
52YHUYLHZ

w WHAT IS PERFORMANCE

w WHY DO YOU NEED TO TUNE

w WHAT CAUSES PERFORMACE PROBLEM

w PLANNING PERFORMANCE TUNING

w ARCHITECTURE AND PROCESSES

Regardless of the database size or the number of users, performance is always
the key for successful application. If performance of database system is good, users
can be productive since they can obtain desired information immediately. If you
manage an internet business such as an on-line shopping, offering the appropriate
response time of your web site for 24 hours and 365 days is crucial not to loose
your business opportunity. Your customers (you cannot anticipate when they visit
your site) hate to be frustrated with slow web-sites and tend to leave your site
easily by a mouse clicking.

You need to understand couples of considerations about logical and physical
database design, application design, and configuration parameters of DB2 UDB so
that your database system can meet performance requirement of your application.

Even though performance of your system is good at the first time, as time goes, the
system may have to serve more number of users, store more volume of data,
process more complex queries, produce more reports, and consequently the load
level of your database server grows up and performance is affected.

1& + $ 3 7 (5

Chapter 1 Overview2

This chapter provides an overview of the tasks involved in tuning your database
environment to obtain optimal performance. It also discusses an overview of the
architecture and processes of DB2 UDB.

What is performance
Performance is the capacity of your system to produce desired results with a
minimum cost of time or resources, and measured through response time,
throughput, and availability.

Performance is not an absolute value. The performance of an information system
can be measured as better or worse than a reference value. That reference value
should be established first, and then the results of tuning efforts can be compared
against the reference value. The reference value has to be established according to
the requirements of the information system. Those requirements, or service level
agreement, may include the throughput of the system, limits on the response time
for a percentileof transactions or any other issue relevant to the end user.

Units of measurement are usually based on the response time of a given workload.
Other units of measurement may be based on transactions per second, I/O
operations, CPU use or a combination of the above.

You should not set the performance goal such as ’Response time of all transaction
must be less than 3 seconds’. This is not a practical goal because your application
may submit a complex query which takes 10 minutes (even though it does not
happen everyday). The goal should be, for example, ’This particular queries must
be completed in 2 minutes’. Once you have set the measurable performance goal,
monitor your system’s actual performance and compare it with the goal. Then start
discussion what you can do to fill the gap.

Why Do You Need To Tune?
Your database system is a very complex data-processing environment including
hardware resources, software components, and application programs. DB2 UDB
starts many processes which represent different roles in your database system and
allocates memory areas. They are tightly related each other and consume hardware
resources.

When you observe any performance problems, buying more powerful and
expensive machines can be a solution. Even though you will eventually recognize
that your system needs to have more hardware resources, you may utilize existing
resource and improve the performance by tuning operating system and databases
before buying something. By carrying out a performance tuning project, you can
balance your hardware resources to each part of database system including
processes and required memory areas.

What May Cause Performance Problems? 3

O
ve

rv
ie

w
G

et
ti

n
g

 S
ta

rt
ed

G

et
ti

n
g

 C
o

n
n

ec
te

d

C
o

n
tr

o
lli

n
g

 D
at

a
A

cc
es

s

Specific goals of tuning could include:

• Processing a larger, or more demanding, work load without buying new
hardware.

• Obtaining faster system response times, or higher throughput, without
increasing processing costs.

• Reducing processing costs without negatively affecting service to your users.
and spend money for other resources.

Other benefits such as greater user satisfaction and productivity because of quicker
response time, are intangible. If you manage an internet business, higher
performance including quick response time and high availability may avoid
loosing your business opportunity. All of these benefits should be considered.

Performance tuning certainly costs money (through your time and through
processor time). Before you undertake a performance tuning, weigh its costs
against its possible benefits. Don’t tune just for the sake of tuning.

What May Cause Performance Problems?
There are many reasons causing performance problems as the following:

Poor Application Design
Poor application design and poor programs are major performance problem
creators. When you experience performance problems, in many cases, your
application programs have the reason and the database does not have any problem.
For example, SQL statements written inappropriately will degrade overall
performance even though your database is well designed and tuned. Chapter 6
(XREF) describes tips you should take into consideration when designing and
developing applications.

Poor System and Database Design
Poor design of your system and/or databases can be also the reason for
performance problems. Poor disk storage layout, lack of considering performance
when designing and implementing your database will degrade performance, and
these problems are hard to fix once your production system has been started.
Chapter 3 described tips you should take into consideration when designing disk
storage layout and databases.

System Resource Shortage
System resource shortage can be bottlenecks of your database system:

• CPU
Too many users or running applications on a CPU may cause system
degradation.

• Memory

Chapter 1 Overview4

Every processes will use some of physical memory. If you have insufficient
memory, you may find that application will fail, or your system will start
thrashing.

• Disk I/O
I/O performance can play an important part in a database system. Too much
activity on a single disk or I/O bus may cause performance problem.

• Network
Unless you are in a stand-alone environment, the network plays an important
role. If the network is too slow then this may appear to the client as a perfor-
mance problem at the database server.

As mentioned above, if the reason for poor performance exists in the system or
database design, it would not be as easy as tuning performance parameters of the
operating system or the database manager. Therefore, you should take performance
considerations in all the stages of the system development. In this book, we discuss
not only tuning the operating system and the database manager/database
configuration parameters, but also discuss considerations associated with disk
storage layout, database design, and application design.

Planning Performance Tuning
When you carry out a performance tuning project, the worst approach is changing
the value of many performance tuning parameters once without no idea what is
causing the performance problem. You might be able to make a miracle by taking
such an approach; however, in many cases, performance gets worse and you never
know which parameter was the cause. Even if you are in a hurry, you should
perform the following steps:

1. Find which queries are slow.

2. Measure the current performance and set the performance goal.

3. Monitor your system and identify where the bottleneck is.

4. Decide where you can afford to make trade-offs and which resources can bear
an additional load.

5. Change only one performance parameter to relief the bottleneck.

6. Execute the queries again as monitoring your system and check if the
performance meets your goal.

7. If the performance does not meet the goal, go back to the step 3.

Planning Performance Tuning 5

O
ve

rv
ie

w
G

et
ti

n
g

 S
ta

rt
ed

G

et
ti

n
g

 C
o

n
n

ec
te

d

C
o

n
tr

o
lli

n
g

 D
at

a
A

cc
es

s

Locate Problems and Establish Goals

When you hear that response time is slow, you first need to identify what the
problem is. You may need to check:

• Whether he/she is the only one who experienced this problem or others are also
complaining the same problem.

• Whether the poor performance was experienced only in a particular application/
queries.

Also check:

• When he/she noticed the poor performance, today or has been seen for a long
time.

• How slow it is, ten percent slower or ten times slower usual.
• Whether someone had made significant changes on the system just before the

performance problem was noticed.

To carry out a performance tuning project, it is important to establish the objective.
Find which queries are slow, and set measurable performance goal like ’The
response time of this particular query should be less than 30 seconds’.

Identify the Cause

Once you focused on particular queries, execute those queries as monitoring the
system using monitoring tools which the operating system and DB2 UDB provide,
and identify where is the bottleneck. Chapter 4 (XREF) presents several
monitoring tools you can use.

This step is important because if you tune resources that are not the primary cause
of performance problems, this can have little or no effect on response time until
you have relieved the major constraints, and it can make subsequent tuning work
more difficult.

Change a Performance Parameter

Even if you find more than one possible cause and you are sure that tuning all of
them will be beneficial, you should change only one performance tuning parameter
at a time. It will be very difficult to evaluate how much, which one have contributed
if you change more than one parameter.

Chapter 1 Overview6

The appropriate values for parameters affecting performance can best be
determined by performing tests and the values of the parameters are modified until
the point of diminishing return for performance is found. If performance versus
parameter values were graphed, the point where the curve begins to plateau or
decline would indicate the point at which additional allocation provides no
additional value to the application and is therefore simply wasting memory.

DB2 UDB provides configuration parameters to balance your hardware resources
to each part of database system including processes and required memory areas.
Those parameters can be grouped into database manager configuration parameters
whose setting effect instance level and database configuration parameters whose
setting effect database level. To update database manager configuration parameters,
you can use the Control Center GUI tools (discussed in Chapter 2) or perform the
following command:

To update database configuration parameters, you can use the Control Center GUI
tools or perform the following command:

DB2 UDB also provides the registry variables which control the behavior of the
database manager. The registry variables can effect both instance level and
machine level. We introduce some of the available registry variables which affect
the system performace in this book. To update the registry variables, you can use
the following command:

UPDATE DBM CFG USING parameter_name value

UPDATE DB CFG FOR dbname USING parameter_name value

Note: Once you have created a new database, we recommend to use the
Configure Performance Wizard to obtain recommended values for
database manager and database configuration parameters and set them as
initial values rather than using default values. The Configure Performance
Wizard will suggest suitables values for those parameters based on factors
such as workload and server configuration (for example, the number of
CPU). We discuss this wizard in Chapter2.

Chapter 1 Overview7

You need to restart the database manager when you change the registry variables.

Before making any changes to performance parameters, please be prepared to back
those changes out if they do not have the desired effect or have a negative effect on
the system. For example, the db2look utility with -f option extracts the current
values of the configuration parameters and the DB2 registry variables. The output
of the utility is a script file which you can execute to go back to the setting at the
time when the utility was executed. The db2look utility also extracts the required
DDL statements to reproduce the database objects of a production database on a
test database. This utility is very useful when testing against a production database
is not possible. See the DB2 UDB Command Reference for more information.

Apart from changing performance parameters, creating indexes may improve query
performance. Defining appropriate indexes may reduce disk I/O and data sorts
significantly. You can use the Explain tool whether indexes can be used for
particular queries.

As we have already stated, the major causes of performance problems are actually
poor applications or poor database design rather than the database configuration.
Before tuning performance parameters, please check either your application or
database design is not a cause. Chapter 3 and chapter 6 (XREF) describe the points
you should consider when designing databases and developing applications.

Architecture and Processes Overview
When working with the performance of the DB2 UDB databases, it is important for
you to have basic understanding of the DB2 UDB architecture and processes. In
this section, we discuss an overview of the architecture and processes.

Fig. 4–1 shows you an overview of the architecture and processes of DB2 UDB.

Each client application is linked with DB2 UDB client library and communicates
DB2 UDB Server using shared memory and semaphores (local clients), or a
communication protocol such as TCP/IP and APPC (remote clients).

On the server side, activity is controlled by engine dispatchable units (EDUs).
EDUs are implemented as processes on UNIX including AIX and shown as circles
or groups of circles in Fig. 4–1.

db2set variable=value

Chapter 1 Overview8

DB2 Agents

DB2 agents including coordinator agents and subagents are the most common type
of DB2 UDB processes which carry out the bulk of the SQL processing on behalf
of applications. DB2 UDB assigns a coordinator agent which coordinates the
processing for an application and communicates with it. If you disable intra-
partition parallelism, the assigned coordinator agent will pursue all the requests
from the application. If you enable intra-partition parallelism, you will see a set of
subagents assigned together to the application to work on processing the
application requests. If you database server machine has multiple processors, by
letting multiple subagents work together, complex queries requested by the
applications can exploit those processors and obtain the result faster. In Fig. 4–1,
we assume that intra-partition parallelism is enabled. On UNIX, you can observe
coordinator agent processes (db2agent) and subagent processes (db2agntp) using
ps command.

Chapter 1 Overview9

Fig. 4–1 Architecture and Processes Overview

Buffer Pools

A buffer pool is an area of storage memory where database pages of user table data,
index data, and catalog data are temporarily moved from disk storage. DB2 agents
read and modify data pages in the buffer pool. The buffer pool is a key influencer
of overall database performance because data can be accessed much faster from
memory than from a disk. If more of the data needed by applications were present
in the buffer pool then less time would be needed to access this data compared to
time taken to find the data out on disk storage.

'LVNV

&OLHQWV

'%��8'%�6HUYHU

3UHIHWFKHUV

3DJH�
&OHDQHUV

/RJ

/RJJHU

&RRUGLQDWRU
$JHQW

6XEDJHQWV

6KUHG�0HPRU\�6HPDSKRUH��7&3�,3��1DPHG�3LSHV��1HW%,26��61$��,3;�63;

%XIIHU�3RRO�V�

Write
 Log Requests

Async IO Prefetch Requests

Scatter/Gather
I/Os

DB2 UDB Client Library

Client Application

/RJ�
%XIIHU��

Parallel, Page
write requests

Parallel,Big-Block,
read requests

Chapter 1 Overview10

Prefetchers

Prefetchers are present to retrieve data from disk and move it into the buffer pool
before applications need the data. For example, applications needing to scan
through large volumes of data would have to wait for data to be moved from disk
into the buffer pool if there were no data prefetchers. Agents of the application send
asynchronous read-ahead requests to a common prefetch queue. As prefetchers
become available, they implement those requests by using big-block or scatter read
input operations to bring the requested pages from disk to the buffer pool. On
UNIX, you can see prefetcher processes (db2pfchr) using ps command. Having
multiple disks for storage of the database data means that the data can be striped
across the disks. This striping of data enables the prefetchers to use multiple disks
at the same time to retrieve data. We discuss disk layout considerations in Chapter
3.

Page Cleaners

Page cleaners are present to make room in the buffer pool before prefetchers read
pages on disk storage and move into the buffer pool. For example, if you have
updated a large amount of data in a table, many data pages in the buffer pool may
be updated but not written into disk storage (these pages are called dirty pages). In
this case prefetchers cannot use these pages until these updates will be flushed to
disk storage. Page cleaners are independent of the application agents, that look for,
and write out, pages from the buffer pool to ensure that there is room in the buffer
pool. On UNIX, you can see page cleaner processes (db2pclnr) using ps
command.

Without the existence of the independent prefetchers and page cleaners, the DB2
agents would have to do all of the reading and writing of data between the buffer
pool and disk storage. The configuration of the buffer pool, along with prefetchers
and page cleaners, for instance, the size of the buffer pool and the number of
prefetchers and page cleaners control the availability of the data needed by the
applications.

Note: When a page cleaner flushes a dirty page to disk storage, the page
cleaner removes the dirty flag but leaves the page in the bufferpool. This
page will remain in the bufferpool until a prefetcher or a DB2 agent
overrides it.

Chapter 1 Overview11

Logs

Changes to data pages in the buffer pool are logged. Agent processes updating a
data record in the database update the associated page in the buffer pool and write a
log record into a log buffer. The written log records in the log buffer will be flushed
into the log files asynchronously by the logger. On UNIX, you can see a logger
process (db2loggr) for each active database using ps command.

Neither the updated data pages in the buffer pool nor the log records in the log
buffer are written to disk immediately to optimize performance. They are written to
disk by page cleaners and the logger respectively.

The logger and the buffer pool manager cooperate and ensure that the updated data
page is not written to disk storage before its associated log record is written to the
log. This behavior ensures that the database manager can obtain enough
information from the log to recover and protect a database from being left in an
inconsistent when the database is crashed resulting an event such as a power
failure. If an uncommitted update on a data page was written to a disk, the database
manager uses the undo information in the associated log record to undo the update.
If a committed update did not make it to disk, the database manager uses the redo
information in the associated log record to redo the update. This mechanism is
called crash recovery. The database manager performs a crush recovery when you
restart the database.

The data in the log buffer is only forced to disk:

• Before the corresponding data pages are being forced to disk. This is called
write-ahead logging.

• On a COMMIT; or after the value of the number of COMMITS to group
(mincommit) database configuration parameter is reached.

• When the log buffer is full. Double buffering is used to prevent I/O waits.

Update data pages

When an agent updates data pages in a buffer pool, these updates must be logged
and flushed to disk. The protocol described here minimizes the I/O required by the
transaction and also ensures recoverability.

First, the page to be updated is pinned and latched with an exclusive lock. A log
record is written to the log buffer describing how to redo and undo the change. As
part of this action, a log sequence number (LSN) is obtained and is stored in the
page header of the page being updated. The change is then made to the page.
Finally, the page is unlatched and unfixed. The page is considered to be dirty
because there are changes to the page that have not been written out to disk. The
log buffer has also been updated.

Chapter 1 Overview12

Both the data in the log buffer and the dirty data page will need to be forced to disk.
For the sake of performance, these I/Os are delayed until a convenient point (for
example, during a lull in the system load), or until necessary to ensure
recoverability, or to bound recovery time. More specifically, a dirty page is forced
to disk when a page cleaner acts on the page as the result of:

• Another agent choosing it as a victim.
• The CHNGPGS_THRESH database configuration parameter percentage value is

exceeded. Once exceeded, asynchronous page cleaners wake-up and write
changed pages to disk.

• The SOFTMAX database configuration parameter percentage value is exceeded.
Once exceeded, asynchronous page cleaners wake-up and write changed pages
to disk.

We discuss the CHNGPGS_THRESH database configuration parameter and the
SOFTMAX database configuration parameter in Chapter 5 (XREF).

If you set the number of page cleaners zero and no page cleaner is started, a dirty
page is forced disck by another DB2 agent which chooses it as a victim.

Chapter 1 Overview13

Chapter 1 Overview14

Chapter 1 Overview15

A
rch

itec
tu

re
 an

d
 P

ro
c

es
se

s O
v

erview
16

Overview
Getting Started Getting Connected Controlling Data

Access

