(1234,2));

Figure 883, Sample view definition

Now imagine that we run the following query against this view:

 Graeme Birchall ©

332

SELECT DB2/V5 AS ANSWER ANSWER
FROM DAMN_LAWYERS; ------
 0
 617

Figure 884, Trademark Invalid SQL

Interestingly enough, the above answer is technically correct but, according to IBM, the SQL
(actually, they were talking about something else, but it also applies to this SQL) is not quite
right. We have been informed (in writing), to quote: "try not to use the slash after ’DB2’. That
is an invalid way to use the DB2 trademark - nothing can be attached to ’DB2’." So, as per
IBM’s trademark requirements, we have changed the SQL thus:

SELECT DB2 / V5 AS ANSWER ANSWER
FROM DAMN_LAWYERS; ------
 0
 617

Figure 885, Trademark Valid SQL

Fortunately, we still get the same (correct) answer.

DB2 UDB/V8.1 Cookbook ©

Appendix 333

Appendix

DB2 Sample Tables

Class Schedule

CREATE TABLE CL_SCHED
(CLASS_CODE CHARACTER (00007)
,DAY SMALLINT
,STARTING TIME
,ENDING TIME);

Figure 886, CL_SCHED sample table - DDL

There is no sample data for this table.

Department

CREATE TABLE DEPARTMENT
(DEPTNO CHARACTER (00003) NOT NULL
,DEPTNAME VARCHAR (00029) NOT NULL
,MGRNO CHARACTER (00006)
,ADMRDEPT CHARACTER (00003) NOT NULL
,LOCATION CHARACTER (00016)
,PRIMARY KEY(DEPTNO));

Figure 887, DEPARTMENT sample table - DDL

DEPTNO DEPTNAME MGRNO ADMRDEPT LOCATION
------ ----------------------------- ------ -------- ----------------
A00 SPIFFY COMPUTER SERVICE DIV. 000010 A00 -
B01 PLANNING 000020 A00 -
C01 INFORMATION CENTER 000030 A00 -
D01 DEVELOPMENT CENTER - A00 -
D11 MANUFACTURING SYSTEMS 000060 D01 -
D21 ADMINISTRATION SYSTEMS 000070 D01 -
E01 SUPPORT SERVICES 000050 A00 -
E11 OPERATIONS 000090 E01 -
E21 SOFTWARE SUPPORT 000100 E01 -

Figure 888, DEPARTMENT sample table - Data

Employee

CREATE TABLE EMPLOYEE
(EMPNO CHARACTER (00006) NOT NULL
,FIRSTNME VARCHAR (00012) NOT NULL
,MIDINIT CHARACTER (00001) NOT NULL
,LASTNAME VARCHAR (00015) NOT NULL
,WORKDEPT CHARACTER (00003)
,PHONENO CHARACTER (00004)
,HIREDATE DATE
,JOB CHARACTER (00008)
,EDLEVEL SMALLINT NOT NULL
,SEX CHARACTER (00001)
,BIRTHDATE DATE
,SALARY DECIMAL (09,02)
,BONUS DECIMAL (09,02)
,COMM DECIMAL (09,02)
,PRIMARY KEY(EMPNO));

Figure 889, EMPLOYEE sample table - DDL

 Graeme Birchall ©

334 DB2 Sample Tables

EMPNO FIRSTNME M LASTNAME WKD HIREDATE JOB ED S BIRTHDTE SALRY BONS COMM
------ --------- - --------- --- ---------- -------- -- - -------- ----- ---- ----
000010 CHRISTINE I HAAS A00 01/01/1965 PRES 18 F 19330824 52750 1000 4220
000020 MICHAEL L THOMPSON B01 10/10/1973 MANAGER 18 M 19480202 41250 800 3300
000030 SALLY A KWAN C01 04/05/1975 MANAGER 20 F 19410511 38250 800 3060
000050 JOHN B GEYER E01 08/17/1949 MANAGER 16 M 19250915 40175 800 3214
000060 IRVING F STERN D11 09/14/1973 MANAGER 16 M 19450707 32250 500 2580
000070 EVA D PULASKI D21 09/30/1980 MANAGER 16 F 19530526 36170 700 2893
000090 EILEEN W HENDERSON E11 08/15/1970 MANAGER 16 F 19410515 29750 600 2380
000100 THEODORE Q SPENSER E21 06/19/1980 MANAGER 14 M 19561218 26150 500 2092
000110 VINCENZO G LUCCHESSI A00 05/16/1958 SALESREP 19 M 19291105 46500 900 3720
000120 SEAN O’CONNELL A00 12/05/1963 CLERK 14 M 19421018 29250 600 2340
000130 DOLORES M QUINTANA C01 07/28/1971 ANALYST 16 F 19250915 23800 500 1904
000140 HEATHER A NICHOLLS C01 12/15/1976 ANALYST 18 F 19460119 28420 600 2274
000150 BRUCE ADAMSON D11 02/12/1972 DESIGNER 16 M 19470517 25280 500 2022
000160 ELIZABETH R PIANKA D11 10/11/1977 DESIGNER 17 F 19550412 22250 400 1780
000170 MASATOSHI J YOSHIMURA D11 09/15/1978 DESIGNER 16 M 19510105 24680 500 1974
000180 MARILYN S SCOUTTEN D11 07/07/1973 DESIGNER 17 F 19490221 21340 500 1707
000190 JAMES H WALKER D11 07/26/1974 DESIGNER 16 M 19520625 20450 400 1636
000200 DAVID BROWN D11 03/03/1966 DESIGNER 16 M 19410529 27740 600 2217
000210 WILLIAM T JONES D11 04/11/1979 DESIGNER 17 M 19530223 18270 400 1462
000220 JENNIFER K LUTZ D11 08/29/1968 DESIGNER 18 F 19480319 29840 600 2387
000230 JAMES J JEFFERSON D21 11/21/1966 CLERK 14 M 19350530 22180 400 1774
000240 SALVATORE M MARINO D21 12/05/1979 CLERK 17 M 19540331 28760 600 2301
000250 DANIEL S SMITH D21 10/30/1969 CLERK 15 M 19391112 19180 400 1534
000260 SYBIL P JOHNSON D21 09/11/1975 CLERK 16 F 19361005 17250 300 1380
000270 MARIA L PEREZ D21 09/30/1980 CLERK 15 F 19530526 27380 500 2190
000280 ETHEL R SCHNEIDER E11 03/24/1967 OPERATOR 17 F 19360328 26250 500 2100
000290 JOHN R PARKER E11 05/30/1980 OPERATOR 12 M 19460709 15340 300 1227
000300 PHILIP X SMITH E11 06/19/1972 OPERATOR 14 M 19361027 17750 400 1420
000310 MAUDE F SETRIGHT E11 09/12/1964 OPERATOR 12 F 19310421 15900 300 1272
000320 RAMLAL V MEHTA E21 07/07/1965 FIELDREP 16 M 19320811 19950 400 1596
000330 WING LEE E21 02/23/1976 FIELDREP 14 M 19410718 25370 500 2030
000340 JASON R GOUNOT E21 05/05/1947 FIELDREP 16 M 19260517 23840 500 1907

Figure 890, EMPLOYEE sample table - Data

Employee Activity

CREATE TABLE EMP_ACT
(EMPNO CHARACTER (00006) NOT NULL
,PROJNO CHARACTER (00006) NOT NULL
,ACTNO SMALLINT NOT NULL
,EMPTIME DECIMAL (05,02)
,EMSTDATE DATE
,EMENDATE DATE);

Figure 891, EMP_ACT sample table - DDL

EMPNO PROJNO ACTNO EMPTIME EMSTDATE EMENDATE
------ ------ ------ ------- ---------- ----------
000010 MA2100 10 0.50 01/01/1982 11/01/1982
000010 MA2110 10 1.00 01/01/1982 02/01/1983
000010 AD3100 10 0.50 01/01/1982 07/01/1982
000020 PL2100 30 1.00 01/01/1982 09/15/1982
000030 IF1000 10 0.50 06/01/1982 01/01/1983
000030 IF2000 10 0.50 01/01/1982 01/01/1983
000050 OP1000 10 0.25 01/01/1982 02/01/1983
000050 OP2010 10 0.75 01/01/1982 02/01/1983
000070 AD3110 10 1.00 01/01/1982 02/01/1983
000090 OP1010 10 1.00 01/01/1982 02/01/1983
000100 OP2010 10 1.00 01/01/1982 02/01/1983
000110 MA2100 20 1.00 01/01/1982 03/01/1982
000130 IF1000 90 1.00 01/01/1982 10/01/1982
000130 IF1000 100 0.50 10/01/1982 01/01/1983

Figure 892, EMP_ACT sample table - Data (1 of 2)

DB2 UDB/V8.1 Cookbook ©

Appendix 335

EMPNO PROJNO ACTNO EMPTIME EMSTDATE EMENDATE
------ ------ ------ ------- ---------- ----------
000140 IF1000 90 0.50 10/01/1982 01/01/1983
000140 IF2000 100 1.00 01/01/1982 03/01/1982
000140 IF2000 100 0.50 03/01/1982 07/01/1982
000140 IF2000 110 0.50 03/01/1982 07/01/1982
000140 IF2000 110 0.50 10/01/1982 01/01/1983
000150 MA2112 60 1.00 01/01/1982 07/15/1982
000150 MA2112 180 1.00 07/15/1982 02/01/1983
000160 MA2113 60 1.00 07/15/1982 02/01/1983
000170 MA2112 60 1.00 01/01/1982 06/01/1983
000170 MA2112 70 1.00 06/01/1982 02/01/1983
000170 MA2113 80 1.00 01/01/1982 02/01/1983
000180 MA2113 70 1.00 04/01/1982 06/15/1982
000190 MA2112 70 1.00 02/01/1982 10/01/1982
000190 MA2112 80 1.00 10/01/1982 10/01/1983
000200 MA2111 50 1.00 01/01/1982 06/15/1982
000200 MA2111 60 1.00 06/15/1982 02/01/1983
000210 MA2113 80 0.50 10/01/1982 02/01/1983
000210 MA2113 180 0.50 10/01/1982 02/01/1983
000220 MA2111 40 1.00 01/01/1982 02/01/1983
000230 AD3111 60 1.00 01/01/1982 03/15/1982
000230 AD3111 60 0.50 03/15/1982 04/15/1982
000230 AD3111 70 0.50 03/15/1982 10/15/1982
000230 AD3111 80 0.50 04/15/1982 10/15/1982
000230 AD3111 180 1.00 10/15/1982 01/01/1983
000240 AD3111 70 1.00 02/15/1982 09/15/1982
000240 AD3111 80 1.00 09/15/1982 01/01/1983
000250 AD3112 60 1.00 01/01/1982 02/01/1982
000250 AD3112 60 0.50 02/01/1982 03/15/1982
000250 AD3112 60 0.50 12/01/1982 01/01/1983
000250 AD3112 60 1.00 01/01/1983 02/01/1983
000250 AD3112 70 0.50 02/01/1982 03/15/1982
000250 AD3112 70 1.00 03/15/1982 08/15/1982
000250 AD3112 70 0.25 08/15/1982 10/15/1982
000250 AD3112 80 0.25 08/15/1982 10/15/1982
000250 AD3112 80 0.50 10/15/1982 12/01/1982
000250 AD3112 180 0.50 08/15/1982 01/01/1983
000260 AD3113 70 0.50 06/15/1982 07/01/1982
000260 AD3113 70 1.00 07/01/1982 02/01/1983
000260 AD3113 80 1.00 01/01/1982 03/01/1982
000260 AD3113 80 0.50 03/01/1982 04/15/1982
000260 AD3113 180 0.50 03/01/1982 04/15/1982
000260 AD3113 180 1.00 04/15/1982 06/01/1982
000260 AD3113 180 0.50 06/01/1982 07/01/1982
000270 AD3113 60 0.50 03/01/1982 04/01/1982
000270 AD3113 60 1.00 04/01/1982 09/01/1982
000270 AD3113 60 0.25 09/01/1982 10/15/1982
000270 AD3113 70 0.75 09/01/1982 10/15/1982
000270 AD3113 70 1.00 10/15/1982 02/01/1983
000270 AD3113 80 1.00 01/01/1982 03/01/1982
000270 AD3113 80 0.50 03/01/1982 04/01/1982
000280 OP1010 130 1.00 01/01/1982 02/01/1983
000290 OP1010 130 1.00 01/01/1982 02/01/1983
000300 OP1010 130 1.00 01/01/1982 02/01/1983
000310 OP1010 130 1.00 01/01/1982 02/01/1983
000320 OP2011 140 0.75 01/01/1982 02/01/1983
000320 OP2011 150 0.25 01/01/1982 02/01/1983
000330 OP2012 140 0.25 01/01/1982 02/01/1983
000330 OP2012 160 0.75 01/01/1982 02/01/1983
000340 OP2013 140 0.50 01/01/1982 02/01/1983
000340 OP2013 170 0.50 01/01/1982 02/01/1983

Figure 893, EMP_ACT sample table - Data (2 of 2)

 Graeme Birchall ©

336 DB2 Sample Tables

Employee Photo

CREATE TABLE EMP_PHOTO
(EMPNO CHARACTER (00006) NOT NULL
,PHOTO_FORMAT VARCHAR (00010) NOT NULL
,PICTURE BLOB (0100)K
,PRIMARY KEY(EMPNO,PHOTO_FORMAT));

Figure 894, EMP_PHOTO sample table - DDL

EMPNO PHOTO_FORMAT PICTURE
------ ------------ -------------
000130 bitmap <<NOT SHOWN>>
000130 gif <<NOT SHOWN>>
000130 xwd <<NOT SHOWN>>
000140 bitmap <<NOT SHOWN>>
000140 gif <<NOT SHOWN>>
000140 xwd <<NOT SHOWN>>
000150 bitmap <<NOT SHOWN>>
000150 gif <<NOT SHOWN>>
000150 xwd <<NOT SHOWN>>
000190 bitmap <<NOT SHOWN>>
000190 gif <<NOT SHOWN>>
000190 xwd <<NOT SHOWN>>

Figure 895, EMP_PHOTO sample table - Data

Employee Resume

CREATE TABLE EMP_RESUME
(EMPNO CHARACTER (00006) NOT NULL
,RESUME_FORMAT VARCHAR (00010) NOT NULL
,RESUME CLOB (0005)K
,PRIMARY KEY(EMPNO,RESUME_FORMAT));

Figure 896, EMP_RESUME sample table - DDL

EMPNO RESUME_FORMAT RESUME
------ ------------- -------------
000130 ascii <<NOT SHOWN>>
000130 script <<NOT SHOWN>>
000140 ascii <<NOT SHOWN>>
000140 script <<NOT SHOWN>>
000150 ascii <<NOT SHOWN>>
000150 script <<NOT SHOWN>>
000190 ascii <<NOT SHOWN>>
000190 script <<NOT SHOWN>>

Figure 897, EMP_RESUME sample table - Data

In Tray

CREATE TABLE IN_TRAY
(RECEIVED TIMESTAMP
,SOURCE CHARACTER (00008)
,SUBJECT CHARACTER (00064)
,NOTE_TEXT VARCHAR (03000));

Figure 898, IN_TRAY sample table - DDL

There is no sample data for this table.

DB2 UDB/V8.1 Cookbook ©

Appendix 337

Organization

CREATE TABLE ORG
(DEPTNUMB SMALLINT NOT NULL
,DEPTNAME VARCHAR (00014)
,MANAGER SMALLINT
,DIVISION VARCHAR (00010)
,LOCATION VARCHAR (00013)
,PRIMARY KEY(DEPTNUMB));

Figure 899, ORG sample table - DDL

DEPTNUMB DEPTNAME MANAGER DIVISION LOCATION
-------- -------------- ------- ---------- -------------
 10 Head Office 160 Corporate New York
 15 New England 50 Eastern Boston
 20 Mid Atlantic 10 Eastern Washington
 38 South Atlantic 30 Eastern Atlanta
 42 Great Lakes 100 Midwest Chicago
 51 Plains 140 Midwest Dallas
 66 Pacific 270 Western San Francisco
 84 Mountain 290 Western Denver

Figure 900, ORG sample table - Data

Project

CREATE TABLE PROJECT
(PROJNO CHARACTER (00006) NOT NULL
,PROJNAME VARCHAR (00024) NOT NULL
,DEPTNO CHARACTER (00003) NOT NULL
,RESPEMP CHARACTER (00006) NOT NULL
,PRSTAFF DECIMAL (05,02)
,PRSTDATE DATE
,PRENDATE DATE
,MAJPROJ CHARACTER (00006)
,PRIMARY KEY(PROJNO));

Figure 901, PROJECT sample table - DDL

PROJNO PROJNAME DP# RESEMP PRSTAFF PRSTDATE PRENDATE MAJPRJ
------ ---------------------- --- ------ ------- ---------- ---------- ------
AD3100 ADMIN SERVICES D01 000010 6.50 01/01/1982 02/01/1983
AD3110 GENERAL ADMIN SYSTEMS D21 000070 6.00 01/01/1982 02/01/1983 AD3100
AD3111 PAYROLL PROGRAMMING D21 000230 2.00 01/01/1982 02/01/1983 AD3110
AD3112 PERSONNEL PROGRAMMING D21 000250 1.00 01/01/1982 02/01/1983 AD3110
AD3113 ACCOUNT PROGRAMMING D21 000270 2.00 01/01/1982 02/01/1983 AD3110
IF1000 QUERY SERVICES C01 000030 2.00 01/01/1982 02/01/1983 -
IF2000 USER EDUCATION C01 000030 1.00 01/01/1982 02/01/1983 -
MA2100 WELD LINE AUTOMATION D01 000010 12.00 01/01/1982 02/01/1983 -
MA2110 W L PROGRAMMING D11 000060 9.00 01/01/1982 02/01/1983 MA2100
MA2111 W L PROGRAM DESIGN D11 000220 2.00 01/01/1982 12/01/1982 MA2110
MA2112 W L ROBOT DESIGN D11 000150 3.00 01/01/1982 12/01/1982 MA2110
OP1000 OPERATION SUPPORT E01 000050 6.00 01/01/1982 02/01/1983 -
OP1010 OPERATION E11 000090 5.00 01/01/1982 02/01/1983 OP1000
OP2000 GEN SYSTEMS SERVICES E01 000050 5.00 01/01/1982 02/01/1983 -
MA2113 W L PROD CONT PROGS D11 000160 3.00 02/15/1982 12/01/1982 MA2110
OP2010 SYSTEMS SUPPORT E21 000100 4.00 01/01/1982 02/01/1983 OP2000
OP2011 SCP SYSTEMS SUPPORT E21 000320 1.00 01/01/1982 02/01/1983 OP2010
OP2012 APPLICATIONS SUPPORT E21 000330 1.00 01/01/1982 02/01/1983 OP2010
OP2013 DB/DC SUPPORT E21 000340 1.00 01/01/1982 02/01/1983 OP2010
PL2100 WELD LINE PLANNING B01 000020 1.00 01/01/1982 09/15/1982 MA2100

Figure 902, PROJECT sample table - Data

 Graeme Birchall ©

338 DB2 Sample Tables

Sales

CREATE TABLE SALES
(SALES_DATE DATE
,SALES_PERSON VARCHAR (00015)
,REGION VARCHAR (00015)
,SALES INTEGER);

Figure 903, SALES sample table - DDL

SALES_DATE SALES_PERSON REGION SALES
---------- --------------- --------------- -----
12/31/1995 GOUNOT Quebec 1
12/31/1995 LEE Manitoba 2
12/31/1995 LEE Ontario-South 3
12/31/1995 LEE Quebec 1
12/31/1995 LUCCHESSI Ontario-South 1
03/29/1996 GOUNOT Manitoba 7
03/29/1996 GOUNOT Ontario-South 3
03/29/1996 GOUNOT Quebec 1
03/29/1996 LEE Manitoba 5
03/29/1996 LEE Ontario-North 2
03/29/1996 LEE Ontario-South 2
03/29/1996 LEE Quebec 3
03/29/1996 LUCCHESSI Ontario-South 3
03/29/1996 LUCCHESSI Quebec 1
03/30/1996 GOUNOT Manitoba 1
03/30/1996 GOUNOT Ontario-South 2
03/30/1996 GOUNOT Quebec 18
03/30/1996 LEE Manitoba 4
03/30/1996 LEE Ontario-North 3
03/30/1996 LEE Ontario-South 7
03/30/1996 LEE Quebec 7
03/30/1996 LUCCHESSI Manitoba 1
03/30/1996 LUCCHESSI Ontario-South 1
03/30/1996 LUCCHESSI Quebec 2
03/31/1996 GOUNOT Ontario-South 2
03/31/1996 GOUNOT Quebec 1
03/31/1996 LEE Manitoba 3
03/31/1996 LEE Ontario-North 3
03/31/1996 LEE Ontario-South 14
03/31/1996 LEE Quebec 7
03/31/1996 LUCCHESSI Manitoba 1
04/01/1996 GOUNOT Manitoba 7
04/01/1996 GOUNOT Ontario-North 1
04/01/1996 GOUNOT Ontario-South 3
04/01/1996 GOUNOT Quebec 3
04/01/1996 LEE Manitoba 9
04/01/1996 LEE Ontario-North -
04/01/1996 LEE Ontario-South 8
04/01/1996 LEE Quebec 8
04/01/1996 LUCCHESSI Manitoba 1
04/01/1996 LUCCHESSI Ontario-South 3

Figure 904, SALES sample table - Data

Staff

CREATE TABLE STAFF
(ID SMALLINT NOT NULL
,NAME VARCHAR (00009)
,DEPT SMALLINT
,JOB CHARACTER (00005)
,YEARS SMALLINT
,SALARY DECIMAL (07,02)
,COMM DECIMAL (07,02)
,PRIMARY KEY(ID));

Figure 905, STAFF sample table - DDL

DB2 UDB/V8.1 Cookbook ©

Appendix 339

ID NAME DEPT JOB YEARS SALARY COMM
------ --------- ------ ----- ------ --------- ---------
 10 Sanders 20 Mgr 7 18357.50 -
 20 Pernal 20 Sales 8 18171.25 612.45
 30 Marenghi 38 Mgr 5 17506.75 -
 40 O’Brien 38 Sales 6 18006.00 846.55
 50 Hanes 15 Mgr 10 20659.80 -
 60 Quigley 38 Sales - 16808.30 650.25
 70 Rothman 15 Sales 7 16502.83 1152.00
 80 James 20 Clerk - 13504.60 128.20
 90 Koonitz 42 Sales 6 18001.75 1386.70
 100 Plotz 42 Mgr 7 18352.80 -
 110 Ngan 15 Clerk 5 12508.20 206.60
 120 Naughton 38 Clerk - 12954.75 180.00
 130 Yamaguchi 42 Clerk 6 10505.90 75.60
 140 Fraye 51 Mgr 6 21150.00 -
 150 Williams 51 Sales 6 19456.50 637.65
 160 Molinare 10 Mgr 7 22959.20 -
 170 Kermisch 15 Clerk 4 12258.50 110.10
 180 Abrahams 38 Clerk 3 12009.75 236.50
 190 Sneider 20 Clerk 8 14252.75 126.50
 200 Scoutten 42 Clerk - 11508.60 84.20
 210 Lu 10 Mgr 10 20010.00 -
 220 Smith 51 Sales 7 17654.50 992.80
 230 Lundquist 51 Clerk 3 13369.80 189.65
 240 Daniels 10 Mgr 5 19260.25 -
 250 Wheeler 51 Clerk 6 14460.00 513.30
 260 Jones 10 Mgr 12 21234.00 -
 270 Lea 66 Mgr 9 18555.50 -
 280 Wilson 66 Sales 9 18674.50 811.50
 290 Quill 84 Mgr 10 19818.00 -
 300 Davis 84 Sales 5 15454.50 806.10
 310 Graham 66 Sales 13 21000.00 200.30
 320 Gonzales 66 Sales 4 16858.20 844.00
 330 Burke 66 Clerk 1 10988.00 55.50
 340 Edwards 84 Sales 7 17844.00 1285.00
 350 Gafney 84 Clerk 5 13030.50 188.00

Figure 906, STAFF sample table - Data

 Graeme Birchall ©

340 DB2 Sample Tables

DB2 UDB/V8.1 Cookbook ©

Book Binding 341

Book Binding

Below is a quick-and-dirty technique for making a book out of this book. The object of the
exercise is to have a manual that will last a long time, and that will also lie flat when opened
up. All suggested actions are done at your own risk.

Tools Required

Printer, to print the book.

• KNIFE, to trim the tape used to bind the book.

• BINDER CLIPS, (1" size), to hold the pages together while gluing. To bind larger books,
or to do multiple books in one go, use two or more cheap screw clamps.

• CARDBOARD: Two pieces of thick card, to also help hold things together while gluing.

Consumables

Ignoring the capital costs mentioned above, the cost of making a bound book should work out
to about $4.00 per item, almost all of which is spent on the paper and toner. To bind an al-
ready printed copy should cost less than fifty cents.

• PAPER and TONER, to print the book.

• CARD STOCK, for the front and back covers.

• GLUE, to bind the book. Cheap rubber cement will do the job The glue must come with
an applicator brush in the bottle. Sears hardware stores sell a more potent flavor called
Duro Contact Cement that is quite a bit better. This is toxic stuff, so be careful.

• CLOTH TAPE, (2" wide) to bind the spine. Pearl tape, available from Pearl stores, is
fine. Wider tape will be required if you are not printing double-sided.

• TIME: With practice, this process takes less than five minutes work per book.

Before you Start

• Make that sure you have a well-ventilated space before gluing.

• Practice binding on some old scraps of paper.

• Kick all kiddies out off the room.

Instructions

• Print the book - double-sided if you can. If you want, print the first and last pages on card
stock to make suitable protective covers.

• Jog the pages, so that they are all lined up along the inside spine. Make sure that every
page is perfectly aligned, otherwise some pages won’t bind. Put a piece of thick card-
board on either side of the set of pages to be bound. These will hold the pages tight dur-
ing the gluing process.

 Graeme Birchall ©

342

• Place binder clips on the top and bottom edges of the book (near the spine), to hold eve-
rything in place while you glue. One can also put a couple on the outside edge to stop the
pages from splaying out in the next step. If the pages tend to spread out in the middle of
the spine, put one in the centre of the spine, then work around it when gluing. Make sure
there are no gaps between leafs, where the glue might soak in.

• Place the book spine upwards. The objective here is to have a flat surface to apply the
glue on. Lean the book against something if it does not stand up freely.

• Put on gobs of glue. Let it soak into the paper for a bit, then put on some more.

• Let the glue dry for at least half an hour. A couple of hours should be plenty.

• Remove the binder clips that are holding the book together. Be careful because the glue
does not have much structural strength.

• Separate the cardboard that was put on either side of the book pages. To do this, carefully
open the cardboard pages up (as if reading their inside covers), then run the knife down
the glue between each board and the rest of the book.

• Lay the book flat with the front side facing up. Be careful here because the rubber cement
is not very strong.

• Cut the tape to a length that is a little longer that the height of the book.

• Put the tape on the book, lining it up so that about one quarter of an inch (of the tape
width) is on the front side of the book. Press the tape down firmly (on the front side only)
so that it is properly attached to the cover. Make sure that a little bit of tape sticks out of
both the bottom and top ends of the spine.

• Turn the book over (gently) and, from the rear side, wrap the cloth tape around the spine
of the book. Pull the tape around so that it puts the spine under compression.

• Trim excess tape at either end of the spine using a knife or pair of scissors.

• Tap down the tape so that it is firmly attached to the book.

• Let the book dry for a day. Then do the old "hold by a single leaf" test. Pick any page,
and gently pull the page up into the air. The book should follow without separating from
the page.

More Information

The binding technique that I have described above is fast and easy, but rather crude. It would
not be suitable if one was printing books for sale. There are, however, other binding methods
that take a little more skill and better gear that can be used to make "store-quality" books. A
good reference on the general subject of home publishing is Book-on-Demand Publishing
(ISBN 1-881676-02-1) by Rupert Evans. The publisher is BlackLightning Publications Inc.
They are on the web (see: www.flashweb.com).

DB2 UDB/V8.1 Cookbook ©

Index 343

Index

A
ABS function, 101
ACOS function, 102
ADD function. See PLUS function
AGGREGATION function, 90
ALIAS, 19
ALL, sub-query, 201, 211
AND vs. OR, precedence rules, 32
ANY, sub-query, 200, 209
Arithmetic, precedence rules, 32
AS statement

Correlation name, 25
Renaming fields, 26

ASCII function, 102
ASIN function, 102
ATAN function, 102
ATOMIC, BEGIN statement, 57
AVG

Compared to median, 314
Date value, 68
Function, 67, 316
Null usage, 68

B
Balanced hierarchy, 265
BEGIN ATOMIC statement, 57
BETWEEN

AGGREGATION function, 95
Predicate, 29

BIGINT function, 102, 329
BLOB function, 103

C
Cartesian Product, 188
CASE expression

Character to number, 297
Definition, 37
Recursive processing, 277
Sample data creation, usage, 285
Selective column output, 302
UPDATE usage, 38
Wrong sequence, 327
Zero divide (avoid), 39

CAST expression
CASE usage, 39
Definition, 33

CEIL function, 103
CHAR function, 104, 300
Character to number, convert, 297
Chart making using SQL, 303
CHR function, 106
Circular Reference. See You are lost
Clean hierarchies, 273
CLOB function, 106
COALESCE function, 106, 190

Common table expression
Definition, 246
Full-select clause, 248

Compound SQL
DECLARE variables, 58
Definition, 57
FOR statement, 59
IF statement, 60
LEAVE statement, 61
Scalar function, 154
SIGNAL statement, 61
Table function, 157
WHILE statement, 61

CONCAT function, 107, 148
Convergent hierarchy, 264
Convert

Character to number, 297
Decimal to character, 301
Integer to character, 300
Timestamp to numeric, 302

Correlated sub-query
Definition, 206
NOT EXISTS, 208

CORRELATION function, 69
Correlation name, 25
COS function, 108
COT function, 108
COUNT DISTINCT function

Definition, 69
Null values, 80

COUNT function
Definition, 69
No rows, 70, 176, 320
Null values, 69

COUNT_BIG function, 70
COVARIANCE function, 70
Create Table

Dimensions, 226
Example, 18
Identity Column, 230, 232
Indexes, 225
Materialized query table, 219
Staging tables, 226

CUBE, 171

D
Data in view definition, 18
Data types, 19, 21
DATE

AVG calculation, 68
Function, 109
Manipulation, 321, 324
Output order, 327

DAY function, 109
DAYNAME function, 110

 Graeme Birchall ©

344

DAYOFWEEK function, 110
DAYOFYEAR function, 111
DAYS function, 111
DECIMAL

Convert to character, 301
Function, 112, 302, 329
Multiplication, 32, 126

DECLARE variables, 58
Declared Global Temporary Table, 244, 251
DECRYPT_BIN function, 112
DECRYPT_CHAR function, 112
Deferred Refresh tables, 220
DEGRESS function, 112
DELETE

Counting using triggers, 241
Definition, 46
Full-select, 47
MERGE usage, 53
OLAP functions, 47
Select results, 50

Delimiter, statement, 17, 57
Denormalize data, 308
DENSE_RANK function, 78
DETERMINISTIC statement, 151
DIFFERENCE function, 113
DIGITS function, 113, 300
DISTINCT, 67, 99
Distinct types, 19, 21
Divergent hierarchy, 263
DIVIDE "/" function, 147
DOUBLE function, 114
Double quotes, 27

E
ENCRYPT function, 114
ESCAPE phrase, 31
EXCEPT, 214
EXISTS, sub-query, 29, 202, 207, 208
EXP function, 115

F
FETCH FIRST clause

Definition, 24
Efficient usage, 88

FLOAT function, 115, 329
Floating-point numbers, 329
FLOOR function, 116
FOR statement, 59
Fractional date manipulation, 324
Full Outer Join

COALESCE function, 190
Definition, 184

Full-select
Definition, 248
DELETE usage, 47
INSERT usage, 41, 42
MERGE usage, 54
TABLE function, 249
UPDATE usage, 44, 45, 251

G
GENERATE_UNIQUE function, 116, 282
GET DIAGNOSTICS statement, 59
GETHINT function, 117

Global Temporary Table, 244, 251
GROUP BY

CUBE, 171
Definition, 161
GROUPING SETS, 163
Join usage, 176
ORDER BY usage, 175
PARTITION comparison, 98
ROLLUP, 167
Zero rows match, 320

GROUPING function, 71, 165
GROUPING SETS, 163

H
HAVING

Definition, 161
Zero rows match, 320

HEX function, 117, 160, 302, 330
Hierarchy

Balanced, 265
Convergent, 264
Denormalizing, 273
Divergent, 263
Recursive, 264
Summary tables, 273
Triggers, 273

History tables, 289, 292
HOUR function, 118

I
Identity column

IDENTITY_VAL_LOCAL function, 235
Restart value, 233
Usage notes, 229

IDENTITY_VAL_LOCAL function, 118, 235, 242
IF statement, 60
Immediate Refresh tables, 221
IN

Multiple predicates, 207
Predicate, 30
Sub-query, 205, 207

Index on materialized query table, 225
Inner Join

Definition, 180
ON and WHERE usage, 180
Outer followed by inner, 196

INPUT SEQUENCE, 48
INSERT

24-hour timestamp notation, 319
Common table expression, 248
Definition, 40
Full-select, 41, 42, 250
Function, 119
MERGE usage, 52
Select results, 48

INTEGER
Arithmetic, 32
Convert to character, 300
Function, 119
Truncation, 326

INTERSECT, 214
ITERATE statement, 60

DB2 UDB/V8.1 Cookbook ©

Index 345

J
Join

Cartesian Product, 188
COALESCE function, 190
DISTINCT usage warning, 67
Full Outer Join, 184
GROUP BY usage, 176
Inner Join, 180
Left Outer Join, 181
Null usage, 190
Right Outer Join, 183
Syntax, 177

JULIAN_DAY function
Definition, 119
History, 120

L
LCASE function, 121
LEAVE statement, 61
LEFT function, 122
Left Outer Join, 181
LENGTH function, 122
LIKE predicate

Definition, 30
ESCAPE usage, 31
Varchar usage, 325

LN function, 123
LOCATE function, 123
LOG function, 123
LOG10 function, 123
Lousy Index. See Circular Reference
LTRIM function, 124, 311

M
Matching rows, zero, 320
Materialized Query Table

Syntax diagram, 217
Materialized query tables

DDL restrictions, 219
Dimensions, 226
Index usage, 225
Refresh Deferred, 220
Refresh Immediate, 221
Staging tables, 226

MAX
Function, 71
Rows, getting, 85
Values, getting, 83, 87

Median, 314
MERGE

Definition, 51
DELETE usage, 53
Full-select, 54
INSERT usage, 53
IPDATE usage, 53

MICROSECOND function, 124
MIDNIGHT_SECONDS function, 124
MIN function, 72
MINUS "-" function, 147
MINUTE function, 125
Missing rows, 306
MOD function, 125
MONTH function, 126
MONTHNAME function, 126

MULITPLY_ALT function, 126
Multiplication, overflow, 126
MULTIPLY "*" function, 147

N
Nested table expression, 243
NEXTVAL expression, 238, 242
No rows match, 320
NODENUMBER function, 127
Normalize data, 307
NOT EXISTS, sub-query, 206, 208
NOT IN, sub-query, 205, 208
NOT predicate, 28
NULLIF function, 127
Nulls

CAST expression, 33
COUNT DISTINCT function, 69, 80
COUNT function, 208
Definition, 26
GROUP BY usage, 162
Join usage, 190
Order sequence, 160
Predicate usage, 32
Ranking, 80

O
OLAP functions

AGGREGATION function, 90
DELETE usage, 47
DENSE_RANK function, 78
RANK function, 78
ROW_NUMBER function, 84
UPDATE usage, 45

ON vs. WHERE, joins, 179, 180, 182, 184
OPTIMIZE FOR clause, 89
OR vs. AND, precedence rules, 32
ORDER BY

AGGREGATION function, 93
CONCAT function, 107
Date usage, 327
Definition, 159
FETCH FIRST, 25
GROUP BY usage, 175
Nulls processing, 80, 160
RANK function, 79
ROW_NUMBER function, 84

Outer Join
COALESCE function, 190
Definition, 184
ON vs. WHERE, joins, 182, 184
Outer followed by inner, 196

Overflow errors, 126

P
Partition

AGGREGATION function, 98
GROUP BY comparison, 98
RANK function, 81
ROW_NUMBER function, 85

PARTITION function, 127
Percentage calculation, 244
PLUS "+" function, 146
POSSTR function, 128
POWER function, 128

 Graeme Birchall ©

346

Precedence rules, 32
PREVVAL expression, 238, 242

Q
Quotes, 27

R
RAISE_ERROR function, 129
RAND function

Description, 129
Predicate usage, 322
Random row selection, 132
Reproducable usage, 130
Reproducible usage, 281

RANGE (AGGREGATION function), 97
RANK function, 78
REAL function, 132
Recursion

Fetch first n rows, 90
Halting processing, 266
How it works, 255
Level (in hierarchy), 259
List children, 258
Multiple invocations, 261
Normalize data, 307
Stopping, 266
Warning message, 262
When to use, 255

Recursive hierarchy
Definition, 264
Denormalizing, 274, 276
Triggers, 274, 276

Refresh age, 220
Refresh Deferred tables, 220
Refresh Immediate tables, 221
REGRESSION functions, 72
REPEAT function, 133
REPLACE function, 133
Restart, Identity column, 233
RETURN statement, 152
Reversing values, 310
RIGHT function, 134
Right Outer Join, 183
ROLLUP, 167
ROUND function, 134
ROW_NUMBER function, 84, 315
ROWS (AGGREGATION function), 94
RTRIM function, 134, 311

S
Scalar function, user defined, 151
SELECT

DML changes, 47
SELECT statement

Correlation name, 25
Definition, 22
Full-select, 250
INSERT usage, 42
Random row selection, 132
Syntax diagram, 23
UPDATE usage, 45

Sequence
Create, 237
Multi table usage, 240

NEXTVAL expression, 238
PREVVAL expression, 238

Sequence numbers. See Identity column
SIGN function, 135
SIGNAL statement, 61
SIN function, 135
SMALLINT function, 135
SOME, sub-query, 200, 209
Sort string, 313
SOUNDEX function, 135
Sourced function, 149
SPACE function, 136
SQLCACHE_SNAPSHOT function, 137
SQRT function, 137
Staging tables, 226
Statement delimiter, 17, 57
STDDEV function, 73
Strip

Functions. See LTRIM or RTRIM
Roll your own, 311
User defined function, 311

Sub-query
Correlated, 206
DELETE usage, 47
Error prone, 200
EXISTS usage, 202, 207
IN usage, 205, 207
Multi-field, 207
Nested, 207

SUBSTR function
Chart making, 303
Definition, 138

SUBTRACT function. See MINUS function
SUM function, 74, 93
Summary tables

Recursive hierarchies, 273

T
Table. See Create Table
Table function, 156
TABLE function, 249
TABLE_NAME function, 139
TABLE_SCHEMA function, 139
Temporary Table

Common table expression, 246
Full select, 248
Global Declared, 244, 251
TABLE function, 249

Terminator,, 17, 57
Test Data. See Sample Data
Time Series data, 286
TIMESTAMP

24-hour notation, 319
Function, 140
Manipulation, 319, 324

TIMESTAMP_FORMAT function, 140
TIMESTAMP_ISO function, 141
TIMESTAMPDIFF function, 141
TO_CHAR function. See VARCHAR_FORMAT
TO_DATE function. See TIMETAMP_FORMAT
TRANSLATE function, 143
Triggers

Delete counting, 241
History tables, 290, 295

DB2 UDB/V8.1 Cookbook ©

Index 347

Identity column, 234
Recursive hierarchies, 274, 276
Sequence, 240

TRIM. See LTRIM or RTRIM
TRUNCATE function, 143
Truncation, numeric, 326

U
UCASE function, 144
Unbalanced hierarchy, 265
Uncorrelated sub-query, 206

Nested, 207
UNION

INSERT usage, 42
Precedence Rules, 215
Recursion, 256
UNION ALL, 214
View usage, 216

UPDATE
CASE usage, 38
Definition, 43
Full-select, 44, 45, 251
MERGE usage, 52
OLAP functions, 45
Select results, 49

User defined function
Data-type conversion example, 297, 300
Denormalize example, 308
Locate Block example, 268
Recursion usage, 268
Reverse example, 310
Scalar function, 151
Sort string example, 313
Sourced function, 149
Strip example, 311
Table function, 156

V
VALUE function, 144
VALUES expression

Definition, 34
View usage, 36

VARCHAR function, 144
VARCHAR_FORMAT function, 145
VARIANCE function, 74
Versions (history tables), 292
View

Data in definition, 18
DDL example, 18, 19, 36
History tables, 291, 294
UNION usage, 216

W
WEEK function, 145, 326
WEEK_ISO function, 146
WHERE vs. ON, joins, 179, 180, 182, 184
WHILE statement, 61
WITH statement

Defintion, 246
Insert usage, 248
MAX values, getting, 87
Multiple tables, 247
Recursion, 256
VALUES expression, 35

Y
YEAR function, 146
You are lost. See Lousy Index

Z
Zero divide (avoid), 39
Zero rows match, 320

