I

Guidelines for Using Informix Stored Procedures
Revision 1.1, December 22, 1998

Overview

This document is a compilation of guidelines for using Informix stored procedures. The information in this document was assembled from a variety of sources, including Informix product documentation and training material, and from the real-world experiences of Informix Advanced Support engineers, consultants, and systems engineers.

Stored procedures can be a useful tool for offloading certain SQL functions from a client application to the database server. There are benefits, drawbacks, and pitfalls to doing so. This document is an attempt to outline these areas for optimal use of the Informix architecture.

In general, stored procedures are best used for SQL-intensive routines with little processing outside of SQL. Computation-intensive routines are best suited for a compiled language such as ESQL/C. However, it is impossible to characterize the overall performance impact of stored procedures without actual testing. Real-world performance is dependent on hardware configuration, operating system, network bandwidth and latency, and overall application design.

The information contained in this document is targeted to Informix-Dynamic Server version 7.x, although most of the guidelines are applicable to Informix-OnLine 5.0x and Informix-Universal Data Option 9.x.

Benefits of Stored Procedures
· Shared code among applications reduces complexity and lowers maintenance costs.
Stored procedures can reduce program complexity by moving commonly accessed functionality to the server. In the same way, different programs and user interfaces can share this common code.

· Useful for SQL-intensive routines (more than 1 SQL statement)
Some performance gains may be realized when multiple SQL statements are executed within a single stored procedure. Since the procedure resides directly within the database engine, client/server traffic is reduced, especially over a wide area network. Parsing and optimizing might also be reduced since the procedure is cached as pseudo-code, does not need to be parsed, and might not require re-optimization.

· An extra level of security can be added to enforce business rules.
Users can be forced to use a stored procedure instead of directly accessing tables by revoking all access to underlying tables. Access to a stored procedure is provided through Grant and Revoke execute permissions. A stored procedure executes with the permissions of its creator, not of the user. This allows a DBA to setup strict rules for updating/inserting/deleting rows for tables that are normally off-limits to a user. Programmers would then be required to use the stored procedure(s) to perform any work against the table.

· Useful in combination with triggers for implementing complex server-side business logic

· Good for recursion problems
Stored procedures work well in recursive operations such as exploding a bill of materials. This is a type of function that 4GL cannot perform well with cursors.
· May be used to lower the number of server connections from transaction monitors
When used in conjunction with a transaction monitor such as Tuxedo, stored procedures may be used to batch transactions to the server and thus reduce the overall number of server connections.

Drawbacks of Stored Procedures
A stored procedure has extra costs associated with its execution that SQL does not have:

· Stored procedures must be retrieved from disk the first time they are called
Stored procedures are stored in ASCII in a database’s system catalogs. The first time they are called, they are read from disk, converted from ASCII to binary (pseudo-code) format and placed in the stored procedure cache. Stored procedures are kept in cache on a most recently used basis.
· A procedure is re-optimized if columns, tables, or indexes required by the procedure have changed. By default, this checking occurs each time a procedure is called.
Any change involving the underlying tables or indexes used in a stored procedure will require the stored procedure to be re-optimized. This includes updated statistics, and “grant” or “revoke” activity, since these operations change a table’s internal version. SET OPTIMIZATION LOW can minimize this behavior.
· Stored procedures require additional shared memory (virtual segment) resources
Each user session contains a private stored procedure and data structure cache that is used for executing stored procedures. The number of stored procedures that can be stored in this cache is controlled by the DBMAXPROC environment variable, by default 50.

For performance reasons, the database server allocates memory in a session’s private shared memory for every SQL statement inside of a stored procedure. To avoid the overhead of additional memory allocation, this private cache is not freed until the session disconnects. For this reason, applications with stored procedures will require additional shared memory resources. For applications with large numbers of complex, stored procedures, lowering DBMAXPROC will reduce shared memory requirements.
· Statements that involve stored procedures are not executed in parallel. However, statements within procedures may be executed in parallel, depending on the setting of PDQPRIORITY when the procedure is created.
· Performance may degrade with the amount and type of data returned.
When returning large numbers of rows and columns of data, a stored procedure may not be as efficient as a similar statement in ESQL/C. Before data can be returned from a stored procedure, it must be moved to an expression which is placed on an internal memory stack. In contrast, ESQL/C applications avoid this overhead by directly referencing the data fields.
· Performance is dependent on the number and type of arguments
As there is no support for array data types, passing and parsing a large number of arguments to a stored procedure may be less efficient than processing in a compiled language with array support (such as ESQL/C).
· Because of extra server-side processing, the use of stored procedures may require additional server hardware resources (CPU, memory)

In addition, stored procedures have the following limitations:

· Combined size of procedure code and its global variables are limited to 64K per procedure
 Any procedures larger than 64K must be split and called sequentially from the client application. It might be advisable to use compiled languages such as ESQL/C for procedures larger than 64K.

· Can’t perform dynamic SQL
A stored procedure is parsed and optimized when compiled, preventing the use of dynamic SQL.

· Can’t perform DDL (database) or UNLOAD statements within a stored procedure

· Size of return set is limited (varies by platform)

· Debugging can be complicated, is file-system based, and provides no interactive tools

· SPL language has limited support for time or string manipulations, and no support for variable subscripting.
Informix Dynamic Server version 7.3 and 9.2 introduce a number of new functions that greatly improve string handling, including SUBSTRING(), SUBSTR(), TRIM(), LPAD(), RPAD(), , CHAR_LENGTH(), REPLACE(), UPPER(), LOWER(), and INITCAP().

· The size of the stored procedure cache is limited, and should be adjusted to accommodate the number of procedures in use at any time.
The default stored procedure cache is designed to hold a maximum of 50 stored procedures. Applications with more than this number of procedures should adjust the size of the stored procedure cache (see PC_POOLSIZE and PC_HASHSIZE below), to avoid the costly procedure swap-out and disk re-read.
Guidelines

· Use SET OPTIMIZATION LOW when calling a stored procedure in stable production environments with non-changing procedures.
Applications should SET OPTIMIZATION LOW when calling a stored procedure will not cause the procedure to check to see if it needs to be re-optimized each time it is executed. Make sure to reset to its default SET OPTIMIZATION HIGH for all other operations. The risk of running a procedure fwith low optimization is that the procedure may be unaware of any changes made by other users to the system catalog tables.

· Stored procedures should not be used to perform implement server-side functions unless absolutely necessary
Stored procedures are best designed for executing multiple SQL statements with simple business logic. Because stored procedures are executed using pseudo-code, computation-intensive functions are best implemented in compiled lanaguages (such as ESQL/C).

· Avoid calling a stored procedure many times from another stored procedure.
Although the overhead of calling a stored procedure is low, performance degradation is magnified when a stored procedure is called many times within a WHILE or FOREACH loop of another procedure. If possible, place the code from the called stored procedure in the calling stored procedure. Recursive calls are supported, but nested calls to different procedures may cause resource contention.

· Stored procedures should not be called from within loops
Stored procedures should not be called from within loops. Since procedures are dynamically updateable, the global procedure cache is locked with a mutex lock while a procedure is read to avoid having it change in mid-read. Heavily looped calls to a single procedure can produce mutex lock contention that drops performance to a single-threaded level of operation.

· Limit the use of procedure calls from within data manipulation statements (DML) if you want to exploit the parallel-processing abilities of the database server.
Because any statement that contains a stored procedure call will not be executed in parallel, you should avoid using stored procedure calls from within data manipulation statements.

· Limit the use of SYSTEM statement within stored procedures
The Informix SYSTEM statement provides the ability to execute any operating system command from within a stored procedure. Because of the overhead required to execute an operating system command, the SYTEM command should be avoided in routines with tight performance requirements.

· Manage stored procedures just as you would with other application code
Stored procedures are stored in the database, and are dropped when that database is dropped. For this reason, stored procedure developers should treat stored procedures as if they were application code, using standard version control and makefiles. The dbschema utility can be used to list the latest version of stored procedures in a database.

Operational Considerations

· The size of the stored procedure cache should be tuned through the use of undocumented onconfig parameters PC_HASHSIZE and PC_POOLSIZE:

PC_HASHSIZE – number of hash buckets (default 31, must be a prime number)
PC_POOLSIZE – maximum number of entries (default 50)

The global stored procedure cache can be monitored with the undocumented command
onstat –g prc

· Use the environment variable DBMAXPROC to control the number of stored procedures cached in each session’s private cache

Beginning with the 7.11.UC1 release, a user can set the DBMAXPROC environment variable to control the number of procedures that will be cached in each session's private cache. A reasonable value will be around 30-100. Setting it to 1 may result in thrashing. Setting it to a very high value will result in high memory consumption. The default setting is 50.

DBMAXPROC may be set in each user’s environment. If DBMAXPROC is defined in the environment when the database engine is started, it will use this setting as the default for all sessions unless otherwise specified.

· Tune stored procedure and system catalog tables as you would any heavily utilized data table
Because stored procedures are stored in system catalog, heavy use can cause system catalog tables to grow rapidly. Performance of systems which utilize stored procedures can benefit by tuning the key system catalogs as you would tune heavily utilized data tables: (a) maintaining eight or less extents for stored procedure system catalog tables, (b) isolate system catalogs on separate devices if possible to reduce I/O contention, (c) stripe stored procedure system catalogs across separate physical devices within a dbspace

· Run UPDATE STATISTICS FOR PROCEDURE when table characteristics change, and as part of standard update statistics routine maintenance scripts
UPDATE STATISTICS FOR PROCEDURE updates the query plans and re-optimizes the SQL in all stored procedures. You may optionally specify a stored procedure name to re-optimize a single stored procedure.

The Bottom Line

Stored procedures are intended to implement business rules accessed by many programs. They reduce code maintenance and can improve performance when used correctly.

Stored procedures can reduce program complexity by moving commonly accessed functionality to the server. But, they should not be used to implement complex server based applications. SPL was not designed as a replacement for n-tier application development.

If you have an application that can benefit from complex server-side processing, Informix Universal Data Option provides the ability to embed user-defined functions directly within the server. These functions may be written in compiled languages such as C, C++, or Java.

Finally, if stored procedures are to be employed, be sure to consider that additional server hardware capacity might be needed. Stored procedures utilize CPU and shared memory resources and generate transaction traffic. This could affect engine performance if not addressed during hardware specification.

Where to Go for Additional Information

“Informix Guide to SQL, Syntax Volume 2”, and “SQL Quick Syntax Guide”
both of these manuals are part of the Informix Dynamic Server 7.x documentation

“Using Stored Procedures and Triggers”, 2-day Informix training course #335

“Informix Stored Procedure Programming and Disk”, 159 pages, Informix Press, ISBN 0132067234

Document History

Version 1.1, December 22, 1998

· Added information on DBMAXPROC tunable, session private stored procedure cache, and a tip on avoiding SYSTEM statements.

· Thanks to Albert Grankin, Ray Canuel, Scott Kumamoto and Clyde Jarvis

Version 1.0, December 1, 1998

· initial release, compiled by Paul Christensen from various sources (Informix FAQ, training manuals, documentation, Informix Advanced Support and Informix Enterprise Consulting)

· special credit goes to John Malecki, Liz Suto, Raj Gopalakrishna, Mark Stock, Dan Cearley, and Tom Lindsey for their pointers

Informix Stored Procedure Guidelines

December 1, 1998

5

