
Administrator’s Guide
for Informix Extended Parallel
Server
Version 8.3
December 1999
Part No. 000-6552

ii Administrator’s Guide
Published by Informix Press Informix Corporation
4100 Bohannon Drive
Menlo Park, CA 94025-1032

© 1999 Informix Corporation. All rights reserved. The following are trademarks of Informix Corporation
or its affiliates, one or more of which may be registered in the United States or other jurisdictions:

Answers OnLineTM; C-ISAM; Client SDKTM; DataBlade; Data DirectorTM; Decision FrontierTM;
Dynamic Scalable ArchitectureTM; Dynamic ServerTM; Dynamic ServerTM, Developer EditionTM;
Dynamic ServerTM with Advanced Decision Support OptionTM; Dynamic ServerTM with Extended
Parallel OptionTM; Dynamic ServerTM with MetaCube; Dynamic ServerTM with Universal Data OptionTM;
Dynamic ServerTM with Web Integration OptionTM; Dynamic ServerTM, Workgroup EditionTM;
Dynamic Virtual MachineTM; Extended Parallel ServerTM; FormationTM; Formation ArchitectTM;
Formation Flow EngineTM; Gold Mine Data Access; IIF.2000TM; i.ReachTM; i.SellTM; Illustra; Informix;
Informix 4GL; Informix InquireSM; Informix Internet Foundation.2000TM; InformixLink;
Informix Red Brick Decision ServerTM; Informix Session ProxyTM; Informix VistaTM; InfoShelfTM;
InterforumTM; I-SpyTM; MediazationTM; MetaCube; NewEraTM; ON-BarTM; OnLine Dynamic ServerTM;
OnLine/Secure Dynamic ServerTM; OpenCase; OrcaTM; PaVERTM; Red Brick and Design;
Red Brick Data MineTM; Red Brick Mine BuilderTM; Red Brick DecisionscapeTM; Red Brick ReadyTM;
Red Brick Systems; Regency Support; Rely on Red BrickSM; RISQL; Solution DesignSM; STARindexTM;
STARjoinTM; SuperView; TARGETindexTM; TARGETjoinTM; The Data Warehouse Company;
The one with the smartest data wins.TM; The world is being digitized. We’re indexing it.SM;
Universal Data Warehouse BlueprintTM; Universal Database ComponentsTM; Universal Web ConnectTM;
ViewPoint; VisionaryTM; Web Integration SuiteTM. The Informix logo is registered with the United States
Patent and Trademark Office. The DataBlade logo is registered with the United States Patent and
Trademark Office.

Documentation Team: Twila Booth, Diana Chase, Kathy Eckardt, Virginia Panlasigui, Judith Sherwood,
Karen Smith, Liz Suto

GOVERNMENT LICENSE RIGHTS

Software and documentation acquired by or for the US Government are provided with rights as follows:
(1) if for civilian agency use, with rights as restricted by vendor’s standard license, as prescribed in FAR 12.212;
(2) if for Dept. of Defense use, with rights as restricted by vendor’s standard license, unless superseded by a
negotiated vendor license, as prescribed in DFARS 227.7202. Any whole or partial reproduction of software or
documentation marked with this legend must reproduce this legend.
 for Informix Extended Parallel Server

List of Chapters

List of
Chapters
Section I The Database Server

Chapter 1 Introducing the Database Server

Chapter 2 Overview of Database Server Administration

Section II Configuration

Chapter 3 Installing and Configuring the Database Server

Chapter 4 Configuration Parameters

Chapter 5 Configuring the Database Server

Chapter 6 Client/Server Communications

Chapter 7 Multiple Residency

Chapter 8 Using Multiple Residency

iv Admin
Section III Modes and Initialization

Chapter 9 Managing Database Server Operating Modes

Chapter 10 Initializing the Database Server

Section IV Disk, Memory, and Process
Management

Chapter 11 Virtual Processors and Threads

Chapter 12 Managing Virtual Processors

Chapter 13 Shared Memory

Chapter 14 Managing Shared Memory

Chapter 15 Data Storage

Chapter 16 Managing Disk Space

Chapter 17 Table Fragmentation and PDQ
istrator’s Guide for Informix Extended Parallel Server

Section V Logging and Log Administration

Chapter 18 Logging

Chapter 19 Managing Database-Logging Status

Chapter 20 Logical Log

Chapter 21 Managing Logical-Log Files

Chapter 22 Physical Logging

Chapter 23 Managing the Physical Log

Chapter 24 Checkpoints and Fast Recovery

Section VI Fault Tolerance

Chapter 25 Mirroring

Chapter 26 Using Mirroring

Chapter 27 Consistency Checking
List of Chapters v

vi Adm
inistrator’s Guide for Informix Extended Parallel Server

Table of Contents

Table of
Contents
Introduction
In This Introduction 3
About This Manual 3

Types of Users 3
Software Dependencies 4
Assumptions About Your Locale. 4
Demonstration Databases 5

New Features . 5
Configuration Enhancements 6
Performance Enhancements 6
New SQL Functionality 6
Year 2000 Compliance 6
Utility Features 7
Version 8.3 Features from Version 7.30 7

Documentation Conventions 7
Typographical Conventions 8
Icon Conventions 9
Sample-Code Conventions 10

Additional Documentation 11
On-Line Manuals 11
Printed Manuals 11
Error Message Documentation 12
Documentation Notes, Release Notes, Machine Notes 12
Related Reading 13

Compliance with Industry Standards 13
Informix Welcomes Your Comments 13

viii Adm
Section I The Database Server

Chapter 1 Introducing the Database Server
In This Chapter 1-3
Database Server Users 1-3

End Users 1-3
Application Developers 1-4
Database Administrators 1-4
Database Server Administrators 1-4
Database Server Operators 1-4

Extended Parallel Server 1-5
Client/Server Architecture 1-6
Dynamic Scalable Architecture 1-9
High Performance 1-12
Fault Tolerance 1-14
Database Server Security 1-17
Year 2000 Compliance 1-17
Extended Parallel-Processing Architecture 1-17
Extended Multithreaded Operation 1-20
Extended Scalability. 1-21
Extended Client/Server Operations 1-22
Extended Dynamic Shared-Memory Management 1-24
Direct Disk Access 1-24
Single Point of Administration 1-25
Control of Resources in Parallel 1-28

Chapter 2 Overview of Database Server Administration
In This Chapter 2-3
Database Server Administrator 2-3
Initial Tasks . 2-4
Configuration Tasks 2-4

Managing Disk Space 2-4
Managing Database-Logging Status 2-5
Managing the Logical Log 2-5
Managing the Physical Log 2-5
Using Mirroring 2-5
Managing Shared Memory 2-6
Managing Virtual Processors. 2-6
Managing Parallel Database Query 2-6
inistrator’s Guide for Informix Extended Parallel Server

Routine Tasks 2-7
Changing Modes 2-7
Backing Up Data and Logical-Log Files 2-7
Monitoring Database Server Activity 2-8
Checking for Consistency 2-8

Summary of Administration Tasks 2-8
Monitoring Database Server Activity 2-10
Sources of Information for Monitoring 2-11

Message Log 2-12
Event Alarm 2-13
System Console 2-13
SMI Tables 2-13
onstat Utility 2-14
onutil CHECK Utility. 2-15
xctl Utility 2-15

Section II Configuration

Chapter 3 Installing and Configuring the Database Server
In This Chapter 3-3
Planning for the Database Server 3-4

Considering Your Priorities. 3-4
Considering Your Environment 3-5

Configuring the Operating System 3-6
Modifying UNIX Kernel Parameters 3-6
Preparing the Operating System for the Database Server . . 3-7

Allocating Disk Space 3-8
Creating a Raw Device or Unbuffered File 3-9
Creating Standard Device Names 3-9
Setting Permissions, Ownership, and Group 3-10
Setting Up Disk Access Across Nodes 3-10

Installing the Database Server 3-11
Using Multiple Residency 3-11
Upgrading the Database Server 3-11
Table of Contents ix

x Admin
Setting Environment Variables 3-11
Required Environment Variables 3-12
Global Language Support 3-13
Other Environment Variables 3-13
Environment Variable Files 3-13

Configuring Connectivity 3-14
The sqlhosts File 3-14

Preparing the ONCONFIG Configuration File 3-14
Creating a Configuration File 3-15

Starting and Administering the Database Server 3-16
Preparing to Connect to Applications 3-17
Configuring the Database Server Page Size 3-17
Starting the Database Server and Initialize Disk Space 3-18
Performing Administrative Tasks 3-18
Setting Up Your Storage Manager and Storage Devices . . . 3-21
Creating Storage Spaces 3-22

Monitoring Configuration Information 3-22
Using Command-Line Utilities 3-22

Chapter 4 Configuration Parameters
In This Chapter 4-3
Disk-Space Parameters 4-3

Root Dbspace 4-4
Mirror of Root Dbspace 4-6
Number of Storage Spaces 4-7
Other Space-Management Parameters 4-7

Database Server Identification Parameters 4-8
Logging Parameters 4-9

Logical Log 4-9
Physical Log 4-10
Storage-Space and Logical-Log Backups 4-10

Message-Log Parameters 4-11
Shared-Memory Parameters 4-11

Shared-Memory Size Allocation 4-12
Shared-Memory Space Allocation 4-13
Shared-Memory Buffer Control 4-14

Decision-Support Parameters 4-15
istrator’s Guide for Informix Extended Parallel Server

Database Server Process Parameters 4-16
Processor Type 4-16
Processor Affinity 4-17
Time Intervals 4-18

Restore Parameters 4-18
Event-Alarm Parameters 4-18
Dump Parameters 4-19
Coserver Parameters 4-20
Specialized Parameters 4-20

Optical Media 4-20
UNIX . 4-20

Chapter 5 Configuring the Database Server
In This Chapter 5-3
Configuring Multiple Coservers 5-3

Global Configuration Parameters 5-4
Coserver-Specific Configuration Parameters 5-5
Platform-Specific Configuration Parameters 5-6
Organizing the Configuration File 5-7

Setting Storage-Manager Parameters for ON-Bar 5-8
Choosing a Coserver Configuration 5-10

Single Coserver on a Single-Node Platform 5-11
Multiple Coservers on a Single-Node Platform 5-11
Single Coservers on Each Node of a Multiple-Node

Platform 5-13
Multiple Coservers on Each Node of a Multiple-Node

Platform 5-14
Adding Coservers 5-14
Defining Cogroups 5-17
Modifying Cogroups 5-18
Monitoring Coserver Activities 5-20
Creating and Loading Tables Fragmented Across Coservers . . . 5-20

Chapter 6 Client/Server Communications
In This Chapter 6-3
Client/Server Architecture 6-3

Network Protocol 6-4
Network Programming Interface 6-4
Database Server Connection 6-5
Multiplexed Connection 6-6
Table of Contents xi

xii Admi
Connections That the Database Server Supports 6-7
Local Connections 6-8

Coserver Client Connections 6-11
Communication Support Services 6-12

Informix Password Communication Support Module 6-13
Connectivity Files 6-13

Network-Configuration Files. 6-13
Network-Security Files 6-16
CSM Configuration File 6-19
The sqlhosts File 6-21

The sqlhosts Information 6-22
Connectivity Information 6-23
Group Information 6-37
Alternatives for TCP/IP Connections 6-38

ONCONFIG Parameters for Connectivity 6-42
COSERVER Configuration Parameter. 6-43
DBSERVERNAME Configuration Parameter 6-43
DBSERVERALIASES Configuration Parameter 6-44
NETTYPE Configuration Parameter 6-45

Environment Variables for Network Connections 6-45
Examples of Client/Server Configurations 6-46

Using a Shared-Memory Connection 6-46
Using a Local-Loopback Connection 6-47
Using a Network Connection 6-49
Using Multiple Connection Types 6-50
Accessing Multiple Database Servers 6-52

Chapter 7 Multiple Residency
In This Chapter 7-3
Benefits of Multiple Residency 7-3
How Multiple Residency Works 7-4

The Role of the ONCONFIG Environment Variable 7-5
The Role of the SERVERNUM Configuration Parameter . . . 7-5
nistrator’s Guide for Informix Extended Parallel Server

Chapter 8 Using Multiple Residency
In This Chapter 8-3
Planning for Multiple Residency 8-3
Creating a New Database Server 8-5

Prepare a Configuration File 8-5
Set the ONCONFIG Environment Variable 8-6
Edit the New Configuration File 8-6
Add Connection Information 8-7
Update the sqlhosts File 8-7
Initialize Disk Space 8-8
Prepare Dbspace and Logical-Log Backup Environment . . . 8-8
Update the Operating-System Boot File 8-9
Check INFORMIXSERVER Environment Variables for Users . 8-9

Section III Modes and Initialization

Chapter 9 Managing Database Server Operating Modes
In This Chapter 9-3
Database Server Operating Modes 9-3
Initializing Disk Space 9-5
Changing Database Server Operating Modes 9-5

Users Permitted to Change Modes 9-5
From Off-Line to Quiescent. 9-6
From Off-Line to Microkernel 9-6
From Off-Line to On-Line 9-6
From Quiescent to On-Line. 9-7
Gracefully from On-Line to Quiescent 9-7
Immediately from On-Line to Quiescent 9-8
From Any Mode Immediately to Off-Line. 9-8
Table of Contents xiii

xiv Adm
Chapter 10 Initializing the Database Server
In This Chapter 10-3
Types of Initialization 10-3
Initializing the Database Server 10-4
Initialization Steps 10-4

Process Configuration File 10-5
Create Shared-Memory Portions 10-6
Initialize Shared-Memory Structures 10-7
Initialize Disk Space. 10-7
Start All Required Virtual Processors 10-7
Make Necessary Conversions 10-8
Initiate Fast Recovery 10-8
Initiate a Checkpoint 10-8
Document Configuration Changes 10-8
Create the oncfg_servername.servernum File 10-9
Drop Temporary Tblspaces 10-9
Set Forced Residency If Specified 10-9
Return Control to User 10-10
Prepare SMI Tables 10-10

Section IV Disk, Memory, and Process Management

Chapter 11 Virtual Processors and Threads
In This Chapter 11-3
Virtual Processors 11-3

Threads . 11-4
Types of Virtual Processors 11-5
Advantages of Virtual Processors 11-7

How Virtual Processors Service Threads 11-10
Control Structures 11-11
Context Switching 11-12
Stacks. 11-13
Queues . 11-14
Mutexes . 11-17
inistrator’s Guide for Informix Extended Parallel Server

Virtual-Processor Classes 11-17
CPU Virtual Processors 11-17
Disk I/O Virtual Processors 11-21
Network Virtual Processors 11-26
First-In-First-Out Virtual Processor 11-33
Communications Support Module Virtual Processor 11-33
Miscellaneous Virtual Processor 11-34

Chapter 12 Managing Virtual Processors
In This Chapter 12-3
Setting Virtual-Processor Configuration Parameters 12-3

Setting Virtual-Processor Configuration Parameters with a
Text Editor 12-4

Starting and Stopping Virtual Processors 12-6
Adding Virtual Processors in On-Line Mode 12-6

Monitoring Virtual Processors 12-8
Monitoring Virtual Processors with Command-Line Utilities . 12-8
Monitoring Virtual Processors with SMI Tables 12-10

Chapter 13 Shared Memory
In This Chapter 13-5
Shared Memory 13-5
Shared-Memory Use 13-6

Shared-Memory Allocation. 13-8
Shared-Memory Size 13-10
Action to Take If SHMTOTAL Is Exceeded 13-11

Processes That Attach to Shared Memory 13-12
How a Client Attaches to the Communications Portion . . . 13-12
How Utilities Attach to Shared Memory 13-13
How Virtual Processors Attach to Shared Memory. 13-13

Resident Shared-Memory Segments 13-18
Resident Portion of Shared Memory 13-19

Shared-Memory Header 13-19
Shared-Memory Buffer Pool 13-20
Logical-Log Buffer 13-22
Physical-Log Buffer 13-24
Lock Table 13-24
Table of Contents xv

xvi Adm
Virtual Portion of Shared Memory 13-25
Management of the Virtual Portion of Shared Memory. . . . 13-25
Components of the Virtual Portion of Shared Memory 13-26

Communications Portion of Shared Memory 13-33
Concurrency Control 13-34

Shared-Memory Mutexes 13-34
Shared-Memory Buffer Locks 13-35

Database Server Thread Access to Shared Buffers 13-36
LRU Queues 13-36
Configuring the Database Server to Read Ahead 13-41
Database Server Thread Access to Buffer Pages 13-42

Flushing Data to Disk 13-45
Events That Prompt Flushing of Buffer-Pool Buffers. 13-46
Flushing Before-Images First 13-46
Flushing the Physical-Log Buffer 13-46
Synchronizing Buffer Flushing 13-49
Describing Flushing Activity. 13-50
Flushing the Logical-Log Buffer. 13-52

Buffering Simple-Large-Object Data Types 13-55
Blobpages Do Not Pass Through Shared Memory 13-56
TEXT and BYTE Objects Are Created Before the Data Row

Is Inserted 13-56
Tracking Blobpages 13-56

Memory Use on 64-Bit Platforms 13-57

Chapter 14 Managing Shared Memory
In This Chapter 14-3
Setting Operating-System Shared-Memory Configuration Parameters 14-4

Maximum Shared-Memory Segment Size 14-5
Maximum Number of Shared-Memory Identifiers 14-5
Shared-Memory Lower-Boundary Address. 14-6
Maximum Amount of Shared Memory for One Process . . . 14-6

Setting Database Server Shared-Memory Configuration Parameters 14-7
Setting Parameters for Resident Shared Memory with a

Text Editor 14-7
Setting Parameters for Virtual Shared Memory with a Text Editor 14-8
Setting Parameters for Shared-Memory Performance Options

with a Text Editor 14-9
Reinitializing Shared Memory 14-11
inistrator’s Guide for Informix Extended Parallel Server

Turning Residency On or Off for Resident Shared Memory . . . 14-11
Turning Residency On or Off in On-Line Mode 14-12
Turning Residency On or Off for the Next Time You Reinitialize

Shared Memory 14-12
Adding a Segment to the Virtual Portion of Shared Memory . . . 14-13
Monitoring Shared Memory 14-13

Monitoring Shared-Memory Segments 14-13
Monitoring the Shared-Memory Profile 14-14
Monitoring Buffers 14-15
Monitoring Buffer-Pool Activity 14-18
Monitoring Latches 14-22

Chapter 15 Data Storage
In This Chapter 15-3
Overview of Data Storage 15-3
Physical Units of Storage 15-5

Chunks 15-5
Disk Allocation for Chunks. 15-6
Pages . 15-10
Extents . 15-11

Logical Units of Storage 15-14
Dbspaces 15-14
Dbslices 15-19
Databases 15-22
Tables . 15-23
Table Types 15-25
Temporary Tables 15-30
Tblspaces 15-34

Table Fragmentation and Data Storage 15-36
Amount of Disk Space Needed to Store Data 15-36

Size of the Root Dbspace 15-36
Amount of Space That Databases Require. 15-39

Disk-Layout Guidelines 15-39
Dbspace and Chunk Guidelines 15-40
Table-Location Guidelines 15-43

Sample Disk Layouts 15-47
Logical-Volume Manager 15-52
Table of Contents xvii

xviii Adm
Chapter 16 Managing Disk Space
In This Chapter 16-5
Initializing Disk Space 16-6
Allocating Disk Space 16-6

Specifying an Offset 16-7
Allocating a File for Disk Space on UNIX 16-8
Allocating Raw Disk Space on UNIX 16-10

Configuring Disk Space for Multiple Coservers 16-11
Creating Standard Device Names 16-12
Setting Up Disk Access Across Nodes 16-12

Backing Up After You Change the Physical Schema 16-13
Creating a Dbspace 16-13

Specifying Pathnames for Dbspaces 16-14
Specifying Names and Maximum Number of Storage Spaces . 16-14
Backing Up the New Dbspace 16-15
Creating a Temporary Dbspace 16-15
Creating a Dbspace with onutil 16-16

Creating Dbslices 16-16
Naming Dbslices 16-17
Increasing the Number of Dbslices. 16-17
Backing Up the New Dbslice 16-18
Altering a Dbslice 16-18
Increasing the Maximum Number of Dbspaces, Chunks, or

Dbslices 16-19
Adding a Chunk to a Dbspace 16-20

Backing Up the New Chunk 16-21
Naming Chunks and Storage Spaces 16-21
Limiting Chunk Size and Number 16-22

Loading Data Into a Table 16-23
Dropping a Chunk 16-23

Verifying Whether a Chunk Is Empty 16-24
Dropping a Chunk from a Dbspace with onutil 16-24

Dropping a Storage Space 16-25
Preparing to Drop a Storage Space 16-25
Backing Up After Dropping a Storage Space 16-25
Dropping a Mirrored Storage Space 16-25
Dropping a Dbspace with onutil 16-26

Dropping Dbslices 16-26
inistrator’s Guide for Informix Extended Parallel Server

Skipping Inaccessible Fragments 16-27
Using the DATASKIP Configuration Parameter 16-27
Using the Dataskip Feature of onutil 16-28
Using onstat to Check Dataskip Status 16-28
Using the SQL Statement SET DATASKIP. 16-28
Effect of the Dataskip Feature on Transactions 16-29
Determining When to Use Dataskip. 16-30
Monitoring Fragmentation Use 16-31

Displaying Databases 16-32
Using SMI Tables 16-32

Monitoring the Database Server for Disabling I/O Errors 16-32
Using the Message Log to Monitor Disabling I/O Errors . . 16-32
Using Event Alarms to Monitor Disabling I/O Errors . . . 16-33

Monitoring Disk Usage 16-34
Monitoring Chunks 16-34
Monitoring Tblspaces and Extents 16-38
Monitoring Simple Large Objects in a Dbspace 16-41
No Compression of TEXT and BYTE Data Types 16-42

Chapter 17 Table Fragmentation and PDQ
In This Chapter 17-3
Fragmentation 17-3

Fragmentation Goals 17-5
Responsibility for Fragmentation. 17-6
Fragmentation Strategies 17-6
SQL Statements That Perform Fragmentation Tasks 17-10

Parallel Database Query 17-11
Parallelism 17-12
Structure of a PDQ Query 17-14

Use of PDQ 17-17
OLTP Applications 17-18
Decision-Support Applications 17-19

Database Server Use of PDQ 17-20
Resource Grant Manager 17-21
Fragmentation Enhancement to PDQ 17-22
How the Database Server Balances Workload 17-24

Resource Allocation with PDQ 17-25
Parameters for Controlling PDQ 17-25
Table of Contents xix

xx Admi
Section V Logging and Log Administration

Chapter 18 Logging
In This Chapter 18-3
Database Server Processes That Require Logging 18-3
Transaction Logging 18-5
Database Server Activity That Is Logged 18-6

Activity That Is Always Logged 18-7
Activity Logged for Databases with Transaction Logging . . . 18-7

Logging and Nonlogging Tables 18-8
Use of Logging Tables 18-8
Use of Nonlogging Tables 18-9
Activity That Is Not Logged 18-9

Database-Logging Status 18-9
Unbuffered Transaction Logging 18-10
Buffered Transaction Logging 18-10
ANSI-Compliant Transaction Logging 18-11
Databases with Different Log-Buffering Status 18-11

Settings or Changes for Logging Status or Mode 18-12

Chapter 19 Managing Database-Logging Status
In This Chapter 19-3
Changing Database-Logging Status 19-4
Modifying Database-Logging Status with ondblog 19-5

Changing Buffering Status with ondblog 19-5
Canceling a Logging Mode Change with ondblog 19-5
Making a Database ANSI Compliant with ondblog 19-6

Modifying the Table-Logging Status 19-6
Altering a Table to Turn Off Logging 19-6
Altering a Table to Turn On Logging 19-6
Creating a Nonlogging Temporary Table 19-7

Monitoring Transaction Logging 19-7
Monitoring Transaction Logging with SMI Tables 19-7
Monitoring Transaction Logging with System Catalog Tables . 19-8
nistrator’s Guide for Informix Extended Parallel Server

Chapter 20 Logical Log
In This Chapter 20-3
Logical Log 20-3

Logical-Log Files 20-4
Logical-Log Administration 20-4
Logical-Log Files on a Coserver 20-5
Logslices 20-5

Size of the Logical Log 20-6
Performance Considerations 20-6
Long-Transaction Considerations 20-7
Size and Number of Logical-Log Files 20-7

Location of Logical-Log Files 20-9
Identification of Logical-Log Files 20-9
Status Flags of Logical-Log Files 20-11
Backup of Logical-Log Files 20-12

Logical-Log Restore 20-13
Point-In-Time Restore 20-13

Freeing of Logical-Log Files 20-13
Database Server Attempt to Free a Log File 20-14
Action If the Next Logical-Log File Is Not Free 20-14
Logical Log and Long Transactions 20-15

Logs-Full High-Water Mark 20-19
Emergency Log Backup 20-19
Administrative Activity When Logs Need Backing Up . . . 20-20

Logging Process 20-21
Dbspace Logging 20-21

Chapter 21 Managing Logical-Log Files
In This Chapter 21-3
Backing Up Logical-Log Files 21-4
Adding a Logical-Log File or Logslice 21-4

Adding a Logical-Log File or Logslice with onutil 21-4
Altering a Logslice. 21-5

Dropping a Logical-Log File or Logslice 21-5
Dropping a Logical-Log File or Logslice with onutil 21-6

Moving a Logical-Log File to Another Dbspace 21-7
Changing the Size of Logical-Log Files 21-9

Using a Text Editor to Change the Size of a Log File 21-9
Using onutil to Change the Size of a Log File or Logslice . . 21-9
Table of Contents xxi

xxii Adm
Changing Logical-Log Configuration Parameters 21-11
Using a Text Editor to Change LOGSIZE or LOGFILES. . . . 21-11
Changing LOGSMAX, LTXHWM, or LTXEHWM in the

ONCONFIG File 21-12
Freeing a Logical-Log File 21-13

Freeing a Log File with Status A 21-13
Freeing a Log File with Status U 21-13
Freeing a Log File with Status U-B 21-14
Freeing a Log File with Status U-C or U-C-L 21-14
Freeing a Log File with Status U-B-L 21-15

Switching to the Next Logical-Log File 21-15
Monitoring Logging Activity 21-15

Monitoring the Logical Log for Fullness 21-16
Using Command-Line Utilities 21-16
Using SMI Tables 21-18

Monitoring Log-Backup Status 21-18
Displaying Logical-Log Records 21-19

Chapter 22 Physical Logging
In This Chapter 22-3
Physical Logging 22-3

Purpose of Physical Logging 22-4
Database Server Activity That Is Physically Logged 22-4

Size and Location of the Physical Log 22-5
Limit to the Size of the Physical Log 22-6
Location of the Physical Log 22-8

Details of Physical Logging 22-9
Page Is Read into the Shared-Memory Buffer Pool 22-9
A Copy of the Page Buffer Is Stored in the Physical-Log Buffer . 22-10
Change Is Reflected in the Data Buffer 22-10
Physical-Log Buffer Is Flushed to the Physical Log 22-10
Page Buffer Is Flushed 22-10
When a Checkpoint Occurs 22-11
How the Physical Log Is Emptied 22-11
inistrator’s Guide for Informix Extended Parallel Server

Chapter 23 Managing the Physical Log
In This Chapter 23-3
Changing the Physical-Log Location and Size 23-3

Reasons to Change the Physical-Log Location and Size . . . 23-4
Preparing to Make the Changes 23-4
Checking For Adequate Contiguous Space 23-4
Using a Text Editor to Change Physical-Log Location or Size . 23-5

Monitoring Physical and Logical Logging Activity 23-5
Using Command-Line Utilities 23-6
Using SMI Tables 23-8

Chapter 24 Checkpoints and Fast Recovery
In This Chapter 24-3
How the Database Server Achieves Data Consistency 24-3
Critical Sections 24-4
Checkpoints 24-4

Full Checkpoint. 24-5
Fuzzy Checkpoint 24-5
Events That Initiate a Fuzzy Checkpoint 24-7
Events That Initiate a Full Checkpoint 24-7
Forcing a Full Checkpoint 24-8
Forcing a Fuzzy Checkpoint 24-9
Sequence of Events in a Checkpoint 24-9
Backup and Restore Considerations 24-11

Time Stamps 24-12
Time Stamps on Disk Pages 24-12
Time Stamps on Logical-Log Pages 24-12

Fast Recovery 24-13
Need for Fast Recovery 24-13
Situations When Fast Recovery Is Initiated 24-14
Details of Fast Recovery After A Full Checkpoint 24-14
Details of Fast Recovery After A Fuzzy Checkpoint 24-18

Fast Recovery of Tables 24-23
Monitoring Checkpoint Information 24-25

Using onstat Options 24-25
Using SMI Tables 24-26
Table of Contents xxiii

xxiv Adm
Section VI Fault Tolerance
Chapter 25 Mirroring

In This Chapter 25-3
Mirroring . 25-4

Benefits of Mirroring 25-4
Costs of Mirroring 25-5
Consequences of Not Mirroring. 25-5
Data to Mirror 25-5
Alternatives to Mirroring 25-6

Mirroring Process 25-7
Creation of a Mirrored Chunk 25-7
Mirror Status Flags 25-8
Recovery 25-8
Actions During Processing 25-9
Result of Stopping Mirroring. 25-11
Structure of a Mirrored Chunk 25-11

Chapter 26 Using Mirroring
In This Chapter 26-3
Steps Required for Mirroring Data 26-3
Enabling Mirroring 26-4

Changing the MIRROR Parameter with ONCONFIG 26-4
Allocating Disk Space for Mirrored Data 26-5

Linking Chunks 26-5
Relinking a Chunk to a Device After a Disk Failure 26-5

Using Mirroring 26-6
Mirroring the Root Dbspace During Initialization 26-7
Changing the Mirror Status 26-7
Taking Down a Mirrored Chunk 26-7
Ending Mirroring 26-8
Ending Mirroring with onutil 26-8

Managing Mirroring in Extended Parallel Server 26-8
Starting Mirroring for Unmirrored Dbspaces 26-8
Starting Mirroring for New Dbspaces and Dbslices 26-9
Adding Mirrored Chunks to a Dbspace 26-9
Taking Down a Mirrored Chunk 26-9
Recovering a Mirrored Chunk 26-10
Modifying Mirroring of All Root Dbspaces 26-10
Ending Mirroring for a Dbspace 26-11
inistrator’s Guide for Informix Extended Parallel Server

Chapter 27 Consistency Checking
In This Chapter 27-3
Performing Periodic Consistency Checking 27-3

Verifying Consistency 27-4
Monitoring for Data Inconsistency 27-6
Retaining Consistent Level-0 Backups 27-8

Dealing with Corruption 27-8
Symptoms of Corruption 27-9
Fixing Index Corruption. 27-9
I/O Errors on a Chunk 27-10

Collecting Diagnostic Information 27-11

Index
Table of Contents xxv

Introduction
Introduction
In This Introduction 3

About This Manual 3
Types of Users 3
Software Dependencies 4
Assumptions About Your Locale 4
Demonstration Databases 5

New Features . 5
Configuration Enhancements 6
Performance Enhancements 6
New SQL Functionality 6
Year 2000 Compliance 6
Utility Features 7
Version 8.3 Features from Version 7.30 7

Documentation Conventions 7
Typographical Conventions 8
Icon Conventions 9

Comment Icons 9
Feature, Product, and Platform Icons 9

Sample-Code Conventions 10

2 Admin
Additional Documentation 11
On-Line Manuals 11
Printed Manuals 11
Error Message Documentation 12
Documentation Notes, Release Notes, Machine Notes 12
Related Reading 13

Compliance with Industry Standards. 13

Informix Welcomes Your Comments 13
istrator’s Guide for Informix Extended Parallel Server

In This Introduction
This Introduction provides an overview of the information in this manual
and describes the conventions it uses.

About This Manual
This manual contains important information on administering Informix
Extended Parallel Server and includes information about how to install,
configure, administer, and use the database server. It describes features,
database server concepts, and procedures for performing database server
management tasks.

A companion volume, the Administrator’s Reference, contains reference
material for using Informix database servers. If you need to tune the perfor-
mance of your database server, see your Performance Guide.

Types of Users
This manual is written for the following users:

■ Database users

■ Database administrators

■ Database server administrators

■ Performance engineers

■ Application developers
Introduction 3

Software Dependencies
This manual assumes that you have the following background:

■ A working knowledge of your computer, your operating system,
and the utilities that your operating system provides

■ Some experience working with relational databases or exposure to
database concepts

■ Some experience with computer programming

■ Some experience with database server administration, operating-
system administration, or network administration

If you have limited experience with relational databases, SQL, or your
operating system, refer to the Getting Started manual for your database server
for a list of supplementary titles.

Software Dependencies
This manual assumes that you are using Informix Extended Parallel Server,
Version 8.3, as your database server.

Assumptions About Your Locale
Informix products can support many languages, cultures, and code sets. All
culture-specific information is brought together in a single environment,
called a Global Language Support (GLS) locale.

The default is en_us.8859-1 (ISO 8859-1) on UNIX platforms.

This locale supports U.S. English format conventions for dates, times, and
currency, and also supports the ISO 8859-1 or Microsoft 1252 code set, which
includes the ASCII code set plus many 8-bit characters such as é, è, and ñ.

If you plan to use nondefault characters in your data or your SQL identifiers,
or if you want to conform to the nondefault collation rules of character data,
you need to specify the appropriate nondefault locale.

For instructions on how to specify a nondefault locale, additional syntax, and
other considerations related to GLS locales, see the Informix Guide to GLS
Functionality.
4 Administrator’s Guide for Informix Extended Parallel Server

Demonstration Databases
Demonstration Databases
The DB-Access utility, which is provided with your Informix database server
products, includes one or more of the following demonstration databases:

■ The stores_demo database illustrates a relational schema with infor-
mation about a fictitious wholesale sporting-goods distributor.
Many examples in Informix manuals are based on the stores_demo
database.

■ The sales_demo database illustrates a dimensional schema for data-
warehousing applications. For conceptual information about dimen-
sional data modeling, see the Informix Guide to Database Design and
Implementation.

For information about how to create and populate the demonstration
databases, see the DB-Access User’s Manual. For descriptions of the databases
and their contents, see the Informix Guide to SQL: Reference.

The scripts that you use to install the demonstration databases reside in the
$INFORMIXDIR/bin directory.

New Features
For a comprehensive list of new database server features, see the release
notes. This section lists new features relevant to this manual.

The Version 8.3 features that this manual describes fall into the following
areas:

■ Configuration enhancements

■ Performance enhancements

■ New SQL functionality

■ Year 2000 compliance

■ Logical-log records

■ Utility features

■ Version 8.3 features from Informix Dynamic Server 7.30
Introduction 5

Configuration Enhancements
Configuration Enhancements
This manual describes the following configuration enhancements to
Version 8.3 of Extended Parallel Server:

■ Increased maximum number of chunks, dbspaces, and dbslices

■ Increased maximum chunk size

■ Configurable page size

■ 64-bit very large memory (VLM)

■ New configuration parameters

Performance Enhancements
This manual describes the following performance enhancements to
Version 8.3 of Extended Parallel Server:

■ Dynamic lock allocation

■ Fuzzy checkpoints

■ Skipping logical-log replay during restore

■ Thread suspension to prevent database server failure for severe
errors

Your Performance Guide describes additional performance improvements to
Version 8.3 of the database server.

New SQL Functionality
You can now load and unload simple large objects to external tables.

Year 2000 Compliance
This manual describes the following Year 2000 compliance features in
Version 8.3 of Extended Parallel Server:

■ DBCENTURY environment variable

■ Support for ISM, Version 2.0
6 Administrator’s Guide for Informix Extended Parallel Server

Utility Features
Utility Features
This manual describes the following new options for the onutil utility in
Version 8.3 of Extended Parallel Server:

■ onutil CHECK, without locks

■ onutil CHECK, repair improvements

■ onutil ALTER DBSLICE

■ onutil ALTER LOGSLICE

Version 8.3 Features from Version 7.30
This manual describes the following features from Version 7.30 of Dynamic
Server in Version 8.3 of Extended Parallel Server:

■ Deferred constraints for all constraint types

■ Memory-resident tables

■ ondblog to change database logging

■ Violations table

Documentation Conventions
This section describes the conventions that this manual uses. These
conventions make it easier to gather information from this and other volumes
in the documentation set.

The following conventions are discussed:

■ Typographical conventions

■ Icon conventions

■ Sample-code conventions
Introduction 7

Typographical Conventions
Typographical Conventions
This manual uses the following conventions to introduce new terms,
illustrate screen displays, describe command syntax, and so forth.

Tip: When you are instructed to “enter” characters or to “execute” a command,
immediately press RETURN after the entry. When you are instructed to “type” the
text or to “press” other keys, no RETURN is required.

Convention Meaning

KEYWORD All primary elements in a programming language statement
(keywords) appear in uppercase letters in a serif font.

italics
italics
italics

Within text, new terms and emphasized words appear in italics.
Within syntax and code examples, variable values that you are
to specify appear in italics.

boldface
boldface

Names of program entities (such as classes, events, and tables),
environment variables, file and pathnames, and interface
elements (such as icons, menu items, and buttons) appear in
boldface.

monospace
monospace

Information that the product displays and information that you
enter appear in a monospace typeface.

KEYSTROKE Keys that you are to press appear in uppercase letters in a sans
serif font.

♦ This symbol indicates the end of one or more product- or
platform-specific paragraphs.

➞ This symbol indicates a menu item. For example, “Choose
Tools➞Options” means choose the Options item from the
Tools menu.
8 Administrator’s Guide for Informix Extended Parallel Server

Icon Conventions
Icon Conventions
Throughout the documentation, you will find text that is identified by several
different types of icons. This section describes these icons.

Comment Icons

Comment icons identify three types of information, as the following table
describes. This information always appears in italics.

Feature, Product, and Platform Icons

Feature, product, and platform icons identify paragraphs that contain
feature-specific, product-specific, or platform-specific information.

Icon Label Description

Warning: Identifies paragraphs that contain vital instructions,
cautions, or critical information

Important: Identifies paragraphs that contain significant
information about the feature or operation that is
being described

Tip: Identifies paragraphs that offer additional details or
shortcuts for the functionality that is being described

Icon Description

Identifies information that relates to the Informix Global
Language Support (GLS) feature

GLS
Introduction 9

Sample-Code Conventions
These icons can apply to an entire section or to one or more paragraphs
within a section. If an icon appears next to a section heading, the information
that applies to the indicated feature, product, or platform ends at the next
heading at the same or higher level. A ♦ symbol indicates the end of feature-,
product-, or platform-specific information that appears within one or more
paragraphs within a section.

Sample-Code Conventions
Examples of SQL code occur throughout this manual. Except where noted,
the code is not specific to any single Informix application development tool.
If only SQL statements are listed in the example, they are not delimited by
semicolons. For instance, you might see the code in the following example:

CONNECT TO stores_demo
...

DELETE FROM customer
WHERE customer_num = 121

...

COMMIT WORK
DISCONNECT CURRENT

To use this SQL code for a specific product, you must apply the syntax rules
for that product. For example, if you are using DB-Access, you must delimit
multiple statements with semicolons. If you are using an SQL API, you must
use EXEC SQL at the start of each statement and a semicolon (or other appro-
priate delimiter) at the end of the statement.

Tip: Ellipsis points in a code example indicate that more code would be added in a
full application, but it is not necessary to show it to describe the concept being
discussed.

For detailed directions on using SQL statements for a particular application
development tool or SQL API, see the manual for your product.
10 Administrator’s Guide for Informix Extended Parallel Server

Additional Documentation
Additional Documentation
For additional information, you might want to refer to the following types of
documentation:

■ On-line manuals

■ Printed manuals

■ On-line help

■ Error message documentation

■ Documentation notes, release notes, and machine notes

■ Related reading

On-Line Manuals
An Answers OnLine CD that contains Informix manuals in electronic format
is provided with your Informix products. You can install the documentation
or access it directly from the CD. For information about how to install, read,
and print on-line manuals, see the installation insert that accompanies
Answers OnLine.

Informix on-line manuals are also available on the following Web site:

www.informix.com/answers

Printed Manuals
To order printed manuals, call 1-800-331-1763 or send email to
moreinfo@informix.com. Please provide the following information when
you place your order:

■ The documentation that you need

■ The quantity that you need

■ Your name, address, and telephone number
Introduction 11

Error Message Documentation
Error Message Documentation
Informix software products provide ASCII files that contain all of the
Informix error messages and their corrective actions.

To read error messages and corrective actions, use one of the following
utilities.

Instructions for using the preceding utilities are available in Answers
OnLine. Answers OnLine also provides a listing of error messages and
corrective actions in HTML format.

Documentation Notes, Release Notes, Machine Notes
In addition to printed documentation, the following sections describe the
on-line files that supplement the information in this manual. Please examine
these files before you begin using your database server. They contain vital
information about application and performance issues.

The following on-line files appear in the $INFORMIXDIR/release/en_us/0333
directory.

Utility Description

finderr Displays error messages on line

rofferr Formats error messages for printing

On-Line File Purpose

ADMINDOC_8.3 The documentation notes file for your version of this manual
describes topics that are not covered in the manual or that were
modified since publication.

SERVERS_8.3 The release notes file describes feature differences from earlier
versions of Informix products and how these differences might
affect current products. This file also contains information
about any known problems and their workarounds.

XPS_x.y The machine notes file describes any special actions that you
must take to configure and use Informix products on your
computer. The machine notes are named for the product
described.
12 Administrator’s Guide for Informix Extended Parallel Server

Related Reading
Related Reading
For a list of publications that provide an introduction to database servers and
operating-system platforms, refer to your Getting Started manual.

Compliance with Industry Standards
The American National Standards Institute (ANSI) has established a set of
industry standards for SQL. Informix SQL-based products are fully compliant
with SQL-92 Entry Level (published as ANSI X3.135-1992), which is identical
to ISO 9075:1992. In addition, many features of Informix database servers
comply with the SQL-92 Intermediate and Full Level and X/Open SQL CAE
(common applications environment) standards.

Informix Welcomes Your Comments
Let us know what you like or dislike about our manuals. To help us with
future versions of our manuals, we want to know about any corrections or
clarifications that you would find useful. Include the following information:

■ The name and version of the manual that you are using

■ Any comments that you have about the manual

■ Your name, address, and phone number

Send electronic mail to us at the following address:

doc@informix.com

The doc alias is reserved exclusively for reporting errors and omissions in our
documentation.

We appreciate your suggestions.
Introduction 13

on
 I
The Database Server
Se
ct

i

Chapter 1 Introducing the Database Server

Chapter 2 Overview of Database Server Administration

1
Chapter
Introducing the Database
Server
In This Chapter . 1-3

Database Server Users 1-3
End Users. 1-3
Application Developers 1-4
Database Administrators 1-4
Database Server Administrators 1-4
Database Server Operators 1-4

Extended Parallel Server 1-5
Client/Server Architecture 1-6

Client Application Types 1-6
Connection to a Database Server 1-8

Dynamic Scalable Architecture 1-9
Parallel-Processing Architecture 1-9
Scalability 1-11

High Performance 1-12
Dynamic Shared-Memory Management 1-12
Direct Disk Access 1-12
Dynamic Thread Allocation 1-13
Fragmentation and Parallelism 1-13

Fault Tolerance 1-14
Storage Space and Logical-Log Backups of Transaction Records. 1-14
Backup Verification 1-15
External Backup and Restore 1-15
Fast Recovery 1-15
Point-in-Time Restore 1-16
Mirroring 1-16

Database Server Security 1-17
Year 2000 Compliance 1-17
Extended Parallel-Processing Architecture 1-17

1-2 Adm
Extended Multithreaded Operation 1-20
Parallel Execution Within a Coserver 1-20
Parallel Execution on Multiple Coservers 1-20

Extended Scalability 1-21
Extended Client/Server Operations 1-22

Connection Coserver 1-22
Participating Coserver 1-22
On-Line Transaction Processing and Decision-Support

Applications 1-23
Extended Dynamic Shared-Memory Management 1-24
Direct Disk Access 1-24
Single Point of Administration 1-25

Centralized Configuration 1-25
Coserver Groups 1-26
Dbslices . 1-26
Logslices . 1-26
Centralized Message Log 1-27
Centralized Database Server Utilities 1-27
Coordinated Data-Dictionary Cache 1-28

Control of Resources in Parallel 1-28
Request Manager 1-29
Query Optimizer 1-29
Data-Dictionary Manager 1-29
Scheduler 1-30
inistrator’s Guide for Informix Extended Parallel Server

In This Chapter
This chapter introduces Informix Extended Parallel Server and discusses
who uses the database server.

Database Server Users
The question “What is the database server?” means different things to
different users. The following types of individuals who interact with the
database server each have a different perspective:

■ End users

■ Application developers

■ Database administrators

■ Database server administrators

■ Database server operators

End Users
End users use the Structured Query Language (SQL), often embedded in a
client application, to access, insert, update, and manage information in
databases. These end users might be completely unaware that they are using
a database server. To them, the database server is a nameless aspect of the
system that they are using.
Introducing the Database Server 1-3

Application Developers
Application Developers
For the developers of client applications, the database server offers a number
of possibilities for data management, isolation levels, and so on.

For features and functions that the database server provides for developers,
refer to the Informix ESQL/C Programmer’s Manual. Other volumes, the
Informix Guide to SQL: Reference and the Informix Guide to SQL: Syntax, also
provide information that is useful for application developers.

Database Administrators
The database administrator (DBA) is primarily responsible for managing access
control for a database, as described in “Database Server Security” on
page 1-17. The DBA uses SQL statements to grant and revoke privileges to
ensure that the correct individuals are able to perform the actions they need
and that untrained or unscrupulous users are kept from performing poten-
tially damaging or inappropriate resource-intensive activities. The Informix
Guide to SQL: Tutorial and the Informix Guide to SQL: Syntax are also of interest
to the DBA.

Database Server Administrators
Unlike the DBA, a database server administrator is responsible for mainte-
nance, administration, and operation of the entire database server, which
might manage many individual databases. For a description of the tasks
involved in database server administration, refer to Chapter 2, “Overview of
Database Server Administration.”

Database Server Operators
Database server operators are responsible for routine tasks associated with
database server administration, including backing up and restoring
databases. The same person might fill the roles of administrator and operator.
1-4 Administrator’s Guide for Informix Extended Parallel Server

Extended Parallel Server
Extended Parallel Server
Extended Parallel Server provides the following features:

■ Client/server architecture

■ Dynamic Scalable Architecture

■ Multithreaded operation

■ Scalability of performance

■ Client/server operations

■ Dynamic shared-memory management

■ Direct (unbuffered) disk management

■ Fault tolerance and high availability

■ Database server security

■ Year 2000 compliance

Extended Parallel Server supports the following types of data:

■ Built-in data types

■ Storage and access of simple large objects

Extended Parallel Server extends the following features for the management
of large databases on multiple coservers:

■ Extended parallel-processing architecture, which provides these
features:

❑ Extended multithreaded operation

❑ Extended scalability of performance

❑ Extended client/server operations

❑ Extended dynamic shared-memory management

■ Single point of administration

The following sections explain each of these features.
Introducing the Database Server 1-5

Client/Server Architecture
Client/Server Architecture
The database server provides reliable access to a database for client application
programs. A client is an application program that a user runs to request infor-
mation from a database that the database server manages.

When a client application connects to the database server and requests infor-
mation, the database server locates the requested data within its databases
and sends back the results. Depending on the type of request that the client
application issues, the database server can return selected rows from tables
within the databases that it manages, add or delete rows, or update particular
columns within selected rows.

Client applications use Structured Query Language (SQL) to send requests
for data to the database server. Client applications can use the data that the
database server returns in a variety of ways, including simple displays on
computer screens or complicated reports. Client programs include the
DB-Access utility and programs that you write with an Informix application
programming interface (API) such as Informix ESQL/C, Informix ODBC
Driver, C++, or Java.

The database server performs additional activities such as coordinating
concurrent requests from multiple clients and enforcing physical and logical
consistency on the data to provide reliable access to the database.

The database server administrator starts the database server processes. After
the database server is initialized, database server processes run continuously
during the period that users access data. For more information on starting the
database server, refer to Chapter 10, “Initializing the Database Server.”

Client Application Types

Two broad classes of applications operate on data that is stored in a relational
database:

■ On-line transaction processing (OLTP) applications

■ Decision-support system (DSS) applications
1-6 Administrator’s Guide for Informix Extended Parallel Server

Client/Server Architecture
OLTP Applications

OLTP applications are often used to capture new data or update existing data.
These operations usually involve quick, indexed access to a small number of
rows. An order-entry system is a typical example of an OLTP application.
OLTP applications are usually multiuser applications with acceptable
response times measured in fractions of a second.

OLTP applications have the following characteristics:

■ Simple transactions that involve small amounts of data

■ Indexed access to data

■ Many users

■ Frequent requests

■ Fast response times

DSS Applications

DSS applications are often used to report on or consolidate data that has been
captured through OLTP operations over time. These applications provide
information that is often used for accounting, strategic planning, and
decision-making. Data within the database is usually queried but not
updated during DSS operations. Typical DSS applications include payroll,
inventory, and financial reports.

A recent approach to DSS consolidates enterprisewide data in a separately
designed environment, commonly called a data warehouse. A data warehouse
stores business data for a company in a single, integrated relational database
that provides a historical perspective on information for DSS applications.

Another approach to DSS operations, called a data mart, draws selected data
from OLTP operations or a data warehouse to answer specific types of
questions or to support a specific department or initiative within an
organization.
Introducing the Database Server 1-7

Client/Server Architecture
Decision-support applications have the following characteristics:

■ Complex queries that involve large amounts of data

■ Large memory requirements

■ Few users

■ Periodic requests

■ Relatively long response times

Connection to a Database Server

A client application communicates with the database server through the
connection features that the database server provides.

At the source-code level, a client application connects to the database server
through an SQL statement. Beyond that, the client use of connection facilities
is transparent to the application. Library functions that are automatically
included when a client program is compiled enable the client to connect to
the database server.

As the database administrator, you specify the database server or coserver
names and types of connections that can be made. The connectivity infor-
mation is in the sqlhosts file.

To connect to the database server, the client specifies a database server name,
which is a logical name assigned by the database administrator. The DBA
associates this name with physical characteristics stored in sqlhosts, such as
the host name, connection type and port number.

For a description of these connection features, refer to Chapter 6,
“Client/Server Communications.”
1-8 Administrator’s Guide for Informix Extended Parallel Server

Dynamic Scalable Architecture
Dynamic Scalable Architecture
Informix database servers implement an advanced architecture that Informix
calls Dynamic Scalable Architecture (DSA). DSA provides distinct performance
advantages for both single-processor and symmetric multiprocessor
computers. These advantages, which this section describes further, are as
follows:

■ A small number of database server processes can service a large
number of client application processes, with the following benefits:

❑ Reduced operating-system overhead (fewer processes to run)

❑ Reduced overall memory requirements

❑ Reduced contention for resources within the database
management system (DBMS)

■ DSA provides more control over setting priorities and scheduling
database tasks than the operating system does.

Parallel-Processing Architecture

The multithreaded database server exploits symmetric multiprocessor (SMP)
and uniprocessor architectures.

DSA particularly exploits SMP and massively parallel processing (MPP)
computer systems. DSA provides the following additional benefits on those
systems:

■ Multiple processes can work in parallel for one client.

■ On some multiprocessor computers, you can bind database server
processes to specific CPUs.
Introducing the Database Server 1-9

Dynamic Scalable Architecture
Figure 1-1 shows the three major components of the Informix database server
architecture.

Informix database server architecture includes the following the three major
components:

■ Virtual processors

A virtual processor is a task that the operating system schedules for
execution on the CPU. A database server thread is a task that the
virtual processor schedules internally for processing. Database
server virtual processors are multithreaded because they run multiple
concurrent threads. For more information, refer to Chapter 11,
“Virtual Processors and Threads.”

Figure 1-1
Database Server

Architecture
Components

Database server architecture

Shared memory

Virtual processor

Virtual processor

Virtual processor

Disk

Disk

Disk
1-10 Administrator’s Guide for Informix Extended Parallel Server

Dynamic Scalable Architecture
■ Shared memory

Shared memory consists of a resident and virtual portion. The
database server uses the resident portion to cache data from the disk
for faster access by multiple client applications. The database server
uses the virtual portion to maintain and control the resources that
virtual processors require and to read in large blocks of infrequently
accessed data. For more information on how the database server uses
shared memory, see Chapter 13, “Shared Memory,” and Chapter 14,
“Managing Shared Memory.”

■ Disk component

The disk component is a collection of one or more units of disk space
assigned to the database server. All the data in the databases and all
the system information necessary to maintain the database server
system reside within the disk component. For more information on
the disk components, see Chapter 15, “Data Storage.”

The multithreaded database server manages access to one or more relational
databases for client applications. In a relational database, data is organized
in tables that consist of rows and columns.

Scalability

DSA allows the database server to scale its resources to the demands that
applications place on it. A key element of DSA is the virtual processors that
manage central processing, disk I/O, and networking functions in parallel.

For more information on virtual processors, refer to “Virtual Processors” on
page 11-3. To understand how the database server manages shared memory
to scale performance, see Chapter 13, “Shared Memory.” For tuning and
performance information, refer to your Performance Guide.
Introducing the Database Server 1-11

High Performance
High Performance
The database server achieves high performance through the following
mechanisms:

■ Dynamic shared-memory management

■ Raw disk management

■ Dynamic thread allocation

■ Parallelism

The following sections explain each of these mechanisms.

Dynamic Shared-Memory Management

All applications that use a single instance of a database server share data in
the memory space of the database server. After one application reads data
from a table, other applications can access whatever data is already in
memory. This sharing of data in memory prevents redundant disk I/O and
the corresponding degradation in performance that might otherwise occur.

Database server shared memory contains both data from the database and
control information. Because the data needed by various applications is
located in a single, shared portion of memory, all control information needed
to manage access to that data can be located in the same place. The database
server adds memory dynamically as needed, and as the administrator, you
can also add segments to shared memory if necessary. For information about
adding a segment to shared memory, refer to Chapter 14, “Managing Shared
Memory.”

Direct Disk Access

The database server uses direct, or unbuffered, disk access to improve the
speed and reliability of disk I/O operations. When you assign disk space to
the database server, you can bypass the file-buffering mechanism that the
operating system provides. The database server itself manages the data
transfers between disk and memory.

UNIX provides unbuffered disk access by means of character-special devices
(also known as raw disk devices). For more information about character-
special devices, refer to your UNIX documentation.
1-12 Administrator’s Guide for Informix Extended Parallel Server

High Performance
When you store tables on raw disks or unbuffered files, the database server
can manage the physical organization of data and minimize disk I/O. When
you store tables in this manner, you can receive the following performance
advantages:

■ The database server optimizes table access by guaranteeing that
rows are stored contiguously.

■ The database server bypasses operating-system I/O overhead by
performing direct data transfers between disk and shared memory.

If performance is not a primary concern, you can configure the database
server to store data in regular (buffered) operating-system files, which are
also known as cooked files. When the database server uses cooked files, it
manages the file contents, but the operating system manages the disk I/O.

For more information about how the database server uses disk space, see
Chapter 15, “Data Storage.”

Dynamic Thread Allocation

The database server supports multiple client applications using a relatively
small number of processes called virtual processors. A virtual processor is a
multithreaded process that can serve multiple clients and, where necessary,
run multiple threads to work in parallel for a single query. In this way, the
flexible database server architecture provides dynamic load balancing for
both on-line transaction processing (OLTP) and decision-support
applications.

For a description of database server threads, refer to Chapter 11, “Virtual
Processors and Threads.”

Fragmentation and Parallelism

The database server uses local table partitioning (also called fragmentation) to
intelligently distribute tables across disks for better performance. For very
large databases (VLDBs), the ability to fragment data is important to manage
the data efficiently.

The database server can allocate multiple threads to work in parallel on a
single query. This feature is known as parallel database query (PDQ).
Introducing the Database Server 1-13

Fault Tolerance
PDQ is most effective when you use it with fragmentation. For an overview
of fragmentation and PDQ, refer to Chapter 17, “Table Fragmentation and
PDQ.”

Fault Tolerance
The database server uses the following logging and recovery mechanisms to
protect data integrity and consistency in the event of an operating-system or
media failure:

■ Storage-space and logical-log backups

■ External backup and restore

■ Fast recovery

■ Point-in-time restore

■ Restartable restore

■ Mirroring

■ Data replication

Storage Space and Logical-Log Backups of Transaction Records

The database server manages data in logical storage units called storage
spaces. The most common storage space is the dbspace, in which the database
server stores traditional data such as integer, decimal and floating-point
numbers, fixed-length or variable-length character strings, and so forth.

The database server stores transaction records and changes to the database
server in logical-log files. You can back up storage spaces and logical-log files
while users are accessing databases.

You can also create incremental backups on-line. Incremental backups enable
you to back up only data that has changed since the last backup, which
reduces the amount of time required to back up and restore your data and
logical logs.

After a media failure, if critical data was not damaged (and the database
server remains in on-line mode), you can restore only the data that was on the
failed media, leaving other data available during the restore.
1-14 Administrator’s Guide for Informix Extended Parallel Server

Fault Tolerance
If the failure causes the database server to go off-line, you can restore all data,
including the critical data and the root dbspace. An off-line restore is called a
cold restore.

For more information on backup and restore, refer to the Backup and Restore
Guide.

Backup Verification

If you use ON-Bar as your backup tool, you might want to verify the
completeness and consistency of a storage-space backup. After you success-
fully verify a storage-space backup, you can restore it safely. If ON-Bar
indicates problems with the backup, contact Informix Technical Support. The
Backup and Restore Guide explains how to use ON-Bar to verify backups.

On Extended Parallel Server, you can issue a single command that verifies
the data after it is backed up.

External Backup and Restore

An external backup allows you to make copies of disks that contain storage
spaces without using ON-Bar. Later on, you can use an external restore to
restore these disks to the database server without using ON-Bar or the
Informix Storage Manager. External backups are especially useful if your site
has special hardware or software that allows rapid copying of data directly
to and from your primary data disks. The Backup and Restore Guide explains
external backup and restore.

Fast Recovery

When the database server starts up, it checks if the physical log is empty
because that implies that it shut down in a controlled fashion. If the physical
log is not empty, the database server automatically performs an operation
called fast recovery. Fast recovery automatically restores databases to a state of
physical and logical consistency after a system failure that might have left
one or more transactions uncommitted. During fast recovery, the database
server uses its logical log and physical log to perform the following operations:

■ Restore the databases to their state at the last checkpoint

■ Roll forward all committed transactions since the last checkpoint

■ Roll back any uncommitted transactions
Introducing the Database Server 1-15

Fault Tolerance
The database server spawns multiple threads to work in parallel during fast
recovery. For a detailed explanation of fast recovery, refer to Chapter 24,
“Checkpoints and Fast Recovery.”

Point-in-Time Restore

After the time of the backup, you can restore data from backup media to a
specified point in time. This feature enables you to restore a corrupted
database to a point at which you know that the data was reliable. For more
information, refer to the Backup and Restore Guide.

Mirroring

When you use disk mirroring, the database server writes data to two
locations. Mirroring eliminates data loss due to storage device failures. If
mirrored data becomes unavailable for any reason, the mirror of the data is
available immediately and transparently to users.

The database server relies on the operating system for bad-sector mapping.
When the database server confirms the failure of a disk, it suspends I/O
operations on that chunk. If the chunk has been mirrored, the database server
directs I/O requests to the mirror. If an unmirrored chunk containing critical
information fails, the database server shuts down immediately. Critical infor-
mation includes logical-log files, the physical log, and the root dbspace. The
chunks on which this data resides are referred to as critical dbspaces.

Important: Informix recommends that you mirror critical dbspaces that contain
logical-log files, the physical log, and the root dbspace.

For more information about mirroring and critical data, refer to Chapter 25,
“Mirroring.”
1-16 Administrator’s Guide for Informix Extended Parallel Server

Database Server Security
Database Server Security
The database server enforces access privileges to databases and tables
through the use of the SQL statements GRANT and REVOKE. For more infor-
mation about database and table privileges, refer to the Informix Guide to
Database Design and Implementation and the Informix Guide to SQL: Syntax.

Year 2000 Compliance
The database server and client products support the DBCENTURY
environment variable for Year 2000 compliance. The DBCENTURY
environment variable lets you choose the appropriate expansion (present,
past, closest, or future century) for DATE and DATETIME values that have
only a one- or two-digit year. For more information, see the Informix Guide to
SQL: Reference.

Extended Parallel-Processing Architecture
The parallel-processing architecture provides high performance for database
operations on computing platforms that range from a computer with a single
CPU to parallel-processing platforms composed of dozens or hundreds of
computers.

A parallel-processing platform is a set of independent computers that
operate in parallel and communicate over a high-speed network, bus, or
interconnect. The database server can run on several types of parallel-
processing platforms, including:

■ Massively parallel processing (MPP) systems composed of multiple
computers that are connected to a single high-speed communication
subsystem

■ Clusters of stand-alone computers that are connected over a high-
speed network

■ Symmetric multiprocessing (SMP) computers
Introducing the Database Server 1-17

Extended Parallel-Processing Architecture
An individual computer that operates within a parallel-processing platform
is referred to as a node. A node can be a uniprocessor or an SMP computer.
Within a computer of this type, resources can be segregated into smaller
independently addressed subsystems with separate CPUs, memory regions,
and I/O channels. Independent subsystems configured within an SMP
computer are considered to be nodes for purposes of database server
configuration.

You can configure the database server on a single computer or a parallel-
processing platform as a set of one or more coservers. A coserver is the
functional equivalent of a database server that operates on a single node.
Each coserver performs database operations in parallel with the other
coservers that make up the database server. Each coserver independently
manages its own resources and activities such as logging, recovery, locking,
and buffers.

The database server does not require that any hardware resources be shared
between nodes. This approach is sometimes referred to as a shared-nothing
architecture.

Figure 1-2 illustrates the database server parallel-processing architecture.
1-18 Administrator’s Guide for Informix Extended Parallel Server

Extended Parallel-Processing Architecture
.

Figure 1-2
Database Server in a Shared-Nothing Environment

High-speed-
communication
interface

Shared
memory

Database data

Node

Co
se

rv
er CPU

CPU
CPU

Shared
memory

Database data

Co
se

rv
er CPU

CPU
CPU

Shared
memory

Database data

Node

Co
se

rv
er CPU

CPU
CPU

Shared
memory

Database data

Co
se

rv
er CPU

CPU
CPU

Shared
memory

Database data

Node

Co
se

rv
er CPU

CPU
CPU

Shared
memory

Database data

Co
se

rv
er CPU

CPU
CPU
Introducing the Database Server 1-19

Extended Multithreaded Operation
Extended Multithreaded Operation
Each coserver within the database server is multithreaded. This multi-
threaded architecture allows each coserver to provide the highest degree of
parallelism. The database server extends this parallelism across coservers by
allowing tables to be fragmented across multiple coservers and by providing
parallel execution of database operations across multiple coservers.

Parallel Execution Within a Coserver

Within each coserver, the database operations are performed in a multi-
threaded fashion. Queries are broken down into component steps that can
often be performed in parallel within a given coserver.

Each coserver uses a relatively small number of processes called virtual
processors to support multiple client applications or large DSS queries. A
virtual processor is a multithreaded process that can serve multiple clients
and, where necessary, run multiple threads to work in parallel for a single
query. For more information about multithreaded execution within a
coserver, refer to Chapter 11, “Virtual Processors and Threads.”

The database server provides for parallel execution both within coservers
and between coservers. You can spread the data from a given table across
multiple disks managed by multiple coservers. This feature is known as
fragmentation. Spreading data across multiple disks allows coservers to
perform disk I/O operations in parallel, thereby accessing multiple table
fragments simultaneously.

Parallel Execution on Multiple Coservers

Multiple threads associated with a query can run simultaneously on multiple
coservers, and on single coservers that are running on SMP computers. This
capability is referred to as the parallel database query (PDQ) feature.
Together, fragmentation and PDQ allow the database server to perform
parallel operations on tables.

Although a coserver can perform disk I/O only on the table fragments that it
manages, each coserver accesses its own disks independently and in parallel
with other coservers. Data managed by a particular coserver is accessed only
by that coserver. This arrangement ensures that coservers can run with the
highest degree of parallelism in a shared-nothing environment.
1-20 Administrator’s Guide for Informix Extended Parallel Server

Extended Scalability
For instance, if your database server is configured with 4 coservers and each
coserver manages 6 disks, you could fragment data from a single table across
all 24 disks. If each coserver runs on a separate SMP platform with at least 6
CPUs, the database server can take advantage of the shared-nothing archi-
tecture of each coserver to access all of the table fragments simultaneously for
fully parallel processing. As your table grows, you can add more computers
and configure more coservers to increase the capacity of the your database
server. In this way, you can process larger and larger amounts of information
in roughly the same time.

For a description of fragmented tables, refer to the Informix Guide to Database
Design and Implementation. For information about using fragmentation and
PDQ for maximum performance, see your Performance Guide.

Extended Scalability
Extended Parallel Server extends DSA to provide a high degree of scalability
for decision-support applications and growing workloads. A key element for
scalability is the parallel execution that the parallel database query (PDQ) and
table fragmentation features provide. PDQ and table fragmentation can
improve performance dramatically when the database server processes
queries that access data which resides on disks located on different coservers.

For more information on these features, refer to Chapter 17, “Table Fragmen-
tation and PDQ.” For tuning and performance information, refer to your
Performance Guide.

Extended Parallel Server provides near linear scalability across a wide
variety of computing platforms and workloads.
Introducing the Database Server 1-21

Extended Client/Server Operations
Extended Client/Server Operations
Extended Parallel Server extends the client/server architecture of Dynamic
Server to the parallel-processing platforms and multiple coservers.

Connection Coserver

A connection coserver is the coserver that manages a client connection to a
database server. The connection coserver determines if a client request can be
satisfied with data that resides on that coserver alone or if it requires data that
resides on other coservers.

Different clients can connect to different coservers. For example, Client A can
connect to Coserver 1, and Client B can connect to Coserver 2. Coserver 1 is
the connection coserver for Client A, and Coserver 2 is the connection
coserver for Client B.

Participating Coserver

When a client database request requires access to data that resides in table
fragments on other coservers, the other coservers are called participating
coservers.
1-22 Administrator’s Guide for Informix Extended Parallel Server

Extended Client/Server Operations
Figure 1-3 shows a client that is accessing a very large database that is
fragmented across many coservers. Coserver 1 is the connection coserver.
Coservers 1 through N are all participating coservers.

On-Line Transaction Processing and Decision-Support Applications

Extended Parallel Server provides support for both OLTP and DSS
applications.

DSS applications perform more complex tasks than OLTP, often including
scans of entire tables, manipulation of large amounts of data, multiple joins,
and the creation of temporary tables. Such operations involve many
calculations and large amounts of memory. As a result, DSS execution times
are typically far longer than OLTP execution times. However, Extended
Parallel Server excels at handling the complex queries that are typical of
decision-support applications.

Figure 1-3
Client Query That Coservers Service

Dbspace M-1 Dbspace M. . .

. . .

Client

Dbspace 1 Dbspace 2 Dbspace 3 Dbspace 4

. . .

Coserver 2 Coserver N

CPUCPUCPUCPUCPU CPU

SELECT ...

Fragment MFragment M-1Fragment 4Fragment 3Fragment 2Fragment 1

Coserver 1
Introducing the Database Server 1-23

Extended Dynamic Shared-Memory Management
Another approach to DSS operations, called a data mart, draws selected data
from OLTP operations or a data warehouse to answer specific types of
questions or to support a specific department or initiative within an
organization.

Extended Parallel Server provides exceptional performance for DSS applica-
tions such as data marts and data warehouses.

For more information about data mart applications, refer to the Informix
Guide to Database Design and Implementation.

Extended Parallel Server does not support distributed data queries where a
single transaction contains queries to more than one database across multiple
database servers.

Extended Dynamic Shared-Memory Management
All applications that use data from a particular coserver share data in the
memory space of that coserver. After one application reads data from a table
fragment that resides on a coserver, other applications can access whatever
data is already in memory. This sharing of data in memory prevents
redundant disk I/O and the corresponding degradation in performance that
might otherwise occur.

Each database server or coserver adds memory dynamically as needed, and
you, as the administrator, can also add segments to shared memory if
necessary. For information on how to add a segment to database server
shared memory, refer to Chapter 13, “Shared Memory.”

Direct Disk Access
Extended Parallel Server uses the same direct, or unbuffered, disk access as
Dynamic Server to improve the speed and reliability of disk I/O operations.

For more information about how the database server uses disk space, refer to
Chapter 15, “Data Storage.”
1-24 Administrator’s Guide for Informix Extended Parallel Server

Single Point of Administration
Single Point of Administration
With Extended Parallel Server, many coservers function together to form a
single database server. These coservers usually have the same number of
CPUs and equal amounts of memory and disk storage space. This uniformity
makes it easier to administer all coservers from a single point.

The following features help you control and manage multiple coservers:

■ Centralized configuration file

■ Coserver groups (cogroups)

■ Dbslices

■ Logslices

■ Centralized message log

■ Coordinated data-dictionary cache

■ Centralized database server utilities

Centralized Configuration

The database server has one centralized configuration file that applies to all
coservers. To simplify the task of configuring multiple database server
instances, Extended Parallel Server uses global configuration parameters for
information that applies to all coservers. You specify these global configu-
ration parameters once in the global section of the configuration file. The
configuration file also contains a section for information that applies to
individual coservers. For more information about global and coserver-
specific configuration parameters, see “Configuring Multiple Coservers” on
page 5-3.
Introducing the Database Server 1-25

Single Point of Administration
Coserver Groups

A coserver group (referred to as a cogroup for convenience) is a subset of the
coservers within the database server. You can create cogroups to simplify
system and database administration. A coserver can be in more than one
cogroup. For example, you might create the following cogroups.

Extended Parallel Server provides a system-defined cogroup called
cogroup_all. The cogroup_all cogroup includes all of the coservers that your
ONCONFIG configuration file defines.

Cogroups help you administer a large number of coservers. For more details
see Chapter 10, “Initializing the Database Server.”

Dbslices

A dbslice is a named set of dbspaces that usually spans multiple coservers. A
dbslice is managed as a single storage object. For more information about
dbslices, refer to Chapter 15, “Data Storage.”

Logslices

A logslice is a set of logical-log files that occupy a dbslice and are owned by
multiple coservers, one logical-log file per dbspace. Logslices simplify the
process of adding and deleting logical-log files by treating sets of them as
single entities. For more information about logslices, see “Logslices” on
page 20-5.

Cogroup Purpose

CUSTOMER_COGROUP For the coservers that own the fragmented data for a
customer application

ACCOUNT_COGROUP For the coservers that own the fragmented data for an
accounting application
1-26 Administrator’s Guide for Informix Extended Parallel Server

Single Point of Administration
Centralized Message Log

To facilitate administration, Informix recommends that you use a centralized
message-log file. To do so, place the message-log file in a file system that is
accessible by all coservers. All coservers can then write their messages to this
file. To identify the coserver that generated a given message, check the
coserver number that begins each message.

Avoid placing message-log files in local file systems. That arrangement
complicates administration of the database server by scattering log messages
across multiple files. This arrangement also prevents you from viewing
messages in sequence.

Centralized Database Server Utilities

Extended Parallel Server provides centralized command-line and graphical
monitoring utilities.

The onutil Utility

The onutil utility allows you to monitor and manage tables and other
database objects across multiple coservers. For more information about
onutil, refer to the utilities chapter in the Administrator’s Reference.

The xctl Utility

The xctl utility allows you to run coserver-specific utilities on multiple
coservers and execute operating-system commands on multiple nodes. You
can include a coserver-specific utility such as oninit, onlog, or onstat, or an
operating-system command in an xctl command-line, along with syntax to
designate the nodes or coservers on which the command is to run. For more
information on xctl, refer to the utilities chapter in the Administrator’s
Reference.
Introducing the Database Server 1-27

Control of Resources in Parallel
Coordinated Data-Dictionary Cache

When a table is fragmented across coservers, each table fragment is owned
by the coserver on which it resides. Only the owning coserver can update the
system catalog tables that define the table fragment.

When a session executes an SQL statement that accesses data on a table
fragment that is located on another coserver, the database server reads the
system catalog tables from a participating coserver and stores them in struc-
tures that it can access more efficiently. These structures are created in the
virtual portion of shared memory for use by all sessions on that coserver.
These structures constitute the data-dictionary cache for a coserver.

Each coserver maintains its own data-dictionary cache. Each coserver can
cache the data-dictionary information retrieved from other coservers that
own a particular database definition. The database server ensures that each
coserver accesses the most current system tables in its data-dictionary cache.

Only one INFORMIXDIR directory and one logical sqlhosts file exist across
all coservers.

Control of Resources in Parallel
Each coserver owns and manages a set of dbspaces and the table fragments
that reside on those dbspaces. Each coserver also manages its own logging,
recovery, locking, and buffer management for the table fragments that it
owns.

Each coserver manages the database objects that it owns and coordinates
activities with the other coservers. The database server provides the
following services to coordinate parallel processing among coservers:

■ The request manager

■ The query optimizer

■ The data-dictionary manager

■ The scheduler
1-28 Administrator’s Guide for Informix Extended Parallel Server

Control of Resources in Parallel
Request Manager

A request manager resides on each coserver. The request manager decides
how to divide a query and how to distribute the workload to balance the
tasks across coservers. The request manager works with other database
server services to determine if a client request should involve multiple
coservers:

■ The query optimizer to determine the best way of executing a
request

■ The data-dictionary manager to determine where the data resides

■ The scheduler to distribute the request

The request manager on the coserver where the user connects is called the
connection request manager for that user session. If a request involves
execution on multiple coservers, the connection request manager passes
context information to the other coservers so that they can establish local
session context for the user session.

Query Optimizer

The query optimizer decides how to perform a query. The query optimizer
first finds all feasible query plans. A query plan is a distinct method of
executing a query that takes into account the order in which tables are read,
how they are read (by index or sequentially), and how they are joined with
other tables in the query. The query optimizer assigns a cost to each
component operation that is required under each plan and then selects the
plan with the lowest cost for execution.

The query optimizer uses pertinent information from the data-dictionary
manager to determine the degree of parallelism of the request.

Data-Dictionary Manager

The data-dictionary manager contains information about data definitions,
the system catalogs that contain them, and the coservers on which those
system catalogs reside. The Data-Dictionary Manager provides coservers
with access to system catalogs that reside on other coservers. Once a coserver
has obtained a data definition, that coserver can retain a copy in local shared
memory. The only coserver that can modify a data definition is the one on
which the appropriate system catalog resides.
Introducing the Database Server 1-29

Control of Resources in Parallel
Each coserver manages and maintains the table fragments that reside on its
dbspaces but is aware of the table fragments on other coservers through the
Data-Dictionary Manager located on every coserver. If a coserver requires
access to table fragments that it does not own, the coserver sends a request to
the coserver that owns the dbspace to retrieve it.

Scheduler

A scheduler resides on each coserver. The scheduler distributes execution
tasks to the other coservers. The scheduler activates a part of the execution
plan on each coserver to allocate the pertinent resources.
1-30 Administrator’s Guide for Informix Extended Parallel Server

2
Chapter
Overview of Database Server
Administration
In This Chapter . 2-3

Database Server Administrator. 2-3

Initial Tasks . 2-4

Configuration Tasks 2-4
Managing Disk Space 2-4
Managing Database-Logging Status. 2-5
Managing the Logical Log 2-5
Managing the Physical Log. 2-5
Using Mirroring 2-5
Managing Shared Memory 2-6
Managing Virtual Processors 2-6
Managing Parallel Database Query 2-6

Routine Tasks. 2-7
Changing Modes 2-7
Backing Up Data and Logical-Log Files 2-7
Monitoring Database Server Activity 2-8
Checking for Consistency 2-8

Summary of Administration Tasks 2-8

Monitoring Database Server Activity 2-10

2-2 Adm
Sources of Information for Monitoring 2-11
Message Log . 2-12

Monitoring the Message Log 2-12
Changing the Destination for Message-Log Messages 2-12

Event Alarm . 2-13
System Console 2-13
SMI Tables . 2-13
onstat Utility . 2-14
onutil CHECK Utility 2-15
xctl Utility. 2-15
inistrator’s Guide for Informix Extended Parallel Server

In This Chapter
As a database server administrator, you need to be aware of the tasks and
responsibilities that fall into your domain. This chapter describes the three
types of tasks that you need to perform as an administrator of an Informix
database server:

■ Initial installation and configuration tasks

■ Routine tasks that you perform on a regular basis

■ Configuration tasks that you perform less frequently

For a summary of database server administration tasks, refer to “Summary
of Administration Tasks” on page 2-8.

Database Server Administrator
Most database server administrative tasks require you to have the privileges
accorded to the database server administrator. On UNIX, you must log in as
user informix to acquire the privileges of the database server administrator.
Overview of Database Server Administration 2-3

Initial Tasks
Initial Tasks
When you first acquire the database server, you need to perform some initial
installation and configuration tasks. For a description of these tasks, see
Chapter 3, “Installing and Configuring the Database Server.”

If you are moving from one version of the database server to another, refer to
the Informix Migration Guide.

You must also configure connectivity for your database server and client
applications, as explained in Chapter 6, “Client/Server Communications.”

These tasks can seem complicated and time consuming. Fortunately, they are
not common tasks and are not representative of most of the administrative
work that the database server requires.

Configuration Tasks
Configuration tasks are generally either setup tasks that involve initiating
functionality or maintenance and performance-adjustment tasks that are
required by the usage pattern of your database server.

Managing Disk Space
You are responsible for planning and implementing the layout of information
managed by the database server on disks. The way you distribute the data
can greatly affect the performance of the database server.

Chapter 15, “Data Storage,” explains the advantages and drawbacks of
different disk configurations. Chapter 16, “Managing Disk Space,” describes
the actual disk-management tasks.

If you plan to use more than one database server instance on the same
computer, refer to Chapter 7, “Multiple Residency,” to familiarize yourself
with the issues of multiple residency.

For information on how to fragment tables and indexes over multiple disks
to improve performance, concurrency, data availability, and backups, refer to
Chapter 17, “Table Fragmentation and PDQ,” and to your Performance Guide.
2-4 Administrator’s Guide for Informix Extended Parallel Server

Managing Database-Logging Status
Managing Database-Logging Status
You can specify whether the default logging mode for databases is buffered
or unbuffered and whether the logging mode is ANSI compliant.

Databases always use transaction logging. However, you can specify logging
or nonlogging tables in your database.

For information about these logging options, refer to Chapter 18, “Logging.”
For information on how to change logging options, refer to Chapter 19,
“Managing Database-Logging Status.”

Managing the Logical Log
Although backing up logical-log files is a routine task, logical-log adminis-
tration (placing and sizing log files and specifying high-water marks) is
required even when none of your databases use transaction logging. For
information about logical-log administration, refer to Chapter 20, “Logical
Log.”

For instructions on creating and modifying the logical-log configuration, see
Chapter 21, “Managing Logical-Log Files.”

For information on backing up the logical log, see the Backup and Restore
Guide.

Managing the Physical Log
You can change the size and location of the physical log as part of effective
disk management. For more information about the physical log, refer to
Chapter 23, “Managing the Physical Log.”

Using Mirroring
For information on mirroring, refer to Chapter 25, “Mirroring.” Informix
recommends that you mirror at least your root dbspace. For instructions on
tasks related to mirroring, see Chapter 26, “Using Mirroring.”
Overview of Database Server Administration 2-5

Managing Shared Memory
Managing Shared Memory
Managing shared memory includes the following tasks:

■ Changing the size or number of buffers (by changing the size of the
logical-log or physical-log buffer, or changing the number of buffers
in the shared-memory buffer pool)

■ Changing shared-memory parameter values, if necessary

■ Changing forced residency (on or off, temporarily or for this session)

■ Tuning checkpoint intervals

■ Adding segments to the virtual portion of shared memory

For information on how the database server uses shared memory, refer to
Chapter 13, “Shared Memory.” For a description of how to manage shared
memory, refer to Chapter 14, “Managing Shared Memory.”

Managing Virtual Processors
The configuration and management of virtual processors (VPs) has a direct
impact on the performance of a coserver or database server. The optimal
number and mix of VPs for your database server depends on your hardware
and on the types of applications that your database server supports.

For an explanation of virtual processors, refer to Chapter 11, “Virtual
Processors and Threads.” For information on the procedures to manage
virtual processors, refer to Chapter 12, “Managing Virtual Processors.”

Managing Parallel Database Query
You can control the resources that the database uses to perform decision-
support queries in parallel. You need to balance the requirements of decision-
support queries against those of on-line transaction processing (OLTP)
queries. The resources that you need to consider include shared memory,
threads, temporary table space, and scan bandwidth. For information on
parallel database query (PDQ) and how fragmentation affects the perfor-
mance of PDQ, refer to your Performance Guide.
2-6 Administrator’s Guide for Informix Extended Parallel Server

Routine Tasks
Routine Tasks
Depending on the needs of your organization, you might be responsible for
performing the periodic tasks described in the following paragraphs. Not all
of these tasks are appropriate for every installation. For example, if your
database server is available 24 hours a day, 7 days a week, you might not
bring the database server to off-line mode, so database server operating
mode changes would not be a routine task.

Changing Modes
The database server administrator is responsible for starting up and shutting
down the database server by changing the mode. Chapter 9, “Managing
Database Server Operating Modes,” explains how to change database server
modes.

Backing Up Data and Logical-Log Files
To ensure that you can recover your databases in the event of a failure,
Informix recommends that you make frequent backups of your storage
spaces and logical logs.

How often you back up the storage spaces depends on how frequently the
data is updated and how critical it is. A backup schedule might include a
complete (level-0) backup once a week, incremental (level-1) backups daily,
and level-2 backups hourly. You also need to perform a level-0 backup after
performing administrative tasks such as adding a dbspace or logical log or
enabling mirroring.

Back up each logical-log file as soon as it fills. You can back up these files
manually or automatically.

For information on using ON-Bar, see the Backup and Restore Guide.
Overview of Database Server Administration 2-7

Monitoring Database Server Activity
Monitoring Database Server Activity
The Informix database server design lets you monitor every aspect of the
database server. “Sources of Information for Monitoring” on page 2-11
provides descriptions of the available information, instructions for obtaining
information, and suggestions for its use. As a result of monitoring, you might
need to change your configuration in one of the ways described in “Summary
of Administration Tasks” in the following section.

Checking for Consistency
Informix recommends that you perform occasional checks for data consis-
tency. For a description of these tasks, refer to Chapter 27, “Consistency
Checking.”

Summary of Administration Tasks
The following tables summarizes the initial tasks, routine tasks, and configu-
ration tasks that you perform to administer the database server. Figure 2-1
lists initial administration tasks.

Figure 2-1
Initial Tasks Summary

Initial Tasks Reference

Plan for database server “Planning for the Database Server” on page 3-4

Preinstallation operating-system changes “Configuring the Operating System” on page 3-6

Install the database server Installation Guide

Configure the database server Chapter 5, “Configuring the Database Server”

Define connectivity Chapter 6, “Client/Server Communications”

Initialize the database server Chapter 10, “Initializing the Database Server”
2-8 Administrator’s Guide for Informix Extended Parallel Server

Summary of Administration Tasks
Figure 2-2 lists database server configuration tasks.

Figure 2-2
Configuration Tasks Summary

Configuration Tasks Reference

Manage disk space and storage spaces Chapter 16, “Managing Disk Space”

Loading external tables Administrator’s Reference

Analyze disk configuration Chapter 15, “Data Storage”

Changing database-logging status Chapter 18, “Logging”

Chapter 19, “Managing Database-Logging Status”

Administer the logical log:

■ Size and placement of logical logs

■ Modify logical log configuration

Chapter 20, “Logical Log”

Chapter 21, “Managing Logical-Log Files”

Administer the physical log Chapter 23, “Managing the Physical Log”
Chapter 24, “Checkpoints and Fast Recovery”

Manage mirroring Chapter 25, “Mirroring”

Chapter 26, “Using Mirroring”

Manage shared memory Chapter 13, “Shared Memory”

Chapter 14, “Managing Shared Memory”

Manage virtual processors Chapter 12, “Managing Virtual Processors”

Manage Parallel Data Query (PDQ) Performance Guide

Migrate to a different database server
version

Informix Migration Guide
Overview of Database Server Administration 2-9

Monitoring Database Server Activity
Figure 2-3 lists routine administration tasks.

Figure 2-3
Routine Tasks Summary

Monitoring Database Server Activity
You can monitor information about the following aspects of the database
server:

■ Configuration

■ Checkpoints

■ Shared memory

❑ Shared-memory segments

❑ Shared-memory profile

❑ Buffers

❑ Latches

❑ Locks

■ Active tblspaces

■ Virtual processors

■ Sessions and threads

Routine Tasks Reference

Change database server modes Chapter 9, “Managing Database Server Operating Modes”

Refresh data warehousing tables Administrator’s Reference

Back up data and logical-log files:

■ ON-Bar

■ Informix Storage Manager

Backup and Restore Guide

Informix Storage Manager Administrator’s Guide

Monitor activity Monitoring information in relevant chapters of this book

Check for data consistency Chapter 27, “Consistency Checking”

Tune database server performance Performance Guide
2-10 Administrator’s Guide for Informix Extended Parallel Server

Sources of Information for Monitoring
■ Transactions

■ Parallel database queries (PDQ) and resources

■ Databases

■ Logging activity

❑ Logical-log files

❑ Physical-log file

❑ Physical-log and logical-log buffers

❑ Log backup status

■ Disk usage

❑ Chunks

❑ Tblspaces and extents

❑ Simple large objects in dbspaces

Sources of Information for Monitoring
You can gather information about database server activity from the following
sources:

■ Message log

■ Event alarm

■ System console

■ SMI tables

■ onstat utility

■ onutil CHECK options

The following sections explain each of these sources.
Overview of Database Server Administration 2-11

Message Log
Message Log
The database server message log is an operating-system file. The messages
contained in the database server message log do not usually require
immediate action. To report situations that require your immediate attention,
the database server uses the event-alarm feature. See “Event Alarm” on
page 2-13. To specify the message-log pathname, set the MSGPATH configu-
ration parameter. For more information about MSGPATH, see the chapter on
configuration parameters in the Administrator’s Reference.

Monitoring the Message Log

Informix recommends that you monitor the message log once or twice a day
to ensure that processing is proceeding normally and that events are being
logged as expected. Use the onstat -m command to obtain the name of the
message log and the 20 most-recent entries. Use a text editor to read the
complete message log. Use an operating-system command (such as the UNIX
command tail -f) to see the messages as they occur. For a list of these
messages, see the chapter on message-log messages in the Administrator’s
Reference.

Monitor the message-log size as well because the database server appends
new entries to this file. Edit the log as needed, or back it up to tape and delete
it.

If the database server experiences a failure, the message log serves as an audit
trail for retracing the events that develop later into an unanticipated problem.
Often the database server provides the exact nature of the problem and the
suggested corrective action in the message log.

You can read the database server message log for a minute-by-minute
account of database server processing in order to catch events before a
problem develops. However, Informix does not expect you to perform this
kind of monitoring.

Changing the Destination for Message-Log Messages

You can change the value of MSGPATH while the database server is in on-line
mode, but the changes do not take effect until you reinitialize shared
memory.
2-12 Administrator’s Guide for Informix Extended Parallel Server

Event Alarm
Event Alarm
The database server provides a mechanism for automatically triggering
administrative actions based on an event that occurs in the database server
environment. This mechanism is the event-alarm feature.

To use the event-alarm feature, set the ALARMPROGRAM configuration
parameter to the full pathname of an executable file that performs the
necessary administrative actions.

For more information, see the appendix on event alarms and the chapter on
configuration parameters in the Administrator’s Reference.

System Console
The database server sends messages that are useful to the database server
administrator by way of the system console. To specify the destination
pathname of console messages, set the CONSOLE configuration parameter.
For more information about CONSOLE, see the chapter about configuration
parameters in the Administrator’s Reference.

You can change the value of CONSOLE while the database server is in on-line
mode, but the changes do not take effect until you reinitialize shared
memory.

SMI Tables
The system-monitoring interface (SMI) tables are special tables managed by the
database server that contain dynamic information about the state of the
database server. You can use SELECT statements on them to determine almost
anything you might want to know about your database server. For a
description of the SMI tables, see the chapter about the sysmaster database in
the Administrator’s Reference.
Overview of Database Server Administration 2-13

onstat Utility
onstat Utility
The onstat utility provides a way to monitor database server shared memory
from the command line. The onstat utility reads data from shared memory
and reports statistics that are accurate for the instant during which the
command executes. That is, onstat provides information that changes
dynamically during processing, including changes in buffers, locks, and
users.

One useful feature of onstat output is the heading that indicates the database
server status. Whenever the database server is blocked, onstat displays the
following line after the banner line:

Blocked: reason

The variable reason can take one of the following values.

For an example of what onstat displays when the database server is blocked
to preserve logical-log space for administrative tasks, see “Monitoring the
Logical Log for Fullness” on page 21-16.

Reason Description

CKPT Checkpoint

LONGTX Long transaction

ARCHIVE Ongoing archive

MEDIA_FAILURE Media failure

HANG_SYSTEM Database server failure

DBS_DROP Dropping a dbspace

DDR Discrete high-availability data replication

LBU Logs full high-water mark
2-14 Administrator’s Guide for Informix Extended Parallel Server

onutil CHECK Utility
onutil CHECK Utility
The onutil utility provides a number of CHECK commands for monitoring
database server information regarding tables, indexes, and availability of
disk space. For more information about onutil, see the utilities chapter in the
Administrator’s Reference.

xctl Utility
The xctl utility allows you to run coserver-specific utilities on multiple
coservers and execute operating-system commands on multiple nodes. You
can include a coserver-specific utility such as oninit, onlog, or onstat, or an
operating-system command in an xctl command-line, along with syntax to
designate the nodes or coservers on which the command is to run. For more
information about xctl, see the utilities chapter in the Administrator’s
Reference.
Overview of Database Server Administration 2-15

n
II
Configuration
Se
ct

io
Chapter 3 Installing and Configuring the Database Server

Chapter 4 Configuration Parameters

Chapter 5 Configuring the Database Server

Chapter 6 Client/Server Communications

Chapter 7 Multiple Residency

Chapter 8 Using Multiple Residency

3
Chapter
Installing and Configuring the
Database Server
In This Chapter . 3-3

Planning for the Database Server 3-4
Considering Your Priorities 3-4
Considering Your Environment 3-5

Configuring the Operating System 3-6
Modifying UNIX Kernel Parameters 3-6
Preparing the Operating System for the Database Server 3-7

Setting Up Node Names 3-7
Using Operating-System Administration Facilities 3-8

Allocating Disk Space 3-8
Creating a Raw Device or Unbuffered File 3-9
Creating Standard Device Names 3-9
Setting Permissions, Ownership, and Group. 3-10
Setting Up Disk Access Across Nodes 3-10

Installing the Database Server 3-11
Using Multiple Residency 3-11
Upgrading the Database Server 3-11

Setting Environment Variables 3-11
Required Environment Variables 3-12
Global Language Support 3-13
Other Environment Variables 3-13
Environment Variable Files. 3-13

Configuring Connectivity 3-14
The sqlhosts File 3-14

3-2 Adm
Preparing the ONCONFIG Configuration File 3-14
Creating a Configuration File 3-15

Creating an ONCONFIG File 3-16

Starting and Administering the Database Server 3-16
Preparing to Connect to Applications 3-17
Configuring the Database Server Page Size 3-17
Starting the Database Server and Initialize Disk Space 3-18
Performing Administrative Tasks 3-18

Preparing the Startup and Shutdown Scripts 3-18
Making Sure That Users Have the Correct Environment Variables 3-20
Warning UNIX System Administrator About cron Jobs 3-21

Setting Up Your Storage Manager and Storage Devices 3-21
Creating Storage Spaces 3-22

Monitoring Configuration Information 3-22
Using Command-Line Utilities 3-22

onstat -c . 3-22
onutil CHECK RESERVED 3-23
inistrator’s Guide for Informix Extended Parallel Server

In This Chapter
Configuring a database-management system requires many decisions, such
as where to store the data, how to access the data, and how to protect the data.
How you install and configure the database server can greatly affect the
performance of database operations.

You can customize the database server so that it functions optimally in your
particular data-processing environment. For example, a database server
instance that serves 1000 users who execute frequent, short transactions is
much different from the database server instance in which a few users make
long and complicated searches.

This chapter has three purposes:

■ To introduce files, environment variables, and utilities that the
database server uses for configuration

■ To let you quickly start the database server with a simple
configuration

■ To provide a foundation for more detailed information that appears
throughout this book

The chapter also introduces terminology and covers some of the issues that
you must consider before you install the database server. The following
topics appear in this chapter:

■ Planning for the database server

■ Configuring the operating system

■ Allocating disk space

■ Installing the database server

■ Setting environment variables

■ Configuring connectivity information

■ Preparing the ONCONFIG configuration file
Installing and Configuring the Database Server 3-3

Planning for the Database Server
■ Starting and administering the database server

■ Monitoring configuration information

Planning for the Database Server
When you are planning for your database server, consider your priorities and
your environment.

Considering Your Priorities
As you prepare the initial configuration and plan your backup strategy, keep
in mind the characteristics of your database server:

■ Do applications on other computers use this database server
instance?

■ What is the maximum number of users that you can expect?

■ How much help or supervision will the users require?

■ To what extent do you want to control the environment of the users?

■ Are you limited by resources for space, CPU, or availability of
operators?

■ How much does the database server instance need to do without
supervision?

■ Does the database server usually handle many short transactions or
fewer long transactions?
3-4 Administrator’s Guide for Informix Extended Parallel Server

Considering Your Environment
Considering Your Environment
Before you start the initial configuration of your database server, collect as
much of the following information as possible. You might need the assistance
of your system administrator to obtain this information:

■ The host names and IP addresses of the other computers on your
network

Does your platform support the Network Information Service (NIS)?

■ The host names and Internet protocol (IP) addresses of the nodes on
your parallel-processing platform

For more information about parallel-processing platform, refer to
“Setting Up Node Names” on page 3-7.

■ The disk-controller configuration

How many disk drives are available? Are some of the disk drives
faster than others? How many disk controllers are available? What is
the disk-controller configuration?

■ What are the requirements, features, and limitations of your storage
manager and backup devices?

For more information, see the Informix Storage Manager Adminis-
trator’s Guide or your storage-manager documentation.

■ Operating-system shared memory and other resources

How much shared memory is available? How much of it can you use
for the database server?

The machine notes file indicates which parameters are applicable for
each UNIX platform.
Installing and Configuring the Database Server 3-5

Configuring the Operating System
Configuring the Operating System
Before you can start configuring the database server, you must configure the
operating system appropriately. You might need the assistance of the system
administrator for this task.

Modifying UNIX Kernel Parameters
The machine notes file contains recommended values that you use to
configure operating-system resources. Use these recommended values when
you configure the operating system on each node within your parallel-
processing platform.

If the recommended values for the database server differ significantly from
your current environment, consider modifying your operating-system
configuration. For more information, see your Performance Guide.

On some operating systems, you can specify the amount of shared memory
allocated to the database server. The amount of available memory influences
the values that you can choose for the shared-memory parameters in your
configuration file. In general, increasing the space available for shared
memory enhances performance. You might also need to specify the number
of locks and semaphores.

For background information on the role of the UNIX kernel parameters, see
Chapter 14, “Managing Shared Memory.”
3-6 Administrator’s Guide for Informix Extended Parallel Server

Preparing the Operating System for the Database Server
Preparing the Operating System for the Database Server
You must perform additional tasks to prepare your operating system for the
database server. You might need the assistance of the system administrator in
order to perform these tasks:

■ Set up node names

■ Understand operating system administration facilities

Setting Up Node Names

The hardware architecture of your computer platform and the intended use
of your database server both play a role in determining the appropriate
number of coservers that you configure.

A basic rule of thumb for configuring coservers is one coserver per node.
However, the following exceptions to this rule apply to the following types
of parallel-processing platforms:

■ If your platform consists of only one computer with between eight
and ten (depending on the platform) or fewer CPUs, you can choose
the single-coserver configuration option for ease of administration.

■ If your platform is an SMP computer with more than eight or ten
CPUs, or if the physical memory available on the computer is more
than double the size of the virtual address space of a single process,
you can improve performance by configuring multiple coservers.

■ If your platform is an SMP computer that can be partitioned into
independent computing subsystems, you can achieve both ease of
administration and improved performance by partitioning the
computer and configuring a single coserver per subsystem. In this
case, each subsystem is regarded as an individual node for configu-
ration purposes.

For more information about configuring coservers, refer to Chapter 5,
“Configuring the Database Server.”

Your system administrator specifies the node names and the IP addresses in
your operation system hosts file on each node. Informix suggests that you
share the same hosts file across all of the nodes on your platform. For more
information about this file, see “Connectivity Files” on page 6-13.
Installing and Configuring the Database Server 3-7

Allocating Disk Space
If the operating system requires it, the system administrator defines one set
of host names for network access and another set of host names for access
through the high-speed communication interface or network. Use the appro-
priate host names for high-speed communication between nodes in the
NODE configuration parameter in your ONCONFIG file. For a description, see
“Host Name Field” on page 6-26.

Using Operating-System Administration Facilities

Each operating system has its own set of tools for administration of multiple
nodes and users. For example, these tools include a central console and
possibly the kerberos utility or various platform support programs. Your
operating-system administration guide indicates which of these tools are
applicable for database server system administration on your hardware
platform.

If your operating system uses a central console, you can use that console to
manage and maintain all of the nodes on that platform. Some operating
systems refer to the console as a central-control workstation. Other operating
systems refer to it as an administrative workstation.

Allocating Disk Space
Configuring your disks is the most important task for obtaining optimum
performance with data marts and data warehouses. Disk I/O is the longest
portion of the response time for an SQL operation. The database server offers
parallel access to multiple disks on a computer.

Extended Parallel Server offers the advantage of parallel access to multiple
disks spread across many coservers.

Before you allocate the disk space, study the information about disk space in
your operating-system administration guide.
3-8 Administrator’s Guide for Informix Extended Parallel Server

Creating a Raw Device or Unbuffered File
To allocate disks for the database server

1. Configure a raw device or create an unbuffered file for each disk.

2. Create standard device names or filenames.

3. Set permissions, ownership, and group for each raw device or unbuf-
fered file.

4. Set up access to disks across all nodes.

Creating a Raw Device or Unbuffered File
To achieve better performance, UNIX uses raw disk devices, and
Windows NT uses unbuffered NTFS files to bypass the buffering of disk I/O
that the operating system normally performs. To create raw devices on UNIX,
follow the instructions provided with your operating system. To configure
unbuffered NTFS files on Windows NT, follow the steps in the installation
program.

Some operating systems use the concept of a logical volume, and others use a
logical unit. Each of these terms represents the basic unit of physical disk
space that the operating system reserves for the database server. A chunk is
a physical partition, logical volume, a logical unit, or regular file that has been
assigned to the database server. Use the onutil utility to create chunks on a
coserver.

Important: You must define your logical volume or logical unit to be no larger than
a chunk. To determine which chunk size your operating system supports, refer to
your machine notes file.

Creating Standard Device Names
Informix recommends that you use symbolic links to assign abbreviated
standard device names for each raw disk device. If you have symbolic links,
you can replace a disk that has failed with a new disk by assigning the
symbolic name to the new disk.

To create a link between the character-special device name and another
filename, use the UNIX link command (usually ln).
Installing and Configuring the Database Server 3-9

Setting Permissions, Ownership, and Group
Execute the UNIX command ls -l (ls -lg on BSD) on your device directory to
verify that both the devices and the links exist. The following example shows
links to raw devices. If your operating system does not support symbolic
links, you can use hard links.

% ls -lg
crw-rw--- /dev/rxy0h
crw-rw--- /dev/rxy0a
lrwxrwxrwx /dev/my_root@->/dev/rxy0h
lrwxrwxrwx /dev/raw_dev2@->/dev/rxy0a

Extended Parallel Server requires standard device names across all coservers
on UNIX. Use standard naming conventions for the chunk paths.

Setting Permissions, Ownership, and Group
Files or raw devices that the database server uses must have the appropriate
ownership and permissions.

On UNIX, the owner and group must be informix, and the permissions must
be set to read and write for both user and group (but not for others).

If you want users other than informix or root to execute ON-Bar commands,
create a bargroup group. Only members of bargroup can execute ON-Bar
commands. The bargroup group is not created automatically during
database server installation. For instructions on creating a group, see your
UNIX documentation.

Setting Up Disk Access Across Nodes
The file system on which the INFORMIXDIR directory is installed should be
exported to and mounted by all nodes that are defined for the database
server. In addition, you must copy the following utilities on each node:

■ oninit

■ onmode

■ onstat

Place the directory that contains these copied utilities before
$INFORMIXDIR/etc in the search path because the INFORMIXDIR directory
might be on another node.
3-10 Administrator’s Guide for Informix Extended Parallel Server

Installing the Database Server
Installing the Database Server
Installation refers to the process of loading files from the product distribution
media onto your computer and running the installation script to set up the
product files correctly. For information about how to install the database
server, see your Installation Guide.

Warning: Do not try to install multiple copies of the database server from the distri-
bution media on the same computer.

Using Multiple Residency
If you run more than one instance of the database server on the same
computer, it is called multiple residency. To prepare to use multiple instances
of the database server, first install and configure one database server. To
prepare for multiple residency, initialize multiple instances of the database
server. For more information, refer to Chapter 8, “Using Multiple Residency.”

Upgrading the Database Server
If you are upgrading your database server from an earlier version, see the
Informix Migration Guide for instructions.

Setting Environment Variables
To start, stop, or access a database server, you must set the appropriate
environment variables.

You can include the environment variables in the operating-system boot-up
procedure, include the environment variables in your .cshrc or .informix file,
or set the environment variables each time you log on. For information
about .cshrc, refer to your operating-system manuals. For information about
the .informix file and others files that the database server uses, refer to the
Administrator’s Reference.

Tip: The “Informix Guide to SQL: Reference” contains a complete list of
environment variables.
Installing and Configuring the Database Server 3-11

Required Environment Variables
Required Environment Variables
You must set the following environment variables before you access the
database server or perform most administrative tasks:

■ INFORMIXDIR

The INFORMIXDIR environment variable specifies the directory
where the product files are installed. Set INFORMIXDIR to the
directory where you installed your Informix database server.

■ PATH

The PATH environment variable specifies the location of executable
files ($INFORMIXDIR/bin).

■ ONCONFIG

The ONCONFIG environment variable specifies the name of the
active ONCONFIG configuration file. The next section describes how
to prepare the ONCONFIG file. After you prepare the ONCONFIG file,
set the ONCONFIG environment variable to the name of the file.

Users running client applications do not need to set the ONCONFIG
environment variable.

If the ONCONFIG environment variable is not present, the database
server uses configuration values from the file
$INFORMIXDIR/etc/onconfig.

■ INFORMIXSERVER

The INFORMIXSERVER environment variable specifies the name of
the default database server. It can have one of the following values:

❑ The same value as specified for the DBSERVERNAME or
DBSERVERALIASES configuration parameter in the ONCONFIG
file

❑ A specific coserver name, using the following format:
dbservername.coserver_number

In the coserver name, dbservername is the value that is assigned
to the DBSERVERNAME configuration parameter in the
ONCONFIG file, and coserver_number is the value assigned to the
COSERVER configuration parameter for the connection coserver.
3-12 Administrator’s Guide for Informix Extended Parallel Server

Global Language Support
Global Language Support
The GLS feature allows you to create databases that use the diacritics,
collating sequence, and monetary and time conventions of the language that
you select. To use GLS, you must set appropriate environment variables.
Users might need additional environment variables, such as LC_COLLATE, to
describe their environment fully. For a detailed discussion of GLS, refer to the
Informix Guide to GLS Functionality.

Other Environment Variables
The DBSPACETEMP environment variable specifies dbspaces that the
database server can use to store temporary tables for a particular session.
Using DBSPACETEMP can improve performance.

DBSPACETEMP specifies the location of dbspaces or dbslices. If
DBSPACETEMP is not set, the default location is NOTCRITICAL.

For further information about DBSPACETEMP, refer to the chapter about
configuration parameters in the Administrator’s Reference. For performance
considerations, refer to your Performance Guide.

The TERM, TERMCAP, TERMINFO and INFORMIXTERM environment
variables specify the type of terminal interface. The basic login procedure
usually sets the TERM environment variable. This environment variable is
not required for initialization, but it must be set before you can run an appli-
cation. The other three environment variables might be required, depending
on your environment. You might need assistance from the UNIX system
administrator to set these variables because they are highly system
dependent.

Environment Variable Files
To set additional environment variables for each database server user, the
database administrator can prepare the $INFORMIXDIR/etc/informix.rc
environment-configuration file.

To override environment variables that have been automatically set, users
can use a private environment-variable file, ~/.informix, or assign new
values to environment variables individually.

GLS
Installing and Configuring the Database Server 3-13

Configuring Connectivity
Configuring Connectivity
The connectivity information allows a client application to connect to any
Informix database server on the network. The connectivity data for a
particular database server includes the database server name, the type of
connection that a client can use to connect to it, the host name of the computer
or node on which the database server runs, and the service name by which is
known.

You must prepare the connectivity information even if the client application
and the database server are on the same computer or node.

For detailed information about the connectivity information, see Chapter 6,
“Client/Server Communications.”

The sqlhosts File
The sqlhosts file contains connectivity information. The default location of
this file is $INFORMIXDIR/etc/sqlhosts. If you store the information in
another location, you must set the INFORMIXSQLHOSTS environment
variable.

Preparing the ONCONFIG Configuration File
After the database server is installed, it must be configured before it can be
brought on-line. Configuration refers to setting specific parameters that
customize the database server for your data-processing environment:
quantity of data, number of tables, types of data, hardware, number of users,
and security needs.

Also consider the number of coservers in your system.

Defaults for most of the configuration parameters are set during the instal-
lation of the product. However, you can change the configuration parameters
to customize the database server for your data-processing environment.
3-14 Administrator’s Guide for Informix Extended Parallel Server

Creating a Configuration File
Chapter 4, “Configuration Parameters,” provides an overview of the config-
uration parameters. For information about additional configuration
parameters, see the chapter on configuration parameters in the Adminis-
trator’s Reference.

The configuration parameters customize the database server for your data-
processing environment. This manual refers to the file that stores the config-
uration parameters as the ONCONFIG file. You must prepare this file before
you initialize the database server. After you prepare the configuration file,
you must set the ONCONFIG environment variable to identify it to the
database server.

Creating a Configuration File
The installation procedure loads templates for two configuration files in the
etc subdirectory of the INFORMIXDIR directory: onconfig.std and
onconfig.xps. For a listing of both files, see the appendix on database server
files in the Administrator’s Reference. For more information on the configu-
ration parameters listed in onconfig.std and onconfig.xps, refer to Chapter 4,
“Configuration Parameters.”

To determine the template to use for your configuration file:

■ For single coserver environments, use the onconfig.std template file.

■ For multiple-coserver environments, use the onconfig.xps template
file.

Important: Do not modify the template files. The database server provides these files
as templates and not as functional configuration files.

Make a copy of the appropriate template file and set the ONCONFIG
environment variable to refer to your copy.

Important: If you omit parameters in your copy of the ONCONFIG file, the database
server uses values in the onconfig.std file for the missing parameters during initial-
ization.

For the default values contained in the onconfig.std, refer to the configu-
ration parameter chapter in the Administrator’s Reference. For information on
the order of files that the database server checks for configuration values,
refer to “Process Configuration File” on page 10-5.
Installing and Configuring the Database Server 3-15

Starting and Administering the Database Server
Creating an ONCONFIG File

To prepare the ONCONFIG file, use a text editor and complete the following
steps:

1. Make a copy of a standard ONCONFIG file template:

■ For a multiple-coserver configuration, copy the following file:
$INFORMIXDIR/etc/onconfig.xps

■ For all other configurations, copy the following file:
$INFORMIXDIR/etc/onconfig.std

Store the new file in the same directory as the template. You can give
your new configuration file any name that meets the requirements of
your operating system.

2. Edit your new ONCONFIG file to modify the configuration param-
eters that you decide to change.

3. Set the ONCONFIG environment variable to the name of your new
ONCONFIG file.

Starting and Administering the Database Server
After you install and configure the database server, you need to perform one
or more of the following steps:

■ Prepare to connect to applications.

■ Start the database server and initialize disk space.

■ Create dbspaces.

■ Perform administrative tasks.
3-16 Administrator’s Guide for Informix Extended Parallel Server

Preparing to Connect to Applications
Preparing to Connect to Applications
Application programs use the sqlhosts file to look up connectivity infor-
mation. On UNIX, the sqlhosts file resides in the $INFORMIXDIR/etc
directory. For more information about the sqlhosts file, refer to “The sqlhosts
File” on page 6-21.

You do not need to specify all possible network connections in sqlhosts
before you initialize the database server. But to make a new connection
available, you must take the database server off-line and then bring it back to
on-line mode once again.

Configuring the Database Server Page Size
Use the PAGESIZE configuration parameter to set the database server page
size. You can specify a page size of 2048, 4096, or 8192 bytes. For more infor-
mation, see the chapter on configuration parameters in the Administrator’s
Reference.

Steps for changing the page size

1. Unload your data using a page-independent tool such as external
tables, dbexport, or the SQL statement UNLOAD.

2. Set the PAGESIZE value in the ONCONFIG file.

3. Reinitialize the database server with the new page size set.

4. Load your data back into the database.

5. Perform a level-0 backup of the system.

For information on unloading and loading data, see the Informix Migration
Guide. For information on how to use external tables to unload, see the
chapter on loading with external tables in the Administrator’s Reference.
Installing and Configuring the Database Server 3-17

Starting the Database Server and Initialize Disk Space
Starting the Database Server and Initialize Disk Space
To bring the database server to on-line mode, enter oninit.

If you are starting a new database server, use the oninit command with the -i
flag to initialize the disk space and bring the database server to on-line
mode.

If you are starting Extended Parallel Server for the first time, use the
following command to initialize the disk space and to bring the database
server into on-line mode on all coservers:

xctl -C oninit -iy

For more information on configuring Extended Parallel Server, see
“Choosing a Coserver Configuration” on page 5-10.

For a description of the types of initialization and associated commands,
refer to Chapter 9, “Managing Database Server Operating Modes.”

Warning: When you initialize disk space, all of the existing data in the database
server is destroyed. Initialize disk space only when you are starting a new database
server.

Performing Administrative Tasks
After you initialize the database server, you need to perform the following
administrative tasks:

■ Prepare the operating-system scripts to automatically start and stop
the database server.

■ Make arrangements for backup management.

■ Make sure that users have the correct environment variables.

■ Warn the UNIX system administrator about cron jobs.

Preparing the Startup and Shutdown Scripts

You can modify the start-up script to initialize the database server automati-
cally when your computer enters multiuser mode. You can also modify your
shutdown script to shut down the database server in a controlled manner
whenever your system shuts down.
3-18 Administrator’s Guide for Informix Extended Parallel Server

Performing Administrative Tasks
Before starting the database server, your script should check to see if all
nodes are available and that they can be reached.

To prepare the startup script, add UNIX and database server utility
commands to the startup script so that the script performs the following
steps.

To prepare the startup script

1. Set the INFORMIXDIR environment variable to the full pathname of
the directory in which the database server is installed.

2. Set the PATH environment variable to include the
$INFORMIXDIR/bin directory.

3. Set the ONCONFIG environment variable to the desired
configuration file.

4. Set the INFORMIXSERVER environment variable so that the
sysmaster database can be updated (or created, if needed).

5. Execute oninit, which starts the database server and leaves it in
on-line mode.

6. If you plan to initialize multiple versions of the database server
(multiple residency), you must reset ONCONFIG and INFORMIX-
SERVER and re-execute oninit for each instance of the database
server.

7. If you are using Informix Storage Manager (ISM) for managing
database server backups, you must start the ISM server on each node.
For information about how to start the ISM server, refer to your Instal-
lation Guide.

If different versions of the database server are installed in different direc-
tories, you must reset INFORMIXDIR and repeat the preceding steps for each
different version.

To shut down the database server in a controlled manner whenever your
system shuts down, add UNIX and database server utility commands to the
shutdown script so that the script performs the following steps.
Installing and Configuring the Database Server 3-19

Performing Administrative Tasks
To prepare the shutdown script

1. Set the INFORMIXDIR environment variable to the full pathname of
the directory in which the database server is installed.

2. Set the PATH environment variable to include the
$INFORMIXDIR/bin directory.

3. Set the ONCONFIG environment variable to the desired
configuration file.

4. Execute onmode -ky, which initiates Immediate-Shutdown and
takes the database server off-line.

If you are running multiple versions of the database server (multiple
residency), you must reset ONCONFIG and re-execute onmode -ky
for each instance.

If different versions of the database server are installed in different direc-
tories, you must reset INFORMIXDIR and repeat the preceding steps for each
different version.

In the shutdown script, the database server shutdown commands should
execute after all client applications have completed their transactions and
exited.

Making Sure That Users Have the Correct Environment Variables

Make sure that every user of an Informix product has the correct
environment variables. Each user must set the following environment
variables before accessing the database server:

■ INFORMIXDIR

■ INFORMIXSERVER

■ PATH

All users who use database server utilities such as onstat must set the
ONCONFIG environment variable to the name of the ONCONFIG file.
3-20 Administrator’s Guide for Informix Extended Parallel Server

Setting Up Your Storage Manager and Storage Devices
Three techniques are available for setting INFORMIXDIR, INFORMIX-
SERVER, PATH, and ONCONFIG:

■ Ask the UNIX administrator to set these environment variables for
every user during the login procedure.

■ Modify the login procedures for each database server user so that
these environment variables are set during login.

■ Educate your users to set the environment variables manually every
time that they want to work with the database server.

Users might need other environment variables, such as TERMCAP and
LC_COLLATE, to describe their environment fully. You can prepare an
environment-configuration file or assign values individually as discussed in
“Other Environment Variables” on page 3-13. For a detailed discussion of
environment variables, refer to the Informix Guide to SQL: Reference.

Warning UNIX System Administrator About cron Jobs

The database server creates the .inf.servicename and VP.servername.xxC files
in the /INFORMIXTMP directory. Some UNIX systems run cron jobs that
routinely delete all files from the /INFORMIXTMP directory. For information
about files that the database server uses, refer to the Administrator’s Reference.

Setting Up Your Storage Manager and Storage Devices
If you use ON-Bar as your backup tool, you must set up a storage manager
and storage devices before you can back up and restore data. For information
on ON-Bar and related configuration parameters, see the Backup and Restore
Guide.

ON-Bar is packaged with Informix Storage Manager (ISM). The storage
manager is an application that manages the storage devices and media that
contain backups. The storage manager handles all media labeling, mount
requests, and storage volumes. ISM can back up data to as many as four
storage devices at a time. ISM stores data on simple tape drives, optical disk
devices, and file systems. However, you can purchase a third-party storage
manager if you want to use more sophisticated storage devices, backups to
more than four storage devices at a time, or backups over a network.
Installing and Configuring the Database Server 3-21

Creating Storage Spaces
When you plan your storage-space and logical-log backup schedule, make
sure that the storage devices and backup operators are available to perform
backups. For information about managing backup devices and media, refer
to the Informix Storage Manager Administrator’s Guide or to your third-party
storage-manager documentation.

Creating Storage Spaces
After the database server is initialized, you can create storage spaces such as
dbspaces and dbslices as desired. For a description of storage spaces, refer to
“Logical Units of Storage” on page 15-14. For a discussion of the allocation
and management of storage spaces, refer to Chapter 16, “Managing Disk
Space.”

If you know that your queries require temporary tables for sorts and hash
joins, you might want to create temporary dbspaces or dbslices. For more
information on query operations that require temporary tables, refer to
“Temporary Tables” on page 15-30.

Monitoring Configuration Information
One of the tasks of the database server administrator is to keep records of the
configuration. Methods of obtaining configuration information are as
follows.

Using Command-Line Utilities
Use the following utilities to monitor configuration information.

onstat -c

Execute onstat -c to display a copy of the ONCONFIG file. For information
about the ONCONFIG file, see the chapter on configuration parameters in the
Administrator’s Reference.
3-22 Administrator’s Guide for Informix Extended Parallel Server

Using Command-Line Utilities
Changes to the ONCONFIG file do not take effect until you shut down and
restart the database server, also called reinitializing shared memory. If you
change a configuration parameter but do not reinitialize shared memory, the
effective configuration differs from what the onstat -c option displays.

The values of the configuration parameters are stored in the file indicated by
the ONCONFIG environment variable or, if you have not set the ONCONFIG
environment variable, in $INFORMIXDIR/etc/onconfig on UNIX.

onutil CHECK RESERVED

The database server also stores current configuration information in the
PAGE_CONFIG reserved page. The reserved page contains a description of the
current, effective configuration.

To list the reserved page, execute onutil CHECK RESERVED.

Figure 3-1 shows sample output.

If you change the configuration parameters from the command line and run
onutil CHECK RESERVED before you reinitialize shared memory, onutil
discovers that values in the configuration file do not match the current values
in the reserved pages and returns a warning message.

...

Validating Informix database server reserved pages - PAGE_CONFIG
ROOTNAME rootdbs
ROOTPATH /home/dyn_srv/root_chunk
ROOTOFFSET 0
ROOTSIZE 8000
MIRROR 0
MIRRORPATH
MIRROROFFSET 0
PHYSDBS rootdbs
PHYSFILE 1000
LOGFILES 5
LOGSIZE 500
MSGPATH /home/dyn_srv/online.log
CONSOLE /dev/ttyp5

... ...

Figure 3-1
PAGE_CONFIG
Reserved Page
Installing and Configuring the Database Server 3-23

4
Chapter
Configuration Parameters
In This Chapter . 4-3

Disk-Space Parameters 4-3
Root Dbspace 4-4
Mirror of Root Dbspace 4-6
Number of Storage Spaces 4-7
Other Space-Management Parameters 4-7

Database Server Identification Parameters 4-8

Logging Parameters 4-9
Logical Log . 4-9
Physical Log . 4-10
Storage-Space and Logical-Log Backups 4-10

Message-Log Parameters 4-11

Shared-Memory Parameters. 4-11
Shared-Memory Size Allocation 4-12
Shared-Memory Space Allocation 4-13
Shared-Memory Buffer Control 4-14

Decision-Support Parameters 4-15

Database Server Process Parameters 4-16
Processor Type 4-16
Processor Affinity 4-17
Time Intervals 4-18

4-2 Adm
Restore Parameters 4-18

Event-Alarm Parameters 4-18

Dump Parameters 4-19

Coserver Parameters 4-20

Specialized Parameters 4-20
Optical Media 4-20
UNIX . 4-20
inistrator’s Guide for Informix Extended Parallel Server

In This Chapter
This chapter provides an overview of the ONCONFIG configuration param-
eters that the database server uses. The chapter can help you decide which
parameters are most crucial for your particular environment and which
parameters you can defer until you are tuning the performance of your
database server. For details on each parameter, see the chapter on configu-
ration parameters in the Administrator’s Reference.

Chapter 5, “Configuring the Database Server,” provides an overview of the
configuration issues related to coservers.

Disk-Space Parameters
The disk-space parameters control how the database server manages storage
space.
Configuration Parameters 4-3

Root Dbspace
Root Dbspace
The first storage space that you allocate is called the root database space, or root
dbspace. It stores all the basic information that describes your database server.
Use the following parameters to describe the root dbspace.

Configuration
Parameter Description

ROOTNAME Specifies the name of the root dbspace. You can choose any
descriptive name for ROOTNAME, but it is usually called
rootdbs. For more information, see “Root Dbspace” on
page 15-17.

The ROOTNAME parameter overrides the ROOTSLICE parameter
for a particular coserver specified in the ONCONFIG file. You can
choose any descriptive name for the ROOTNAME, but it must be
unique for each database server instance.

ROOTOFFSET Specifies an offset. For information about when to set
ROOTOFFSET, refer to “Specifying an Offset” on page 16-7.

When they are global parameters, each root dbspace has the
same offset on disk for each coserver. You can override the
global values within each coserver-specific section of the
ONCONFIG file.

 (1 of 2)
4-4 Administrator’s Guide for Informix Extended Parallel Server

Root Dbspace
ROOTPATH Specifies the pathname of the storage allocated to the root
dbspace. For information on how to choose and allocate the
storage, see “Allocating Disk Space” on page 16-6.

The ROOTPATH is unique within a single coserver. The
pathname can be the same for all coservers. The operating
system keeps track of the actual disk that the node owns.

ROOTSIZE Specifies the amount of space allocated to the root dbspace. For
information on how to choose an appropriate size for the root
dbspace, see “Size of the Root Dbspace” on page 15-36.

When they are global parameters, each root dbspace is the same
size for each coserver. You can override the global values within
each coserver-specific section of the ONCONFIG file.

ROOTSLICE Specifies a name for the root dbslice. The ROOTSLICE parameter
is mutually exclusive with the ROOTNAME coserver-specific
configuration parameter. You cannot specify ROOTSLICE in the
coserver-specific section of the ONCONFIG file. For more
information, see “Rootslices” on page 15-21.

Configuration
Parameter Description

 (2 of 2)
Configuration Parameters 4-5

Mirror of Root Dbspace
Mirror of Root Dbspace
Mirroring allows fast recovery from a disk failure while the database server
remains in on-line mode. When mirroring is active, the same data is stored on
two disks simultaneously. If one disk fails, the data is still available on the
other disk. Use the following parameters to describe mirroring of the root
dbspace.

Configuration
Parameter Description

MIRROR Defines whether mirroring is enabled or disabled.

MIRRORPATH Specifies the full pathname of the chunk that mirrors the initial
chunk of the root dbspace.

You can specify MIRRORPATH in the coserver-specific section to
override the global value and provide a different pathname for a
specific coserver.

MIRROROFFSET Specifies the offset into the device that serves as the mirror for the
initial root dbspace chunk. For more information, see “Specifying
an Offset” on page 16-7.

You can also specify MIRROROFFSET in the coserver-specific
section to override the global value if you want a different offset
for a specific coserver.
4-6 Administrator’s Guide for Informix Extended Parallel Server

Number of Storage Spaces
Number of Storage Spaces
Use the following parameters to specify the maximum number of storage
spaces and control the size of the safewrite area.

Other Space-Management Parameters
Use the following parameters to specify how the database server should
manage particular types of disk space.

Configuration
Parameter Description

CONFIGSIZE Specifies the size of the safewrite area, which is where the
database server stores coserver-configuration information
and other data that is required for maintaining data
consistency across coservers.

For more information, refer to the configuration chapter in
the Administrator’s Reference.

MAX_CHUNKS Allows you to increase the maximum number of chunks up
to 32767. For more information, see “Limiting Chunk Size
and Number” on page 16-22.

MAX_DBSLICES Allows you to increase the maximum number of dbslices up
to 2047. For more information, see “Increasing the Number of
Dbslices” on page 16-17.

MAX_DBSPACES Allows you to increase the maximum number of dbspaces up
to 32767. For more information, see “Specifying Names and
Maximum Number of Storage Spaces” on page 16-14.

Configuration
Parameter Description

DBSPACETEMP Specifies a list of dbspaces that the database server can use for
the storage of temporary tables. For more information, see
“Creating a Temporary Dbspace” on page 16-15.

FILLFACTOR Specifies how much to fill index pages when indexes are
created. For more information, see your Performance Guide.

ONDBSPACEDOWN Defines how the database server treats a disabled dbspace
that is not a critical dbspace.
Configuration Parameters 4-7

Database Server Identification Parameters
Database Server Identification Parameters
Use the SERVERNUM and DBSERVERNAME parameters to provide unique
identification for each instance of the database server.

Warning: Do not change the DBSERVERNAME configuration parameter without
reinitializing the database server.

Configuration
Parameter Description

DBSERVERALIASES Specifies an alternate name or names for an instance of
the database server.

For information about using DBSERVERALIASES to
create multiple listen endpoints to which clients can
connect, see “Listen and Poll Threads for the
Client/Server Connection” on page 11-28.

DBSERVERNAME Specifies the unique name of an instance of the database
server. Use the DBSERVERNAME for your INFORMIX-
SERVER environment variable and in the sqlhosts
information.

On Extended Parallel Server, multiple coservers can
exist within a single database server. The database
server uniquely identifies each coserver by appending
the coserver number to the DBSERVERNAME.

Use DBSERVERNAME with the coserver number for
client connections. For more information about client
connections, see “Coserver Client Connections” on
page 6-11.

SERVERNUM Specifies a unique integer for the database server
instance. The database server uses SERVERNUM to
determine the shared-memory segment addresses
within each coserver.

Specify SERVERNUM only once for the entire instance of
the database server (not for each coserver).
4-8 Administrator’s Guide for Informix Extended Parallel Server

Logging Parameters
Logging Parameters
Use the logging parameters to control the logical and physical logs.

Logical Log
The logical log contains a record of changes made to a database server
instance. The logical-log records are used to roll back transactions, recover
from system failures, and so on. The following parameters describe logical
logging.

For more information about these parameters, refer to “Size and Number of
Logical-Log Files” on page 20-7.

Configuration
Parameter Description

LOGBUFF Determines the amount of shared memory reserved for the
buffers that hold the logical-log records until they are flushed to
disk. For information on how to tune the logical-log buffer, see
“Logical-Log Buffer” on page 13-22.

LOGFILES Specifies the number of logical-log files used to store logical-log
records until they are backed up on disk.

LOGSIZE Specifies the size of each logical-log file.

LOGSMAX Specifies the maximum (not the actual) number of log files that
you expect to have. For more information, see “Adding a Logical-
Log File or Logslice” on page 21-4.

LTXHWM Specifies the percentage of the available logical log that can be
used before the database server takes moderate action to avoid the
undesirable effects of reaching the point of LTXEHWM, the
long-transaction exclusive-access high-water mark. For more
information, see “Logical Log and Long Transactions” on
page 20-15.

LTXEHWM Specifies the point at which the database server takes drastic
action.
Configuration Parameters 4-9

Physical Log
Physical Log
The physical log contains images of all pages (units or storage) changed since
the last checkpoint. The physical log combines with the logical log to allow
fast recovery from a system failure. Use the following parameters to describe
the physical log.

For more information, see Chapter 22, “Physical Logging.”

Storage-Space and Logical-Log Backups
To create storage-space and logical-log backups of database server data, you
can use the following tools. To verify storage-space backups, use ON-Bar.

Configuration
Parameter Description

PHYSBUFF Determines the amount of shared memory reserved for the buffers
that serve as temporary storage space for pages about to be
modified.

PHYSDBS Specifies the name of the dbspace in which the physical log resides
on each coserver.

Any occurrence of the PHYSDBS parameter overrides the PHYSSLICE
parameter for a particular coserver specified in the ONCONFIG file.

PHYSFILE Specifies the size of the physical log.

You can specify a coserver-specific PHYSFILE parameter if you want
a different physical log size for a specific coserver.

PHYSSLICE Specifies the name of the dbspace or dbslice on each coserver that
contains the physical log. You cannot specify PHYSSLICE in the
coserver-specific section of the ONCONFIG file.

Tool Reference

ON-Bar Backup and Restore Guide

onutil utility Administrator’s Reference
4-10 Administrator’s Guide for Informix Extended Parallel Server

Message-Log Parameters
Message-Log Parameters
The message files provide information about how the database server is
functioning.

Each coserver writes status and diagnostic messages to this file. Monitor the
messages in this file regularly.

Informix recommends that you place the message-log file in a file system to
which all coservers have access so that all messages go to the same file. When
you centralize the message log, you monitor only one file for messages that
any coserver generates.

Avoid placing message-log files in local file systems. Doing so complicates
administration of the database server because it scatters log messages across
multiple files and prevents you from viewing messages in sequence.

Shared-Memory Parameters
The shared-memory parameters affect database server performance.

Configuration
Parameter Description

CONSOLE Specifies the pathname for console messages. For additional
information, refer to “System Console” on page 2-13.

MSGPATH Specifies the pathname of the database server message-log file.
For more information, refer to “Message Log” on page 2-12.
Configuration Parameters 4-11

Shared-Memory Size Allocation
Shared-Memory Size Allocation
Use the following parameters to control how and where the database server
allocates shared memory.

For more information on these parameters, see Chapter 13, “Shared
Memory.”

For platform-specific information on these database server shared-memory
configuration parameters, refer to your machine notes file.

Configuration
Parameter Description

SHMADD Specifies the increment of memory that is added when the
database server requests more memory

SHMBASE Specifies the shared-memory base address and is computer
dependent. Do not change its value.

SHMTOTAL Specifies the maximum amount of memory that the database
server is allowed to use.

SHMVIRTSIZE Specifies the size of the first piece of memory that the database
server attaches.
4-12 Administrator’s Guide for Informix Extended Parallel Server

Shared-Memory Space Allocation
Shared-Memory Space Allocation
Use the following parameters to control how space is allocated in shared
memory.

Configuration
Parameter Description

BUFFERS Specifies the number of shared-memory buffers available
to the database server. See “Shared-Memory Buffer Pool”
on page 13-20.

CKPTINTVL Specifies the maximum time interval allowed to elapse
before a checkpoint.

DD_HASHMAX Specifies the maximum number of entries for each hash
bucket in the data-dictionary cache. For more information
about setting DD_HASHMAX, refer to your Performance
Guide.

DD_HASHSIZE Specifies the number of hash buckets in the data-dictionary
cache. For more information about setting DD_HASHSIZE,
refer to your Performance Guide.

ISOLATION_LOCKS Specifies the maximum number of rows that can be locked
on a single scan when Cursor Stability isolation level is in
effect. For performance considerations when you use this
parameter, refer to your Performance Guide.

LBU_PRESERVE Specifies the logs-full high-water mark. This feature
preserves log space for administrative tasks. For a
discussion of the logs-full high-water mark, refer to
“Setting High-Water Marks” on page 20-18.

LOCKS Specifies the initial number of locks available to database
server user processes during transaction processing.

PAGESIZE Specifies the database server page size.

PC_POOLSIZE Specifies the number of SPL routines that can be stored in
the SPL routine cache.

 (1 of 2)
Configuration Parameters 4-13

Shared-Memory Buffer Control
Shared-Memory Buffer Control
Use the following parameters to control the shared-memory buffer pool.

PC_HASHSIZE Specifies the number of hash buckets in the SPL routine
cache.

RESIDENT Specifies whether shared-memory residency is enforced.

STACKSIZE Specifies the stack size for database server user threads. For
a discussion of the use of stacks, refer to “Stacks” on
page 13-31.

Configuration
Parameter Description

LRUS,
LRU_MAX_DIRTY,
LRU_MIN_DIRTY

Describe the shared-memory pool of pages (memory
spaces) that the database server uses. These parameters
relate to LRU (least recently used) queues. See “LRU
Queues” on page 13-36.

CLEANERS Controls the number of threads used to flush pages to disk
and return the pages to the shared-memory pool. See
“Flushing Data to Disk” on page 13-45.

RA_PAGES and
RA_THRESHOLD

Control the number of disk pages that the database server
reads ahead during sequential scans. See “Configuring the
Database Server to Read Ahead” on page 13-41.

IDX_RA_PAGES and
IDX_RA_THRESHOLD

Control the number of index pages that the database server
reads ahead during sequential scans. See “Configuring the
Database Server to Read Ahead” on page 13-41.

Configuration
Parameter Description

 (2 of 2)
4-14 Administrator’s Guide for Informix Extended Parallel Server

Decision-Support Parameters
Decision-Support Parameters
When you configure virtual shared memory on your system, you must
decide what portion to reserve for decision-support queries. Decision-
support queries use large amounts of the virtual portion of shared memory
to perform joins and sort operations.

On Extended Parallel Server, parallel execution automatically occurs when
the database operation involves data that is fragmented across multiple
dbspaces and multiple CPU VPs are available.

Use the following parameters to control how decision-support queries are
processed and to control the amount of memory that the database server
allocates to decision-support queries. For more information about tuning
these configuration parameters, refer to your Performance Guide.

Configuration
Parameter Description

DATASKIP Controls whether the database server skips an
unavailable table fragment.

DS_ADM_POLICY Specifies how the Resource Grant Manager (RGM)
should schedule queries.

DS_MAX_QUERIES Specifies the maximum number of queries that can run
concurrently.

DS_TOTAL_MEMORY Specifies the amount of memory available for PDQ
queries.

Set the DS_TOTAL_MEMORY configuration parameter
to any value not greater than the quantity
(SHMVIRTSIZE - 10 megabytes).

MAX_PDQPRIORTY Limits the amount of resources that a query can use.

OPTCOMPIND Advises the optimizer on an appropriate join strategy
for your applications.

PDQPRIORTY Requests an amount of memory that a query can use.
Configuration Parameters 4-15

Database Server Process Parameters
If your communication interface between nodes requires configurable
buffers, you also need to consider the amount of space that these message
buffers take up in the virtual portion. For more details on these configurable
buffers, refer to your machine notes file.

For DSS-only applications that do not need to balance resources against OLTP
applications, you can allocate all of the virtual portion to your decision-
support queries. Set the DS_TOTAL_MEMORY configuration parameter to any
value not greater than the quantity (SHMVIRTSIZE - 10 megabytes).

For strategies to improve performance with fragmentation and PDQ, refer to
your Performance Guide.

Database Server Process Parameters
Configuration parameters for database server processes describe the type of
processors on your computer and specify the behavior of virtual processes.

Processor Type
Use the following parameters to specify the type of processors in your
environment and to allocate the virtual processors.

You need to set the following parameters to specific values, depending upon
the number of processors on each node of your parallel-processing platform:

■ MULTIPROCESSOR

■ NUMAIOVPS

■ NUMCPUVPS

■ SINGLE_CPU_VP
4-16 Administrator’s Guide for Informix Extended Parallel Server

Processor Affinity
For guidelines on setting these parameters, refer to “Setting Virtual-Processor
Configuration Parameters with a Text Editor” on page 12-4.

Processor Affinity
Some multiprocessor computers support processor affinity, which allows you
to bind CPU virtual processors to CPUs. Use the following parameters to
establish processor affinity.

Configuration
Parameter Description

MULTIPROCESSOR Specifies the appropriate type of locking.

NETTYPE Provides tuning options for each communications
protocol.

NOAGE Specifies whether priority aging should be in effect.

NUMAIOVPS Specifies the number of virtual processors for AIO
(asynchronous I/O) class threads.

NUMCPUVPS Specifies the number of virtual processors for CPU class
threads.

NUMFIFOVPS Specifies the number of virtual processors of the FIFO class
to run. For more information, refer to “First-In-First-Out
Virtual Processor” on page 11-33.

SINGLE_CPU_VP Specifies that the database server is using only one
processor and allow the database server to optimize for
that situation.

Configuration
Parameter Description

AFF_NPROCS On multiprocessor computers that support processor affinity,
specifies the number of CPUs to which the database server can
bind CPU virtual processors.

AFF_SPROC On parallel-processing platforms that support processor
affinity, specifies the CPU at which the coserver starts binding
CPU virtual processors to CPUs.
Configuration Parameters 4-17

Time Intervals
Time Intervals
Use the following parameter to control the time intervals that the database
server uses while processing transactions.

Restore Parameters
Use the following parameters to control the number of threads that the
database server allocates to off-line and on-line logical recovery.

Event-Alarm Parameters
The database server can execute a program if a noteworthy event occurs.
Noteworthy events include failure of database, table, index, simple large
object, or smart large object; chunk or dbspace taken off-line; internal
subsystem failure; initialization failure; and detection of long transaction.

Configuration
Parameter Description

USEOSTIME Controls the granularity of time reported by the
database server.

Configuration
Parameter Description

OFF_RECOVERY_THREADS Specifies the number of recovery threads used
during a cold restore.

ON_RECOVERY_THREADS Specifies the number of recovery records used
during fast recovery and a warm restore.
4-18 Administrator’s Guide for Informix Extended Parallel Server

Dump Parameters
Use the following parameter to specify what actions to take when
noteworthy events occur.

Dump Parameters
Use the following parameters to control the types and location of core dumps
that are performed if the database server fails.

Configuration
Parameter Description

ALARMPROGRAM Specifies the location of a file that is executed when an event
alarm occurs.

Configuration
Parameter Description

DUMPCNT Specifies the number of assertion failures for which a single
thread dumps shared memory.

DUMPCORE Controls whether assertion failures cause a virtual processor
to dump core memory.

DUMPDIR Specifies a directory where the database server places dumps
of shared memory, gcore files, or messages from a failed
assertion.

DUMPGCORE If your operating system supports the gcore utility, an
assertion failure causes the database server to call gcore.

DUMPSHMEM Specifies that shared memory should be dumped on an
assertion failure.
Configuration Parameters 4-19

Coserver Parameters
Coserver Parameters
Use the following parameters to set up coservers.

Specialized Parameters
Some parameters appear in the configuration file only when you use
specialized features of the database server.

Optical Media
Informix Storage Manager allows you to back up information to optical
media, but it does not allow the database server to access directly the data
that is stored on the disks.

UNIX
Some UNIX platforms have additional configuration parameters. For a
description of these specialized parameters and instructions for using them,
see your machine notes.

Configuration
Parameter Description

COSERVER Specifies the numeric identification of a coserver.

The coserver number must be unique among all
coservers within the database server. Assign coserver
numbers consecutively, starting with 1.

END Specifies the end of each coserver-specific, BAR_SM
specific, or storage-manager specific section of the
ONCONFIG file.

NODE Specifies the host name of the node on which the
coserver runs.

Assign each coserver to a node. The host name is
located in the operating system hosts file. For more
information about the hosts file, refer to “Connectivity
Files” on page 6-13.
4-20 Administrator’s Guide for Informix Extended Parallel Server

5
Chapter
Configuring the Database
Server
In This Chapter . 5-3

Configuring Multiple Coservers 5-3
Global Configuration Parameters 5-4

Root and Log Dbspaces on Multiple Coservers 5-5
Using Formatting Characters with ROOTPATH and MIRRORPATH 5-5

Coserver-Specific Configuration Parameters 5-5
Platform-Specific Configuration Parameters 5-6
Organizing the Configuration File 5-7

Setting Storage-Manager Parameters for ON-Bar 5-8

Choosing a Coserver Configuration 5-10
Single Coserver on a Single-Node Platform 5-11
Multiple Coservers on a Single-Node Platform 5-11
Single Coservers on Each Node of a Multiple-Node Platform . . . 5-13
Multiple Coservers on Each Node of a Multiple-Node Platform . . 5-14

Adding Coservers 5-14

Defining Cogroups 5-17

Modifying Cogroups 5-18

Monitoring Coserver Activities 5-20

Creating and Loading Tables Fragmented Across Coservers 5-20

5-2 Adm
inistrator’s Guide for Informix Extended Parallel Server

In This Chapter
This chapter discusses the preparation tasks that are unique to Extended
Parallel Server.

This chapter describes the following:

■ how the ONCONFIG configuration file for multiple coservers differs
from the default configuration file.

■ the various ways that you can configure coservers and the consider-
ations that are involved in choosing one sort of coserver
configuration over another.

Configuring Multiple Coservers
For a multiple-coserver configuration, the database server contains one
centralized configuration file that contains two sections of configuration
parameters:

■ Global configuration parameters

After you specify these parameters once, they apply equally to all
coservers.

■ Coserver-specific configuration parameters

The coserver-specific section includes parameters that apply to
individual coservers. If you intend to configure your database server
with multiple coservers, you must include a coserver-specific section
in your ONCONFIG file.

If a configuration parameter in the coserver-specific section conflicts with a
parameter specified in the global section, the coserver-specific value
overrides the global value only for that particular coserver.
Configuring the Database Server 5-3

Global Configuration Parameters
Global Configuration Parameters
You specify the global configuration parameters only in the global section to
apply to all of the coservers in your database server system. The database
server uses the parameter value in the global section as the default value for
the parameter on every coserver. For more information on specific param-
eters, see Chapter 4, “Configuration Parameters.”

For the initial configuration of the database server, you can leave most of the
global parameters set to their default values. You must review and change, if
necessary, parameters for the following items:

■ Root and log dbspaces on multiple coservers

■ Database server identification

■ Processors

■ Message files

■ Shared-memory size allocation

■ ON-Bar backup and restore

You can specify the following configuration parameters in both the global
and coserver-specific section:

■ AFF_SPROC

■ AFF_NPROCS

■ MIRROROFFSET

■ MIRRORPATH

■ PHYSDBS

■ PHYSFILE

■ ROOTNAME

■ ROOTOFFSET

■ ROOTPATH

■ ROOTSIZE

Tip: Informix recommends that you use the global configuration parameters
ROOTSLICE and PHYSSLICE rather than coserver-specific ROOTNAME and
PHYSDBS values because the global parameters are easier to define and manage.
Override the values of global parameters coserver-specific section only if necessary.
5-4 Administrator’s Guide for Informix Extended Parallel Server

Coserver-Specific Configuration Parameters
Root and Log Dbspaces on Multiple Coservers

Extended Parallel Server uses the ROOTSLICE and PHYSSLICE configuration
parameters to configure root and physical log dbspaces across a large
number of coservers. Specify these parameters only once in the global section
of the configuration file rather than once for each coserver that you define.

Using Formatting Characters with ROOTPATH and MIRRORPATH

You can use embedded formatting characters in the ROOTPATH and
MIRRORPATH configuration parameters to generate uniform chunk names
for root and log dbspaces across a large number of coservers.

The pathname specification with the embedded formatting characters is
referred to as a pathname-format. You can embed the following formatting
characters in a pathname-format:

Coserver-Specific Configuration Parameters
The parameters that describe each coserver are at the bottom of the
ONCONFIG configuration file. When you specify the ROOTSLICE and
PHYSSLICE global configuration parameters, you usually need to specify
only the following coserver-specific parameters:

■ COSERVER

■ NODE

■ END

%c is a formatting string that is replaced with the coserver-number
of the coserver on which a dbspace is to be created. The
coserver-number is the value that you specified in the
COSERVER configuration parameter for this coserver. If the
number is less than 10, the number does not have a leading
zero because it is handled as a character rather than an integer.

%n is a formatting string that is replaced with the host name of the
node for the coserver on which a dbspace is to be created. The
host name is the value that you specified in the NODE configu-
ration parameter for this coserver.
Configuring the Database Server 5-5

Platform-Specific Configuration Parameters
Figure 5-1 shows an excerpt of the coserver-specific section in a sample
ONCONFIG file.

Important: The ONCONFIG file for a single-coserver configuration on Extended
Parallel Server contains no coserver-specific section.

Platform-Specific Configuration Parameters
Additional coserver-specific parameters might be listed in the machine notes
file for certain platforms.

If your communication interface between nodes requires configurable
buffers, you also need to consider the amount of space that these message
buffers take up in the virtual portion on each coserver. Additional configu-
ration parameters (such as HADDR, SADDR, and LADDR) specify sizes of
these message buffers and apply only to certain computer platforms. You
specify these buffer parameters in the coserver-specific section.

Some configuration parameters (such as ASYNCRQT, SENDEPDS, and
DGINFO) apply only to certain computer platforms. ASYNCRQT and
SENDEPDS are global parameters; ASYNCRQT specifies the number of
outstanding receive requests and SENDEPDS the number of send endpoints
per CPU VP. DGINFO passes additional optional, platform-specific infor-
mation to the Datagram layer.

Global Parameters
ROOTSLICE rootdbs
...
PHYSSLICE rootdbs
...
Coserver-specific parameters
COSERVER 1
NODE octopus1
END

COSERVER 2
NODE octopus2
END
...

COSERVER 8
NODE eagle8
END

Figure 5-1
Coserver-Specific

Section of an
ONCONFIG File
5-6 Administrator’s Guide for Informix Extended Parallel Server

Organizing the Configuration File
To determine if your computer requires these additional parameters, consult
your machine notes file.

Organizing the Configuration File
Figure 5-2 shows an excerpt from the global, coserver-specific, and storage-
manager specific sections in a sample ONCONFIG file. This sample configu-
ration uses eight nodes with a single coserver on each node.

DBSERVERNAME eds

ROOTSLICE rootdbs
ROOTPATH /work/dbspaces/rootdbs_%c
ROOTOFFSET 0
ROOTSIZE 40000

MIRROR 1 # 1 = yes
MIRRORPATH /work/dbspaces/mirror_%c
MIRROROFFSET 0

PHYSSLICE rootdbs
PHYSFILE 8000

LOGFILES 3
LOGSIZE 1000
...

COSERVER 1
NODE octopus1
...

END
...

COSERVER 8
NODE eagle8
...

END

The storage manager can access onbar-worker processes on
coservers 1 through 8.
BAR_SM 1
 BAR_WORKER_COSVR 1-8
END

Figure 5-2
Global and

Coserver-Specific
Sections of an

ONCONFIG File
Configuring the Database Server 5-7

Setting Storage-Manager Parameters for ON-Bar
The configuration parameters that Figure 5-2 shows generate the following
dbspace names and pathnames for the root dbspaces:

coserver 1 rootdbs.1 /work/dbspaces/rootdbs_1
/work/dbspaces/mirror_1

...

coserver 8 rootdbs.8 /work/dbspaces/rootdbs_8
/work/dbspaces/mirror_8

Backups go to the storage manager on coserver 1.

Setting Storage-Manager Parameters for ON-Bar
Extended Parallel Server allows you to define multiple storage-manager
instances, but only one instance per node. You can configure and use
different storage-manager brands for different purposes. (ON-Bar works
with a storage manager to back up and restore data.)

The parameters that describe each storage manager are in the storage-
manager section of the ONCONFIG file. Each storage-manager section begins
with the BAR_SM parameter and ends with the END parameter. The BAR_SM
parameter cannot be embedded in the coserver-specific section or nested.

If you define one storage manager on Extended Parallel Server, specify the
storage-manager number in the BAR_SM parameter and specify the coservers
where you want to run ON-Bar processes in the BAR_WORKER_COSVR
parameter.

If you define multiple storage managers, you need to set the storage-manager
parameters for each node.

However, you can specify certain storage-manager parameters in the global
section of the ONCONFIG file if you want to use the same values for all
storage-manager instances.
5-8 Administrator’s Guide for Informix Extended Parallel Server

Setting Storage-Manager Parameters for ON-Bar
The following table shows the storage-manager specific parameters for
ON-Bar. For more information, refer to the Backup and Restore Guide.

Configuration
Parameter Description

Can be
storage-
manager
specific

Always
storage-
manager
specific

BAR_DBS_COSVR Specifies coservers that send
backup and restore data to the
storage manager.

✔

BAR_IDLE_TIMEOUT Specifies the maximum number
of minutes that an onbar-worker
process is idle before it is shut
down.

✔

BAR_LOG_COSVR Specifies coservers that send log
backup data to the storage
manager.

✔

BAR_SM Specifies the storage-manager
number.

✔

BAR_SM_NAME Specifies the storage-manager
name.

✔

BAR_WORKER_COSVR Lists the coservers that can
access the storage manager.

✔

BAR_WORKER_MAX Specifies the maximum number
of onbar-worker processes
started for a storage manager.

✔

LOG_BACKUP_MODE Specifies whether to use manual
or continuous logical-log
backups or to turn off logical-log
backups. Set this parameter in
the ONCONFIG file.

✔

Configuring the Database Server 5-9

Choosing a Coserver Configuration
Figure 5-3 shows an excerpt of the storage-manager section in a sample
ONCONFIG file for two storage managers, ABEL and BAKER. This configu-
ration starts ON-Bar processes on coservers 1, 2, and 3. Coservers 1 and 2 are
on the same node. Coserver 3 is on a different node. You can optionally
override global configuration parameters with the storage-manager specific
configuration parameters.

Choosing a Coserver Configuration
This book uses the term platform to indicate the combination of the operating
system and its underlying hardware.

Depending on the architecture of your computer or platform, you can choose
among the following options for configuring coservers:

■ A single coserver on a single-node platform

■ Multiple coservers on a single-node platform

■ Single coservers on each node of a multiple-node platform

■ Multiple coservers on each node of a multiple-node platform

Each of these options is best suited to a particular platform architecture, as
the following sections describe. For configuration purposes, a node is a
computer system that contains one or more processors and has a separate
network address, separate random-access memory, and access to owned
disks for storage. That computer system could be a uniprocessor, an SMP
computer, an independent subsystem within an SMP computer, or a single
computer within an MPP platform.

storage manager ABEL
BAR_SM 1
BAR_WORKER_COSVR 1,2
END

storage manager BAKER
BAR_SM 2
BAR_WORKER_COSVR 3
END

Figure 5-3
Storage-Manager

Specific Section of
an ONCONFIG File
5-10 Administrator’s Guide for Informix Extended Parallel Server

Single Coserver on a Single-Node Platform
Single Coserver on a Single-Node Platform
A configuration that consists of a single coserver on a single node is best
suited to a uniprocessor or an SMP computer that:

■ has approximately 10 or fewer CPUs (in the case of an SMP
computer).

■ has an amount of physical memory that is comparable in size to the
address space of a single process.

■ has enough local disk space to support the data that is required for
the intended application.

If your configuration consists of multiple small nodes, configure one coserver
per node. A single coserver on a single node is easy to administer. You do not
need a coserver-specific section in the ONCONFIG file. You can use the
onconfig.std file as a template for a single coserver configuration.

Parallel processing can occur within a single coserver. The NUMCPUVPS
parameter indicates the number of CPUs that are available to the database
server for parallel processing.

Multiple Coservers on a Single-Node Platform
A configuration of multiple coservers on a single-node platform is best suited
to an SMP computer that:

■ has over 8 CPUs or an amount of physical memory that is at least
double the size of the address space of a single process (4 gigabytes
for 32-bit operating systems or 8 gigabytes for 64-bit operating
systems).

■ cannot be partitioned into subsystems to create separate nodes.

■ has enough local disk space to support the data that is required for
the intended application.

If your configuration consists of a few nodes with lots of CPUs, memory, and
disk space, configure multiple coservers per node. Each coserver requires a
coserver section in the ONCONFIG file. You can use the onconfig.xps file as a
template for a multiple coserver configuration.
Configuring the Database Server 5-11

Multiple Coservers on a Single-Node Platform
Ensure that each coserver can use the disks independently for parallel I/O.
Also ensure correct access permissions for dbspaces and files on each
coserver. The use of multiple coservers can help to balance the processing
load across the available memory and CPU resources. Multiple coservers are
also useful for logging-intensive applications or situations in which
extremely rapid recovery from any failure is an urgent requirement.

Parallel processing can occur both within coservers and between coservers.
To calculate the number of CPUs available to the database server, multiply the
NUMCPUVPS parameter by the number of COSERVER parameters listed in the
ONCONFIG file.

To run multiple coservers on a single node

1. Install one copy of the database server on a computer (icecream9 in
this example).

2. To define the new coservers, add a coserver-specific section to your
ONCONFIG file, as the following example shows.

COSERVER 1,2,3
NODE icecream9
...
END

3. Add an entry to your sqlhosts file to enable the new coserver to
accept client connections.

For the hostname field of the sqlhosts file, use the same value that
you specified in the NODE configuration parameter in your
ONCONFIG file.

For the dbservername field, use the coserver name, which is
composed of the value of the DBSERVERNAME configuration
parameter followed by a period and the number of the new coserver.

dbservername.coserver-number

For more information, see “The sqlhosts File” on page 6-21.

4. Initialize the database server with the following command:
xctl -C oninit -iy
5-12 Administrator’s Guide for Informix Extended Parallel Server

Single Coservers on Each Node of a Multiple-Node Platform
Single Coservers on Each Node of a Multiple-Node Platform
This configuration is best suited to parallel-processing platforms composed
of nodes that:

■ each have 10 or fewer CPUs.

■ each have an amount of physical memory that is comparable in size
to the address space of a single process.

■ each have enough local disk space to support an equal portion of the
data that is required for the intended application, plus a suitable
amount of space for temporary tables and sort files.

Important: For ease of administration, Informix recommends that you use the same
hardware configuration for all Extended Parallel Server nodes.

The use of multiple nodes allows the workload to be distributed across a
high-speed interconnect, network, or bus (in the case of a partitioned SMP
computer). Communication is not limited to client connections.

Each coserver requires a coserver-specific section in the ONCONFIG file. Each
node requires an entry in the sqlhosts connectivity file and an entry in the
operating system hosts network file. For more information, refer to
“Network-Configuration Files” on page 6-13.

Multiple coservers allow parallel processing between the nodes to provide
parallelism across coservers. To calculate the number of CPUs available to the
database server, you can multiply NUMCPUVPS by the number of COSERVER
parameters listed in the ONCONFIG file.
Configuring the Database Server 5-13

Multiple Coservers on Each Node of a Multiple-Node Platform
Multiple Coservers on Each Node of a Multiple-Node
Platform
A configuration of multiple coservers on each node is best suited to parallel-
processing platforms composed of nodes that:

■ each have over 8 CPUs or an amount of physical memory that is at
least double the size of the address space of a single process.

■ cannot be partitioned to form separate nodes.

■ each have enough local disk space to support an equal portion of the
data that is required for the intended application, plus a suitable
amount of space for temporary tables and sort files.

The use of multiple coservers on each node can help to balance the processing
load across the available memory and CPU resources. Each coserver requires
a coserver section in the ONCONFIG file. Each node requires an entry in the
sqlhosts connectivity file and an entry in the operating system hosts network
file. For more information, refer to “Network-Configuration Files” on
page 6-13.

Parallel processing can occur both within coservers and between coservers.
To calculate the number of CPUs available to the database server, you can
multiply NUMCPUVPS by the number of COSERVER parameters listed in the
ONCONFIG file.

Adding Coservers
You might want to add coservers to the database server in the following
situations:

■ When you increase the number of nodes on your system and add
them to the database server

■ When you reassign existing nodes to your database server

■ When you want to add another coserver to a node

A node can contain more than one coserver.
5-14 Administrator’s Guide for Informix Extended Parallel Server

Adding Coservers
To add a coserver

1. Perform a level-0 backup of the database server before you add a
coserver. For more information, see the Backup and Restore Guide.

2. Unload the tables into external tables using Informix internal format.
Use statements similar to the following ones:

SELECT * FROM employee
INTO EXTERNAL emp_txt
USING (
 FORMAT 'INFORMIX',

DATAFILES ("DISK:cogroup_all:/work2/mydir/emp.dat")
);

For more information, see the chapter on loading with external tables
in the Administrator’s Reference.

3. Use the dbschema utility to capture the database schema. For infor-
mation on using dbschema, see the Informix Migration Guide.

dbschema -d <database_name>

4. Bring the database server off-line.
xctl onmode -ky

For more information on the xctl command-line utility, see the
utilities chapter in the Administrator’s Reference.

5. Edit your ONCONFIG file to define the new coserver. Add a coserver-
specific section to your ONCONFIG file for the new coserver as the
following example shows.

COSERVER 9
NODE icecream9
...
END

For more information on the COSERVER and NODE configuration
parameters, see “Coserver-Specific Configuration Parameters” on
page 5-5.
Configuring the Database Server 5-15

Adding Coservers
6. Add an entry to your sqlhosts file to enable the new coserver to
accept client connections.

For the hostname field of the sqlhosts file, use the same value that
you specified in the NODE configuration parameter in your
ONCONFIG file.

For the dbservername field, use the coserver name, which is
composed of the value of the DBSERVERNAME configuration
parameter followed by a period and the number of the new coserver.

dbservername.coserver-number

For more information on the sqlhosts file, see “The sqlhosts File” on
page 6-21.

7. Reinitialize the database server using the following command:
xctl -C oninit -iy

8. Use the ALTER DBSLICE command to extend the dbslice to the new
coserver.

9. Optionally, edit the schema file. Use the TABLE FRAGMENT
statement to redefine the table fragmentation so that the database
server automatically stores the rows from the external table across all
the dbspaces in the dbslice.

10. Use the dbschema file to recreate the database schema.

11. Alter the tables to type RAW.
CREATE RAW TABLE emp_raw ...

12. Use the CREATE EXTERNAL TABLE statement to create the external
tables.

13. Use express mode to load the external tables into the database as the
following example shows.

INSERT INTO employee SELECT * FROM EXTERNAL TABLE
emp_txt;

14. If you do not plan to update the tables, change them to type STATIC.
If you plan to update the tables, change them to a logging table such
as OPERATIONAL or STANDARD.

15. If you did not modify the database schema file, use the ALTER
FRAGMENT command to refragment the tables and redistribute the
data across the old and new coservers.

16. Perform a level-0 backup of the database server.
5-16 Administrator’s Guide for Informix Extended Parallel Server

Defining Cogroups
Defining Cogroups
Define cogroups to facilitate the management of multiple coservers in
Extended Parallel Server. A cogroup is a set of coservers within the database
server. You assign coservers to cogroups in order to manage them as a unit.
Typically, you assign coservers that share tables to the same cogroup. A
coserver can be a member of multiple cogroups.

Extended Parallel Server provides a system-defined cogroup that is called
cogroup_all. The cogroup_all cogroup includes all the coservers that the
ONCONFIG configuration file defines.

You might want to define a cogroup that consists of a subset of the coservers
for a specific application or database.

To define a cogroup

1. Determine which coservers should be part of the cogroup.

2. Obtain the coserver names from your ONCONFIG configuration file.
The coserver name has the following format:

dbservername.coserver-number

For dbservername, use the value of the DBSERVERNAME configuration
parameter.

For coserver-number, use the value of the COSERVER configuration
parameter.

For example, your ONCONFIG file defines 16 coservers as follows:
DBSERVERNAME eds
...
COSERVER 1

NODE octopus1
...
END

...
COSERVER 16

NODE bear16
...

END

The coserver names are eds.1, eds.2, and so forth. For more infor-
mation see “Coserver-Specific Configuration Parameters” on
page 5-5.
Configuring the Database Server 5-17

Modifying Cogroups
3. Use the onutil command-line utility to create the cogroup.

The following example shows onutil running with interactive input.
The input is the onutil CREATE COGROUP command to create a
cogroup that includes the first four coservers in the preceding
sample ONCONFIG configuration file.

%onutil
1> CREATE COGROUP acctg_group
2> from eds.1, eds.2, eds.3, eds.4;
Cogroup successfully created.
3> QUIT;

For more information about the onutil CREATE COGROUP
command, see the utilities chapter in the Administrator’s Reference.

Modifying Cogroups
You might want to modify a cogroup when you want to change the coservers
that it includes. This situation occurs when you add nodes to your platform.

To change the coservers in a cogroup

1. Use the onutil command-line utility to drop the cogroup.

The following example shows the onutil DROP COGROUP command
to drop an accounting cogroup:

%onutil
1>DROP COGROUP acctg_group;
Cogroup successfully dropped.
2> QUIT;

2. Edit your ONCONFIG file to define the new coservers.

Add a coserver-specific section to your ONCONFIG file for each new
coserver. For example, the following excerpt from the ONCONFIG file
shows sample values that you might use to define new coservers:

COSERVER 9
NODE bear9
...

END
...
COSERVER 16

NODE bear16
...

END

For more information about the COSERVER and NODE configuration
parameters, see the Administrator’s Reference.
5-18 Administrator’s Guide for Informix Extended Parallel Server

Modifying Cogroups
3. Use the onutil command-line utility to create the modified cogroup.

The following example shows onutil running with interactive input.
The input is the onutil CREATE COGROUP command to create a
cogroup that includes the first 12 coservers in the preceding sample
ONCONFIG file.

%onutil
1> CREATE COGROUP acctg FROM eds.%r(1..12);
Cogroup successfully created.
2> QUIT;

This example substitutes the coserver number for the %r formatting
character in the coserver name in the FROM clause.

This example assumes that you defined your dbservername as eds in
your ONCONFIG file. Therefore, this example creates a cogroup that
includes the following coservers:

eds.1
eds.2
eds.3
eds.4
eds.5
eds.6
eds.7
eds.8
eds.9
eds.10
eds.11
eds.12

For more information about coserver names, the onutil CREATE
COGROUP command, and the use of formatting characters, see the
utilities chapter in the Administrator’s Reference.
Configuring the Database Server 5-19

Monitoring Coserver Activities
Monitoring Coserver Activities
Monitoring coserver activities includes:

■ monitoring resources across all coservers.

■ investigating resources on an individual coserver.

Monitoring resources across all coservers includes the following tasks:

■ Verifying that the coservers are in online mode

■ Monitoring the query execution across coservers

■ Checking the status of the root dbspace and chunks across all
coservers

Creating and Loading Tables Fragmented Across
Coservers
After you have created dbslices and dbspaces, you can create tables
fragmented across multiple coservers. For VLDBs that are fragmented across
many coservers, system-defined hash on the join column is often a good first
choice for a fragmentation scheme.

For more details on fragmentation strategies, refer to your Performance Guide.
For details on how to use the CREATE TABLE statement to fragment tables,
refer to the Informix Guide to SQL: Syntax.

Extended Parallel Server provides external tables that allow you to load
multiple table fragments in parallel across multiple coservers. For more
details on how to use these tables, refer to the chapter on loading with
external tables in the Administrator’s Reference.
5-20 Administrator’s Guide for Informix Extended Parallel Server

6
Chapter
Client/Server Communications
In This Chapter . 6-3

Client/Server Architecture 6-3
Network Protocol 6-4
Network Programming Interface. 6-4
Database Server Connection 6-5
Multiplexed Connection. 6-6

Connections That the Database Server Supports 6-7
Local Connections 6-8

Shared-Memory Connections 6-9
Stream-Pipe Connections 6-10
Local-Loopback Connections. 6-10

Coserver Client Connections 6-11

Communication Support Services 6-12
Informix Password Communication Support Module 6-13

Connectivity Files 6-13
Network-Configuration Files 6-13

TCP/IP Connectivity Files 6-13
Multiple TCP/IP Ports 6-15
IPX/SPX Connectivity Files 6-16

Network-Security Files 6-16
The hosts.equiv File 6-16
The netrc Information 6-17

CSM Configuration File 6-19
Format of the CSM Configuration File 6-19
The concsm.cfg Entry for Password Encryption 6-20

The sqlhosts File 6-21

6-2 Adm
The sqlhosts Information 6-22
Connectivity Information 6-23

Database Server Name 6-23
The Connection Type Field 6-24
Host Name Field 6-26
Service Name Field 6-27
Options Field 6-29

Group Information. 6-37
Database Server Group 6-37
Group Keyword in the Connection-Type Field 6-37

Alternatives for TCP/IP Connections 6-38
IP Addresses for TCP/IP Connections 6-38
Wildcard Addressing for TCP/IP Connections. 6-39
Port Numbers for TCP/IP Connections 6-42

ONCONFIG Parameters for Connectivity 6-42
COSERVER Configuration Parameter 6-43
DBSERVERNAME Configuration Parameter 6-43
DBSERVERALIASES Configuration Parameter 6-44
NETTYPE Configuration Parameter 6-45

Environment Variables for Network Connections 6-45

Examples of Client/Server Configurations 6-46
Using a Shared-Memory Connection 6-46
Using a Local-Loopback Connection 6-47
Using a Network Connection 6-49
Using Multiple Connection Types 6-50
Accessing Multiple Database Servers 6-52
inistrator’s Guide for Informix Extended Parallel Server

In This Chapter
This chapter explains the concepts and terms that you need to understand in
order to configure client/server communications. The chapter consists of the
following parts:

■ Description of client/server architecture

■ Database server connection types

■ Communication services

■ Connectivity files

■ ONCONFIG connectivity parameters

■ Connectivity environment variables

■ Examples of client/server configurations

Client/Server Architecture
Informix products conform to a software design model called client/server.
The client/server model allows you to place an application or client on one
computer and the database server on another computer, but they can also
reside on the same computer. Client applications issue requests for services
and data from the database server. The database server responds by
providing the services and data that the client requested.

You use a network protocol together with a network programming interface to
connect and transfer data between the client and the database server. The
following sections define these terms in detail.
Client/Server Communications 6-3

Network Protocol
Network Protocol
A network protocol is a set of rules that govern how data is transferred
between applications and, in this context, between a client and a database
server. These rules specify, among other things, what format data takes when
it is sent across the network. An example of a network protocol is TCP/IP.

The rules of a protocol are implemented in a network-protocol driver. A
network-protocol driver contains the code that formats the data when it is
sent from client to database server and from database server to client.

Clients and database servers gain access to a network driver by way of a
network programming interface. A network programming interface contains
system calls or library routines that provide access to network-communica-
tions facilities. An example of a network programming interface for UNIX is
TLI (Transport Layer Interface). The power of a network protocol lies in its
ability to enable client/server communication even though the client and
database server reside on different computers with different architectures
and operating systems.

You can configure the database server to support more than one protocol, but
consider this option only if some clients use TCP/IP and some use IPX/SPX.

To determine the supported protocols for your operating system, see
“Database Server Connection” on page 6-5.

To specify which protocol the database server uses, set the nettype field in the
sqlhosts file.

Network Programming Interface
A network programming interface is an application programming interface
(API) that contains a set of communications routines or system calls. An
application can call these routines to communicate with another application
that resides on the same or on different computers. In the context of this
discussion, the client and the database server are the applications that call the
routines in the TLI or sockets application-programming interface. Clients and
database servers both use network programming interfaces to send and
receive the data according to a communications protocol.
6-4 Administrator’s Guide for Informix Extended Parallel Server

Database Server Connection
Both client and database server environments must be configured with the
same protocol if client/server communication is to succeed. However, some
network protocols can be accessed through more than one network
programming interface. For example, TCP/IP can be accessed through either
TLI or sockets, depending on which programming interface is available on
the operating-system platform. Therefore, a client using TCP/IP through TLI
on one computer can communicate with a database server using TCP/IP with
sockets on another computer, or vice versa. For an example, see “Using a
Network Connection” on page 6-48.

Database Server Connection
A connection is a logical association between two applications; in this context,
between a client application and a database server. A connection must be
established between client and database server before data transfer can take
place. In addition, the connection must be maintained for the duration of the
transfer of data.

Tip: The Informix internal communications facility is called Association Services
Facility (ASF). If you see an error message that refers to ASF, you have a problem with
your connections.

A client application establishes a connection to a database server with either
the CONNECT or DATABASE SQL statement. For example, to connect to the
database server my_server, an application might contain the following form
of the CONNECT statement:

CONNECT TO '@myserver'

For more information on the CONNECT and DATABASE statements, see the
Informix Guide to SQL: Syntax.
Client/Server Communications 6-5

Multiplexed Connection
Multiplexed Connection
Some applications connect multiple times to the same database server on
behalf of one user. A multiplexed connection uses a single network connection
between the database server and a client to handle multiple database connec-
tions from the client. Client applications can establish multiple connections
to a database server to access more than one database on behalf of a single
user. If the connections are not multiplexed, each database connection estab-
lishes a separate network connection to the database server. Each additional
network connection consumes additional computer memory and CPU time,
even for connections that are not active. Multiplexed connections enable the
database server to create multiple database connections without consuming
the additional computer resources that are required for additional network
connections.

To configure the database server to support mulitplexed connections, you
must include in the ONCONFIG file a special NETTYPE parameter that has a
value of SQLMUX, as in the following example:

NETTYPE SQLMUX

To configure the automatic use of multiplexed connections by clients, the
entry in the sqlhosts file that the client uses for the database server
connection must specify the value of m=1 in the options field, as in the
following example:

menlo ontlitcp valley jfk1 m=1

You do not need to make any changes to the sqlhosts file that the database
server uses. The client program does not need to make any special SQL calls
to enable connections multiplexing. Connection multiplexing is enabled
automatically when the ONCONFIG file and the sqlhosts file are configured
appropriately. For information on the NETTYPE configuration parameter,
refer to the chapter on configuration parameters in the Administrator’s
Reference. For more information on the sqlhosts file, refer to “The sqlhosts
File” on page 6-20.

The following limitations apply to multiplexed connections:

■ Multithreaded client connections are not supported.

■ Shared-memory connections are not supported.
6-6 Administrator’s Guide for Informix Extended Parallel Server

Connections That the Database Server Supports
■ The ESQL/C sqlbreak() function is not supported.

■ You can activate database server support for multiplexed connec-
tions only when the database server starts.

If any of these conditions exist when an application attempts to establish a
connection, the database server establishes a standard connection. The
database server does not return an SQL error.

Connections That the Database Server Supports
The database server supports the following types of connections to commu-
nicate between client applications and a database server

On many UNIX platforms, the database server supports multiple network
programming interfaces. To check which interface/protocol combinations
the database server supports for your operating system, check the machine
notes. The section “Machine Specific Notes” describes interface/protocol
combinations that are available on your platform, similar to the following
example:

Machine Specific Notes:
=======================

1. The following interface/protocol combinations(s) are
supported for
this platform:

Berkeley sockets using TCP/IP

Connection Type Local Network

Sockets ✔ ✔

TLI (TCP/IP) ✔ ✔

TLI (IPX/SPX) ✔ ✔

Shared memory ✔

Stream pipe ✔
Client/Server Communications 6-7

Local Connections
To set up a client connection

1. Specify connectivity configuration parameters in your ONCONFIG
file.

2. Set up appropriate entries in the connectivity files on your platform.

3. Specify connectivity environment variables in your UNIX initial-
ization scripts.

4. Define a dbserver group for your database server in the sqlhosts file.

The following sections describe database server connection types in more
detail. For detailed information about implementing the connections
described in the following sections, refer to the following topics:

■ “Connectivity Files” on page 6-13

■ “The sqlhosts Information” on page 6-22

■ “ONCONFIG Parameters for Connectivity” on page 6-42

■ “Environment Variables for Network Connections” on page 6-45

Local Connections
A local connection is a connection between a client and the database server on
the same computer. The following sections describe these types of local
connections.
6-8 Administrator’s Guide for Informix Extended Parallel Server

Local Connections
Shared-Memory Connections

A shared-memory connection uses an area of shared-memory as the channel
through which the client and database server communicate with each other.
Figure 6-1 illustrates a shared-memory connection.

Shared memory provides fast access to a database server, but it poses some
security risks. Errant or malicious applications could destroy or view
message buffers of their own or of other local users. Shared-memory commu-
nication is also vulnerable to programming errors if the client application
performs explicit memory addressing or overindexes data arrays. Such
errors do not affect the database server if you use network communication or
stream pipes. For an example of a shared-memory connection, refer to “Using
a Shared-Memory Connection” on page 6-46.

A client cannot have more than one shared-memory connection to a database
server.

For information about the portion of shared memory that the database server
uses for client/server communications, refer to “Communications Portion of
Shared Memory” on page 13-33. For additional information, you can also
refer to “How a Client Attaches to the Communications Portion” on
page 13-12.

Figure 6-1
A Shared-Memory Connection

Computer

Shared
memory

Client
application

Database server
Client/Server Communications 6-9

Local Connections
Stream-Pipe Connections

A stream pipe is a UNIX interprocess communication (IPC) facility that allows
processes on the same computer to communicate with each other. You can
use stream-pipe connections any time that the client and the database server
are on the same computer. For more information, refer to “Network Protocol”
on page 6-25 and “Shared-Memory and Stream-Pipe Communication” on
page 6-27.

Stream-pipe connections, unlike shared-memory connections, do not pose
the security risk of being overwritten or read by other programs that
explicitly access the same portion of shared memory.

Disadvantages of Stream-Pipe Connections

Stream-pipe connections have the following disadvantages:

■ Stream-pipe connections might be slower than shared-memory
connections on some computers.

■ Stream pipes are not available on all platforms.

Local-Loopback Connections

A network connection between a client application and a database server on
the same computer is called a local-loopback connection. The networking facil-
ities used are the same as if the client application and the database server
were on different computers. You can make a local-loopback connection
provided your computer is equipped to process network transactions. Local-
loopback connections are not as fast as shared-memory connections, but they
do not pose the security risks of shared memory.

In a local-loopback connection, data appears to pass from the client appli-
cation, out to the network, and then back in again to the database server. In
fact, although the database server uses the network programming interface
(TLI or sockets), the internal connection processes send the information
directly between the client and the database server and do not put the infor-
mation out on the network.

For an example of a local-loopback connection, see “Using a Local-Loopback
Connection” on page 6-47.
6-10 Administrator’s Guide for Informix Extended Parallel Server

Coserver Client Connections
Coserver Client Connections
All coservers in Extended Parallel Server can accept client connections. A
coserver that accepts the connection for a particular client is called the
connection coserver for that client.

To identify each connection coserver uniquely, the database server uses
dbservernames of the following form:

dbservername.coserver_number

This form of the dbservername is referred to as a coserver name. Extended
Parallel Server uses the DBSERVERNAME and coserver numbers specified in
the ONCONFIG file to generate coserver names. For example, if the
DBSERVERNAME is myxps and the ONCONFIG file specifies eight coservers,
the database server automatically generates the following coserver names:

myxps.1
...
myxps.8

dbservername is the value that you specify in the DBSERVERNAME or
DBSERVERALIASES configuration parameter.

coserver_number is the integer that you specify in each COSERVER
configuration parameter.
Client/Server Communications 6-11

Communication Support Services
Communication Support Services
Communication support services include connectivity-related services such as
the following security services:

■ Authentication is the process of verifying the identity of a user or an
application. The most common form of authentication is to require
the user to enter a name and password to obtain access to a computer
or an application.

■ Message integrity ensures that communication messages are intact
and unaltered when they arrive at their destination.

■ Message confidentiality protects messages, usually by encryption
and decryption, from viewing by unauthorized users during
transmission.

Communication support services can also include other processing such as
data compression or traffic-based accounting.

The database server provides a default method of authentication, which is
described in “Network-Security Files” on page 6-16. The database server
uses the default authentication policy when you do not specify a communi-
cations support module.

The database server provides extra security-related communication support
services through plug-in software modules called Communication Support
Modules (CSM).
6-12 Administrator’s Guide for Informix Extended Parallel Server

Informix Password Communication Support Module
Informix Password Communication Support Module
The Informix Password Communication Support Module (PSWDCSM)
provides encryption to protect a password when it must be sent between the
client and the database server for authentication. PSWDCSM is available on all
platforms.

To use password encryption, you must add a line to the CSS/CSM configu-
ration file, concsm.cfg, and add an entry to the options column of the
sqlhosts file. The concsm.cfg file must contain an entry for each communica-
tions support module that you are using. For information on the concsm.cfg
file, see “CSM Configuration File” on page 6-19. For information on speci-
fying the CSM in the sqlhosts file, see “Communication Support Module
Option” on page 6-32.

Connectivity Files
The connectivity files contain the information that enables client/server
communication. These files also enable a database server to communicate
with another database server. The connectivity configuration files can be
divided into three groups:

■ Network-configuration files

■ Network-security files

■ The sqlhosts file

Network-Configuration Files
This section identifies and explains the use of network-configuration files on
TCP/IP and IPX/SPX networks.

TCP/IP Connectivity Files

When you configure the database server to use the TCP/IP network protocol,
you use information from the network-configuration files hosts and services
to prepare the sqlhosts information.
Client/Server Communications 6-13

Network-Configuration Files
The network administrator maintains these files. When you add a host, or a
software service such as a database server, you need to inform the network
administrator so that person can make sure the information in these files is
accurate.

The hosts file needs a single entry for each network-controller card that
connects a computer running an Informix client/server product on the
network. Each line in the file contains the following information:

■ Internet address (or ethernet card IP address)

■ Host name

■ Host aliases (optional)

Although the length of the host name is not limited in the hosts file, Informix
limits the host name to 256 characters. Figure 6-7 on page 6-38 includes a
sample hosts file.

The services file contains an entry for each service available through TCP/IP.
Each entry is a single line that contains the following information:

■ Service name

Informix products use this name to determine the port number and
protocol for making client/server connections. The service name can
have up to 256 characters.

■ Port number and protocol

The port number is the computer port, and the protocol for TCP/IP is
tcp.

■ Aliases (optional)

The service name and port number are arbitrary. However, they must be
unique within the context of the file and must be identical on all computers
that are running Informix client/server products. The aliases field is
optional. For example, a services file might include the following entry for a
database server:

server2 1526/tcp

This entry makes server2 known as the service name for TCP port 1526. A
database server can then use this port to service connection requests.
Figure 6-5 on page 6-28 includes a sample services file.
6-14 Administrator’s Guide for Informix Extended Parallel Server

Network-Configuration Files
For information about the hosts and services files, refer to your operating-
system documentation.

On UNIX, the hosts and services files are in the /etc directory. The files must
be present on each computer that runs an Informix client/server product, or
on the NIS server if your network uses Network Information Service (NIS).

Warning: On systems that use NIS, the /etc/hosts and /etc/services files are
maintained on the NIS server. The /etc/hosts and /etc/services files that reside on
your local computer might not be used and might not be up to date. To view the
contents of the NIS files, enter the following commands on the command line:

ypcat hosts
ypcat services

Multiple TCP/IP Ports
To take advantage of multiple ethernet cards, take the following actions:

■ Make an entry in the services file for each port the database server
will use, as in the following example:

soc1 21/tcp
soc2 22/tcp

All ports in use for a single IP address must be unique. Separate
ethernet cards can utilize the same or different port numbers. You
might want to use the same port number on each ethernet card
because you are connecting to the same database server. (In this
scenario, the service name is the same.)

■ Put one entry per ethernet card in the hosts file with a separate IP
address, as in the following example:

192.147.104.19 svc8
192.147.104.20 svc81

■ In the ONCONFIG configuration file, enter DBSERVERNAME for one
of the ethernet cards and DBSERVERALIASES for the other ethernet
card. The following lines show sample entries in the ONCONFIG file:

DBSERVERNAME chicago1
DBSERVERALIASES chicago2

■ In the sqlhosts file, make one entry for each ethernet card. That is,
make an entry for the DBSERVERNAME and another entry for the
DBSERVERALIAS.

chicago1 onsoctcp svc8 soc1
chicago2 onsoctcp svc81 soc2
Client/Server Communications 6-15

Network-Security Files
Once this configuration is in place, the application communicates through
the ethernet card assigned to the dbservername that the INFORMIXSERVER
environment variable provides.

IPX/SPX Connectivity Files

To configure the database server to use the IPX/SPX protocol on a UNIX
network, you must purchase IPX/SPX software and install it on the database
server computer. Your choice of IPX/SPX software depends on the operating
system that you are using. For some operating systems, the IPX/SPX software
is bundled with software products based on NetWare for UNIX or Portable
NetWare. In addition, for each of the UNIX vendors that distributes IPX/SPX
software, you might find a different set of configuration files.

For advice on how to set configuration files for these software products,
consult the manuals that accompany your IPX/SPX software.

Network-Security Files
Informix products follow standard security procedures that are governed by
information contained in the network-security files. For a client application
to connect to a database server on a remote computer, the user of the client
application must have a valid user ID on the remote computer.

The hosts.equiv File

The hosts.equiv file lists the remote hosts and users that are trusted by the
computer on which the database server resides. Trusted users, and users who
log in from trusted hosts, can access the computer without supplying a
password. The operating system uses the hosts.equiv file to determine
whether a user should be allowed access to the computer without specifying
a password. Informix requires a hosts.equiv file for its default authentication
policy.

If a client application supplies an invalid account name and password, the
database server rejects the connection even if the hosts.equiv file contains an
entry for the client computer. You should use the hosts.equiv file only for
client applications that do not supply a user account or password. On UNIX,
the hosts.equiv file is in the /etc directory. If you do not have a hosts.equiv
file, you must create one.
6-16 Administrator’s Guide for Informix Extended Parallel Server

Network-Security Files
On some networks, the host name that a remote host uses to connect to a
particular computer might not be the same as the host name that the
computer uses to refer to itself. For example, the network host name might
contain the full domain name, as the following example shows:

viking.informix.com

By contrast, the computer might refer to itself with the local host name, as the
following example shows:

viking

If this situation occurs, make sure that you specify both host name formats in
the host.equiv file.

To determine whether a client is trusted, execute the following statement on
the client computer:

rlogin hostname

If you log in successfully without receiving a password prompt, the client is
a trusted computer.

As an alternative, an individual user can list hosts from which he or she can
connect as a trusted user in the .rhosts file. This file resides in the user’s home
directory on the computer on which the database server resides.

The netrc Information

The netrc information is optional information that specifies identity data. A
user who does not have authorization to access the database server or is not
on a computer that is trusted by the database server can use this file to supply
a name and password that are trusted. A user who has a different user
account and password on a remote computer can also provide this
information.

The netrc information resides in the .netrc file in the user’s home directory.
Use any standard text editor to prepare the .netrc file.
Client/Server Communications 6-17

Network-Security Files
If you do not explicitly provide the user password in an application for a
remote server (that is, through the USER clause of the CONNECT statement or
the user name and password prompts in DB-Access), the client application
looks for the user name and password in the netrc information. If the user has
explicitly specified the password in the application, or if the database server
is not remote, the netrc information is not consulted.

The database server uses the netrc information regardless of whether it uses
the default authentication policy or a communications support module.

For information about the specific content of this file, refer to your operating-
system documentation.

User Impersonation

For certain client queries or operations, the database server must imper-
sonate the client to run a process or program on behalf of the client. In order
to impersonate the client, the database server must receive a password for
each client connection. Clients can provide a user ID and password through
the CONNECT statement or netrc information.

The following examples show how you can provide a password to imper-
sonate a client.

File or Statement Example

netrc
information

machine trngpc3 login bruce password im4golf

CONNECT
STATEMENT

CONNECT TO ol_trngpc3 USER bruce USING "im4golf"
6-18 Administrator’s Guide for Informix Extended Parallel Server

CSM Configuration File
CSM Configuration File
The concsm.cfg file describes the communication support module (CSM) and
is required only if you use a CSM. An entry in the file is a single line and is
limited to 1024 characters. After you describe the CSM in the concsm.cfg file,
you can enable it in the options parameter of the sqlhosts file.

The concsm.cfg file resides in the $INFORMIXDIR/etc directory by default. If
you want to store the file somewhere else, you can override the default
location by setting the INFORMIXCONCSMCFG environment variable to the
full pathname of the new location. For information on setting the
environment variable INFORMIXCONCSMCFG, refer to the Informix Guide to
SQL: Reference.

Format of the CSM Configuration File

The concsm.cfg file entry has the following format:

csmname(lib-paths, "csm-global-option",
"csm-connection-options")

The csmname variable is the name that you assign to the communications
support module. The lib-paths parameter has the following format:

"client=lib-path-clientsdk-csm, server=lib-path-server-csm"

The lib-path-clientsdk-csm is the full pathname, including the filename, of the
shared library that is the CSM of the client, and the client applications use this
CSM to communicate with the database server. The CSM is normally installed
in $INFORMIXDIR/lib/client/csm.

The lib-path-server-csm is the full pathname, including the filename, of the
shared library that is the CSM of the database server. The CSM is normally
installed in $INFORMIXDIR/lib/csm, and the database server uses the CSM to
communicate with the clients. The following restrictions apply to the CSM
pathnames:

■ Characters '=', '"' and ',' are not allowed to be part of the pathname.

■ White spaces cannot be used between '=' and the pathname or
between pathname and ',' or '"' unless the white spaces are part of the
pathname.
Client/Server Communications 6-19

CSM Configuration File
The lib-paths parameter can alternatively have the following format:

"lib-path-csm"

The lib-path-csm is the full pathname, including the filename, of the shared
library that is the CSM. In this case, the same CSM is used by both the client
applications and the database server.

The csm-global option is not used at this time for PWDCSM.

The csm-connection-options option can contain the following options.

An unknown option placed in csm-connection-options results in a context
initialization error.

You can put a null value in the csm-connection-options field. For Client SDK
before Version 2.3, if the csm-connection-options field is null, the default
behavior is p=1. For Client SDK, Version 2.3 and later, if the csm-connection-
options field is null, the default behavior is p=0.

The concsm.cfg Entry for Password Encryption

The following two examples illustrate the two alternatives for parameters
you must enter in the concsm.cfg file to define the Informix Password
Communication Support Module:

PSWDCSM("client=/usr/informix/lib/client/csm/libixspw.so,
 server=/usr/informix/lib/csm/libixspw.so", "", "")

PSWDCSM("/usr/informix/lib/csm/libixspw.so", "", "")

The following example shows the csm-connection-options field set to 0, so no
password is necessary:

PSWDCSM("/work/informix/csm/libixspw.so","","p=0")

Setting Result

p=1 The password is mandatory for authentication.

p=0 The password is not mandatory. If the client provides it, the password is
encrypted and used for authentication.
6-20 Administrator’s Guide for Informix Extended Parallel Server

The sqlhosts File
The sqlhosts File
Informix client/server connectivity information, the sqlhosts information,
contains information that enables a client application to find and connect to
any Informix database server on the network.

For a detailed description of the sqlhosts information, refer to “The sqlhosts
Information” on page 6-22.

On UNIX, the sqlhosts file resides, by default, in the $INFORMIXDIR/etc
directory. As an alternative, you can set the INFORMIXSQLHOSTS
environment variable to the full pathname and filename of a file that contains
the sqlhosts file information. Each computer that hosts a database server or
a client must have an sqlhosts file.

Each entry (each line) in the sqlhosts file contains the sqlhosts information
for one database server or coserver. Use white space (spaces, tabs, or both) to
separate the fields. You cannot include any spaces or tabs within a field. To
put comments in the sqlhosts file, start a line with the comment character (#).
You can also leave lines completely blank for readability. Additional syntax
rules for each of the fields are provided in the following sections, which
describe the entries in the sqlhosts file. Use any standard text editor to enter
information in the sqlhosts file.

Figure 6-2 shows a sample sqlhosts file.

Figure 6-2
Sample sqlhosts File

dbservername nettype hostname servicename options

menlo onipcshm valley menlo

newyork ontlitcp hill dynsrvr2 s=2,b=5120

sales ontlispx knight sales k=0,r=0

payroll onsoctcp dewar py1

asia group – – e=asia.3

asia.1 ontlitcp node6 svc8 g=asia

asia.2 onsoctcp node0 svc1 g=asia
Client/Server Communications 6-21

The sqlhosts Information
The sqlhosts Information
The sqlhosts information in the sqlhosts file contains connectivity infor-
mation for each database server. The sqlhosts information also contains
definitions for groups. The database server looks up the connectivity infor-
mation when you initialize the database server, when a client application
connects to a database server, or when a database server connects to another
database server.

The connectivity information for each database server includes four fields of
required information and one optional field. The group information contains
information in only three of its fields.

The five fields of connectivity information form one line in the UNIX sqlhosts
file. The following table summarizes the fields used for the sqlhosts
information.

If you install Informix Enterprise Gateway with DRDA in the same directory
as the database server, your sqlhosts file also contains entries for the
Gateway and non-Informix database servers. However, this manual covers
only the entries for the database server. For information about other entries
in the sqlhosts file, see the Informix Enterprise Gateway with DRDA User
Manual.

UNIX
Field Name

Description of
Connectivity
Information

Description of
Group
Information

dbservername Database server
name

Database server group name

nettype Connection type The word group

hostname Host computer for
the database server

No information. Use a hyphen as a
placeholder in this field.

servicename Alias for the port
number

No information. Use a hyphen as a
placeholder in this field.

options Options that
describe or limit the
connection

Group options
6-22 Administrator’s Guide for Informix Extended Parallel Server

Connectivity Information
Connectivity Information
The next section describes the connectivity information that is in each field of
the sqlhosts file.

Database Server Name

The database server name field (dbservername) gives the name of the
database server for which the connectivity information is being specified.
Each database server across all of your associated networks must have a
unique database server name. The dbservername field must match the name
of a database server in the network, as specified by the DBSERVERNAME and
DBSERVERALIASES configuration parameters in the ONCONFIG configu-
ration file. For more information about these configuration parameters, refer
to “ONCONFIG Parameters for Connectivity” on page 6-42.

The dbservername field can include any printable character other than an
uppercase character, a field delimiter, a newline character, or a comment
character. It is limited to 128 characters.

If the sqlhosts file has multiple entries with the same dbservername, only the
first one is used.

The sqlhosts information must include the name of each coserver and the
name of the group to which the coserver belongs.

The database server uses the dbservername field as the key to an index to
look up the connectivity information in the remaining fields in the sqlhosts
file. Specify a coserver name in this field. For a single-coserver system, the
sqlhosts file should contain two entries:

■ The database server name (for example, asia)

■ The coserver name (for example, asia.1)

For a single-coserver system, set INFORMIXSERVER to either the database
server name or the coserver name. See “Required Environment Variables” on
page 3-12.

The field can also contain the name of a dbserver group. For more information
about database server groups, refer to “Group Information” on page 6-37.
Client/Server Communications 6-23

Connectivity Information
The Connection Type Field

The connection-type field (nettype on UNIX or PROTOCOL on Windows NT)
describes the type of connection that should be made between the database
server and the client application or another database server. The field is a
series of eight letters composed of three subfields, as Figure 6-3 shows.

The following sections describe the subfields of the connection-type field.

Database Server Product

The first two letters of the connection-type field represent the database server
product.

Figure 6-3
Format of the

Connection-Type
Field

d d i i i p p p

Database
server product

Interface type Network protocol
or IPC mechanism

 Product Subfield Product

on or ol The database server

dr Informix Enterprise Gateway with DRDA

For information about DRDA, refer to the Informix Enterprise
Gateway with DRDA User Manual.
6-24 Administrator’s Guide for Informix Extended Parallel Server

Connectivity Information
Interface Type

The middle three letters of the connection-type field represent the network
programming interface that enables communications. For more information,
see “Network Programming Interface” on page 6-4.

Interprocess communications (IPC) are used only for communications
between two processes running on the same computer.

Network Protocol

The final three letters of the connection-type field represent the network
protocol or specific IPC mechanism.

IPC connections use shared memory or stream pipes. The database server
supports two network protocols: TCP/IP and IPX/SPX.

Figure 6-4 on page 6-26 summarizes the possible connection-type values for
database server connections.

Interface
Subfield Type of Interface

ipc IPC (interprocess communications)

soc Sockets

tli TLI (transport layer interface)

Protocol
Subfield Type of Protocol

shm Shared-memory communication

spx IPX/SPX network protocol

str Stream-pipe communication

tcp TCP/IP network protocol
Client/Server Communications 6-25

Connectivity Information
Figure 6-4
Summary of nettype Values

For information on the connection types for your platform, see “Connections
That the Database Server Supports” on page 6-7.

Host Name Field

The host name field (hostname) contains the name of the computer where the
database server resides. The name field can include any printable character
other than a field delimiter, a newline character, or a comment character. The
host name field is limited to 256 characters.

The following sections explain how client applications derive the values used
in the host name field.

Network Communication with TCP/IP

When you use the TCP/IP network protocol, the host name field is a key to
the hosts file, which provides the network address of the computer. The
name that you use in the host name field must correspond to the name in the
hosts file. In most cases, the host name in the hosts file is the same as the
name of the computer. For information about the hosts file, refer to “TCP/IP
Connectivity Files” on page 6-13.

In some situations, you might want to use the actual Internet IP address in the
host name field. For information about using the IP address, refer to “IP
Addresses for TCP/IP Connections” on page 6-38.

nettype
value

Description
Connection
Type

onipcshm Shared-memory communication IPC

onipcstr Stream-pipe communication IPC

ontlitcp TLI with TCP/IP protocol Network

onsoctcp Sockets with TCP/IP protocol Network

ontlispx TLI with IPX/SPX protocol Network
6-26 Administrator’s Guide for Informix Extended Parallel Server

Connectivity Information
Shared-Memory and Stream-Pipe Communication

When you use shared memory or stream pipes for client/server communica-
tions, the hostname field must contain the actual host name of the computer
on which the database server resides.

Network Communication with IPX/SPX

When you use the IPX/SPX network protocol, the hostname field must
contain the name of the NetWare file server. The name of the NetWare file
server is usually the UNIX hostname of the computer. However, this is not
always the case. You might need to ask the NetWare administrator for the
correct NetWare file-server names.

Tip: NetWare installation and administration utilities might display the NetWare
file-server name in capital letters; for example, VALLEY. In the sqlhosts file, you can
enter the name in either uppercase or lowercase letters.

Service Name Field

The interpretation of the service name field (servicename) depends on the
type of connection that the connection-type field (nettype) specifies.The
service name field can include any printable character other than a field
delimiter, a newline character, or a comment character. The service name field
is limited to 128 characters.

Network Communication with TCP/IP

When you use the TCP/IP connection protocol, the service name field must
correspond to a service name entry in the services file. The port number in
the services file tells the network software how to find the database server on
the specified host. It does not matter what service name you choose, as long
as you agree on a name with the network administrator.
Client/Server Communications 6-27

Connectivity Information
Figure 6-5 shows the relationship between the sqlhosts file and the hosts file,
as well as the relationship of sqlhosts to the services file.

In some cases, you might use the actual TCP listen-port number in the service
name field. For information about using the port number, refer to “Port
Numbers for TCP/IP Connections” on page 6-42.

Shared-Memory and Stream-Pipe Communication

When the nettype field specifies a shared-memory connection (onipcshm) or
a stream-pipe connection (onipcstr), the database server uses the value in
the servicename entry internally to create a file that supports the connection.
For both onipcshm and onipcstr connections, the servicename can be any
short group of letters that is unique in the environment of the host computer
where the database server resides. Informix recommends that you use the
dbservername as the servicename for stream-pipe connections.

Figure 6-5
Relationship of
sqlhosts File to

hosts and services
Files

sqlhosts entry to connect by TCP/IP

dbservername nettype hostname servicename options

sales onsoctcp knight sales_ol

hosts file

IP address hostname alias

37.1.183.92 knight

services file

service name port#/protocol

sales_ol 1543/tcp
6-28 Administrator’s Guide for Informix Extended Parallel Server

Connectivity Information
Network Communication with IPX/SPX

A service on an IPX/SPX network is simply a program that is prepared to do
work for you, such as the database server. For an IPX/SPX connection, the
value in the servicename field can be an arbitrary string, but it must be
unique among the names of services available on the IPX/SPX network. It is
convenient to use the dbservername in the servicename field.

Options Field

The options field includes entries for the following features.

When you change the values in the options field, those changes affect the
next connection that a client application makes. You do not need to stop and
restart the client application to allow the changes to take effect. However, a
database server reads its own connectivity information only during initial-
ization. If you change the options for the database server, you must
reinitialize the database server to allow the changes to take effect.

Option Name Option Letter Reference

Buffer size b page 6-30

Connection redirection c page 6-31

End of group e page 6-32

Group g page 6-33

Identifier i page 6-35

Keep-alive k page 6-35

Security s (database server)

r (client)

page 6-36

Communication support module csm page 6-32
Client/Server Communications 6-29

Connectivity Information
Syntax Rules for the Options Field

Each item in the options field has the following format:

letter=value

You can combine several items in the options field, and you can include them
in any order. The maximum length of the options field is 256 characters.

You can use either a comma or white space as the separator between options.
You cannot use white space within an option.

The database server evaluates the options field as a series of columns. A
comma or white space in the options field represents an end of a column.
Client and database server applications check each column to determine
whether the option is supported. If an option is not supported, you are not
notified. It is merely ignored.

The following examples show both valid and invalid syntax.

Buffer-Size Option

Use the buffer-size option (b=value) to specify in bytes the size of the
communications buffer space. The buffer-size option applies only to connec-
tions that use the TCP/IP network protocol. Other types of connections ignore
the buffer-size setting. You can use this option when the default size is not
efficient for a particular application. The default buffer size for the database
server using TCP/IP is 4096 bytes.

Adjusting the buffer size allows you to use system and network resources
more efficiently; however, if the buffer size is set too high, the user receives a
connection-reject error because no memory can be allocated. For example, if
you set b=64000 on a system that has 1000 users, the system might require 64
megabytes of memory for the communications buffers. This setting might
exhaust the memory resources of the computer.

Syntax Valid Comments

k=0,s=3,b=5120 Yes Syntax is correct.

s=3,k=0 b=5120 Yes Syntax is equivalent to the preceding entry. (White space
is used of instead of a comma.)

k=s=0 No You cannot combine entries.
6-30 Administrator’s Guide for Informix Extended Parallel Server

Connectivity Information
On many operating systems, the maximum buffer size supported for TCP/IP
is 16 kilobytes. To determine the maximum allowable buffer size, refer to the
documentation for your operating system or contact the technical-support
services for the vendor of your platform.

If your network includes several different types of computers, be particularly
careful when you change the size of the communications buffer.

Tip: Informix recommends that you use the default size for the communications
buffer. If you choose to set the buffer size to a different value, set the client-side
communications buffer and the database server-side communications buffer to the
same size.

Connection-Redirection Option

The connection-redirection option indicates the order in which the
connection software chooses a coserver within a group.

Important: The connection-redirection option is valid only in a dbserver group. For
more information, see “Group Option” on page 6-33.

By default, a client application is connected to the first coserver listed in the
sqlhosts file. If the client cannot connect to the first database server, it
attempts to connect to the second database server and so on.

If the connection-redirection option is on (c=1), the database server attempts
to establish a connection in a random order among members of the dbserver
group.

The following table shows the possible settings for the connection redirection
option.

Setting Result

c=0 Connect to a database server in the same order as listed in the group in
the sqlhosts file.(This is the default setting).

c=1 Connect to a database server in a random order.
Client/Server Communications 6-31

Connectivity Information
Communication Support Module Option

Use the communication support module (CSM) option to describe the CSM
for each database server that uses a CSM. If you do not specify the CSM
option, the database server uses the default authentication policy for that
database server. You can specify the same CSM option setting for every
database server described in the sqlhosts file, or you can specify a different
CSM option or no CSM options for each sqlhosts entry.

The format of the CSM option is illustrated in the following example:

csm=(csmname,csm-connection-options)

The value of csmname must match a csmname entry in the concsm.cfg file. The
connection-options parameter overrides the default csm-connection options
specified in the concsm.cfg file. For information on the concsm.cfg file entry,
refer to “CSM Configuration File” on page 6-19.

The following example specifies that the PSWDCSM communication support
module will be used for the connection:

csm=(PSWDCSM)

For more information on the CSM, refer to “Database Server Connection” on
page 6-5. For more information on the concsm.cfg file, refer to “CSM Config-
uration File” on page 6-19.

End of Group Option

Use this option to specify the ending database server name of a database
server group. You can use this option only in a group entry. If you specify this
option in an entry other than a database server group, it is ignored.

If no end-of-group option is specified for a group, the group members are
assumed to be contiguous. The end of group is determined when an entry is
reached that does not belong to the group or at the end of file, whichever
comes first.
6-32 Administrator’s Guide for Informix Extended Parallel Server

Connectivity Information
Group Option

When you define database server groups in the sqlhosts file key, you can use
multiple related entries as one logical entity to establish or change
client/server connections. Use the following steps to create database server
groups.

To name a database server group

1. Specify the name of the database server group to which the sqlhosts
entry belongs (up to 18 characters) in the DBSERVERNAME field.

The database server group name can be the same as the initial
DBSERVERNAME for the database server.

2. Place the keyword group in the connection type field.

3. The host name and service name fields are not used. Use dash (-)
characters as null-field indicators for the unused fields. If you do not
use options, you can omit the null-field indicators.

The only options available for a database server group entry are as
follows:

■ c = connection redirection

■ e = end of group

■ i = identifier option

To add coservers to a dbserver group

1. Specify the dbserver member that belongs to the dbserver group.

2. Indicate the nettype.

3. Identify the host name.

4. Identify the service name.

5. Identify the group with the group option

Important: Database server groups cannot be nested inside other database server
groups, and database server group members cannot belong to more than one group.

Figure 6-6 on page 6-34 shows sqlhosts entries that define database server
groups.
Client/Server Communications 6-33

Connectivity Information
Figure 6-6
Database Server Groups in sqlhosts File

The example in Figure 6-6 shows the following two groups: asia and peru.
Group asia includes the following members:

■ asia.1

■ asia.2

■ asia.3

dbservername nettype hostname servicename options

asia group – – e=asia.3

asia.1 ontlitcp node6 svc8 g=asia

asia.2 onsoctcp node0 svc1 g=asia

usa.2 ontlispx node9 sv2

asia.3 onsoctcp node1 svc9 g=asia

peru group – –

peru.1 ontlitcp node4 svc4

peru.2 ontlitcp node5 svc5 g=peru

peru.3 ontlitcp node7 svc6

usa.1 onsoctcp 37.1.183.92 sales_ol k=1, s=0

asia group – – e=asia.3

asia.1 ontlitcp node6 svc8 g=asia

asia.2 onsoctcp node0 svc1 g=asia

usa.2 ontlispx node9 sv2

asia.3 onsoctcp node1 svc9 g=asia

peru group – –
6-34 Administrator’s Guide for Informix Extended Parallel Server

Connectivity Information
Because group asia uses the end-of-group option (e=asia.3), the database
server searches for group members until it reaches asia.3, so the group
includes usa.2.

Because group peru does not use the end-of-group option, the database
server continues to include all members until it reaches the end of file.

You can use the name of a database server group instead of the database
server name in the following environment variables:

■ INFORMIXSERVER

The value of INFORMIXSERVER for a client application can be the
name of a database server group. However, you cannot use a
database server group name as the value of INFORMIXSERVER for a
database server or database server utility.

■ DBPATH

DBPATH can contain the names of database server groups as
dbservernames.

In addition, the group name can also be in the SQL CONNECT command.

Identifier Option

The identifier option assigns an identifying number to a database server
group. The identifier must be a positive numeric integer and must be unique
within your network environment.

Keep-Alive Option

The keep-alive option is a network option that TCP/IP uses. It does not affect
other types of connections.

The letter k identifies keep-alive entries in the options field, as follows:

k=0 disable the keep-alive feature
k=1 enable the keep-alive feature

When a connected client and server are not exchanging data, the keep-alive
option enables the network service to check the connection periodically. If the
receiving end of the connection does not respond within the time specified by
the parameters of your operating system, the connection is considered
broken, and all resources related to the connection are released.
Client/Server Communications 6-35

Connectivity Information
When the keep-alive option is enabled, the network service spends
additional resources to check the connection.

When the keep-alive option is disabled, the network service does not check
periodically whether the connection is still active. If the opposite end of the
connection terminates unexpectedly without any notification, as when a PC
reboots, for example, the network service might never detect that the
connection is broken.

If you do not include the keep-alive option in the options field, the keep-alive
feature is enabled by default. You can set this option on the database server
side only, the client side only, or on both sides. For most cases, Informix
recommends that you enable the keep-alive option.

Security Options

The security options let you control operating-system security-file lookups.
The letter s identifies database server-side settings, and the letter r identifies
client-side settings. You can set both options in the options field. A client
ignores s settings, and the database server ignores r settings.

The following table shows the possible security option settings.

Setting Result

r=0 Disables netrc lookup from the client side

r=1 Enables netrc lookup from the client side (default setting for the client
side)

s=0 Disables both hosts.equiv and .rhosts lookup from the database server
side

s=1 Enables only the hosts.equiv lookup from the database server side

s=2 Enables only the .rhosts lookup from the database server side

s=3 Enables both hosts.equiv and .rhosts lookup on the database server side
(default setting for the database server side)
6-36 Administrator’s Guide for Informix Extended Parallel Server

Group Information
The security options let you control the way that a client (user) gains access
to a database server. By default, an Informix database server uses the
following information on the client computer to determine whether the client
host computer is trusted:

■ hosts.equiv

■ .rhosts file

With the security options, you can specifically enable or disable the use of
either or both files.

For example, if you want to prevent end users from specifying trusted hosts
in the .rhosts file, you can set s=1 in the options field of the sqlhosts filefor
the database server to disable the rhosts lookup.

Group Information
The following section describes the fields of the sqlhosts file for groups.

Database Server Group

A database server group allows you to treat multiple related database servers
entries as one logical entity to establish or change client/server connections.
You can also use dbserver groups to simplify the redirection of connections
to database servers. For more information on database server groups, see
“Group Option” on page 6-33.

Group Keyword in the Connection-Type Field

The group keyword begins a list of coservers that are part of the database
server. When a client connects to the database server using the database
server name, the database server selects a coserver on which to establish the
client connection.
Client/Server Communications 6-37

Alternatives for TCP/IP Connections
Alternatives for TCP/IP Connections
The following sections describe some ways to bypass port and IP address
lookups for TCP/IP connections.

IP Addresses for TCP/IP Connections

For TCP/IP connections (both TLI and sockets), you can use the actual
Internet IP address in the hostname field instead of the host name or alias
found in the hosts file. The IP address is always composed of four sets of one
to three integers, separated by periods. Figure 6-7 shows sample IP addresses
and host from a hosts file.

Using the IP address for knight from Figure 6-7, the following two sqlhosts
entries are equivalent:

sales ontlitcp 12.34.56.789 sales_ol
sales ontlitcp knight sales_ol

Using an IP address might speed up connection time in some circumstances.
However, because computers are usually known by their host name, using IP
addresses in the host name field makes it less convenient to identify the
computer with which an entry is associated.

You can find the IP address in the net address field of the hosts file, or you can
use the UNIX arp or ypmatch command.

Internet IP Address Host Name Host Alias(es) Figure 6-7
A Sample hosts File

555.12.12.12 smoke

98.765.43.21 odyssey

12.34.56.789 knight sales
6-38 Administrator’s Guide for Informix Extended Parallel Server

Alternatives for TCP/IP Connections
Wildcard Addressing for TCP/IP Connections

You can use wildcard addressing in the host name field when both of the
following conditions are met:

■ You are using TCP/IP connections.

■ The computer where the database server resides has multiple
network-interface cards (for example, three ethernet cards).

If the preceding conditions are met, you can use an asterisk (*) as a wildcard
in the host name field that the database server uses. When you enter a
wildcard in the host name field, the database server can accept connections
at any valid IP address on its host computer.

Each IP address is associated with a unique host name. When a computer has
multiple network-interface cards (NICs), as in Figure 6-8 on page 6-40, the
hosts file must have an entry for each interface card. For example, the hosts
file for the texas computer might include these entries.

You can use the wildcard (*) alone or as a prefix for a host name or IP address,
as shown in Figure 6-9 on page 6-41.

If the client application and database server share connectivity information
(the sqlhosts file), you can specify both the wildcard and a host name or IP
address in the host name field (for example, *texas1 or *123.45.67.81).
The client application ignores the wildcard and uses the host name (or IP
address) to make the connection, and the database server uses the wildcard
to accept a connection from any IP address.

The wildcard format allows the listen thread of the database server to wait
for a client connection using the same service port number on each of the
valid network-interface cards. However, waiting for connections at multiple
IP addresses might require slightly more CPU time than waiting for connec-
tions with a specific host name or IP address.

NIC Internet IP Address Host Name

Card 1 123.45.67.81 texas1

Card 2 123.45.67.82 texas2
Client/Server Communications 6-39

Alternatives for TCP/IP Connections
Figure 6-8 shows a database server on a computer (texas) that has two
network-interface cards. The two client sites use different network cards to
communicate with the database server.

The connectivity information for the texas_srvr database server can be any of
the entries in Figure 6-9.

Figure 6-8
Using Multiple Network-Interface Cards

iowa

texas

Network
programming
interfaces

kansas

Client

Client

texas_srvr
6-40 Administrator’s Guide for Informix Extended Parallel Server

Alternatives for TCP/IP Connections
Figure 6-9
Possible Connectivity Entries for the texas_srvr Database Server

Important: You can include only one of these entries.

If the connectivity information corresponds to any of the preceding lines, the
texas_srvr database server can accept client connections from either of the
network cards. The database server finds the wildcard in the host name field
and ignores the explicit host name.

Tip: For clarity and ease of maintenance, Informix recommends that you include a
host name when you use the wildcard in the host name field (that is, use *host
instead of simply *).

The connectivity information used by a client application must contain an
explicit host name or IP address. The client applications on iowa can use any
of the following host names: texas1, *texas1, 123.45.67.81, or
123.45.67.81. If there is an wildcard () in the host name field, the client
application ignores it.

The client application on kansas can use any of the following host names:
texas2, *texas2, 123.45.67.82, or *123.45.67.82.

database server
name

connection
type host name service name

texas_srvr ontlitcp *texas1 pd1_on

texas_srvr ontlitcp *123.45.67.81 pd1_on

texas_srvr ontlitcp *texas2 pd1_on

texas_srvr ontlitcp *123.45.67.82 pd1_on

texas_srvr ontlitcp * pd1_on
Client/Server Communications 6-41

ONCONFIG Parameters for Connectivity
Port Numbers for TCP/IP Connections

For the TCP/IP network protocol, you can use the actual TCP listen port
number in the service name field. The TCP port number is in the port# field
of the services file.

Using the port number for the sales database server from the services file in
Figure 6-5, an entry in sqlhosts could also be written as in the following
example.

Using the actual port number might save time when you make a connection
in some circumstances. However, as with the IP address in the host name
field, using the actual port number might make administration of the connec-
tivity information less convenient.

ONCONFIG Parameters for Connectivity
When you initialize the database server, the initialization procedure uses
parameter values from the ONCONFIG configuration file. The following
ONCONFIG parameters are related to connectivity:

■ DBSERVERNAME

■ DBSERVERALIASES

■ NETTYPE

■ COSERVER

The next sections explain these configuration parameters.

servername nettype hostname servicename

sales ontlitcp knight 1536
6-42 Administrator’s Guide for Informix Extended Parallel Server

COSERVER Configuration Parameter
COSERVER Configuration Parameter
The COSERVER parameter begins a coserver-specific section in the
ONCONFIG file and specifies the numeric identification of a coserver. Each
coserver requires a COSERVER section. When a client application connects to
a coserver, it must specify a coserver name, which is formed by adding a dot
and the coserver number to the dbservername, such as river.1, river.2,
and so on. For more information, refer to the Administrator’s Reference.

DBSERVERNAME Configuration Parameter
The DBSERVERNAME configuration parameter specifies a name, called the
dbservername, for the database server. For example, to assign the value
nyc_research to dbservername, use the following line in the ONCONFIG
configuration file:

DBSERVERNAME nyc_research

When a client application connects to a database server, it must specify a
dbservername. The sqlhosts information that is associated with the specified
dbservername describes the type of connection that should be made.

The database server can use the coserver name, which is formed by concate-
nating the dbservername with the coserver number, as the key to the sqlhosts
file. In this case, the sqlhosts information identifies the location of the
connection coserver and the communication method that the client must use.

Client applications specify the name of the database server in one of the
following places:

■ In the INFORMIXSERVER environment variable

■ In SQL statements such as CONNECT, DATABASE, CREATE TABLE,
and ALTER TABLE, which let you specify a database environment

■ In the DBPATH environment variable
Client/Server Communications 6-43

DBSERVERALIASES Configuration Parameter
DBSERVERALIASES Configuration Parameter
The DBSERVERALIASES parameter lets you assign additional dbservernames
to the same database server. Figure 6-10 shows entries in an ONCONFIG
configuration file that assign three dbservernames to the same database
server instance.

The sqlhosts entries associated with the dbservernames from Figure 6-10
could include those shown in Figure 6-11. Because each dbservername has a
corresponding entry in the sqlhosts file, you can associate multiple
connection types with one database server.

Using the sqlhosts file shown in Figure 6-11, a client application uses the
following statement to connect to the database server using shared-memory
communication:

CONNECT TO '@shm_srvr'

A client application can initiate a TCP/IP sockets connection to the same
database server using the following statement:

CONNECT TO '@sockets_srvr'

Figure 6-10
Example of DBSERVERNAME and DBSERVERALIASES Parameters

DBSERVERNAME sockets_srvr
DBSERVERALIASES ipx_srvr,shm_srvr

Figure 6-11
Three Entries in the sqlhosts File for One Database Server

shm_srvr onipcshm my_host my_shm
sockets_srvr onsoctcp my_host port1
ipx_srvr ontlispx nw_file_server ipx_srvr
6-44 Administrator’s Guide for Informix Extended Parallel Server

NETTYPE Configuration Parameter
NETTYPE Configuration Parameter
The NETTYPE configuration parameter lets you adjust the number and type
of virtual processors the database server uses for communication. Each type
of network connection (ipcshm, ipcstr, ipcnmp, soctcp, tlitcp, and tlispx) can
have a separate NETTYPE entry in the configuration file.

Although the NETTYPE parameter is not a required parameter, Informix
recommends that you set NETTYPE if you use two or more connection types.
After the database server has been running for some time, you can use the
NETTYPE configuration parameter to tune the database server for better
performance.

For more information about NETTYPE, refer to “Network Virtual Processors”
on page 11-26. For additional information, regarding the impact of the
NETTYPE configuration parameter, refer to the Administrator’s Reference.

Environment Variables for Network Connections
The INFORMIXCONTIME (connect time) and INFORMIXCONRETRY
(connect retry) environment variables are client environment variables that
affect the behavior of the client when it is trying to connect to a database
server. Use these environment variables to minimize connection errors
caused by busy network traffic.

If the client application explicitly attaches to shared-memory segments, you
might need to set INFORMIXSHMBASE (shared-memory base). For more
information, refer to “How a Client Attaches to the Communications
Portion” on page 13-12.

The INFORMIXSERVER environment variable allows you to specify a default
dbservername to which your clients will connect.

For more information on environment variables, see the Informix Guide to
SQL: Reference.
Client/Server Communications 6-45

Examples of Client/Server Configurations
Examples of Client/Server Configurations
The next several sections show the correct entries in the sqlhosts filefor
several client/server connections. The following examples are included:

■ Using a shared-memory connection

■ Using a local-loopback connection

■ Using a network connection

■ Using multiple connection types

■ Accessing multiple database servers

Important: In the following examples, you can assume that the network-
configuration files hosts and services have been correctly prepared even if they are
not explicitly mentioned.

Using a Shared-Memory Connection
Figure 6-12 shows a shared-memory connection on the computer named
river.

Figure 6-12
A Shared-Memory Connection

Shared
memory

Client

river_shm

Database server

river
6-46 Administrator’s Guide for Informix Extended Parallel Server

Using a Local-Loopback Connection
The ONCONFIG configuration file for this installation includes the following
line:

DBSERVERNAME river_shm

A correct entry for the sqlhosts file is as follows.

The client application connects to this database server using the following
statement:

CONNECT TO '@river_shm'

Because this is a shared-memory connection, no entries in network configu-
ration files are required. For a shared-memory connection, you can choose
arbitrary values for the hostname and servicename fields of the sqlhosts file .

For more information about shared-memory connections, refer to “How a
Client Attaches to the Communications Portion” on page 13-12.

Using a Local-Loopback Connection
Figure 6-13 shows a local-loopback connection. The name of the host
computer is river.

dbservername nettype hostname servicename

river_shm onipcshm river rivershm

Figure 6-13
Local-Loopback

Connection

Client Database server

SOC - TCP

TCP/IP network
programming
interface

river_soc

river
Client/Server Communications 6-47

Using a Local-Loopback Connection
The network connection in Figure 6-13 uses sockets and TCP/IP, so the correct
entry for the sqlhosts file is as follows.

If the network connection uses TLI instead of sockets, only the nettype entry
in this example changes. In that case, the nettype entry is ontlitcp instead
of onsoctcp.

The ONCONFIG file includes the following line:

DBSERVERNAME river_soc

This example assumes that an entry for river is in the hosts file and an entry
for riverol is in the services file.

dbservername nettype hostname servicename

river_soc onsoctcp river riverol
6-48 Administrator’s Guide for Informix Extended Parallel Server

Using a Network Connection
Using a Network Connection
Figure 6-14 shows a configuration in which the client application resides on
host river and the database server resides on host valley.

An entry for the valley_ds database server is in the sqlhosts files on both
computers. Each entry in the sqlhosts file on the computer where the
database server resides has a corresponding entry on the computer where the
client application resides.

Both computers are on the same TCP/IP network, but the host river uses
sockets for its network programming interface, while the host valley uses TLI
for its network programming interface. The nettype field must reflect the
type of network programming interface used by the computer on which
sqlhosts resides. In this example, the nettype field for the valley_ds database
server on host river is onsoctcp, and the nettype field for the valley_ds
database server on host valley is ontlitcp.

Figure 6-14
A Network Configuration

river

SOC - TCP

TLI - TCP

valley

Client

valley_ds

Database server

sqlhosts entry on river

valley_ds

dbservername

valleyonsoctcp valleyol

nettype hostname servicename options

sqlhosts entry on valley

valley_ds

dbservername

valleyontlitcp valleyol

nettype hostname servicename options
Client/Server Communications 6-49

Using Multiple Connection Types
The sqlhosts File Entry for IPX/SPX

IPX/SPX software frequently provides TLI. If the configuration in Figure 6-14
on page 6-48 uses IPX/SPX instead of TCP/IP, the entry in the sqlhosts file on
both computers is as follows.

In this case, the hostname field contains the name of the NetWare file server.
The servicename field contains a name that is unique on the IPX/SPX
network and is the same as the dbservername.

Using Multiple Connection Types
A single instance of the database server can provide more than one type of
connection. Figure 6-15 on page 6-50 illustrates such a configuration. The
database server is on host river. Client A connects to the database server with
a shared-memory connection because shared memory is fast. Client B must
use a network connection because the client and server are on different
computers.

When you want the database server to accept more than one type of
connection, you must take the following actions:

■ Put DBSERVERNAME and DBSERVERALIASES entries in the
ONCONFIG configuration file.

■ Put an entry in the sqlhosts file for each database server/connection
type pair.

For the configuration in Figure 6-15, the database server has two dbserver-
names: river_net and river_shm. The ONCONFIG configuration file includes
the following entries:

DBSERVERNAME river_net
DBSERVERALIASES river_shm

dbservername nettype hostname servicename

valley_us ontlispx valley_nw valley_us
6-50 Administrator’s Guide for Informix Extended Parallel Server

Using Multiple Connection Types
The dbservername used by a client application determines the type of
connection that is used. Client A uses the following statement to connect to
the fully parallel-processing database server:

CONNECT TO '@river_shm'

In the sqlhosts file, the nettype associated with the name river_shm specifies
a shared-memory connection, so this connection is a shared-memory
connection.

Client B uses the following statement to connect to the database server:

CONNECT TO '@river_net'

In the sqlhosts file, the nettype value associated with river_net specifies a
network (TCP/IP) connection, so client B uses a network connection.

Figure 6-15
A UNIX Configuration That Uses Multiple Connection Types

sqlhosts entries on river

river_shm
river_net

dbservername

river
river

onipcshm
onsoctcp

riverA
riveron

nettype hostname servicename

river

SOC - TCP
TLI - TCP

Shared
memory

Client A

Database server A

valley

options

sqlhosts entries on valley

river_net

dbservername

riverontlitcp riveron

nettype hostname servicename options

Client B
Client/Server Communications 6-51

Accessing Multiple Database Servers
Accessing Multiple Database Servers
Figure 6-16 shows a configuration with two database servers on host river.
When more than one database server is active on one computer, it is known
as multiple residency. (For more information about multiple residency, see
Chapter 7, “Multiple Residency.”)

For the configuration in Figure 6-16, you must prepare two ONCONFIG
configuration files, one for database server A and the other for database
server B. The sqlhosts file includes the connectivity information for both
database servers.

The ONCONFIG configuration file for database server A includes the
following line:

DBSERVERNAME riverA_shm

The ONCONFIG configuration file for database server B includes the
following line:

DBSERVERNAME riverB_soc

Figure 6-16
Multiple Database Servers

river

sqlhosts entries on river

riverA_shm
riverB_soc

dbservername

river
river

onipcshm
onsoctcp

riverA
riveron

nettype hostname servicename

Shared memory

options

Client

riverA_shm

Database server A

riverB_soc

Database server B

SOC - TCP
6-52 Administrator’s Guide for Informix Extended Parallel Server

7
Chapter
Multiple Residency
In This Chapter . 7-3

Benefits of Multiple Residency 7-3

How Multiple Residency Works 7-4
The Role of the ONCONFIG Environment Variable 7-5
The Role of the SERVERNUM Configuration Parameter. 7-5

7-2 Adm
inistrator’s Guide for Informix Extended Parallel Server

In This Chapter
You can use more than one database server in the following two ways:

■ Run multiple instances of the database server on a single host
computer

■ Access several database servers over a network

When multiple database servers and their associated shared memory and
disk structures coexist on a single computer, it is called multiple residency. This
chapter covers the concept of multiple residency for the database server.

Benefits of Multiple Residency
Creating independent database server environments on the same computer
allows you to perform the following actions:

■ Separate production and development environments

■ Isolate sensitive databases

■ Test distributed data transactions on a single computer

When you use multiple residency, each database server has its own configu-
ration file. Thus, you can create a configuration file for each database server
that meets its special requirements for backups, shared-memory use, and
tuning priorities.
Multiple Residency 7-3

How Multiple Residency Works
You can separate production and development environments to protect the
production system from the unpredictable nature of the development
environment. You might also find it useful to isolate applications or
databases that are critically important, either to increase security or to accom-
modate more frequent backups than most databases require.

If you are developing an application for use on a network, you can use local
loopback to perform your distributed-data simulation and testing on a single
computer. (See “Using a Local-Loopback Connection” on page 6-47.) Later,
when a network is ready, you can use the application without changes to
application source code.

However, running multiple database servers on the same computer is not as
efficient as running one database server. You need to balance the advantages
of separate database servers against the extra performance cost.

How Multiple Residency Works
Multiple residency is possible because the operating system can maintain
separate areas in shared memory and on disk for each instance of the
database server. Each instance of the database server passes a value to the
operating system. This value, which is a function of the SERVERNUM config-
uration parameter, specifies the shared-memory address to which the
database server process should attach. You must also specify a unique
database server name and unique storage locations for each instance of the
database server.
7-4 Administrator’s Guide for Informix Extended Parallel Server

The Role of the ONCONFIG Environment Variable
The Role of the ONCONFIG Environment Variable
The parameters in an ONCONFIG configuration file describe each instance of
the database server. The ONCONFIG environment variable specifies the
name of the current ONCONFIG configuration file. The following configu-
ration parameters should have unique values for each database server:

■ DBSERVERALIASES (if used)

■ DBSERVERNAME

■ MIRRORPATH

■ MSGPATH

■ ROOTPATH

■ SERVERNUM

For instruction on setting these parameters, see Chapter 8, “Using Multiple
Residency.”

The Role of the SERVERNUM Configuration Parameter
To maintain separation among the instances of database servers, you
maintain multiple configuration files, each with a unique SERVERNUM value.
When you initialize the database server, it reads the ONCONFIG environment
variable for the name of its configuration file. Next, the database server reads
its configuration file to obtain the value of its SERVERNUM configuration
parameter. The database server then uses the SERVERNUM value to calculate
the required shared-memory address.
Multiple Residency 7-5

The Role of the SERVERNUM Configuration Parameter
For example, the ONCONFIG files for two database servers on a UNIX
platform might include these parameters.

Figure 7-1 uses the configuration files shown in the preceding table to
provide an example of multiple residency. Each database server has its own
name, its own section of shared memory, and its own storage area on disk.

ONCONFIG file: onconfig.one ONCONFIG file: onconfig.two

...

DBSERVERNAME dbsrvr_one

SERVERNUM 1

ROOTPATH /dev/area1

...

...

DBSERVERNAME dbsrvr_two

SERVERNUM 2

ROOTPATH /dev/area2

...

Figure 7-1
Separate Memory and Storage in Multiple Residency

Shared-memory
area for Database
server B

Memory address
calculated with
SERVERNUM (1)

Memory address
calculated with
SERVERNUM (2)

Shared-memory
area for Database
server A

Disk drive

/dev/area2/dev/area1

Shared memory

Database server B

Database server A
7-6 Administrator’s Guide for Informix Extended Parallel Server

8
Chapter
Using Multiple Residency
In This Chapter . 8-3

Planning for Multiple Residency 8-3

Creating a New Database Server 8-5
Prepare a Configuration File 8-5
Set the ONCONFIG Environment Variable 8-6
Edit the New Configuration File 8-6
Add Connection Information 8-7
Update the sqlhosts File 8-7
Initialize Disk Space 8-8
Prepare Dbspace and Logical-Log Backup Environment. 8-8
Update the Operating-System Boot File 8-9
Check INFORMIXSERVER Environment Variables for Users . . . 8-9

8-2 Adm
inistrator’s Guide for Informix Extended Parallel Server

In This Chapter
This chapter describes how to use multiple database servers on the same
computer. It includes the following topics:

■ Planning for multiple residency

■ Creating a database server instance

Before you set up multiple residency, you should install one database server
as described in Chapter 3, “Installing and Configuring the Database Server.”

Planning for Multiple Residency
When you plan for multiple residency on a computer, consider the following
factors:
Using Multiple Residency 8-3

Planning for Multiple Residency
■ Storage space

Each database server must have its own unique storage space. You
cannot use the same disk space for more than one instance of a
database server. When you prepare an additional database server,
you need to repeat some of the planning that you did to install the
first database server. For example, you need to consider these
questions:

❑ Will you use buffered or unbuffered files? Will the unbuffered
files share a disk partition with another application? (For more
information on buffered and unbuffered files, see “Direct Disk
Access” on page 1-12.)

❑ Will you use mirroring? Where will the mirrors reside?

❑ Where will the message log reside?

❑ Can you dedicate a tape drive to this database server for its
logical logs?

❑ What kind of backups will you perform?

■ Memory

Each database server has its own memory. Can your computer
handle the memory usage that an additional database server
requires?

The following sections present the steps to create an additional database
server, or multiple residency, on your computer.

Important: Do not try to install another copy of the database server binary files. All
instances of the same version of the database server on one computer share the same
executable files.
8-4 Administrator’s Guide for Informix Extended Parallel Server

Creating a New Database Server
Creating a New Database Server
Perform the following steps manually to create an additional instance of the
database server.

To create multiple residency of a database server

1. Prepare a new ONCONFIG configuration file.

2. Set the ONCONFIG environment variable to the new filename.

3. Edit the new ONCONFIG configuration file.

4. If needed, add a servicename to the services file or connection
information to the NetWare server.

5. Update the sqlhosts file to include the dbservername(s) of the new
database server.

6. Initialize disk space for the new database server.

To ensure proper backups, startup, and client connections

1. Prepare dbspace and backup schedules.

2. Modify the operating-system boot file.

3. Check the INFORMIXSERVER environment variables for users.

The following sections describe each of these steps.

Prepare a Configuration File
Each instance of the database server must have its own ONCONFIG configu-
ration file. Make a copy of an ONCONFIG file that has the basic characteristics
that you want for your new database server. Give the new file a name that
you can easily associate with its function. For example, you might select the
filename onconfig.acct to indicate the configuration file for a production
system that contains accounting information.
Using Multiple Residency 8-5

Set the ONCONFIG Environment Variable
Set the ONCONFIG Environment Variable
Set the ONCONFIG environment variable to the filename of the new
ONCONFIG file. Specify only the filename, not the complete path.

Edit the New Configuration File
To edit the new ONCONFIG file, use a text editor.

In the new configuration file, you must change the following configuration
parameters:

■ SERVERNUM

The SERVERNUM parameter specifies an integer (between 0 and 255)
associated with a database server configuration. Each instance of a
database server on the same host computer must have a unique
SERVERNUM value. For more information, refer to “The Role of the
SERVERNUM Configuration Parameter” on page 7-5.

■ DBSERVERNAME

The DBSERVERNAME parameter specifies the dbservername of a
database server. Informix suggests that you choose a name that
provides information about the database server, such as ondev37 or
hostnamedev37. For more information, refer to “DBSERVERNAME
Configuration Parameter” on page 6-43.

■ MSGPATH

The MSGPATH parameter specifies the pathname of the message file
for a database server. You should specify a unique pathname for the
message file because database server messages do not include the
dbservername. If multiple database servers use the same MSGPATH,
you cannot identify the messages from separate database server
instances. For example, if you name the database server ondev37,
you might specify /usr/informix/dev37.log as the message log for
this instance of the database server.
8-6 Administrator’s Guide for Informix Extended Parallel Server

Add Connection Information
■ ROOTPATH and ROOTOFFSET

The ROOTPATH and ROOTOFFSET parameters together specify the
location of the root dbspace for a database server. The root dbspace
location must be unique for every database server configuration.

If you put several root dbspaces in the same partition, you can use
the same value for ROOTPATH. However, in that case, you must set
ROOTOFFSET so that the combined values of ROOTSIZE and
ROOTOFFSET define a unique portion of the partition. For more
information about ROOTPATH and ROOTOFFSET, refer to the chapter
on configuration parameters in the Administrator’s Reference.

Tip: You do not need to change ROOTNAME. Even if both database servers have the
name rootdbs for their root dbspace, the dbspaces are unique because ROOTPATH
specifies a unique location.

You might also need to set the MIRRORPATH and MIRROROFFSET parameters.
If the root dbspace is mirrored, the location of the root dbspace mirror must
be unique. For information about setting MIRRORPATH, refer to “Steps
Required for Mirroring Data” on page 26-3.

Add Connection Information
If you use the TCP/IP communication protocol, you might need to add an
entry to the services file for the new database server instance. If you use the
IPX/SPX communication protocol, you might need to modify the connection
information for the NetWare server.

Update the sqlhosts File
The sqlhosts file must have an entry for each database server. If Informix
products on other computers access this instance of the database server, the
administrators on those computers must update their sqlhosts files. Chapter
6, “Client/Server Communications,” discusses the preparation of the
sqlhosts file.
Using Multiple Residency 8-7

Initialize Disk Space
If you plan to use TCP/IP network connections with an instance of a database
server, the system network administrator must update the hosts and
services files. If you use an IPX/SPX network, the NetWare administrator
must update the NetWare file-server information. For information about
these files, refer to “Network-Configuration Files” on page 6-13 and
“IPX/SPX Connectivity Files” on page 6-16.

Initialize Disk Space
Before you initialize disk space, check the setting of your ONCONFIG
environment variable. If you have not set it correctly, you might overwrite
data from another database server. When you initialize disk space for a
database server, the database server initializes the disk space specified in the
current ONCONFIG configuration file.

Warning: As you create new dbspaces for a database server, be sure to assign each
chunk to a unique location on the device. The database server does not allow you to
assign more than one chunk to the same location within a single database server
environment, but it remains your responsibility as administrator to make sure
chunks that belong to different database servers do not overwrite each other.

Prepare Dbspace and Logical-Log Backup Environment
This section describes the effects of multiple residency on backups.

When you use multiple residency, you must maintain separate dbspace and
logical-log backups for each database server instance. When you perform
dbspace and logical-log backups with multiple residency, you need to be
especially aware of device use.

If you can dedicate a tape drive to each database server, you can use the
continuous logging option to back up your logical-log files. Otherwise, you
must plan your dbspace and logical-log backup schedules carefully so that
use of a device for one database server instance does not cause the other
database server instance to wait. You must reset the ONCONFIG parameter
each time that you switch your backup operations from one database server
instance to the other.
8-8 Administrator’s Guide for Informix Extended Parallel Server

Update the Operating-System Boot File
Update the Operating-System Boot File
You can ask your system administrator to modify the system startup script
(“Preparing the Startup and Shutdown Scripts” on page 3-18) so that each of
your database server instances starts whenever the computer is rebooted (for
example, after a power failure).

The startup script for a single database server instance should set the
INFORMIXDIR, PATH, ONCONFIG, and INFORMIXSERVER environment
variables and then execute oninit. To start a second instance of a database
server, change the ONCONFIG and INFORMIXSERVER environment
variables to point to the configuration file for the second database server and
then execute oninit again. Do not change INFORMIXDIR or PATH.

Similarly, you can ask the system administrator to modify the shutdown
script so that all instances of a database server shut down in a graceful
manner.

Check INFORMIXSERVER Environment Variables for Users
If a new instance of a database should be the default database server, users
need to reset the INFORMIXSERVER environment variable. Users might also
need to update their .informix files.

If you use the informix.rc file to set environment variables for the users, you
might need to update that file. The Informix Guide to SQL: Reference describes
the informix.rc and .informix files.
Using Multiple Residency 8-9

 II
I
Modes and Initialization
Se
ct

io
n

Chapter 9 Managing Database Server Operating Modes

Chapter 10 Initializing the Database Server

9
Chapter
Managing Database Server
Operating Modes
In This Chapter . 9-3

Database Server Operating Modes 9-3

Initializing Disk Space. 9-5

Changing Database Server Operating Modes 9-5
Users Permitted to Change Modes 9-5
From Off-Line to Quiescent 9-6
From Off-Line to Microkernel 9-6
From Off-Line to On-Line 9-6
From Quiescent to On-Line. 9-7
Gracefully from On-Line to Quiescent 9-7
Immediately from On-Line to Quiescent 9-8
From Any Mode Immediately to Off-Line 9-8

9-2 Adm
inistrator’s Guide for Informix Extended Parallel Server

In This Chapter
This chapter introduces you to the database server operating modes and
provides instructions on how to change the operating modes of the database
server.

Database Server Operating Modes
You can determine the current database server mode by executing the onstat
utility from the command line. The onstat header displays the mode.

The database server has three principal modes of operation, as Figure 9-1 on
page 9-4 illustrates.
Managing Database Server Operating Modes 9-3

Database Server Operating Modes
Figure 9-1
Operating Modes

In addition, the database server can also be in one of the following modes:

■ Read-only mode is used by the secondary database server in a high-
availability data-replication pair. An application can query a
database server that is in read-only mode, but the application cannot
write to a read-only database.

■ Recovery mode is transitory. It occurs when the database server
performs fast recovery or recovers from a system archive or system
restore. Recovery occurs during the change from Off-Line to
Quiescent mode.

■ Shutdown mode is transitory. It occurs when the database server is
moving from on-line to quiescent mode or from on-line (or
quiescent) to off-line mode. Current users access the system, but no
new users are allowed access.

Once shutdown mode is initiated, it cannot be cancelled.

Operating Mode Description

Off-line mode When the database server is not running. No shared memory
is allocated.

Quiescent, or
administration,
mode

When the database server processes are running and
shared-memory resources are allocated, but the system does
not allow database user access.

Only the administrator (user informix) can access the
database server.

On-line mode Users can connect with the database server and perform all
database activities. This is the normal operating mode of the
database server.

User informix or user root can use the command-line utilities
to change many database server ONCONFIG parameter values
while the database server is on-line.

Microkernel mode Users can perform a cold restore with the database server in
microkernel mode. For more information about cold restore,
refer to the Backup and Restore Guide.
9-4 Administrator’s Guide for Informix Extended Parallel Server

Initializing Disk Space
Initializing Disk Space
If you are starting a new database server for the first time, or you want to
remove all dbspaces and their associated data, use the following command
to initialize the disk space and to bring the database server into on-line mode:

xctl -C oninit -iy

Warning: When you execute this command, all existing data in the database server
disk space is destroyed. Use the -i flag only when you are starting a new instance of
the database server.

Changing Database Server Operating Modes
This section describes how to change from one database server operating
mode to another. Each section includes information on how to change
operating modes with the oninit and onmode utilities.

In Extended Parallel Server, you can change from one database server
operating mode to another while you are logged in on any node that
supports a coserver. Use the xctl utility to execute the command on any
coserver. For more information about xctl, refer to the utilities chapter in the
Administrator’s Reference.

Tip: After you change the mode of your database server, execute the xctl onstat
command to verify the current server status.

Users Permitted to Change Modes
Only users who are logged in as root or informix can change the operating
mode of the database server.
Managing Database Server Operating Modes 9-5

From Off-Line to Quiescent
From Off-Line to Quiescent
When the database server changes from off-line mode to quiescent mode, the
database server initializes shared memory.

When the database server is in quiescent mode, no sessions can gain access
to the database server. In quiescent mode, any user can see status
information.

To change a database server from off-line to quiescent, run the following
command:

xctl -C oninit -s

From Off-Line to Microkernel
When you take the database server from off-line to microkernel mode, the
database server is available to perform a cold restore of all stored data from
a level-0 backup. To take the database server from off-line mode to micro-
kernel mode for a cold restore, execute the following command:

xctl -C oninit -m

To verify that the database server is running, execute xctl onstat from the
command line. The header on the onstat output displays the current
operating mode.

Warning: Perform a cold restore with ON-Bar only as a last resort to restore
corrupted critical media. For information about performing cold restores from
backup, refer to the “Backup and Restore Guide.”

From Off-Line to On-Line
When you take the database server from off-line mode to on-line mode, the
database server initializes shared memory. When the database server is in on-
line mode, it is available to all database server sessions.

Use one of the following methods to start the database server:

■ To initialize all coservers defined in your ONCONFIG file, execute the
following command:
xctl -C oninit
9-6 Administrator’s Guide for Informix Extended Parallel Server

From Quiescent to On-Line
■ To initialize only a subset of coservers, execute the following
command:
xctl -X= -c nn -b oninit -X=

The nn variable is the coserver number.

From Quiescent to On-Line
When you take the database server from quiescent mode to on-line mode, all
sessions gain access.

If you have already taken the database server from on-line mode to quiescent
mode and you are now returning the database server to on-line mode, any
users who were interrupted in earlier processing must reselect their database
and redeclare their cursors.

To take the database server from quiescent to on-line, execute the following
command:

xctl onmode -m

Gracefully from On-Line to Quiescent
Take the database server gracefully from on-line mode to quiescent mode to
restrict access to the database server without interrupting current processing.

After you perform this task, the database server sets a flag that prevents new
sessions from gaining access to the database server. Current sessions are
allowed to finish processing.

Once you initiate the mode change, it cannot be cancelled. During the mode
change from on-line to quiescent, the database server is considered to be in
Shutdown mode.

To bring the database server from on-line to quiescent gracefully, execute one
of the following commands:

xctl onmode -s

xctl onmode -sy
Managing Database Server Operating Modes 9-7

Immediately from On-Line to Quiescent
Immediately from On-Line to Quiescent
Take the database server immediately from on-line mode to quiescent mode
to restrict access to the database server as soon as possible. Work in progress
can be lost.

The database server users receive either error message -459 indicating that
the database server was shut down or error message -457 indicating that their
session was unexpectedly terminated.

The database server performs proper cleanup on behalf of all sessions that
the database server terminated. Active transactions are rolled back.

To move the database server to quiescent immediately, execute one of the
following commands:

xctl onmode -u

xctl onmode -uy

From Any Mode Immediately to Off-Line
You can take the database server immediately from any mode to off-line
mode. After you take the database server to off-line mode, reinitialize shared
memory by taking the database server to quiescent or on-line mode. When
you reinitialize shared memory, the database server performs a fast recovery
to ensure that the data is logically consistent.

The database server users receive either error message -459 indicating that
the database server was shut down or error message -457 indicating that their
session was unexpectedly terminated.

After you take the database server to off-line mode, reinitialize shared
memory by taking the database server to quiescent or on-line mode. When
you reinitialize shared memory, the database server performs a fast recovery
to ensure that the data is logically consistent.

The database server performs proper cleanup on behalf of all sessions that
were terminated by the database server. Active transactions are rolled back.
9-8 Administrator’s Guide for Informix Extended Parallel Server

From Any Mode Immediately to Off-Line
To perform an immediate shutdown, perform one of the following
commands:

■ To shut down all coservers, execute:
xctl onmode -k

or
xctl onmode -ky

■ To shut down only one coserver, execute:
xctl -X= -c nn onmode -ky -X=

The -y option eliminates the automatic prompt that confirms an immediate
shutdown.
Managing Database Server Operating Modes 9-9

10
Chapter
Initializing the Database Server
In This Chapter . 10-3

Types of Initialization 10-3

Initializing the Database Server 10-4

Initialization Steps 10-4
Process Configuration File 10-5
Create Shared-Memory Portions 10-6
Initialize Shared-Memory Structures 10-7
Initialize Disk Space 10-7
Start All Required Virtual Processors 10-7
Make Necessary Conversions 10-8
Initiate Fast Recovery. 10-8
Initiate a Checkpoint 10-8
Document Configuration Changes 10-8
Create the oncfg_servername.servernum File 10-9
Drop Temporary Tblspaces. 10-9
Set Forced Residency If Specified 10-9
Return Control to User 10-10
Prepare SMI Tables 10-10

10-2 Ad
ministrator’s Guide for Informix Extended Parallel Server

In This Chapter
Initialization of the database server refers to two related activities: disk-space
initialization and shared-memory initialization. This chapter defines the two
types of initialization and describes the activities that take place during
initialization.

Types of Initialization
Shared-memory initialization establishes the contents of database server shared
memory as follows: internal tables, buffers, and the shared-memory
communication area. Shared memory is initialized every time the database
server starts up.

Disk-space initialization uses the values stored in the configuration file to
create the initial chunk of the root dbspace on disk. When you initialize disk
space, the database server automatically initializes shared memory as part of
the process. Disk space is initialized the first time the database server starts
up. It is only initialized thereafter during a cold recovery or at the request of
the database server administrator.

Warning: When you initialize disk space, you overwrite whatever is on that disk
space. If you reinitialize disk space for an existing database server, all the data in the
earlier database server becomes inaccessible and, in effect, is destroyed.

Two key differences distinguish shared-memory initialization from
disk-space initialization:

■ Shared-memory initialization has no effect on disk-space allocation
or layout. No data is destroyed.

■ Shared-memory initialization performs fast recovery.
Initializing the Database Server 10-3

Initializing the Database Server
Initializing the Database Server
You must be logged in as informix or root to initialize the database server.
The database server must be in off-line mode when you begin initialization.

You can use the oninit utility in conjunction with xctl to initialize the
database server on multiple coservers. The options that you include in the
oninit command determine the specific initialization procedure. For more
information about these commands, refer to the utilities chapter in the
Administrator’s Reference.

Initialization Steps
Disk-space initialization always includes the initialization of shared memory.
However, some activities that normally take place during shared-memory
initialization, such as recording configuration changes, are not required
during disk initialization because those activities are not relevant with a
newly initialized disk.

Figure 10-1 shows the main tasks completed during the two types of initial-
ization. The following sections discuss each step.

Figure 10-1
Initialization Steps

Shared-Memory Initialization Disk Initialization

Process configuration file. Process configuration file.

Create shared-memory segments. Create shared-memory segments.

Initialize shared-memory structures. Initialize shared-memory structures.

Initialize disk space.

Start all required virtual processors. Start all required virtual processors.

Make necessary conversions.

Initiate fast recovery.

 (1 of 2)
10-4 Administrator’s Guide for Informix Extended Parallel Server

Process Configuration File
Process Configuration File
The database server uses configuration parameters to allocate shared-
memory segments during initialization. If you change the size of shared
memory by modifying a configuration-file parameter, you must take the
database server to off-line mode and then reinitialize shared memory.

During initialization, the database server looks for configuration values in
the following files, in this order:

1. If the ONCONFIG environment variable is set, the database server
reads values from the $INFORMIXDIR/etc/$ONCONFIG file.

If the ONCONFIG environment variable is set, but the database
server cannot access the specified file, it returns an error message.

2. If the ONCONFIG environment variable is not set, the database
server reads the configuration values from the
$INFORMIXDIR/etc/onconfig file.

3. If you omit a configuration parameter in your ONCONFIG file, the
database server reads the configuration values from the
$INFORMIXDIR/etc/onconfig.std file.

Initiate a checkpoint. Initiate a checkpoint.

Document configuration changes.

Update oncfg_servername.servernum
file.

Update oncfg_servername.servernum
file.

Change to quiescent mode. Change to quiescent mode.

Drop temporary tblspaces (optional).

Set forced residency, if requested. Set forced residency, if specified.

Change to on-line mode and return
control to user.

Change to on-line mode and return
control to user.

If the SMI tables are not current, update
the tables.

Create SMI tables.

Shared-Memory Initialization Disk Initialization

 (2 of 2)
Initializing the Database Server 10-5

Create Shared-Memory Portions
Informix recommends that you always set the ONCONFIG environment
variable before you initialize the database server. The default configuration
files are intended as templates and not as functional configurations. For more
information about the configuration file, refer to “Preparing the ONCONFIG
Configuration File” on page 3-14.

The initialization process compares the values in the current configuration
file with the previous values, if any, that are stored in the root dbspace
reserved page, PAGE_CONFIG. For more information about PAGE_CONFIG,
refer to the chapter on configuration parameters in the Administrator’s
Reference. When differences exist, the database server uses the values from
the current ONCONFIG configuration file for initialization.

Create Shared-Memory Portions
The database server uses the configuration values to calculate the required
size of the database server resident shared memory. In addition, the database
server computes additional configuration requirements from internal values.
Space requirements for overhead are calculated and stored.

To create shared memory, the database server acquires the shared-memory
space from the operating system for three different types of memory:

■ Resident portion, used for data buffers, buffer tables, and so on

■ Virtual portion, used for most internal and user-session memory
requirements

■ IPC communication portion, used for IPC communication

The database server allocates this portion of shared memory only if
you configure an IPC shared-memory connection.

Next, the database server attaches shared-memory segments to its virtual
address space and initializes shared-memory structures. For more infor-
mation about shared-memory structures, refer to “Virtual Portion of Shared
Memory” on page 13-25.

After initialization is complete and the database server is running, it can
create additional shared-memory segments as needed. The database server
creates segments in increments of the page size.
10-6 Administrator’s Guide for Informix Extended Parallel Server

Initialize Shared-Memory Structures
Initialize Shared-Memory Structures
After the database server attaches to shared memory, it clears the shared-
memory space of uninitialized data. Next the database server lays out the
shared-memory header information and initializes data in the shared-
memory structures. For example, the database server lays out the space
needed for the logical-log buffer, initializes the structures, and links together
the three individual buffers that form the logical-log buffer. For more infor-
mation about these structures, refer to the onstat utility in the Administrator’s
Reference.

After the database server remaps the shared-memory space, it registers the
new starting addresses and sizes of each structure in the new shared-memory
header.

During shared-memory initialization, disk structures and disk layout are not
affected. The database server reads essential address information, such as the
locations of the logical and physical logs, from disk and uses this information
to update pointers in shared memory.

Initialize Disk Space
This procedure is performed only during disk-space initialization. After
shared-memory structures are initialized, the database server begins initial-
izing the disk. The database server initializes all the reserved pages that it
maintains in the root dbspace on disk and writes PAGE_PZERO control infor-
mation to the disk. For more information about PAGE_PZERO, refer to the
information on reserved pages in the disk structures and storage chapter of
the Administrator’s Reference.

Start All Required Virtual Processors
The database server starts all the virtual processors that it needs. The param-
eters in the ONCONFIG file influence what processors are started. For
example, the NETTYPE parameter can influence the number and type of
processors started for making connections. For more information about
virtual processors, refer to “Virtual Processors” on page 11-3.
Initializing the Database Server 10-7

Make Necessary Conversions
Make Necessary Conversions
The database server checks its internal files. If the files are from an earlier
version, it updates these files to the current format. For information about
database conversion, refer to the Informix Migration Guide.

Initiate Fast Recovery
The database server checks if fast recovery is needed and, if so, initiates it. For
more information about fast recovery, refer to “Fast Recovery” on page 24-13.

Fast recovery is not performed during disk-space initialization because there
is not yet anything to recover.

Initiate a Checkpoint
After fast recovery executes, the database server initiates a checkpoint. As
part of the checkpoint procedure, the database server writes a checkpoint-
complete message in the message log. For more information about check-
points, refer to “Checkpoints” on page 24-4.

The database server now moves to quiescent mode or on-line mode,
depending on how you started the initialization process.

Document Configuration Changes
The database server compares the current values stored in the configuration
file with the values previously stored in the root dbspace reserved page
PAGE_CONFIG. When differences exist, the database server notes both values
(old and new) in a message to the message log.

This task is not performed during disk-space initialization.
10-8 Administrator’s Guide for Informix Extended Parallel Server

Create the oncfg_servername.servernum File
Create the oncfg_servername.servernum File
The database server creates the oncfg_servername.servernum file and
updates it every time that you add or delete a dbspace, logical-log file, or
chunk. You do not need to manipulate this file in any way, but you can see it
listed in your $INFORMIXDIR/etc directory. The database server uses this file
during a full-system restore. For more information about the
oncfg_servername.servernum file, refer to the Administrator’s Reference.

Drop Temporary Tblspaces
The database server searches through all dbspaces for temporary tblspaces.
(If you use the -p option of oninit to initialize the database server, the
database server skips this step.) These temporary tblspaces, if any, are
tblspaces left by user processes that died prematurely and were unable to
perform proper cleanup. The database server deletes any temporary
tblspaces and reclaims the disk space. For more information about temporary
tblspaces, refer to “Temporary Tables” on page 15-30.

This task is not performed during disk-space initialization.

Set Forced Residency If Specified
If the value of the RESIDENT configuration parameter is -1 or a number
greater than 0, the database server tries to enforce residency of shared
memory. If the host computer system does not support forced residency, the
initialization procedure continues. Residency is not enforced, and the
database server sends an error message to the message log. For more infor-
mation about the RESIDENT configuration parameter, refer to the
Administrator’s Reference.
Initializing the Database Server 10-9

Return Control to User
Return Control to User
After the previous steps are complete, the database server writes an
initialization complete message in the message log. For more infor-
mation about the message path and the MSGPATH configuration parameter,
refer to the Administrator’s Reference.

At this point, control returns to the user. Any error messages generated by the
initialization procedure are displayed in one or more of the following
locations:

■ The command line

■ The database server message log file, specified by the MSGPATH
environment variable

Prepare SMI Tables
Even though the database server has returned control to the user, it has not
finished its work. The database server now checks the system-monitoring
interface (SMI) tables. If the SMI tables are not current, the database server
updates the tables. If the SMI tables are not present, as is the case when the
disk is initialized, the database server creates the tables. After the database
server builds the SMI tables, it puts the message sysmaster database built
successfully in the message-log file. For more information about SMI
tables, refer to the chapter on the sysmaster database in the Administrator’s
Reference.

If you shut down the database server before it finishes building the SMI
tables, the process of building the tables aborts. This condition does not
damage the database server. The database server simply builds the SMI tables
the next time that you bring the database server on-line. However, if you do
not allow the SMI tables to finish building, you cannot run any queries
against those tables, and you cannot use ON-Bar for dbspace or logical-log
backups.

After the SMI tables have been created, the database server is ready for use.
The database server runs until you stop it or, possibly, until a malfunction.
Informix recommends that you do not try to stop the database server by
killing a virtual processor or another database server process. For more infor-
mation, refer to “Starting and Stopping Virtual Processors” on page 12-6.
10-10 Administrator’s Guide for Informix Extended Parallel Server

 IV
Disk, Memory, and Process
Management
Se
ct

io
n

Chapter 11 Virtual Processors and Threads

Chapter 12 Managing Virtual Processors

Chapter 13 Shared Memory

Chapter 14 Managing Shared Memory

Chapter 15 Data Storage

Chapter 16 Managing Disk Space

Chapter 17 Table Fragmentation and PDQ

11
Chapter
Virtual Processors and Threads
In This Chapter . 11-3

Virtual Processors 11-3
Threads . 11-4
Types of Virtual Processors 11-5
Advantages of Virtual Processors 11-7

Sharing Processing 11-7
Saving Memory and Resources 11-7
Processing in Parallel 11-8
Adding and Dropping Virtual Processors in On-Line Mode . . 11-9
Binding Virtual Processors to CPUs 11-10

How Virtual Processors Service Threads 11-10
Control Structures 11-11
Context Switching 11-12
Stacks . 11-13
Queues . 11-14

Ready Queues 11-15
Sleep Queues 11-15
Wait Queues 11-16

Mutexes . 11-17

11-2 Ad
Virtual-Processor Classes 11-17
CPU Virtual Processors 11-17

Determining the Number of CPU Virtual Processors Needed. . 11-18
Running on a Multiprocessor Computer 11-18
Running on a Single-Processor Computer 11-18
Adding and Dropping CPU Virtual Processors in On-Line Mode 11-19
Preventing Priority Aging 11-19
Using Processor Affinity 11-20

Disk I/O Virtual Processors 11-21
I/O Priorities 11-22
Logical-Log I/O 11-22
Physical-Log I/O 11-23
Asynchronous I/O 11-24

Network Virtual Processors. 11-26
Specifying Network Connections 11-26
Running Poll Threads on CPU or Network Virtual Processors . 11-27
Number of Networking Virtual Processors Needed 11-27
Listen and Poll Threads for the Client/Server Connection . . . 11-28
Starting Multiple Listen Threads 11-31

First-In-First-Out Virtual Processor 11-33
Communications Support Module Virtual Processor 11-33
Miscellaneous Virtual Processor 11-34
ministrator’s Guide for Informix Extended Parallel Server

In This Chapter
This chapter explains how the database server uses virtual processors and
threads within virtual processors to improve performance. It explains the
types of virtual processors and how threads run within the virtual
processors.

Virtual Processors
Database server processes are called virtual processors because they function
similarly to the way that a CPU functions in a computer. Just as a CPU runs
multiple operating-system processes to service multiple users, a database
server virtual processor runs multiple threads to service multiple SQL client
applications.

A virtual processor is a process that the operating system schedules for
processing.
Virtual Processors and Threads 11-3

Threads
Figure 11-1 illustrates the relationship of client applications to virtual
processors within a coserver.

Threads
A thread is a piece of work for a virtual processor in the same way that the
virtual processor is a piece of work for the CPU. The virtual processor is a task
that the operating system schedules for execution on the CPU; a database
server thread is a task that the virtual processor schedules internally for
processing. Threads are sometimes called lightweight processes because they
are like processes, but they make fewer demands on the operating system.

Database server virtual processors are multithreaded because they run
multiple concurrent threads.

Figure 11-1
Virtual Processors

CPU 4CPU 1 CPU 2 CPU 3

Client applications

Client

Client

Client

Client

Client

Client

Client

Virtual processors
11-4 Administrator’s Guide for Informix Extended Parallel Server

Types of Virtual Processors
A thread is a task that the virtual processor schedules internally for
processing.

A virtual processor runs threads on behalf of SQL client applications (session
threads) and also to satisfy internal requirements (internal threads). In most
cases, for each connection by a client application, the database server runs
one session thread. The database server runs internal threads to accomplish,
among other things, database I/O, logging I/O, page cleaning, and adminis-
trative tasks. For cases in which the database server runs multiple session
threads for a single client, refer to “Processing in Parallel” on page 11-8.

A user thread is a database server thread that services requests from client
applications. User threads include session threads, called sqlexec threads,
which are the primary threads that the database server runs to service client
applications.

User threads also include a thread to service requests from the onmode
utility, threads for recovery, and page-cleaner threads.

To display active user threads, use onstat -u. For more information on
monitoring sessions and threads, refer to your Performance Guide.

Types of Virtual Processors
Figure 11-2 on page 11-6 shows the classes of virtual processors and the types
of processing that they do. Each class of virtual processor is dedicated to
processing certain types of threads.
Virtual Processors and Threads 11-5

Types of Virtual Processors
Figure 11-2
Virtual-Processor Classes

Virtual-
Processor
Class Category Purpose

CPU Central
processing

Runs all session threads and some system threads.
Runs thread for kernel asynchronous I/O where
available. Can run a single poll thread, depending
on configuration.

PIO Disk I/O Writes to the physical-log file (internal class) if it is in
cooked disk space.

LIO Disk I/O Writes to the logical-log files (internal class) if they
are in cooked disk space.

AIO Disk I/O Performs nonlogging disk I/O. If kernel
asynchronous I/O is used, AIO virtual processors
perform I/O to cooked disk spaces.

SHM Network Performs shared memory communication.

TLI Network Uses the Transport Layer Interface (TLI) to perform
network communication.

SOC Network Uses sockets to perform network communication.

OPT Optical Performs I/O to optical disk.

ADM Administrative Performs administrative functions.

FIF FIFO I/O Performs reads and inserts for high performance
loading and unloading through FIFO (first-in-first-
out) files.

MSC Miscellaneous Services requests for system calls that require a very
large stack.

CSM Communications
Support Module

Performs communications support service
operations.
11-6 Administrator’s Guide for Informix Extended Parallel Server

Advantages of Virtual Processors
Advantages of Virtual Processors
Compared to a database server process that services a single client appli-
cation, the dynamic, multithreaded nature of a database server virtual
processor provides the following advantages:

■ Virtual processors can share processing.

■ Virtual processors save memory and resources.

■ Virtual processors can perform parallel processing.

■ You can start additional virtual processors and terminate active CPU
virtual processors while the database server is running.

■ You can bind virtual processors to CPUs.

The following sections describe these advantages.

Sharing Processing

Virtual processors in the same class have identical code and share access to
both data and processing queues in memory. Any virtual processor in a class
can run any thread that belongs to that class.

Generally, the database server tries to keep a thread running on the same
virtual processor because moving it to a different virtual processor can
require some data from the memory of the processor to be transferred on the
bus. When a thread is waiting to run, however, the database server can
migrate the thread to another virtual processor because the benefit of
balancing the processing load outweighs the amount of overhead incurred in
transferring the data.

Shared processing within a class of virtual processors occurs automatically
and is transparent to the database user.

Saving Memory and Resources

The database server is able to service a large number of clients with a small
number of server processes compared to architectures that have one client
process to one server process. It does so by running a thread, rather than a
process, for each client.
Virtual Processors and Threads 11-7

Advantages of Virtual Processors
Multithreading permits more efficient use of the operating-system resources
because threads share the resources allocated to the virtual processor. All
threads that a virtual processor runs have the same access to the
virtual-processor memory, communication ports, and files. The virtual
processor coordinates access to resources by the threads. Individual
processes, on the other hand, each have a distinct set of resources, and when
multiple processes require access to the same resources, the operating system
must coordinate the access.

Generally, a virtual processor can switch from one thread to another faster
than the operating system can switch from one process to another. When the
operating system switches between processes, it must stop one process from
running on the processor, save its current processing state (or context), and
start another process. Both processes must enter and exit the operating-
system kernel, and the contents of portions of physical memory might need
to be replaced. Threads, on the other hand, share the same virtual memory
and file descriptors. When a virtual processor switches from one thread to
another, the switch is simply from one path of execution to another. The
virtual processor, which is a process, continues to run on the CPU without
interruption. For a description of how a virtual processor switches from one
thread to another, refer to “Context Switching” on page 11-12.

Processing in Parallel

In the following cases, virtual processors of the CPU class can run multiple
session threads, working in parallel, for a single client:

■ Index building

■ Sorting

■ Recovery

■ Scanning

■ Joining

■ Aggregation

■ Grouping
11-8 Administrator’s Guide for Informix Extended Parallel Server

Advantages of Virtual Processors
Figure 11-3 illustrates parallel processing. When a client initiates index
building, sorting, or logical recovery, the database server spawns multiple
threads to work on the task in parallel, using as much of the computer
resources as possible. While one thread is waiting for I/O, another can be
working.

Adding and Dropping Virtual Processors in On-Line Mode

You can add virtual processors to meet increasing demands for service while
the database server is running. For example, if the virtual processors of a
class become compute bound or I/O bound (meaning that CPU work or I/O
requests are accumulating faster than the current number of virtual
processors can process them), you can start additional virtual processors for
that class to distribute the processing load further.

You can add virtual processors for any of the classes while the database
server is running. While the database server is running, you can drop virtual
processors of the CPU class.

For information on how to add virtual processors while the database server
is in on-line mode, refer to “Adding Virtual Processors in On-Line Mode” on
page 12-6.

Figure 11-3
Parallel Processing

CPU 1 CPU 2 CPU 3 CPU 4

Client

Virtual processors

Indexing
sorting

recovery
Virtual Processors and Threads 11-9

How Virtual Processors Service Threads
Binding Virtual Processors to CPUs

Some multiprocessor systems allow you to bind a process to a particular CPU.
This feature is called processor affinity.

On multiprocessor computers for which the database server supports
processor affinity, you can bind CPU virtual processors to specific CPUs in the
computer. When you bind a CPU virtual processor to a CPU, the virtual
processor runs exclusively on that CPU. This operation improves the perfor-
mance of the virtual processor because it reduces the amount of switching
between processes that the operating system must do. Binding CPU virtual
processors to specific CPUs also enables you to isolate database work on
specific processors on the computer, leaving the remaining processors free for
other work. Only CPU virtual processors can be bound to CPUs.

For information on how to assign CPU virtual processors to hardware
processors, refer to “Using Processor Affinity” on page 11-20.

How Virtual Processors Service Threads
At a given time, a virtual processor can run only one thread. A virtual
processor services multiple threads concurrently by switching between
them. A virtual processor runs a thread until it yields. When a thread yields,
the virtual processor switches to the next thread that is ready to run. The
virtual processor continues this process, eventually returning to the original
thread when that thread is ready to continue. Some threads complete their
work, and the virtual processor starts new threads to process new work.
Because a virtual processor continually switches between threads, it
can keep the CPU processing continually. The speed at which processing
occurs produces the appearance that the virtual processor processes multiple
tasks simultaneously and, in effect, it does.
11-10 Administrator’s Guide for Informix Extended Parallel Server

Control Structures
Running multiple concurrent threads requires scheduling and synchroni-
zation to prevent one thread from interfering with the work of another.
Virtual processors use the following structures and methods to coordinate
concurrent processing by multiple threads:

■ Control structures

■ Context switching

■ Stacks

■ Queues

■ Mutexes

This section describes how virtual processors use these structures and
methods.

Control Structures
When a client connects to the database server, the database server creates a
session structure, which is called a session control block, to hold information
about the connection and the user. A session begins when a client connects to
the database server, and it ends when the connection terminates.

Next, the database server creates a thread structure, which is called a thread-
control block (TCB) for the session, and initiates a primary thread (sqlexec) to
process the client request. When a thread yields—that is, when it pauses and
allows another thread to run—the virtual processor saves information about
the state of the thread in the thread-control block. This information includes
the content of the process system registers, the program counter (address of
the next instruction to execute), and the stack pointer. This information
constitutes the context of the thread.

In most cases, the database server runs one primary thread per session. In
cases where it performs parallel processing, however, it creates multiple
session threads for a single client and, likewise, multiple corresponding
thread-control blocks.
Virtual Processors and Threads 11-11

Context Switching
Context Switching
A virtual processor switches from running one thread to running another one
by context switching. The database server does not preempt a running thread,
as the operating system does to a process, when a fixed amount of time (time-
slice) expires. Instead, a thread yields at one of the following points:

■ A predetermined point in the code

■ When the thread can no longer execute until some condition is met

When the amount of processing required to complete a task would cause
other threads to wait for an undue length of time, a thread yields at a
predetermined point. The code for such long-running tasks includes calls to
the yield function at strategic points in the processing. When a thread
performs one of these tasks, it yields when it encounters a yield function call.
Other threads in the ready queue then get a chance to run. When the original
thread next gets a turn, it resumes executing code at the point immediately
after the call to the yield function. Predetermined calls to the yield function
allow the database server to interrupt threads at points that are most advan-
tageous for performance.

A thread also yields when it can no longer continue its task until some
condition occurs. For example, a thread yields when it is waiting for disk I/O
to complete, when it is waiting for data from the client, or when it is waiting
for a lock or other resource.

When a thread yields, the virtual processor saves its context in the thread-
control block. Then the virtual processor selects a new thread to run from a
queue of ready threads, loads the context of the new thread from its thread-
control block, and begins executing at the new address in the program
counter. Figure 11-4 illustrates how a virtual processor accomplishes a
context switch.
11-12 Administrator’s Guide for Informix Extended Parallel Server

Stacks
Stacks
The database server allocates an area in the virtual portion of shared memory
to store nonshared data for the functions that a thread executes. This area is
called the stack. For information on how to set the size of the stack, refer to
“Stacks” on page 13-31.

The stack enables a virtual processor to protect the nonshared data of a
thread from being overwritten by other threads that concurrently execute the
same code. For example, if several client applications concurrently perform
SELECT statements, the session threads for each client execute many of the
same functions in the code. If a thread did not have a private stack, one thread
could overwrite local data that belongs to another thread within a function.

Figure 11-4
Context Switch:

How a Virtual
Processor Switches
from One Thread to

Another

Thread t0 Thread t1Context switch

Thread-control blocks

Time
Save Restore

t0 prgm ctr

registers

stack ptr

etc.

t1 prgm ctr

registers

stack ptr

etc.

Virtual processor
Virtual Processors and Threads 11-13

Queues
When a virtual processor switches to a new thread, it loads a stack pointer for
that thread from a field in the thread-control block. The stack pointer stores
the beginning address of the stack. The virtual processor can then specify
offsets to the beginning address to access data within the stack. Figure 11-5
illustrates how a virtual processor uses the stack to segregate nonshared data
for session threads.

Queues
The database server uses three types of queues to schedule the processing of
multiple, concurrently running threads:

■ Ready queues

■ Sleep queues

■ Wait queues

Virtual processors of the same class share queues. This fact, in part, enables a
thread to migrate from one virtual processor in a class to another when
necessary.

Figure 11-5
Virtual Processors

Segregate
Nonshared Data for

Each User

t3 prgm ctr
registers
stack

etc.

t2 prgm ctr
registers
stack

etc.

Stack Stack Stack Stack

Threads

Thread-control blocks

t0 t1 t2 t3

t1 prgm ctr
registers
stack

etc.

t0 prgm ctr
registers
stack ptr

etc.
Virtual processor
11-14 Administrator’s Guide for Informix Extended Parallel Server

Queues
Ready Queues

Ready queues hold threads that are ready to run when the current (running)
thread yields. When a thread yields, the virtual processor picks the next
thread with the appropriate priority from the ready queue. Within the queue,
the virtual processor processes threads that have the same priority on a
first-in-first-out (FIFO) basis.

On a multiprocessor computer, if you notice that threads are accumulating in
the ready queue for a class of virtual processors (indicating that work is
accumulating faster than the virtual processor can process it), you can start
additional virtual processors of that class to distribute the processing load.
For information on how to monitor the ready queues, refer to “Monitoring
Virtual Processors” on page 12-8. For information on how to add virtual
processors while the database server is in on-line mode, refer to “Adding
Virtual Processors in On-Line Mode” on page 12-6.

Sleep Queues

Sleep queues hold the contexts of threads that have no work to do at a
particular time. A thread is put to sleep either for a specified period of time
or forever.

The administration class (ADM) of virtual processors runs the system timer
and special utility threads. Virtual processors in this class are created and run
automatically. No configuration parameters impact this class of virtual
processors.

The ADM virtual processor wakes up threads that have slept for the specified
time. A thread that runs in the ADM virtual processor checks on sleeping
threads at one-second intervals. If a sleeping thread has slept for its specified
time, the ADM virtual processor moves it into the appropriate ready queue.
A thread that is sleeping for a specified time can also be explicitly awakened
by another thread.
Virtual Processors and Threads 11-15

Queues
A thread that is sleeping forever is awakened when it has more work to do.
For example, when a thread that is running on a CPU virtual processor needs
to access a disk, it issues an I/O request, places itself in a sleep queue for the
CPU virtual processor, and yields. When the I/O thread notifies the CPU
virtual processor that the I/O is complete, the CPU virtual processor
schedules the original thread to continue processing by moving it from the
sleep queue to a ready queue. Figure 11-6 illustrates how the database server
threads are queued to perform database I/O.

Wait Queues

Wait queues hold threads that need to wait for a particular event before they
can continue to run. For example, wait queues coordinate access to shared
data by threads. When a user thread tries to acquire the logical-log latch but
finds that the latch is held by another user, the thread that was denied access
puts itself in the logical-log wait queue. When the thread that owns the lock
is ready to release the latch, it checks for waiting threads and, if threads are
waiting, it wakes up the next thread in the wait queue.

Figure 11-6
How Database

Server Threads Are
Queued to Perform

Database I/O

Partially
executed

threads, t2, t4,
and t6, waiting
for completion
of their disk I/O

requests

Ready queue

t4

t6

Sleep queue

t2

t4

t6

I/O requests
for threads t4

and t6

Processing
I/O request for

thread t2

Threads t5
and t3, ready
to continue
processing

when thread t1
yields

Ready queue

t5

t3

CPU

VPt1

AIO VPt2

Virtual processors
11-16 Administrator’s Guide for Informix Extended Parallel Server

Mutexes
Mutexes
A mutex (mutually exclusive), also referred to as a latch, is a latching
mechanism that the database server uses to synchronize access by multiple
threads to shared resources. Mutexes are similar to semaphores, which some
operating systems use to regulate access to shared data by multiple processes.
However, mutexes permit a greater degree of parallelism than semaphores.

A mutex is a variable that is associated with a shared resource such as a
buffer. A thread must acquire the mutex for a resource before it can access the
resource. Other threads are excluded from accessing the resource until the
owner releases it. A thread acquires a mutex, once a mutex becomes
available, by setting it to an in-use state. The synchronization that mutexes
provide ensures that only one thread at a time writes to an area of shared
memory.

For information on monitoring mutexes, refer to “Monitoring Latches” on
page 14-22.

Virtual-Processor Classes
A virtual processor of a given class can run only threads of that class. This
section describes the types of threads, or the types of processing, that each
class of virtual processor performs. It also explains how to determine the
number of virtual processors that you need to run for each class.

CPU Virtual Processors
The CPU virtual processor runs all session threads (the threads that process
requests from SQL client applications) and some internal threads. Internal
threads perform services that are internal to the database server. For example,
a thread that listens for connection requests from client applications is an
internal thread.
Virtual Processors and Threads 11-17

CPU Virtual Processors
Determining the Number of CPU Virtual Processors Needed

The right number of CPU virtual processors is the number at which they are
all kept busy but not so busy that they cannot keep pace with incoming
requests. You should not allocate more CPU virtual processors than the
number of hardware processors in the computer.

The NUMCPUVPS configuration parameter allows you to specify the number
of CPU virtual processors that the database server starts initially. For infor-
mation about the NUMCPUVPS configuration parameter, refer to the
Administrator’s Reference.

To evaluate the performance of the CPU virtual processors while the database
server is running, repeat the following command at regular intervals over a
set period of time:

onstat -g glo

If the accumulated usercpu and syscpu times, taken together, approach
100 percent of the actual elapsed time for the period of the test, add another
CPU virtual processor if you have a CPU available to run it.

For an additional consideration in deciding how many CPU virtual
processors you need, refer to “Running Poll Threads on CPU or Network
Virtual Processors” on page 11-27.

Running on a Multiprocessor Computer

If you are running multiple CPU virtual processors on a multiprocessor
computer, set the MULTIPROCESSOR parameter in the ONCONFIG file to 1.
When you set MULTIPROCESSOR to 1, the database server performs locking
in a manner that is appropriate for a multiprocessor computer. For infor-
mation on setting multiprocessor mode, refer to the chapter on configuration
parameters in the Administrator’s Reference.

Running on a Single-Processor Computer

If you are running only one CPU virtual processor, set the MULTIPROCESSOR
configuration parameter to 0 and set the SINGLE_CPU_VP parameter to 1.
11-18 Administrator’s Guide for Informix Extended Parallel Server

CPU Virtual Processors
Setting MULTIPROCESSOR to 0 enables the database server to bypass the
locking that is required for multiple processes on a multiprocessor computer.
For information on the MULTIPROCESSOR configuration parameter, refer to
the Administrator’s Reference.

Setting SINGLE_CPU_VP to 1 allows the database server to bypass some of the
mutex calls that it normally makes when it runs multiple CPU virtual
processors. For information on setting the SINGLE_CPU_VP parameter, refer
to the Administrator’s Reference.

Important: Setting NUMCPUVPS to 1 and SINGLE_CPU_VP to 0 does not reduce
the number of mutex calls, even though the database server starts only one CPU
virtual processor. You must set SINGLE_CPU_VP to 1 to reduce the amount of
latching that is performed when you run a single CPU virtual processor.

Setting the SINGLE_CPU_VP parameter to 1 imposes an important restriction
on the database server: only one CPU virtual processor is allowed and you
cannot add CPU virtual processors while the database server is in on-line
mode.

For more information, see “Adding Virtual Processors in On-Line Mode” on
page 12-6.

Adding and Dropping CPU Virtual Processors in On-Line Mode

You can add or drop CPU class virtual processors while the database server
is on-line. For instructions on how to do this, see “Adding Virtual Processors
in On-Line Mode” on page 12-6 and “Monitoring Virtual Processors” on
page 12-8.

Preventing Priority Aging

Some operating systems lower the priority of long-running processes as they
accumulate processing time. This feature of the operating system is called
priority aging. Priority aging can cause the performance of database server
processes to decline over time. In some cases, however, the operating system
allows you to disable this feature and keep long-running processes running
at a high priority.

To determine if priority aging is available on your computer, check the
machine notes file described in “Documentation Notes, Release Notes,
Machine Notes” on page 12 of the Introduction.
Virtual Processors and Threads 11-19

CPU Virtual Processors
If your operating system allows you to disable priority aging, you can disable
it by setting the NOAGE parameter. For more information on the NOAGE
configuration parameter, refer to the Administrator’s Reference.

Using Processor Affinity

On some multiprocessor platforms that support processor affinity, you can
assign virtual processors to specific CPUs. When you assign a virtual
processor to a specific CPU, the virtual processor runs exclusively on that
CPU.

You can set the AFF_SPROC and AFF_NPROCS parameters in the ONCONFIG
file to implement processor affinity on multiprocessor computers that
support it.

Setting Processor Affinity with the AFF_SPROC and AFF_NPROCS Parameters

Set the AFF_NPROCS parameter to the number of CPUs to which you want to
assign CPU virtual processors. Do not set AFF_NPROCS to a number that is
less than the number of CPU virtual processors you have allocated. The
number of CPUs should not be less than the number of CPU virtual processors
that you allocate.

Set the AFF_SPROC parameter to the number of the first CPU to which a CPU
virtual processor should be assigned. The database server assigns CPU
virtual processors to CPUs in serial fashion, starting with this processor. The
first CPU is number 0. For example, if the computer has four CPUs and you
set NUMCPUVPS to 3, AFF_SPROC to 1, and AFF_NPROCS to 3, the three CPU
virtual processors are assigned to the second, third, and fourth CPUs,
respectively.

The value of AFF_NPROCS plus the value of AFF_SPROC must be less than or
equal to the number of CPUs. In the previous example, if you set AFF_SPROC
to 2, the database server would display an error message because 3
(AFF_NPROCS) plus 2 (AFF_SPROC) equals 5, and only four CPUs are
available.
11-20 Administrator’s Guide for Informix Extended Parallel Server

Disk I/O Virtual Processors
Figure 11-7 illustrates the concept of processor affinity.

To see if processor affinity is supported on your platform, refer to the
machine notes file.

Disk I/O Virtual Processors
The following classes of virtual processors perform disk I/O:

■ PIO (physical-log I/O)

■ LIO (logical-log I/O)

■ AIO (asynchronous I/O)

■ CPU (kernel-asynchronous I/O)

The PIO class performs all I/O to the physical-log file, and the LIO class
performs all I/O to the logical-log files, unless those files reside in raw disk
space and the database server has implemented kernel-asynchronous I/O.

On operating systems that do not support kernel-asynchronous I/O, the
database server uses the AIO class of virtual processors to perform database
I/O that is not related to physical or logical logging.

Figure 11-7
Processor Affinity

CPU 0 CPU 1 CPU 2 CPU 3

CPU virtual processors

Number of virtual processors = 3

Starting CPU = 1

Virtual processor

Virtual processor

Virtual processor
Virtual Processors and Threads 11-21

Disk I/O Virtual Processors
The database server uses the CPU class to perform kernel-asynchronous I/O
(KAIO) when it is available on a platform. If the database server implements
kernel-asynchronous I/O, a KAIO thread performs all I/O to raw disk space,
including I/O to the physical and logical logs.

To find out if your platform supports kernel-asynchronous I/O, refer to the
machine notes file.

For more information about nonlogging I/O, refer to “Asynchronous I/O”
on page 11-24.

I/O Priorities

In general, the database server prioritizes disk I/O by assigning different
types of I/O to different classes of virtual processors and by assigning prior-
ities to the nonlogging I/O queues. Prioritizing ensures that a high-priority
log I/O, for example, is never queued behind a write to a temporary file,
which has a low priority. The database server prioritizes the different types
of disk I/O that it performs, as Figure 11-8 shows.

Figure 11-8
How Database Server Prioritizes Disk I/O

Logical-Log I/O

The LIO class of virtual processors performs I/O to the logical-log files in the
following cases:

■ Kernel asynchronous I/O is not implemented.

■ The logical-log files are in cooked disk space.

Priority Type of I/O VP Class

1st Logical-log I/O CPU or LIO

2nd Physical-log I/O CPU or PIO

3rd Database I/O CPU or AIO

3rd Page-cleaning I/O CPU or AIO

3rd Read-ahead I/O CPU or AIO
11-22 Administrator’s Guide for Informix Extended Parallel Server

Disk I/O Virtual Processors
Only when kernel asynchronous I/O is implemented and the logical-log files
are in raw disk space does the database server use a KAIO thread in the CPU
virtual processor to perform I/O to the logical log.

The logical-log files store the data that enables the database server to roll back
transactions and recover from system failures. I/O to the logical-log files is
the highest priority disk I/O that the database server performs.

If the logical-log files are in a dbspace that is not mirrored, the database server
runs only one LIO virtual processor. If the logical-log files are in a dbspace
that is mirrored, the database server runs two LIO virtual processors. This
class of virtual processors has no parameters associated with it.

Physical-Log I/O

The PIO class of virtual processors performs I/O to the physical-log file in the
following cases:

■ Kernel asynchronous I/O is not implemented.

■ The physical-log file is stored in buffered-file chunks.

Only when kernel asynchronous I/O is implemented and the physical-log
file is in raw disk space does the database server uses a KAIO thread in the
CPU virtual processor to perform I/O to the physical log. The physical-log file
stores before-images of dbspace pages that have changed since the last check-
point. (For more information on checkpoints, refer to “Checkpoints” on
page 24-4.) At the start of recovery, prior to processing transactions from the
logical log, the database server uses the physical-log file to restore before-
images to dbspace pages that have changed since the last checkpoint. I/O to
the physical-log file is the second-highest priority I/O after I/O to the logical-
log files.

If the physical-log file is in a dbspace that is not mirrored, the database server
runs only one PIO virtual processor. If the physical-log file is in a dbspace that
is mirrored, the database server runs two PIO virtual processors. This class of
virtual processors has no parameters associated with it.
Virtual Processors and Threads 11-23

Disk I/O Virtual Processors
Asynchronous I/O

The database server performs database I/O asynchronously, meaning that
I/O is queued and performed independently of the thread that requests the
I/O. Performing I/O asynchronously allows the thread that makes the
request to continue working while the I/O is being performed.

The database server performs all database I/O asynchronously using one of
the following facilities:

■ AIO virtual processors

■ Kernel-asynchronous I/O (KAIO) on platforms that support it.

Database I/O includes I/O for SQL statements, read-ahead, page cleaning,
and checkpoints, as well as other I/O.

Kernel-Asynchronous I/O

The database server uses kernel-asynchronous I/O when the following
conditions exist:

■ The computer and operating system support it.

■ A performance gain is realized.

■ The I/O is to raw disk space.

The database server implements kernel-asynchronous I/O by running a
KAIO thread on the CPU virtual processor. The KAIO thread performs I/O by
making system calls to the operating system, which performs the I/O
independently of the virtual processor. The KAIO thread can produce better
performance for disk I/O than the AIO virtual processor can because it does
not require a switch between the CPU and AIO virtual processors.

Informix implements kernel-asynchronous I/O when it ports the database
server to a platform that supports this feature. The database server adminis-
trator does not configure kernel-asynchronous I/O. To see if kernel-
asynchronous I/O is supported on your platform, see the machine notes file.
11-24 Administrator’s Guide for Informix Extended Parallel Server

Disk I/O Virtual Processors
AIO Virtual Processors

If the platform does not support kernel-asynchronous I/O or if the I/O is to
buffered-file chunks, the database server performs database I/O through the
AIO class of virtual processors. All AIO virtual processors service all I/O
requests equally within their class.

The database server assigns each disk chunk a queue, sometimes known as a
gfd queue, based on the filename of the chunk. The database server orders I/O
requests within a queue according to an algorithm that minimizes disk-head
movement. The AIO virtual processors service queues that have work
pending in round-robin fashion.

All other non-chunk I/O is queued in the aio queue.

Use the NUMAIOVPS parameter to specify the number of AIO virtual
processors that the database server starts initially. For information about
NUMAIOVPS, refer to chapter on configuration parameters the Adminis-
trator’s Reference.

You can start additional AIO virtual processors while the database server is
in on-line mode. For more information, refer to “Adding Virtual Processors
in On-Line Mode” on page 12-6.

You cannot drop AIO virtual processors while the database server is in on-
line mode.

Number of AIO Virtual Processors Needed

The goal in allocating AIO virtual processors is to allocate enough of them so
that the lengths of the I/O request queues are kept short; that is, the queues
have as few I/O requests in them as possible. When the gfd queues are consis-
tently short, it indicates that I/O to the disk devices is being processed as fast
as the requests occur. The onstat -g ioq command allows you to monitor the
length of the gfd queues for the AIO virtual processors. For more information,
refer to “Monitoring Virtual Processors” on page 12-8.

If the database server implements kernel-asynchronous I/O on your
platform, and all of your dbspaces are composed of raw disk space, one AIO
virtual processor might be sufficient.
Virtual Processors and Threads 11-25

Network Virtual Processors
If the database server implements kernel-asynchronous I/O, but you are
using some buffered files for chunks, allocate two AIO virtual processors per
active dbspace that is composed of buffered file chunks. If kernel-
asynchronous I/O is not implemented on your platform, allocate two AIO
virtual processors for each disk that the database server accesses frequently.

Allocate enough AIO virtual processors to accommodate the peak number of
I/O requests. Generally, it is not detrimental to allocate too many AIO virtual
processors.

Network Virtual Processors
As explained in Chapter 6, “Client/Server Communications,” a client can
connect to the database server in the following ways:

■ Through a network connection

■ Through a pipe

■ Through shared memory

The network connection can be made by a client on a remote computer or by
a client on the local computer mimicking a connection from a remote
computer (called a local-loopback connection).

Specifying Network Connections

In general, the DBSERVERNAME and DBSERVERALIASES parameters define
dbservernames that have corresponding entries in the sqlhosts file. Each
dbservername parameter in sqlhosts has a nettype entry that specifies an
interface/protocol combination. The database server runs one or more poll
threads for each unique nettype entry. For a description of the nettype field,
refer to “The Connection Type Field” on page 6-24.

The NETTYPE configuration parameter provides optional configuration
information for an interface/protocol combination. It allows you to allocate
more than one poll thread for an interface/protocol combination and also
designate the virtual-processor class (CPU or NET) on which the poll threads
run. For a complete description of this configuration parameter, refer to the
Administrator’s Reference
11-26 Administrator’s Guide for Informix Extended Parallel Server

Network Virtual Processors
Running Poll Threads on CPU or Network Virtual Processors

Poll threads can run either in-line on CPU virtual processors or, depending on
the connection type, on network virtual processors. In general, and particu-
larly on a single-processor computer, poll threads run more efficiently on
CPU virtual processors. This might not be true, however, on a multiprocessor
computer with a large number of remote clients.

The NETTYPE parameter has an optional entry, called vp class, that allows
you to specify either CPU or NET, for CPU or network virtual-processor
classes, respectively.

If you do not specify a virtual processor class for the interface/protocol
combination (poll threads) associated with the DBSERVERNAME variable, the
class defaults to CPU. The database server assumes that the
interface/protocol combination associated with DBSERVERNAME is the
primary interface/protocol combination and that it should be the most
efficient.

For other interface/protocol combinations, if no vp class is specified, the
default is NET.

While the database server is in on-line mode, you cannot drop a CPU virtual
processor that is running a poll thread.

Number of Networking Virtual Processors Needed

Each poll thread requires a separate virtual processor, so you indirectly
specify the number of networking virtual processors when you specify the
number of poll threads for an interface/protocol combination and specify
that they are to be run by the NET class. If you specify CPU for the vp class,
you must allocate a sufficient number of CPU virtual processors to run the
poll threads. If the database server does not have a CPU virtual processor to
run a CPU poll thread, it starts a network virtual processor of the specified
class to run it.

For most systems, one poll thread and consequently one virtual processor per
network interface/protocol combination is sufficient. For systems with 200 or
more network users, running additional network virtual processors might
improve throughput. In this case, you need to experiment to determine the
optimal number of virtual processors for each interface/protocol
combination.
Virtual Processors and Threads 11-27

Network Virtual Processors
Listen and Poll Threads for the Client/Server Connection

When you start the database server, the oninit process starts an internal
thread, called a listen thread, for each dbservername that you specify with the
DBSERVERNAME and DBSERVERALIASES parameters in the ONCONFIG file.
To specify a listen port for each of these dbservername entries, assign it a
unique combination of hostname and service name entries in sqlhosts. For
example, the sqlhosts file entry shown in Figure 11-9 causes the database
server soc_ol1 to start a listen thread for port1 on the host, or network
address, myhost.

Figure 11-9
A Listen Thread for Each Listen Port

The listen thread opens the port and requests one of the poll threads for the
specified interface/protocol combination to monitor the port for client
requests. The poll thread runs either in the CPU virtual processor or in the
network virtual processor for the connection that is being used. For infor-
mation on the number of poll threads, refer to “Number of Networking
Virtual Processors Needed” on page 11-27.

For information on how to specify whether the poll threads for an
interface/protocol combination run in CPU or network virtual processors,
refer to “Running Poll Threads on CPU or Network Virtual Processors” on
page 11-27 and to the NETTYPE configuration parameter in the Adminis-
trator’s Reference.

dbservername nettype hostname service name

soc_ol1 onsoctcp myhost port1
11-28 Administrator’s Guide for Informix Extended Parallel Server

Network Virtual Processors
When a poll thread receives a connection request from a client, it passes the
request to the listen thread for the port. The listen thread authenticates the
user, establishes the connection to the database server, and starts an sqlexec
thread, the session thread that performs the primary processing for the client.
Figure 11-10 illustrates the roles of the listen and poll threads in establishing
a connection with a client application.

A poll thread waits for requests from the client and places them in shared
memory to be processed by the sqlexec thread. For network connections, the
poll thread places the message in a queue in the shared-memory global pool.
The poll thread then wakes up the sqlexec thread of the client to process the
request. Whenever possible, the sqlexec thread writes directly back to the
client without the help of the poll thread. In general, the poll thread reads
data from the client, and the sqlexec thread sends data to the client.

For a shared-memory connection, the poll thread places the message in the
communications portion of shared memory.

Figure 11-10
The Roles of the Poll

and the Listen
Threads in

Connecting to a
Client

Key

Client

Database server

Poll
thread

Thread
process

Data

Request
connection

Receive
connect
request

Start
sqlexec
thread

Listen
thread

Receive
connect
request

Accept client
connectionPass request to

listen thread
Virtual Processors and Threads 11-29

Network Virtual Processors
Figure 11-11 illustrates the basic tasks that the poll thread and the sqlexec
thread perform in communicating with a client application.

Figure 11-11
The Roles of the Poll
and sqlexec Threads

in Communicating
with the Client

Application

Key

Send data

Read data

Process

Read data
from client

Client

Database server

Poll
thread

Application
process

Thread
process

Data

Pass request
and data
to sqlexec

Wait for client
request

Processsqlexec
thread

Send
data
to client
11-30 Administrator’s Guide for Informix Extended Parallel Server

Network Virtual Processors
Starting Multiple Listen Threads

If the database server cannot service connection requests satisfactorily for a
given interface/protocol combination with a single port and corresponding
listen thread, you can improve service for connection requests in the
following two ways:

■ Add listen threads for additional ports.

■ Add another network-interface card.

Adding Listen Threads

As stated previously, the database server starts a listen thread for each
dbservername that you specify with the DBSERVERNAME and
DBSERVERALIASES configuration parameters.

To add listen threads for additional ports, you must first use the
DBSERVERALIASES parameter to specify dbservernames for each of the ports.
For example, the DBSERVERALIASES parameter in Figure 11-12 defines two
additional dbservernames, soc_ol2 and soc_ol3, for the database server
instance identified as soc_ol1.

Once you define additional dbservernames for the database server, you must
specify an interface/protocol combination and port for each of them in the
sqlhosts file. Each port is identified by a unique combination of hostname
and servicename entries. For example, the sqlhosts entries shown in
Figure 11-13 on page 11-32 cause the database server to start three listen
threads for the onsoctcp interface/protocol combination, one for each of the
ports defined.

DBSERVERNAME soc_ol1
DBSERVERALIASES soc_ol2,soc_ol3

Figure 11-12
Defining Multiple dbservernames for

Multiple Connections of the Same Type
Virtual Processors and Threads 11-31

Network Virtual Processors
Figure 11-13
sqlhosts Entries to Listen to Multiple Ports for a Single Interface/Protocol Combination

If you include a NETTYPE parameter for an interface/protocol combination,
it applies to all the connections for that interface/protocol combination. In
other words, if a NETTYPE parameter exists for onsoctcp in Figure 11-13, it
applies to all of the connections shown. In this example, the database server
runs one poll thread for the onsoctcp interface/protocol combination unless
the NETTYPE parameter specifies more. For more information about entries
in the sqlhosts file, refer to “Connectivity Files” on page 6-13.

Adding a Network-Interface Card

If the network-interface card for the host computer cannot service connection
requests satisfactorily, or if you want to connect the database server to more
than one network, you can add a network-interface card.

To support multiple network-interface cards, you must assign each card a
unique hostname (network address) in sqlhosts. For example, using the
same dbservernames shown in Figure 11-12, the sqlhosts file entries shown
in Figure 11-14 cause the database server to start three listen threads for the
same interface/protocol combination (as did the entries in Figure 11-13). In
this case, however, two of the threads are listening to ports on one interface
card (myhost1), and the third thread is listening to a port on the second
interface card (myhost2).

dbservername nettype hostname service name

soc_ol1 onsoctcp myhost port1

soc_ol2 onsoctcp myhost port2

soc_ol3 onsoctcp myhost port3
11-32 Administrator’s Guide for Informix Extended Parallel Server

First-In-First-Out Virtual Processor
Figure 11-14
Example of sqlhosts Entries to Support Two Network-Interface

Cards for the onsoctcp Interface/Protocol Combination

First-In-First-Out Virtual Processor
The database server uses virtual processors of the FIF class to process high-
performance loads and unloads through a FIFO (first-in-first-out) data file.

The operating system opens and checks for the end of file differently for FIFO
files than for ordinary files. Unlike ordinary operating-system files, pipes do
not have a 2-gigabyte size limitation.

For more information on using named pipes to load and unload tables, refer
to the chapter on loading with external tables in the Administrator’s Reference.

Communications Support Module Virtual Processor
The communications support module (CSM) class of virtual processors
performs communications support service and communications support
module functions.

The database server starts the same number of CSM virtual processors as the
number of CPU virtual processors that it starts.

For more information on the communications support service, refer to
Chapter 6, “Client/Server Communications.”

dbservername nettype hostname service name

soc_ol1 onsoctcp myhost1 port1

soc_ol2 onsoctcp myhost1 port2

soc_ol3 onsoctcp myhost2 port1
Virtual Processors and Threads 11-33

Miscellaneous Virtual Processor
Miscellaneous Virtual Processor
The miscellaneous virtual processor services requests for system calls that
might require a very large stack, such as fetching information about the
current user or the host-system name. Only one thread runs on this virtual
processor; it executes with a stack of 128 kilobytes.
11-34 Administrator’s Guide for Informix Extended Parallel Server

12
Chapter
Managing Virtual Processors
In This Chapter . 12-3

Setting Virtual-Processor Configuration Parameters 12-3
Setting Virtual-Processor Configuration Parameters with a Text Editor 12-4

Specifying Virtual Processor Parameters for Uniprocessors or
Symmetric Multiprocessors 12-5

Disabling Priority Aging 12-5

Starting and Stopping Virtual Processors 12-6
Adding Virtual Processors in On-Line Mode. 12-6

Adding Virtual Processors in On-Line Mode with onmode . . 12-7
Adding Network Virtual Processors 12-7

Monitoring Virtual Processors 12-8
Monitoring Virtual Processors with Command-Line Utilities . . . 12-8
Monitoring Virtual Processors with SMI Tables 12-10

12-2 Ad
ministrator’s Guide for Informix Extended Parallel Server

In This Chapter
This chapter describes how to set the configuration parameters that affect
database server virtual processors. This chapter also tells you how to start
and stop virtual processors.

For descriptions of the virtual-processor classes and for advice on how many
virtual processors you should specify for each class, refer to Chapter 11,
“Virtual Processors and Threads.”

Setting Virtual-Processor Configuration
Parameters
As root or user informix, you can set the configuration parameters for the
database server virtual processors with a text editor.

To implement any changes that you make to configuration parameters, you
must reinitialize shared memory. For information on how to reinitialize
shared memory, refer to “Reinitializing Shared Memory” on page 14-11.

For more information on configuration parameters, refer to the Adminis-
trator’s Reference.
Managing Virtual Processors 12-3

Setting Virtual-Processor Configuration Parameters with a Text Editor
Setting Virtual-Processor Configuration Parameters with a
Text Editor
You can use a text editor program to set ONCONFIG parameters at any time.
Use the editor to locate the parameter that you want to change, enter the new
value, and rewrite the file to disk.

Figure 12-1 lists the ONCONFIG parameters that are used to configure virtual
processors. For more information on how these parameters affect virtual
processors, refer to “Virtual-Processor Classes” on page 11-17.

Figure 12-1
ONCONFIG Parameters for Configuring Virtual Processors

Parameter Purpose

AFF_NPROCS Specifies the number of CPUs to which CPU virtual
processors will be assigned (multiprocessor computers
only)

AFF_SPROC Specifies the first CPU (of AFF_NPROCS) to which a CPU
virtual processor will be assigned

MULTIPROCESSOR Specifies that you are running on a multiprocessor
computer

NETTYPE Specifies parameters for network protocol threads (and
virtual processors)

NOAGE Specifies no priority aging of processes by the operating
system

NUMAIOVPS Specifies the number of AIO virtual processors

NUMCPUVPS Specifies the number of CPU virtual processors

NUMFIFOVPS Specifies the number of FIFO virtual processors

SINGLE_CPU_VP Specifies that you are running a single CPU virtual
processor
12-4 Administrator’s Guide for Informix Extended Parallel Server

Setting Virtual-Processor Configuration Parameters with a Text Editor
Specifying Virtual Processor Parameters for Uniprocessors or
Symmetric Multiprocessors

If the nodes on your parallel-processing platform are uniprocessors, set the
following parameters to the indicated values to configure each coserver for
single-processor operation.

If your nodes are SMPs (symmetric multiprocessors), use the following
parameters to control how the database server processes work on each multi-
processor. The exact values to use for these parameters depend on the
number of CPUs in each SMP node:

■ MULTIPROCESSOR

■ NUMAIOVPS

■ NUMCPUVPS

■ SINGLE_CPU_VP

Disabling Priority Aging

Use the NOAGE parameter to disable process priority aging on platforms that
allow this feature.

For recommended values for these database server parameters on your
platform, refer to your machine notes file.

Parameter Value

MULTIPROCESSOR 0

NUMCPUVPS 1

1

2

Managing Virtual Processors 12-5

Starting and Stopping Virtual Processors
Starting and Stopping Virtual Processors
When you start the oninit process to start the database server, oninit starts
the number and types of virtual processors that you have specified directly
and indirectly. You configure virtual processors primarily through
ONCONFIG parameters and, for network virtual processors, through param-
eters in the sqlhosts file. For descriptions of the virtual-processor classes,
refer to “Virtual-Processor Classes” on page 11-17.

The database server allows you to start a maximum of 1000 virtual
processors.

To terminate the database server and thereby terminate all virtual processors,
use the -k option of the onmode utility. For more information on using
onmode -k, refer to the utilities chapter of the Administrator’s Reference.

Adding Virtual Processors in On-Line Mode
While the database server is in on-line mode, you can start additional virtual
processors for the following classes: CPU, AIO, PIO, LIO, SHM, STR, TLI, and
SOC.

To start these additional virtual processors, use the -p option of the onmode
utility.

You can start additional virtual processors for FIF class to process high-
performance loads and unloads through a FIFO (first-in-first-out) data file.
FIFO files are often referred to as named pipes. For more information on using
named pipes to load and unload tables, refer to the chapter on loading with
external tables in the Administrator’s Reference.
12-6 Administrator’s Guide for Informix Extended Parallel Server

Adding Virtual Processors in On-Line Mode
Adding Virtual Processors in On-Line Mode with onmode

Use the -p option of the onmode command to add virtual processors while
the database server is in on-line mode. Specify the number of virtual
processors that you want to add with a positive number that is greater than
the number of virtual processors that are currently running. As an option,
you can precede the number of virtual processors with a plus sign (+).
Following the number, specify the virtual processor class in lowercase letters.
For example, either of the following commands starts four additional virtual
processors in the AIO class:

% onmode -p 4 aio

% onmode -p +4 aio

The onmode utility starts the additional virtual processors immediately.

You can add virtual processors to only one class at a time. To add virtual
processors for another class, you must run onmode again.

Important: You cannot add a CPU virtual processor with onmode -p.

Adding Network Virtual Processors

When you add network virtual processors, you are adding poll threads, each
of which requires its own virtual processor to run. If you attempt to add poll
threads for a protocol while the database server is in on-line mode, and you
have specified in the NETTYPE parameter that the poll threads run in the CPU
class, the database server does not start the new poll threads if no CPU virtual
processors are available to run them.
Managing Virtual Processors 12-7

Monitoring Virtual Processors
Monitoring Virtual Processors
Monitor the virtual processors to determine if the number of virtual
processors configured for the database server is optimal for the current level
of activity.

Monitoring Virtual Processors with Command-Line Utilities
You can use the following onstat -g options to monitor virtual processors:

■ glo
■ ioq
■ rea

Use the onstat -g glo command to display information about each virtual
processor that is currently running, as well as cumulative statistics for each
virtual processor class. Figure 12-2 shows an example of the output from this
option.

MT global info:
sessions threads vps lngspins
1 15 8 0

Virtual processor summary:
class vps usercpu syscpu total
cpu 3 479.77 190.42 670.18
aio 1 0.83 0.23 1.07
pio 1 0.42 0.10 0.52
lio 1 0.27 0.22 0.48
soc 0 0.00 0.00 0.00
tli 0 0.00 0.00 0.00
shm 0 0.00 0.00 0.00
adm 1 0.10 0.45 0.55
opt 0 0.00 0.00 0.00
msc 1 0.28 0.52 0.80
adt 0 0.00 0.00 0.00
total 8 481.67 191.93 673.60

Individual virtual processors:
vp pid class usercpu syscpu total
1 1776 cpu 165.18 40.50 205.68
2 1777 adm 0.10 0.45 0.55
3 1778 cpu 157.83 98.68 256.52
4 1779 cpu 156.75 51.23 207.98
5 1780 lio 0.27 0.22 0.48
6 1781 pio 0.42 0.10 0.52
7 1782 aio 0.83 0.23 1.07
8 1783 msc 0.28 0.52 0.80

tot 481.67 191.93 673.60

Figure 12-2
onstat -g glo Output
12-8 Administrator’s Guide for Informix Extended Parallel Server

Monitoring Virtual Processors with Command-Line Utilities
Use the onstat -g ioq option to determine whether you need to allocate
additional AIO virtual processors. The command onstat -g ioq displays the
length of the I/O queues under the column len. You can also see the
maximum queue length (since the database server started) in the maxlen
column. Each chunk serviced by the AIO virtual processors has one line in the
onstat -g ioq output, identified by the gfd queue name. You can correlate the
line in onstat -g ioq with the actual chunk because the chunks are in the same
order as in the onstat -d output. For example, in the onstat -g ioq output in
Figure 12-3, there are two gfd queues. The first gfd queue holds requests for
root_chunk because it corresponds to the first chunk shown in the onstat -d
output in Figure 12-3. Likewise, the second gfd queue holds requests for
chunk1 because it corresponds to the second chunk in the onstat -d output.

If the database server has a mixture of raw devices and cooked files, the gfd
queues correspond only to the cooked files in onstat -d output.

If the length of the I/O queue is growing, I/O requests are accumulating
faster than the AIO virtual processors can process them. If the length of the
I/O queue continues to show that I/O requests are accumulating, consider
adding AIO virtual processors.

onstat -g ioq

AIO I/O queues:
q name/id len maxlen totalops dskread dskwrite dskcopy
 adt 0 0 0 0 0 0 0
 msc 0 0 1 12 0 0 0
 aio 0 0 4 89 68 0 0
 pio 0 0 1 1 0 1 0
 lio 0 0 1 17 0 17 0
 kio 0 0 0 0 0 0 0
 gfd 3 0 3 254 242 12 0
 gfd 4 0 17 614 261 353 0

smoke% onstat -d
Dbspaces
address number flags fchunk nchunks flags owner name
a1de1d8 1 1 1 1 N informix rootdbs
a1df550 2 1 2 1 N informix space1
 2 active, 2047 maximum
Chunks
address chk/dbs offset size free bpages flags pathname
a1de320 1 1 0 75000 66447 PO- /ix/root_chunk
a1df698 2 2 0 500 447 PO- /ix//chunk1
 2 active, 2047 maximum

Figure 12-3
onstat -g ioq and
onstat -d Output
Managing Virtual Processors 12-9

Monitoring Virtual Processors with SMI Tables
Use the onstat -g rea option to monitor the number of threads in the ready
queue. If the number of threads in the ready queue is growing for a class of
virtual processors (for example, the CPU class), you might have to add more
of those virtual processors to your configuration. Figure 12-4 shows onstat -g
rea output.

Monitoring Virtual Processors with SMI Tables
Query the sysvpprof table to obtain information on the virtual processors
that are currently running. This table contains the following columns.

Ready threads:
tid tcb rstcb prty status vp-class name

6 536a38 406464 4 ready 3cpu main_loop()
28 60cfe8 40a124 4 ready 1cpu onmode_mon
33 672a20 409dc4 2 ready 3cpu sqlexec

Figure 12-4
onstat -g rea Output

Column Description

vpid Virtual-processor ID number

class Virtual-processor class

usercpu Minutes of user CPU consumed

syscpu Minutes of system CPU consumed
12-10 Administrator’s Guide for Informix Extended Parallel Server

13
Chapter
Shared Memory
In This Chapter . 13-5

Shared Memory . 13-5

Shared-Memory Use 13-6
Shared-Memory Allocation. 13-8
Shared-Memory Size 13-10
Action to Take If SHMTOTAL Is Exceeded 13-11

Processes That Attach to Shared Memory 13-12
How a Client Attaches to the Communications Portion 13-12
How Utilities Attach to Shared Memory 13-13
How Virtual Processors Attach to Shared Memory 13-13

Defining a Unique Key Value 13-14
Specifying Where to Attach the First Shared-Memory Segment . 13-15
Attaching Additional Shared-Memory Segments 13-16
Defining the Shared-Memory Lower-Boundary Address . . . 13-17

Resident Shared-Memory Segments 13-18

Resident Portion of Shared Memory 13-19
Shared-Memory Header. 13-19
Shared-Memory Buffer Pool 13-20

Buffer Overflow to the Virtual Portion 13-21
Buffer Size 13-21
Configurable Page Size 13-21

Logical-Log Buffer. 13-22
Physical-Log Buffer 13-24
Lock Table . 13-24

13-2 Ad
Virtual Portion of Shared Memory. 13-25
Management of the Virtual Portion of Shared Memory 13-25

Size of the Virtual Portion of Shared Memory 13-26
Components of the Virtual Portion of Shared Memory 13-26

Shared-Memory Internal Tables 13-27
Big Buffers 13-30
Session Data 13-30
Thread Data. 13-31
Dictionary Cache 13-32
Sorting Memory 13-32
SPL Routine Cache 13-33
Global Pool 13-33

Communications Portion of Shared Memory 13-33

Concurrency Control 13-34
Shared-Memory Mutexes 13-34
Shared-Memory Buffer Locks 13-35

Types of Buffer Locks 13-35

Database Server Thread Access to Shared Buffers 13-36
LRU Queues . 13-36

Components of LRU Queue 13-36
Pages in Least-Recently Used Order 13-37
LRU Queues and Buffer-Pool Management 13-37
Number of LRU Queues to Configure 13-38
Number of Cleaners to Allocate 13-39
Number of Pages Added to the MLRU Queues 13-39
End of MLRU Cleaning. 13-40

Configuring the Database Server to Read Ahead 13-41
Database Server Thread Access to Buffer Pages 13-42

Identify the Page 13-42
Determine the Level of Lock Access 13-42
Try to Locate the Page in Shared Memory 13-43
Locate a Buffer and Read Page from Disk 13-43
Lock the Buffer If Necessary 13-43
Release the Buffer Lock and Wake a Waiting Thread 13-44
ministrator’s Guide for Informix Extended Parallel Server

Flushing Data to Disk 13-45
Events That Prompt Flushing of Buffer-Pool Buffers. 13-46
Flushing Before-Images First 13-46
Flushing the Physical-Log Buffer 13-46

Events That Prompt Flushing of the Physical-Log Buffer 13-47
When the Physical-Log Buffer Becomes Full 13-48

Synchronizing Buffer Flushing 13-49
Ensuring That Physical-Log Buffers Are Flushed First. 13-49
Flushing the Shared-Memory Pool Buffer 13-50

Describing Flushing Activity 13-50
Foreground Write 13-51
LRU Write . 13-51
Chunk Write 13-52

Flushing the Logical-Log Buffer. 13-52
When the Logical-Log Buffer Becomes Full 13-53
After a Transaction Is Prepared or Terminated in a Database with

Unbuffered Logging. 13-54
When a Session That Uses Nonlogging Databases or Unbuffered

Logging Terminates 13-54
When a Checkpoint Occurs 13-54
When a Page Is Modified That Does Not Require a Before-Image

in the Physical-Log File 13-55

Buffering Simple-Large-Object Data Types 13-55
Blobpages Do Not Pass Through Shared Memory 13-56
TEXT and BYTE Objects Are Created Before the Data Row Is Inserted 13-56
Tracking Blobpages 13-56

Memory Use on 64-Bit Platforms. 13-57
Shared Memory 13-3

13-4 Ad
ministrator’s Guide for Informix Extended Parallel Server

In This Chapter
This chapter describes the content of database server shared memory, the
factors that determine the sizes of shared-memory areas, and how data
moves into and out of shared memory. For information on how to change the
database server configuration parameters that determine shared memory
allocations, refer to Chapter 14, “Managing Shared Memory.”

Each coserver has its own shared memory. The shared memory as discussed
in this chapter is for an individual coserver.

Shared Memory
Shared memory is an operating-system feature that allows the database
server threads and processes to share data by sharing access to pools of
memory. The database server uses shared memory for the following
purposes:

■ To reduce memory usage and disk I/O

■ To perform high-speed communication between processes

Shared memory enables the database server to reduce overall memory uses
because the participating processes, in this case, virtual processors, do not
need to maintain private copies of the data that is in shared memory.
Shared Memory 13-5

Shared-Memory Use
Shared memory reduces disk I/O because buffers, which are managed as a
common pool, are flushed on a database server-wide basis instead of a per-
process basis. Furthermore, a virtual processor can often avoid reading data
from disk because the data is already in shared memory as a result of an
earlier read operation. The reduction in disk I/O reduces execution time.

Shared memory provides the fastest method of interprocess communication
because it processes read and write messages at the speed of memory
transfers.

Shared-Memory Use
The database server uses shared memory for the following purposes:

■ To enable virtual processors and utilities to share data

■ To provide a fast communications channel for local client
applications that use IPC communication

Figure 13-1 illustrates the shared-memory scheme.
13-6 Administrator’s Guide for Informix Extended Parallel Server

Shared-Memory Use
Figure 13-1
How the Database

Server Uses Shared
Memory

Unallocated space

Private data

Program text

Unallocated space

Private data

Program text

Client applications
Data

Shared-memory
segments

Client

Client

Client

Client

Virtual processor A
memory space

Virtual processor B
memory space
Shared Memory 13-7

Shared-Memory Allocation
Shared-Memory Allocation
The database server creates the following portions of shared memory:

■ The resident portion

■ The virtual portion

■ The IPC communications or message portion

Each portion of shared memory consumes one or more operating-system
segments. When the database server initializes shared memory, it allocates at
least two operating-system segments, one for the resident portion and one for
the virtual portion. It might allocate more segments if the maximum segment
size is not large enough.

Depending upon operating system settings for shared memory, the database
server may allocate one segment for both the resident portion and virtual
portion.

If the sqlhosts file specifies shared-memory communications, the database
server allocates memory for the communications portion.

The database server adds operating-system segments as needed to the virtual
portions of shared memory. Figure 13-2 shows the contents of each portion of
shared memory.

All database server virtual processors have access to the same shared-
memory segments. Each virtual processor manages its work by maintaining
its own set of pointers to shared-memory resources such as buffers, locks,
and latches. Virtual processors attach to shared memory when you take the
database server from off-line mode to quiescent mode or from off-line mode
directly to on-line mode. The database server uses locks and latches to
manage concurrent access to shared-memory resources by multiple threads.
For more information about modes, refer to Chapter 9, “Managing Database
Server Operating Modes.”
13-8 Administrator’s Guide for Informix Extended Parallel Server

Shared-Memory Allocation
Figure 13-2
Contents of Database Server Shared Memory

Mirrored-chunk table

Dbspace table Page-cleaner table

Tblspace table Transaction table

Shared mem. header Buffer-header table

Chunk table

User table

LRU queues

Resident portion

Virtual portion

IPC communications
portion

Session structures Thread structures Dictionary cache

SPL routine cache Sorting pool

Big buffers

Thread stacks Thread heaps

Client/server IPC messages

Global pool

Unallocated memory

Buffer pool

Lock table Physical-log buffer Logical-log buffer
Shared Memory 13-9

Shared-Memory Size
Shared-Memory Size
Each portion of the database server shared memory consists of one or more
operating-system segments of memory, each one divided into a series of
blocks that are 8 kilobytes in size and managed by a bit map.

The header-line output by the onstat utility contains the size of the database
server shared memory, expressed in kilobytes. For information on how to use
onstat, refer to the utilities chapter in the Administrator’s Reference. You can
also use the -g seg option of onstat to monitor how much memory the
database server allocates for each portion of shared memory.

You can set the SHMTOTAL parameter in the ONCONFIG file to limit the
amount of memory overhead that the database server can place on your
computer or node. The SHMTOTAL parameter specifies the total amount of
shared memory that the database server can use for all memory allocations.
However, certain operations might fail if the database server needs more
memory than the amount set in SHMTOTAL. If this condition occurs, the
database server displays the following message in the message log:

size of resident + virtual segments x + y > z
total allowed by configuration parameter SHMTOTAL

In addition, the database server returns an error message to the application
that initiated the offending operation. For example, if the database server
needs more memory than you specify in SHMTOTAL while it tries to perform
an operation such as an index build or a hash join, it returns an error message
to the application that is similar to one of the following:

-567 Cannot write sorted rows.
-116 ISAM error: cannot allocate memory.

After the database server sends these messages, it rolls back any partial
results performed by the offending query.
13-10 Administrator’s Guide for Informix Extended Parallel Server

Action to Take If SHMTOTAL Is Exceeded
Internal operations, such as page-cleaner or checkpoint activity, can also
cause the database server to exceed the SHMTOTAL ceiling. When this
situation occurs, the database server sends a message to the message log. For
example, suppose that the database server attempts and fails to allocate
additional memory for page-cleaner activity. As a consequence, the database
server sends a message to the message log that is similar to the following:

17:19:13 Assert Failed: WARNING! No memory available for page cleaners
17:19:13 Who: Thread(11, flush_sub(0), 9a8444, 1)
17:19:13 Results: Database server may be unable to complete a checkpoint
17:19:13 Action: Make more virtual memory available to database server
17:19:13 See Also: /tmp/af.c4

After the database server informs you about the failure to allocate additional
memory, it rolls back the transactions that caused it to exceed the SHMTOTAL
limit. Immediately after the rollback, operations no longer fail from lack of
memory, and the database server continues to process transactions as usual.

Action to Take If SHMTOTAL Is Exceeded
When the database server needs more memory than SHMTOTAL allows, a
transient condition occurs, perhaps caused by a burst of activity that exceeds
the normal processing load. Only the operation that caused the database
server to run out of memory temporarily should fail. Other operations
continue to be processed in a normal fashion.

If messages indicate on a regular basis that the database server needs more
memory than SHMTOTAL allows, you have not configured the database
server correctly. Lowering the value of BUFFERS or DS_TOTAL_MEMORY is
one possible solution, and increasing the value of SHMTOTAL is another.
Shared Memory 13-11

Processes That Attach to Shared Memory
Processes That Attach to Shared Memory
The following processes attach to the database server shared memory:

■ Client-application processes that communicate with the database
server through the shared-memory communications portion
(ipcshm)

■ Database server virtual processors

■ Database server utilities

The following sections describe how each type of process attaches to the
database server shared memory.

How a Client Attaches to the Communications Portion
Client-application processes that communicate with the database server
through shared memory (nettype ipcshm) attach transparently to the
communications portion of shared memory. System-library functions that are
automatically compiled into the application enable it to attach to the commu-
nications portion of shared memory. For information on specifying a shared-
memory connection, see Chapter 6, “Client/Server Communications,” and
“Network Virtual Processors” on page 11-26.

If the INFORMIXSHMBASE environment variable is not set, the client
application attaches to the communications portion at an address that is
platform specific. If the client application attaches to other shared-memory
segments (not database server shared memory), the user can set the
INFORMIXSHMBASE environment variable to specify the address at which
to attach the database server shared-memory communications segments.
When you specify the address at which to address the shared-memory
communications segments, you can prevent the database server from
colliding with the other shared-memory segments that your application uses.
For information on how to set the INFORMIXSHMBASE environment
variable, refer to the Informix Guide to SQL: Reference.
13-12 Administrator’s Guide for Informix Extended Parallel Server

How Utilities Attach to Shared Memory
How Utilities Attach to Shared Memory
The database server utilities such as onstat and onmode attach to shared
memory through the $INFORMIXDIR/etc/.infos.servername file.

The variable servername is the value of the DBSERVERNAME parameter in the
ONCONFIG file. The utilities obtain the servername portion of the filename
from the INFORMIXSERVER environment variable.

The oninit process reads the ONCONFIG file and creates the
file .infos.servername when it starts the database server. The file is removed
when the database server terminates.

How Virtual Processors Attach to Shared Memory
The database server virtual processors attach to shared memory during
initialization. During this process, the database server must satisfy the
following two requirements:

■ Ensure that all virtual processors can locate and access the same
shared-memory segments

■ Ensure that the shared-memory segments reside in physical memory
locations that are different than the shared-memory segments
assigned to other instances of the database server, if any, on the same
computer

The database server uses two configuration parameters, SERVERNUM and
SHMBASE, to meet these requirements.
Shared Memory 13-13

How Virtual Processors Attach to Shared Memory
When a virtual processor attaches to shared memory, it performs the
following major steps:

1. Accesses the SERVERNUM parameter from the ONCONFIG file

2. Uses SERVERNUM to calculate a shared-memory key value

3. Requests a shared-memory segment using the shared-memory key
value

The operating system returns the shared-memory identifier for the
first shared-memory segment.

4. Directs the operating system to attach the first shared-memory
segment to its process space at SHMBASE

5. Attaches additional shared-memory segments, if required, to be
contiguous with the first segment

The following sections describe how the database server uses the values of
the SERVERNUM and SHMBASE configuration parameters in the process of
attaching shared-memory segments.

Defining a Unique Key Value

The database server uses the ONCONFIG parameter SERVERNUM to calculate
a unique key value for its shared-memory segments. All virtual processors
within a single database server instance share the same key value. When each
virtual processor attaches to shared memory, it calculates the key value as
follows:

(SERVERNUM * 65536) + shmkey

The value of shmkey is set internally and cannot be changed by the user. (The
shmkey value is 52564801 in hexadecimal representation or 1,381,386,241
in decimal.) The value (SERVERNUM * 65,536) is the same as multiplying
SERVERNUM by hexadecimal 10,000.

When more than one database server instance exists on a single computer, the
difference in the key values for any two instances is the difference between
the two SERVERNUM values, multiplied by 65,536.
13-14 Administrator’s Guide for Informix Extended Parallel Server

How Virtual Processors Attach to Shared Memory
When a virtual processor requests that the operating system attach the first
shared-memory segment, it supplies the unique key value to identify the
segment. In return, the operating system passes back a shared-memory segment
identifier associated with the key value. Using this identifier, the virtual
processor requests that the operating system attach the segment of shared
memory to the virtual-processor address space.

Specifying Where to Attach the First Shared-Memory Segment

The SHMBASE parameter in the ONCONFIG file specifies the virtual address
where each virtual processor attaches the first, or base, shared-memory
segment. Each virtual processor attaches to the first shared-memory segment
at the same virtual address. This situation enables all virtual processors
within the same database server instance to reference the same locations in
shared memory without needing to calculate shared-memory addresses. All
shared-memory addresses for an instance of the database server are relative
to SHMBASE.

Warning: Informix recommends that you not attempt to change the value of
SHMBASE.

The value of SHMBASE is sensitive for the following reasons:

■ The specific value of SHMBASE is often computer dependent. It is not
an arbitrary number. Informix selects a value for SHMBASE that
keeps the shared-memory segments safe when the virtual processor
dynamically acquires additional memory space.

■ Different operating systems accommodate additional memory at
different virtual addresses. Some architectures extend the highest
virtual address of the virtual-processor data segment to accom-
modate the next segment. In this case, the data segment might grow
into the shared-memory segment.

■ Some platforms require the user to specify a SHMBASE parameter of
virtual address zero. The zero address informs the UNIX kernel that
the kernel should pick the best address at which to attach the shared-
memory segments. However, not all platforms support this option.
Moreover, on some systems, the selection that the kernel makes
might not be the best selection.
Shared Memory 13-15

How Virtual Processors Attach to Shared Memory
Attaching Additional Shared-Memory Segments

Each virtual processor must attach to the total amount of shared memory that
the database server has acquired. After a virtual processor attaches each
shared-memory segment, it calculates how much shared memory it has
attached and how much remains. The database server facilitates this process
by writing a shared-memory header to the first shared-memory segment.
Sixteen bytes into the header, a virtual processor can obtain the following
data:

■ The total size of shared memory for this database server

■ The size of each shared-memory segment

To attach additional shared-memory segments, a virtual processor requests
them from the operating system in much the same way that it requested the
first segment. For the additional segments, however, the virtual processor
adds 1 to the previous value of shmkey. The virtual processor directs the
operating system to attach the segment at the address that results from the
following calculation:

SHMBASE + (seg_size x number of attached segments)

The virtual processor repeats this process until it has acquired the total
amount of shared memory.

Given the initial key value of (SERVERNUM * 65536) + shmkey, the database
server can request up to 65,536 shared-memory segments before it could
request a shared-memory key value used by another database server instance
on the same computer.
13-16 Administrator’s Guide for Informix Extended Parallel Server

How Virtual Processors Attach to Shared Memory
Defining the Shared-Memory Lower-Boundary Address

If your operating system uses a parameter to define the lower boundary
address for shared memory, and the parameter is set incorrectly, it can
prevent the shared-memory segments from being attached contiguously.

Figure 13-3 illustrates the problem. If the lower-boundary address is less than
the ending address of the previous segment plus the size of the current
segment, the operating system attaches the current segment at a point
beyond the end of the previous segment. This action creates a gap between
the two segments. Because shared memory must be attached to a virtual
processor so that it looks like contiguous memory, this gap creates problems.
The database server receives errors when this situation occurs. To correct the
problem, check the operating-system kernel parameter that specifies the
lower-boundary address or reconfigure the kernel to allow larger shared-
memory segments. For a description of the operating-system kernel
parameter, refer to “Shared-Memory Lower-Boundary Address” on
page 14-6.

Figure 13-3
Shared-Memory
Lower-Boundary

Address Overview

Operating-system memory

Virtual processor

SHMBASE

When lower boundary is too large,
the next segment attaches here.

The next segment of shared
memory should attach here.

Gap

Shared-memory
segment

Shared-memory
segment
Shared Memory 13-17

Resident Shared-Memory Segments
Resident Shared-Memory Segments
The operating system, as it switches between the processes running on the
system, normally swaps the contents of portions of memory to disk. When a
portion of memory is designated as resident, however, it is not swapped to
disk. Keeping frequently accessed data resident in memory improves perfor-
mance because it reduces the number of disk I/O operations that would
otherwise be required to access that data.

The database server requests that the operating system keep the virtual
portions in physical memory when the following two conditions exist:

■ The operating system supports shared-memory residency.

■ The RESIDENT parameter in the ONCONFIG file is set to -1 or a value
that is greater than 0.

Warning: You must consider the use of shared memory by all applications when you
consider whether to set the RESIDENT parameter to -1. Locking all shared memory
for the use of the Informix database server can adversely affect the performance of
other applications, if any, on the same computer.

For more information on the RESIDENT configuration parameter, refer to the
Administrator’s Reference.
13-18 Administrator’s Guide for Informix Extended Parallel Server

Resident Portion of Shared Memory
Resident Portion of Shared Memory
The resident portion of the database server shared memory stores the
following data structures that do not change in size while the database server
is running:

■ Shared-memory header

■ Buffer pool

■ Logical-log buffer

■ Physical-log buffer

■ Lock table

Shared-Memory Header
The shared-memory header contains a description of all other structures in
shared memory, including internal tables and the buffer pool.

The shared-memory header also contains pointers to the locations of these
structures. When a virtual processor first attaches to shared memory, it reads
address information in the shared-memory header for directions to all other
structures.

The size of the shared-memory header is about one kilobyte, but the size
varies depending on the computer platform. You cannot tune the size of the
header.
Shared Memory 13-19

Shared-Memory Buffer Pool
Shared-Memory Buffer Pool
The buffer pool in the resident portion of shared memory contains buffers
that store dbspace pages read from disk. The pool of buffers comprises the
largest allocation of the resident portion of shared memory.

Figure 13-4 illustrates the shared-memory header and the buffer pool.

You specify the number of buffers in the buffer pool with the BUFFERS
parameter in the ONCONFIG file. BUFFERS defaults to 1000 buffers. To
allocate the proper number of buffers, start with at least four buffers per user.
For more than 500 users, the minimum requirement is 2000 buffers. Too few
buffers can severely impact performance, so you must monitor the database
server and tune the value of BUFFERS to determine an acceptable value. For
more information on tuning the number of buffers, refer to your Performance
Guide.

For more information on setting the BUFFERS configuration parameter, refer
to the Administrator’s Reference.

The status of the buffers is tracked through the buffer table. Within shared
memory, buffers are organized into LRU buffer queues. Buffer acquisition is
managed through the use of latches, called mutexes, and lock-access
information.

Figure 13-4
Shared-Memory

Buffer PoolShared-memory
header

Buffer table

Hash table

Buffer pool
13-20 Administrator’s Guide for Informix Extended Parallel Server

Shared-Memory Buffer Pool
For a description of how LRU queues work, refer to “LRU Queues” on
page 13-36. For a description of mutexes, refer to “Mutexes” on page 11-17.

Buffer Overflow to the Virtual Portion

Because the maximum number of buffers in 64-bit addressing can be as large
as 231-1, the resident portion of shared memory might not be able to hold all
of the buffers in a large buffer pool. In this case, the virtual portion of
database server shared memory might hold some of the buffers.

Buffer Size

Each buffer is the size of one database server page. In general, the database
server performs I/O in full-page units, the size of a buffer. The exception is
I/O performed from big buffers. See “Big Buffers” on page 13-30.

The -b option of the onstat utility displays information about the buffers. For
information on onstat, refer to the utilities chapter in the Administrator’s
Reference.

Configurable Page Size

You can use the PAGESIZE parameter to specify a database server page size of
2048, 4096, or 8192 bytes. The -b option of the onstat utility also displays the
database server page size.

If your workload is mostly DSS queries, a larger page size gives you better
performance. If your workload is mostly OLTP, a smaller page size gives you
better performance. For more information about the PAGESIZE parameter, see
the Administrator’s Reference.

The page size affects the calculations for the buffer pool, logical-log buffer,
physical-log buffer, physical-log size, and the maximum logical-log size. For
more information, see the chapter on effects of configuration on memory use
in your Performance Guide.

You can use the -p and -P options of the onstat utility to determine the rate of
buffer pool usage and to optimize the use of memory resident tables, respec-
tively. The onstat -t option enables you to determine which tblspaces are
resident. For information on onstat, refer to the utilities chapter in the Admin-
istrator’s Reference.
Shared Memory 13-21

Logical-Log Buffer
Logical-Log Buffer
The database server uses the logical log to store a record of changes to the
database server data since the last dbspace backup. The logical log stores
records that represent logical units of work for the database server. The
logical log contains the following five types of log records, in addition to
many others:

■ SQL data definition statements for all databases

■ SQL data manipulation statements for databases that were created
with logging

■ Record of a change to the logging status of a database

■ Record of a full or fuzzy checkpoint

■ Record of a change to the configuration

The database server uses only one of the logical-log buffers at a time. This
buffer is the current logical-log buffer. Before the database server flushes the
current logical-log buffer to disk, it makes the second logical-log buffer the
current one so that it can continue writing while the first buffer is flushed. If
the second logical-log buffer fills before the first one finishes flushing, the
third logical-log buffer becomes the current one. This process is illustrated in
Figure 13-5.
13-22 Administrator’s Guide for Informix Extended Parallel Server

Logical-Log Buffer
For a description of how the database server flushes the logical-log buffer,
refer to “Flushing the Logical-Log Buffer” on page 13-52.

The LOGBUFF parameter in the ONCONFIG file specifies the size of the
logical-log buffers. Small buffers can create problems if you store records
larger than the size of the buffers (for example, TEXT or BYTE data in
dbspaces). For the possible values that you can assign to this configuration
parameter, refer to the Administrator’s Reference.

For information on the impact of TEXT and BYTE data on shared memory
buffers, refer to “Buffering Simple-Large-Object Data Types” on page 13-55.

Figure 13-5
The Logical-Log

Buffer and Its
Relation to the

Logical-Log Files
on Disk

Current
logical-log
fileLogical-log

buffer (ready to
accept data)

Logical-log buffers
Writes performed by
user thread

Logical-log
buffer
(flushing)

Current
logical-log
buffer

Free
logical-log
file

Free
logical-log
file
Shared Memory 13-23

Physical-Log Buffer
Physical-Log Buffer
The database server uses the physical-log buffer to hold before-images of
some of the modified dbspace pages. The before-images in the physical log
and the logical-log records enable the database server to restore consistency
to its databases after a system failure.

The physical-log buffer is actually two buffers. Double buffering permits the
database server processes to write to the active physical-log buffer while the
other buffer is being flushed to the physical log on disk. For a description of
how the database server flushes the physical-log buffer, refer to “Flushing the
Physical-Log Buffer” on page 13-46. For information on monitoring the
physical-log file, refer to “Monitoring Physical and Logical Logging
Activity” on page 23-5.

The PHYSBUFF parameter in the ONCONFIG file specifies the size of the
physical-log buffers. A write to the physical-log buffer writes exactly one
page. If the specified size of the physical-log buffer is not evenly divisible by
the page size, the database server rounds the size down to the nearest value
that is evenly divisible by the page size. Although some operations require
the buffer to be flushed sooner, in general the database server flushes the
buffer to the physical-log file on disk when the buffer fills. Thus, the size of
the buffer determines how frequently the database server needs to flush it to
disk. For more information on this configuration parameter, refer to the
Administrator’s Reference.

Lock Table
A lock is created when a user thread writes an entry in the lock table. The lock
table is the pool of available locks. Each entry is one lock. A single transaction
can own multiple locks. For an explanation of locking and the SQL statements
associated with locking, refer to the Informix Guide to SQL: Tutorial. For infor-
mation on performance considerations for locking, refer to your Performance
Guide

The following information, which is stored in the lock table, describes the
lock:

■ The address of the transaction that owns the lock

■ The type of lock (exclusive, update, shared, or intent)

■ The page and rowid that is locked

■ The tblspace where the lock is placed
13-24 Administrator’s Guide for Informix Extended Parallel Server

Virtual Portion of Shared Memory
To specify the number of entries in the lock table, set the LOCKS configuration
parameter. However, the lock table grows dynamically if more locks are
needed. For information on specifying the number of locks available to
sessions, refer to the chapter on configuration parameters in the Adminis-
trator’s Reference. For information on how to estimate the number of locks,
refer to the chapter on configuration effects on memory utilization in your
Performance Guide.

For information on how the lock table grows dynamically and monitoring
locks, refer to the chapter on locking in your Performance Guide.

Virtual Portion of Shared Memory
The virtual portion of shared memory is expandable by the database server
and can be paged out to disk by the operating system. As the database server
executes, it automatically attaches additional operating-system segments, as
needed, to the virtual portion.

Management of the Virtual Portion of Shared Memory
The database server uses memory pools to track memory allocations that are
similar in type and size. Keeping related memory allocations in a pool helps
to reduce memory fragmentation. It also enables the database server to free a
large allocation of memory at one time, as opposed to freeing each piece that
makes up the pool.

All sessions have one or more memory pools. When the database server
needs memory, it looks first in the specified pool. If insufficient memory is
available in a pool to satisfy a request, the database server adds memory from
the system pool. If the database server cannot find enough memory in the
system pool, it dynamically allocates more segments to the virtual portion.
Shared Memory 13-25

Components of the Virtual Portion of Shared Memory
The database server allocates virtual shared memory for each of its
subsystems (session pools, stacks, heaps, control blocks, system catalog, SPL
routine caches, SQL statement cache, sort pools, and message buffers) from
pools that track free space through a linked list. When the database server
allocates a portion of memory, it first searches the pool free-list for a fragment
of sufficient size. If it finds none, it brings new blocks into the pool from the
virtual portion. When memory is freed, it goes back to the pool as a free
fragment and remains there until the pool is destroyed. When the database
server starts a session for a client application, for example, it allocates
memory for the session pool. When the session terminates, the database
server returns the allocated memory as free fragments.

Size of the Virtual Portion of Shared Memory

To specify the initial size of the virtual shared-memory portion, set the
SHMVIRTSIZE parameter in the ONCONFIG file. To specify the size of
segments that are later added to the virtual portion of shared memory, set the
SHMADD parameter in the ONCONFIG file.

For more information on determining the size of virtual shared memory, refer
to “Adding a Segment to the Virtual Portion of Shared Memory” on
page 14-13 and to the SHMVIRTSIZE and SHMADD configuration parameters
in the Administrator’s Reference.

Components of the Virtual Portion of Shared Memory
The virtual portion of shared memory stores the following data:

■ Internal tables

■ Big buffers

■ Session data

■ Thread data (stacks and heaps)

■ Dictionary cache

■ SPL routine cache

■ Sorting pool

■ Global pool
13-26 Administrator’s Guide for Informix Extended Parallel Server

Components of the Virtual Portion of Shared Memory
Shared-Memory Internal Tables

The database server shared memory contains seven internal tables that track
shared-memory resources. The shared-memory internal tables are as follows:

■ Buffer table

■ Chunk table

■ Dbspace table

■ Page-cleaner table

■ Tblspace table

■ Transaction table

■ User table

Buffer Table

The buffer table tracks the addresses and status of the individual buffers in
the shared-memory pool. When a buffer is used, it contains an image of a
data or index page from disk. For more information on the purpose and
content of a disk page, refer to “Pages” on page 15-10.

Each buffer in the buffer table contains the following control information,
which is needed for buffer management:

■ Buffer status

Buffer status is described as empty, unmodified, or modified. An
unmodified buffer contains data, but the data can be overwritten. A
modified, or dirty buffer, contains data that must be written to disk
before it can be overwritten.

■ Current lock-access level

Buffers receive lock-access levels depending on the type of operation
that the user thread is executing. The database server supports two
buffer lock-access levels: shared and exclusive.

■ Threads waiting for the buffer

Each buffer header maintains a list of the threads that are waiting for
the buffer and the lock-access level that each waiting thread requires.

Each database server buffer has one entry in the buffer table.
Shared Memory 13-27

Components of the Virtual Portion of Shared Memory
For information on the database server buffers, refer to “Resident Portion of
Shared Memory” on page 13-19. For information on how to monitor the
buffers, refer to “Monitoring Buffers” on page 14-15.

The database server determines the number of entries in the buffer-table hash
table based on the number of allocated buffers. The maximum number of
hash values is the largest power of 2 that is less than the value of BUFFERS.

Chunk Table

The chunk table tracks all chunks in the database server. If mirroring has been
enabled, a corresponding mirrored chunk table is also created when shared
memory is initialized. The mirrored chunk table tracks all mirrored chunks.

The chunk table in shared memory contains information that enables the
database server to locate chunks on disk. This information includes the
number of the initial chunk and the number of the next chunk in the dbspace.
Flags also describe chunk status: mirror or primary, as well as off-line, on-
line, or recovery mode. For information on monitoring chunks, refer to
“Monitoring Chunks” on page 16-34.

The maximum number of entries in the chunk table might be limited by the
maximum number of file descriptors that your operating system allows per
process. You can usually specify the number of file descriptors per process
with an operating-system kernel-configuration parameter. For details,
consult your operating-system manuals.

Dbspace Table

The dbspace table tracks storage spaces in the database server. The dbspace-
table information includes the following information about each dbspace:

■ Dbspace number

■ Dbspace name and owner

■ Dbspace mirror status (mirrored or not)

■ Date and time that the dbspace was created

For information on monitoring dbspaces, refer to “Monitoring the Database
Server for Disabling I/O Errors” on page 16-32.
13-28 Administrator’s Guide for Informix Extended Parallel Server

Components of the Virtual Portion of Shared Memory
Page-Cleaner Table

The page-cleaner table tracks the state and location of each of the page-
cleaner threads. The number of page-cleaner threads is specified by the
CLEANERS configuration parameter in the ONCONFIG file. For advice on
how many page-cleaner threads to specify, refer to the chapter on configu-
ration parameters in the Administrator’s Reference.

The page-cleaner table always contains 128 entries, regardless of the number
of page-cleaner threads specified by the CLEANERS parameter in the
ONCONFIG file.

For information on monitoring the activity of page-cleaner threads, refer to
the onstat -F option in the utilities chapter of the Administrator’s Reference.

Tblspace Table

The tblspace table tracks all active tblspaces in a database server instance. An
active tblspace is one that is currently in use by a database session. Each
active table accounts for one entry in the tblspace table. Active tblspaces
include database tables, temporary tables, and internal control tables, such as
system catalog tables. Each tblspace table entry includes header information
about the tblspace, the tblspace name, and pointers to the tblspace tblspace
in dbspaces on disk. (The shared-memory active tblspace table is different
from the tblspace tblspace.) For information on monitoring tblspaces, refer to
“Monitoring Tblspaces and Extents” on page 16-38.

The database server manages one tblspace table for each dbspace.

Transaction Table

The transaction table tracks all transactions in the database server.

Tracking information derived from the transaction table appears in the
onstat -x display. For an example of the output that onstat -x displays, refer
to monitoring transactions in your Performance Guide.

The database server automatically increases the number of entries in the
transaction table, up to a maximum of 32,767, based on the number of current
transactions.
Shared Memory 13-29

Components of the Virtual Portion of Shared Memory
For more information on transactions and the SQL statements that you use
with transactions, refer to the Informix Guide to SQL: Tutorial, the Informix
Guide to SQL: Reference, and the Informix Guide to SQL: Syntax.

The transaction table also specifically supports the X/Open environment.
Support for the X/Open environment requires TP/XA. For a description of a
transaction in this environment, refer to the TP/XA Programmer’s Manual.

User Table

The user table tracks all user threads and system threads. Each client session
has one primary thread and zero-to-many secondary threads, depending on
the level of parallelism specified. System threads include one to monitor and
control checkpoints, one to process onmode commands, the B-tree cleaner
thread, and one or more page-cleaner threads.

The database server increases the number of entries in the user table as
needed. You can monitor user threads with the onstat -u command.

Big Buffers

A big buffer is a single buffer that is made up of several pages. The actual
number of pages is platform dependent. The database server allocates big
buffers to improve performance on large reads and writes.

The database server uses a big buffer whenever it writes to disk multiple
pages that are physically contiguous. For example, the database server tries
to use a big buffer to perform a series of sequential reads (light scans) or to
read into shared memory simple large objects that are stored in a dbspace.

For information on monitoring big buffers with the onstat command, refer to
the chapter on configuration effects on I/O activity in your Performance Guide.

Session Data

When a client application requests a connection to the database server, the
database server begins a session with the client and creates a data structure for
the session in shared memory called the session-control block. The session-
control block stores the session ID, the user ID, the process ID of the client, the
name of the host computer, and various status flags.

The database server allocates memory for session data as needed.
13-30 Administrator’s Guide for Informix Extended Parallel Server

Components of the Virtual Portion of Shared Memory
Thread Data

When a client connects to the database server, in addition to starting a
session, the database server starts a primary session thread and creates a
thread-control block for it in shared memory.

The database server also starts internal threads on its own behalf and creates
thread-control blocks for them. When the database server switches from
running one thread to running another one (a context switch), it saves infor-
mation about the thread— such as the register contents, program counter
(address of the next instruction), and global pointers—in the thread-control
block. For more information on the thread-control block and how it is used,
refer to “Context Switching” on page 11-12.

The database server allocates memory for thread-control blocks as needed.

Stacks

Each thread in the database server has its own stack area in the virtual
portion of shared memory. For a description of how threads use stacks, refer
to “Stacks” on page 11-13. For information on how to monitor the size of the
stack for a session, refer to monitoring sessions and threads section in your
Performance Guide.

The size of the stack space for user threads is specified by the STACKSIZE
parameter in the ONCONFIG file. The default size of the stack is 32 kilobytes.
You can change the size of the stack for all user threads, if necessary, by
changing the value of STACKSIZE. For information and a warning on setting
the size of the stack, refer to STACKSIZE in the chapter on configuration
parameters in the Administrator’s Reference.

To alter the size of the stack for the primary thread of a specific session, set
the INFORMIXSTACKSIZE environment variable. The value of
INFORMIXSTACKSIZE overrides the value of STACKSIZE for a particular
user. For information on how to override the stack size for a particular user,
refer to the description of the INFORMIXSTACKSIZE environment variable in
the Informix Guide to SQL: Reference.
Shared Memory 13-31

Components of the Virtual Portion of Shared Memory
To more safely alter the size of stack space, use the INFORMIXSTACKSIZE
environment variable rather than alter the configuration parameter
STACKSIZE. The INFORMIXSTACKSIZE environment variable affects the
stack space for only one user, and it is less likely to affect new client applica-
tions that initially were not measured.

Heaps

Each thread has a heap to hold data structures that it creates while it is
running. A heap is dynamically allocated when the thread is created. The size
of the thread heap is not configurable.

Dictionary Cache

When a session executes an SQL statement that requires access to a system
catalog table, the database server reads the system catalog tables and stores
them in structures that it can access more efficiently. These structures are
created in the virtual portion of shared memory for use by all sessions. These
structures constitute the dictionary cache.

You can configure the size of the dictionary cache with the DD_HASHSIZE and
DD_HASHMAX configuration parameters. For more information about these
parameters, refer to the chapter on configuration effects on memory in your
Performance Guide.

Sorting Memory

The following database operations can use large amounts of the virtual
portion of shared memory to sort data:

■ Decision-support queries that involve joins, groups, aggregates and
sort operations

■ Index builds

■ UPDATE STATISTICS statement in SQL

The amount of virtual shared memory that the database server allocates for
a sort depends on the number of rows to be sorted and the size of the row,
along with other factors.

For information on parallel sorts, refer to your Performance Guide.
13-32 Administrator’s Guide for Informix Extended Parallel Server

Communications Portion of Shared Memory
SPL Routine Cache

When a session needs to access an SPL routine for the first time, the database
server reads the definition from the system catalog tables and stores the
definition in a cache. The database server converts the SPL routine to
executable format and stores the routine in the cache, where it can be
accessed by any session.

You can configure the size of the SPL routine cache with the PC_HASHSIZE
and PC_POOLSIZE configuration parameters. For information about
changing the default size of the SPL routine cache, refer to the chapter on
queries and the query optimizer in your Performance Guide.

Global Pool

The global pool stores structures that are global to the database server. For
example, the global pool contains the message queues where poll threads for
network communications deposit messages from clients. The sqlexec threads
pick up the messages from the global pool and process them.

Communications Portion of Shared Memory
The database server allocates memory for the IPC communication portion of
shared memory if you configure at least one of your connections as an IPC
shared-memory connection. The database server performs this allocation
when you initialize shared memory. The communications portion contains
the message buffers for local client applications that use shared memory to
communicate with the database server.

The size of the communications portion of shared memory equals approxi-
mately 12 kilobytes multiplied by the expected number of connections
needed for shared-memory communications (nettype ipcshm). If nettype
ipcshm is not present, the expected number of connections defaults to 50. For
information about how a client attaches to the communications portion of
shared memory, refer to “How a Client Attaches to the Communications
Portion” on page 13-12.
Shared Memory 13-33

Concurrency Control
Concurrency Control
The database server threads that run on the same virtual processor, and on
separate virtual processors, share access to resources in shared memory.
When a thread writes to shared memory, it uses mechanisms called mutexes
and locks to prevent other threads from simultaneously writing to the same
area. A mutex gives a thread the right to access a shared-memory resource. A
lock prevents other threads from writing to a buffer until the thread that
placed the lock is finished with the buffer and releases the lock.

Shared-Memory Mutexes
The database server uses mutexes to coordinate threads as they attempt to
modify data in shared memory. Every modifiable shared-memory resource is
associated with a mutex. Before a thread can modify a shared-memory
resource, it must first acquire the mutex associated with that resource. After
the thread acquires the mutex, it can modify the resource. When the modifi-
cation is complete, the thread releases the mutex.

If a thread tries to obtain a mutex and finds that it is held by another thread,
the incoming thread must wait for the mutex to be released.

For example, two threads can attempt to access the same slot in the chunk
table, but only one can acquire the mutex associated with the chunk table.
Only the thread that holds the mutex can write its entry in the chunk table.
The second thread must wait for the mutex to be released and then acquire it.

For information on monitoring mutexes (which are also referred to as latches
in the output from the monitoring tools), refer to “Monitoring Latches” on
page 14-22.
13-34 Administrator’s Guide for Informix Extended Parallel Server

Shared-Memory Buffer Locks
Shared-Memory Buffer Locks
A primary benefit of shared memory is the ability of database server threads
to share access to disk pages stored in the shared-memory buffer pool. The
database server maintains thread isolation while it achieves this increased
concurrency through a strategy for locking the data buffers.

Types of Buffer Locks

The database server uses two types of locks to manage access to shared-
memory buffers:

■ Share locks

■ Exclusive locks

Each of these lock types enforces the required level of thread isolation during
execution.

Share Lock

A buffer is in share mode, or has a share lock, if multiple threads have access
to the buffer to read the data but none intends to modify the data.

Exclusive Lock

A buffer is in exclusive mode, or has an exclusive lock, if a thread demands
exclusive access to the buffer. All other thread requests that access the buffer
are placed in the wait queue. When the executing thread is ready to release
the exclusive lock, it wakes the next thread in the wait queue.
Shared Memory 13-35

Database Server Thread Access to Shared Buffers
Database Server Thread Access to Shared Buffers
Database server threads access shared buffers through a system of queues,
using mutexes and locks to synchronize access and protect data.

LRU Queues
Each buffer in the buffer pool is tracked through several linked lists of
pointers to the buffer table. A buffer holds data for the purpose of caching.
These linked lists are the least-recently used (LRU) queues.

The LRUS parameter in the ONCONFIG file specifies the number of LRU
queues to create when database server shared memory is initialized. You can
tune the value of LRUS, combined with the LRU_MIN_DIRTY and
LRU_MAX_DIRTY parameters, to control how frequently the shared-memory
buffers are flushed to disk.

Components of LRU Queue

Each LRU queue is composed of a pair of linked lists, as follows:

■ FLRU (free least-recently used) list, which tracks free or unmodified
pages in the queue

■ MLRU (modified least-recently used) list, which tracks modified
pages in the queue
13-36 Administrator’s Guide for Informix Extended Parallel Server

LRU Queues
The free or unmodified page list is referred to as the FLRU queue of the queue
pair, and the modified page list is referred to as the MLRU queue. The two
separate lists eliminate the need to search a queue for a free or unmodified
page. Figure 13-6 illustrates the structure of the LRU queues.

Pages in Least-Recently Used Order

When the database server processes a request to read a page from disk, it
must decide which page to replace in memory. Rather than select a page
randomly, the database server assumes that recently referenced pages are
more likely to be referenced in the future than pages that it has not referenced
for some time. Thus, rather than replacing a recently accessed page, the
database server replaces a least-recently accessed page. By maintaining
pages in least-recently to most-recently used order, the database server can
easily locate the least-recently used pages in memory.

LRU Queues and Buffer-Pool Management

Before processing begins, all page buffers are empty, and every buffer is
represented by an entry in one of the FLRU queues. The buffers are evenly
distributed among the FLRU queues. To calculate the number of buffers in
each queue, divide the total number of buffers (BUFFERS) by the number of
LRU queues (LRUS).

Figure 13-6
LRU Queue

LRU queue
(composed of two
queues)

Least-recently used <--> most-recently used

FLRU 1

MLRU 1

Pointer to a
modified page

Pointer to an
unmodified page

Pointer to an
empty page
Shared Memory 13-37

LRU Queues
When a user thread needs to acquire a buffer, the database server randomly
selects one of the FLRU queues and uses the oldest or least-recently used entry
in the list. If the least-recently used page can be latched, that page is removed
from the queue.

If the FLRU queue is locked, and the end page cannot be latched, the database
server randomly selects another FLRU queue.

If a user thread is searching for a specific page in shared memory, it obtains
the LRU-queue location of the page from the control information stored in the
buffer table.

After an executing thread finishes its work, it releases the buffer. If the page
has been modified, the buffer is placed at the most-recently used end of an
MLRU queue. If the page was read but not modified, the buffer is returned to
the FLRU queue at its most-recently used end. For information on how to
monitor LRU queues, refer to “Monitoring Buffer-Pool Activity” on
page 14-18.

Number of LRU Queues to Configure

Multiple LRU queues have two purposes:

■ They reduce user-thread contention for the queues.

■ They allow multiple cleaners to flush pages from LRU queues and
maintain the percentage of dirty pages at an acceptable level.

Informix recommends initial values for the LRUS configuration parameter
based on the number of CPUs that are available on your computer or node. If
your computer is a uniprocessor, start by setting LRUS to 4. If your computer
is a multiprocessor, use the following formula:

LRUS = max(4, (NUMCPUVPS))

After you provide an initial value to LRUS, monitor your LRU queues with
onstat -R. If you find that the percent of dirty LRU queues consistently
exceeds the value of the LRU_MAX_DIRTY parameter, increase the value of the
LRUS configuration parameter to add more LRU queues.
13-38 Administrator’s Guide for Informix Extended Parallel Server

LRU Queues
For example, suppose you set LRU_MAX_DIRTY to 70 and find that your LRU
queues are consistently 75 percent dirty. Consider increasing the value of the
LRUS configuration parameter. If you increase the number of LRU queues,
you shorten the length of the queues, thereby reducing the work of the page
cleaners. However, you must allocate a sufficient number of page cleaners
with the CLEANERS configuration parameter, as discussed in the following
section.

Number of Cleaners to Allocate

In general, Informix recommends that you configure one cleaner for each
disk that your applications update frequently. However, you should also
consider the length of your LRU queues and frequency of checkpoints, as
explained in the following paragraphs.

In addition to insufficient LRU queues, another factor that influences whether
page cleaners keep up with the number of pages that require cleaning can
occur if you do not have enough page-cleaner threads allocated. The percent
of dirty pages might exceed LRU_MAX_DIRTY in some queues because no
page cleaners are available to clean the queues. After a while, the page
cleaners might be too far behind to catch up, and the buffer pool becomes
much more dirty than the percent that you specified in LRU_MAX_DIRTY.

For example, suppose that the CLEANERS parameter is set to 8, and you
increase the number of LRU queues from 8 to 12. You can expect little in the
way of a performance gain because the 8 cleaners must now share the work
of cleaning an additional 4 queues. If you increase the number of CLEANERS
to 12, each of the now-shortened queues can be more efficiently cleaned by a
single cleaner.

Setting CLEANERS too low can cause performance to suffer whenever a
checkpoint occurs because page cleaners must flush all modified pages to
disk during checkpoints. If you do not configure a sufficient number of page
cleaners, checkpoints take longer, causing overall performance to suffer.

Number of Pages Added to the MLRU Queues

Periodically, the page-cleaner threads flush the modified buffers in an MLRU
queue to disk. To specify the point at which cleaning begins, use the
LRU_MAX_DIRTY configuration parameter.
Shared Memory 13-39

LRU Queues
By specifying when page cleaning begins, the LRU_MAX_DIRTY configu-
ration parameter limits the number of page buffers that can be appended to
an MLRU queue. The initial setting of LRU_MAX_DIRTY is 60, so page
cleaning begins when 60 percent of the buffers managed by a queue are
modified.

You can set LRU_MAX_DIRTY to values less than 1 for example,.1).

In practice, page cleaning begins under several conditions, only one of which
is when an MLRU queue reaches the value of LRU_MAX_DIRTY. For more
information on how the database server performs buffer-pool flushing, refer
to “Flushing Data to Disk” on page 13-45.

Figure 13-7 shows how the value of LRU_MAX_DIRTY is applied to an LRU
queue to specify when page cleaning begins and thereby limit the number of
buffers in an MLRU queue.

End of MLRU Cleaning

You can also specify the point at which MLRU cleaning can end. The
LRU_MIN_DIRTY configuration parameter specifies the acceptable percent of
buffers in an MLRU queue. The initial setting of LRU_MIN_DIRTY is 50,
meaning that page cleaning is no longer required when 50 percent of the
buffers in an LRU queue are modified. In practice, page cleaning can continue
beyond this point as directed by the page-cleaner threads.

You can set LRU_MIN_DIRTY to values less than 1, for example,.1.

Figure 13-8 shows how the value of LRU_MIN_DIRTY is applied to the LRU
queue to specify the acceptable percent of buffers in an MLRU queue and the
point at which page cleaning ends.

BUFFERS specified as 8000
LRUS specified as 8
LRU_MAX_DIRTY specified as 60

Page cleaning begins when the number of buffers in the MLRU
queue is equal to LRU_MAX_DIRTY.

Buffers per LRU queue = (8000/8) = 1000

Max buffers in MLRU queue and point at which page cleaning
begins: 1000 x 0.60 = 600

Figure 13-7
How

LRU_MAX_DIRTY
Initiates Page

Cleaning to Limit
the Size of the
MLRU Queue
13-40 Administrator’s Guide for Informix Extended Parallel Server

Configuring the Database Server to Read Ahead
For more information on how the database server flushes the buffer pool,
refer to “Flushing Data to Disk” on page 13-45.

Configuring the Database Server to Read Ahead
For sequential table or index scans, you can configure the database server to
read several pages ahead while the current pages are being processed. A
read-ahead enables applications to run faster because they spend less time
waiting for disk I/O.

The database server performs a read-ahead whenever it detects the need for
it during sequential data or index reads.

The RA_PAGES parameter in the ONCONFIG file specifies the number of data
pages to read from the table on disk when the database server performs a
read-ahead.

The RA_THRESHOLD parameter specifies the number of unprocessed data
pages in memory that cause the database server to do another read-ahead.
For example, if RA_PAGES is 10, and RA_THRESHOLD is 4, the database
server reads ahead 10 data pages when 4 pages remain to be processed in the
buffer.

For an example of the output that the onstat -p command produces to enable
you to monitor the database server use of read-ahead, refer to “Monitoring
the Shared-Memory Profile” on page 14-14 and to the utilities chapter in the
Administrator’s Reference.

BUFFERS specified as 8000
LRUS specified as 8
LRU_MIN_DIRTY specified as 50

The acceptable number of buffers in the MLRU queue and
the point at which page cleaning can end is equal
to LRU_MIN_DIRTY.

Buffers per LRU queue = (8000/8) = 1000

Acceptable number of buffers in MLRU queue and the point
at which page cleaning can end: 1000 x .050 = 50

Figure 13-8
How

LRU_MIN_DIRTY
Specifies the Point

at Which Page
Cleaning Can End
Shared Memory 13-41

Database Server Thread Access to Buffer Pages
The IDX_RA_PAGES parameter specifies the number of index pages to read
from disk when the database server does a read-ahead of the index. The
IDX_RA_THRESHOLD parameter specifies the number of unprocessed index
pages in memory that cause the database server to do another read-ahead.

Database Server Thread Access to Buffer Pages
The database server uses shared-lock buffering to allow more than one
database server thread to access the same buffer concurrently in shared
memory. The database server uses two categories of buffer locks to provide
this concurrency without a loss in thread isolation. The two categories of lock
access are share and exclusive. (For more information, refer to “Types of
Buffer Locks” on page 13-35.)

The process of accessing a data buffer consists of the following steps:

1. Identify the data requested by physical page number.

2. Determine the level of lock access needed by the thread for the
requested buffer.

3. Attempt to locate the page in shared memory.

4. If the page is not in shared memory, locate a buffer in an FLRU queue,
and read the page in from disk. If the page is in shared memory,
proceed with step 5.

5. Proceed with processing, locking the buffer if necessary.

6. When finished accessing the buffer, release the lock.

7. Wake waiting threads with compatible lock-access types, if any exist.

Identify the Page

The database server threads request a specific data row, and the database
server searches for the page that contains the row.

Determine the Level of Lock Access

Next the database server determines the requested level of lock access: share
or exclusive.
13-42 Administrator’s Guide for Informix Extended Parallel Server

Database Server Thread Access to Buffer Pages
Try to Locate the Page in Shared Memory

The thread first attempts to locate the requested page in shared memory. To
do this, it acquires a mutex on the hash table that is associated with the buffer
table. Then it searches the hash table to see if an entry matches the requested
page. If the thread finds an entry for the page, it releases the mutex on the
hash table and tries to acquire the mutex on the buffer entry in the buffer
table.

The thread tests the current lock-access level of the buffer. If the levels are
compatible, the requesting thread gains access to the buffer and sets its own
lock. If the current lock-access level is incompatible, the requesting thread
puts itself in the wait queue for the buffer.

The buffer state, unmodified or modified, is irrelevant to locking; even
unmodified buffers can be locked.

If you configure the database server to use read-ahead, the database server
performs a read-ahead request when the number of pages specified by the
RA_THRESHOLD parameter remain to be processed in memory.

Locate a Buffer and Read Page from Disk

If the requested page must be read from disk, the thread first locates a usable
buffer in the FLRU queues. The database server selects an FLRU queue at
random and tries to acquire the mutex associated with the queue. If the
mutex can be acquired, the buffer at the least-recently used end of the queue
is used. If another thread holds the mutex, the first thread tries to acquire the
mutex of another FLRU queue.

If you configure the database server to use read-ahead, the database server
reads the number of pages specified by the RA_PAGES configuration
parameter.

Lock the Buffer If Necessary

After a usable buffer is found, the buffer is temporarily removed from the
FLRU queue. The thread creates an entry in the shared-memory buffer table
as the page is read from disk into the buffer.
Shared Memory 13-43

Database Server Thread Access to Buffer Pages
Release the Buffer Lock and Wake a Waiting Thread

When the thread is finished with the buffer, it releases the buffer lock. If any
threads are waiting for the buffer, it wakes one up. However, this procedure
varies, depending on whether the releasing thread modified the buffer.

When the Buffer Is Not Modified

If a thread does not modify the data, it releases the buffer as unmodified.

The release of the buffer occurs in steps. First, the releasing thread acquires
the mutex on the buffer table that enables it to modify the buffer entry.

Next, it checks if other threads are sleeping, waiting for this buffer. If so, the
releasing thread wakes the first thread in the wait queue that has a
compatible lock-access type. The waiting threads are queued according to
priorities that encompass more than just first-come, first-served hierarchies.
(Otherwise, for example, threads waiting for exclusive access could wait
forever.)

If no thread in the wait queue has a compatible lock-access type, any thread
waiting for that buffer can receive access.

If no thread is waiting for the buffer, the releasing thread tries to release the
buffer to the FLRU queue where it was found. If the latch for that FLRU queue
is unavailable, the thread tries to acquire a latch for a randomly selected FLRU
queue. When the FLRU queue latch is acquired, the unmodified buffer is
linked to the most-recently used end of the queue.

After the buffer is returned to the FLRU queue, or the next thread in the wait
queue is awakened, the releasing thread removes itself from the user list for
the buffer and decrements the shared-user count by one.

When the Buffer Is Modified

If the thread intends to modify the buffer, to update a row in a table, for
example, it acquires the mutex for the buffer and changes the buffer
lock-access type to exclusive.
13-44 Administrator’s Guide for Informix Extended Parallel Server

Flushing Data to Disk
In most cases, a copy of the before-image of the page is needed for data
consistency. If necessary, the thread determines whether a before-image of
this page was written to either the physical-log buffer or the physical log
since the last checkpoint. If not, a copy of the page is written to the physical-
log buffer. Then the data in the page buffer is modified. If any transaction
records are required for logging, those records are written to the logical-log
buffer.

After the mutex for the buffer is released, the thread is ready to release the
buffer. First, the releasing thread acquires the mutex on the buffer table that
enables it to modify the buffer entry. Next, the releasing thread updates the
time stamp in the buffer header so that the time stamp on the buffer page and
the time stamp in the header match. Statistics describing the number and
types of writes performed by this thread are updated.

The lock is released as described in the previous section, but the buffer is
appended to the MLRU queue associated with the original FLRU queue.

Flushing Data to Disk
Writing a buffer to disk is called buffer flushing. When a user thread modifies
data in a buffer, it marks the buffer as dirty. When the database server flushes
the buffer to disk, it subsequently marks the buffer as not dirty and allows the
data in the buffer to be overwritten.

The database server flushes the following buffers:

■ Buffer pool (covered in this section)

■ Physical-log buffer

See “Flushing the Physical-Log Buffer” on page 13-46.

■ Logical-log buffer

See “Flushing the Logical-Log Buffer” on page 13-52.

Page-cleaner threads manage buffer flushing. The database server always
runs at least one page-cleaner thread. If the database server is configured for
more than one page-cleaner thread, the LRU queues are divided among the
page cleaners for more efficient flushing. For information on specifying how
many page-cleaner threads the database server runs, refer to the CLEANERS
configuration parameter in the Administrator’s Reference.
Shared Memory 13-45

Events That Prompt Flushing of Buffer-Pool Buffers
Flushing the physical-log buffer, the modified shared-memory page buffers,
and the logical-log buffer must be synchronized with page-cleaner activity
according to specific rules designed to maintain data consistency.

Events That Prompt Flushing of Buffer-Pool Buffers
Flushing of the buffers is initiated by any one of the following three
conditions:

■ The number of buffers in an MLRU queue reaches the number
specified by LRU_MAX_DIRTY. (See “Flushing the Shared-Memory
Pool Buffer” on page 13-50.)

■ The page-cleaner threads cannot keep up. In other words, a user
thread needs to acquire a buffer, but no unmodified buffers are
available.

■ The database server needs to execute a checkpoint. (See “Check-
points” on page 24-4.)

Flushing Before-Images First
The overriding rule of buffer flushing is that the before-images of modified
pages are flushed to disk before the modified pages themselves.

In practice, the physical-log buffer is flushed first and then the buffers that
contain modified pages. Therefore, even when a shared-memory buffer page
needs to be flushed because a user thread is trying to acquire a buffer, but
none is available (a foreground write), the buffer pages cannot be flushed
until the before-image of the page has been written to disk.

Flushing the Physical-Log Buffer
The database server temporarily stores before-images of some of the
modified disk pages in the physical-log buffer. If the before-image has been
written to the physical-log buffer but not to the physical log on disk, the
physical-log buffer must be flushed to disk before the modified page can be
flushed to disk. This action is required for the fast-recovery feature. Writing
the before-image to the physical log buffer and then flushing the buffer page
to disk is illustrated in Figure 13-9.
13-46 Administrator’s Guide for Informix Extended Parallel Server

Flushing the Physical-Log Buffer
Both the physical-log buffer and the physical log contribute toward
maintaining the physical and logical consistency of the data. For a
description of physical logging, refer to Chapter 22, “Physical Logging.” For
a description of checkpoints and fast recovery, refer to Chapter 24, “Check-
points and Fast Recovery.”

Events That Prompt Flushing of the Physical-Log Buffer

The following four events cause the current physical-log buffer to flush:

■ The current physical-log buffer becomes full.

■ A modified page in shared memory must be flushed, but the
before-image is still in the current physical-log buffer.

■ A full or fuzzy checkpoint occurs.

The contents of the physical-log buffer must always be flushed to disk before
any data buffers. This rule is required for the fast-recovery feature.

The database server uses only one of the two physical-log buffers at a time.
This buffer is the current physical-log buffer. Before the database server
flushes the current physical-log buffer to disk, it makes the other buffer the
current buffer so that it can continue writing while the first buffer is being
flushed.

Figure 13-9
Physical-Log Buffer

and Its Relation to
the Physical Log on

Disk

Physical-log buffers

Writes performed by database
server user thread

Physical-log
buffer

Current
physical log

Physical-log
files
Shared Memory 13-47

Flushing the Physical-Log Buffer
When the Physical-Log Buffer Becomes Full

Buffer flushing that results from the physical-log buffer becoming full
proceeds as follows.

When a user thread needs to write a before-image to the physical-log buffer,
it acquires the mutex associated with the physical-log buffer and the mutex
associated with the physical log on disk. If another thread is writing to the
buffer, the incoming thread must wait for the mutexes to be released.

After the incoming thread acquires the mutexes, but before the write, the
thread checks to see what percent of the physical log is full.

If the Log Is More Than 75 Percent Full

If the physical log is more than 75 percent full, the thread sets a flag to request
a fuzzy checkpoint. Next, the thread claims the amount of space in the buffer
that it needs for its write and releases the buffer mutex so that other threads
can access the buffer. Finally, it copies the data to the space that it claimed in
the buffer. The checkpoint does not begin until all user threads, including this
one, are out of critical sections. For more information on critical sections and
checkpoints, refer to “How the Database Server Achieves Data Consistency”
on page 24-3.

If the Log Is Less Than 75 Percent Full

If the physical log is less than 75 percent full, the thread compares the page
counter in the physical-log buffer header to the buffer capacity. If this one-
page write does not fill the physical-log buffer, the thread reserves space in
the log buffer for the write and releases the mutex. Any thread waiting to
write to the buffer is awakened. After the thread releases the mutex, it writes
the page to the reserved space in the physical-log buffer. The sequence of this
operation increases concurrency and eliminates the need to hold the mutex
during the write.
13-48 Administrator’s Guide for Informix Extended Parallel Server

Synchronizing Buffer Flushing
If this one-page write fills the physical-log buffer, flushing is initiated. First
the page is written to the current physical-log buffer, filling it. Next, the
thread latches the other physical-log buffer. The thread switches the shared-
memory current-buffer pointer, making the newly latched buffer the current
buffer. The mutex on the physical log on disk and the mutex on this new,
current buffer are released, which permits other user threads to begin writing
to the new current buffer. Last, the full buffer is flushed to disk, and the
mutex on the buffer is released.

Each write to the physical-log buffer writes one page.

Synchronizing Buffer Flushing
When shared memory is first initialized, all buffers are empty. As processing
occurs, data pages are read from disk into the buffers, and user threads begin
to modify these pages.

Ensuring That Physical-Log Buffers Are Flushed First

When page cleaning is initiated on the shared-memory buffer pool, the page-
cleaner thread must coordinate the flushing so that the physical-log buffer is
flushed first. Time-stamp comparison determines the order.

The database server stores a time stamp each time that the physical-log buffer
is flushed. If a page-cleaner thread needs to flush a page in a shared-memory
buffer, the page cleaner compares the time stamp in the modified buffer with
the time stamp that indicates the point when the physical-log buffer was last
flushed.

If the time stamp on the page in the buffer pool is equal to or more recent than
the time stamp for the physical-log buffer flush, the before-image of this page
conceivably could be contained in the physical-log buffer. In this case, the
physical-log buffer must be flushed before the shared-memory buffer pages
are flushed.
Shared Memory 13-49

Describing Flushing Activity
Flushing the Shared-Memory Pool Buffer

After the physical-log buffer is flushed, the user thread updates the time
stamp in shared memory that describes the most-recent physical-log buffer
flush. The specific page in the shared-memory buffer pool that is marked for
flushing is now flushed. The number of modified buffers in the queue is
compared to the value of LRU_MIN_DIRTY. If the number of modified buffers
is greater than the value represented by LRU_MIN_DIRTY, another page buffer
is marked for flushing. The time-stamp comparison is repeated. If required,
the physical-log buffer is flushed again.

When no more buffer flushing is required, the page-cleaner threads sleep
until buffer flushing is required again, and they are awakened to do the work.
(For more information, refer to “Sleep Queues” on page 11-15.) You can tune
the page-cleaning parameters (LRU_MIN_DIRTY and LRU_MAX_DIRTY) to
influence the frequency of buffer flushing. For a description of how these
parameters determine when page cleaning begins and ends, refer to “LRU
Queues” on page 13-36.

Describing Flushing Activity
To provide you with information about the specific condition that prompted
buffer-flushing activity, the database server defines three types of writes and
counts how often each write occurs:

■ Foreground write

■ LRU write

■ Chunk write

To display the write counts that the database server maintains, use onstat -F
as described in the utilities chapter of the Administrator’s Reference.

If you implement mirroring for the database server, data is always written to
the primary chunk first. The write is then repeated on the mirrored chunk.
Writes to a mirrored chunk are included in the counts. For more information
on monitoring the types of writes that the database server performs, refer to
“Monitoring Buffer-Pool Activity” on page 14-18.
13-50 Administrator’s Guide for Informix Extended Parallel Server

Describing Flushing Activity
Foreground Write

Whenever an sqlexec thread writes a buffer to disk, it is termed a foreground
write. A foreground write occurs when an sqlexec thread searches through
the LRU queues on behalf of a user but cannot locate an empty or unmodified
buffer. To make space, the sqlexec thread flushes pages, one at a time, to hold
the data to be read from disk. (For more information, refer to “LRU Queues”
on page 13-36.)

If the sqlexec thread must perform buffer flushing just to acquire a shared-
memory buffer, performance can suffer. Foreground writes should be
avoided. To display a count of the number of foreground writes, run
onstat -F. If you find that foreground writes are occurring on a regular basis,
tune the value of the page-cleaning parameters. Either increase the number
of page cleaners or decrease the value of LRU_MAX_DIRTY.

LRU Write

Unlike foreground writes, LRU writes are performed by page cleaners rather
than by sqlexec threads. The database server performs LRU writes as
background writes that typically occur when the percentage of dirty buffers
exceeds the percent you that specified in the LRU_MAX_DIRTY configuration
parameter.

In addition, a foreground write can trigger an LRU write. When a foreground
write occurs, the sqlexec thread that performed the write alerts a page-
cleaner to wake up and clean the LRU for which it performed the foreground
write.

In a properly tuned system, page cleaners ensure that enough unmodified
buffer pages are available for storing pages to be read from disk. Thus,
sqlexec threads that perform a query do not need to flush a page to disk
before they read in the disk pages required by the query. This condition can
result in significant performance gains for queries that do not make use of
foreground writes.

LRU writes are preferred over foreground writes because page-cleaner
threads perform buffer writes much more efficiently than sqlexec threads do.
To monitor both types of writes, use onstat -F.
Shared Memory 13-51

Flushing the Logical-Log Buffer
Chunk Write

Chunk writes are commonly performed by page-cleaner threads during a
checkpoint or, possibly, when every page in the shared-memory buffer pool
is modified. Chunk writes, which are performed as sorted writes, are the
most efficient writes available to the database server.

During a chunk write, each page-cleaner thread is assigned to one or more
chunks. Each page-cleaner thread reads through the buffer headers and
creates an array of pointers to pages that are associated with its specific
chunk. (The page cleaners have access to this information because the chunk
number is contained within the physical page number address, which is part
of the page header.) This sorting minimizes head movement (disk seek time)
on the disk and enables the page-cleaner threads to use the big buffers during
the write, if possible.

In addition, because user threads must wait for the checkpoint to complete,
the page-cleaner threads are not competing with a large number of threads
for CPU time. As a result, the page-cleaner threads can finish their work with
less context switching.

Flushing the Logical-Log Buffer
The database server uses the shared-memory logical-log buffer as temporary
storage for records that describe modifications to database server pages.
From the logical-log buffer, these records of changes are written to the current
logical-log file on disk and eventually to the logical-log backup media. For a
description of logical logging, refer to Chapter 20, “Logical Log.”

Five events cause the current logical-log buffer to flush:

■ The current logical-log buffer becomes full.

■ A transaction is prepared or committed in a database with
unbuffered logging.

■ A nonlogging database session terminates.

■ A checkpoint occurs.

■ A page is modified that does not require a before-image in the
physical log.

The following sections discuss each of these events in detail.
13-52 Administrator’s Guide for Informix Extended Parallel Server

Flushing the Logical-Log Buffer
When the Logical-Log Buffer Becomes Full

When a user thread needs to write records to the logical-log buffer, it acquires
the mutexes associated with the logical-log buffer and the current logical log
on disk. If another thread is writing to the buffer, the incoming thread must
wait for the mutexes to be released.

After the incoming thread acquires the mutexes, but before the write, the
thread checks how much logical-log space is available on disk. When the
logical-log space on disk is full, and the database server switches to a new
logical log, it checks if the percent of used log space is greater than the long-
transaction high-water mark, specified by the LTXHWM parameter in the
ONCONFIG file. For a description of this configuration parameter and infor-
mation on specifying a value for it, refer to the Administrator’s Reference.

If no long-transaction condition exists, the logical-log I/O thread compares
the available space in the logical-log buffer with the size of the record to be
written. If the write does not fill the logical-log buffer, the thread writes the
record, releases latches, and awakens any threads that are waiting to write to
the buffer.

If the write fills the logical-log buffer, flushing is initiated as follows:

1. The thread latches the next logical-log buffer. The thread then
switches the shared-memory current-buffer pointer, making the
newly latched buffer the current buffer.

2. The thread writes the new record to the new current buffer. The
thread releases the latch on the logical log on disk and the latch on
this current buffer, permitting other logical-log I/O threads to begin
writing to this buffer.

3. The full logical-log buffer is flushed to disk, and the latch on the
buffer is released. This logical-log buffer is now available for reuse.
Shared Memory 13-53

Flushing the Logical-Log Buffer
After a Transaction Is Prepared or Terminated in a Database with
Unbuffered Logging

If a transaction is prepared or terminated in a database with unbuffered
logging, the logical-log buffer is immediately flushed. Flushing might cause
a waste of some disk space. Typically, many logical-log records are stored on
a single page. However, because the logical-log buffer is flushed in whole
pages, the whole page is flushed even if only one transaction record is stored
on the page. In the worst case, a single COMMIT logical-log record (COMMIT
WORK) could occupy a page on disk, and all remaining space on the page
would be unused. However, the cost in disk space of using unbuffered
logging is minor compared to the benefits of insured data consistency.

The following log records cause flushing of the logical-log buffers in a
database with unbuffered logging:

■ COMMIT

■ PREPARE

■ XPREPARE

■ ENDTRANS

For a comparison of buffered versus unbuffered logging, refer to the SET LOG
statement in the Informix Guide to SQL: Syntax.

When a Session That Uses Nonlogging Databases or Unbuffered
Logging Terminates

Even for nonlogging databases, the database server logs certain activities that
alter the database schema, such as the creation of tables or extents. When the
database server terminates sessions that use unbuffered logging or
nonlogging databases, the logical-log buffer is flushed to make sure that any
logging activity is recorded.

When a Checkpoint Occurs

For a detailed description of the events that occur during a checkpoint, refer
to “Checkpoints” on page 24-4.
13-54 Administrator’s Guide for Informix Extended Parallel Server

Buffering Simple-Large-Object Data Types
When a Page Is Modified That Does Not Require a Before-Image in the
Physical-Log File

When a page is modified that does not require a before-image in the physical
log, the logical-log buffer must be flushed before that page is flushed to disk.

Blobpages are allocated and tracked with the free-map page. Links that
connect the blobpages and pointers to the next blobpage segments are
created as needed.

A record of the operation (insert, update, or delete) is written to the
logical-log buffer.

Buffering Simple-Large-Object Data Types
TEXT and BYTE data types pass through the buffer pool if the table is a
logging table.

For SELECT, INSERT, UPDATE, and DELETE operations, the database server
writes TEXT and BYTE data to disk pages in a dbspace in the same way that it
writes any other data type. For more information, refer to “Flushing Data to
Disk” on page 13-45.

When you load with external tables, the TEXT and BYTE data can be in two
different formats:

■ Informix internal format

For Informix internal format, the database server places simple large
objects after the row rather than in it.

■ Delimited format

For delimited format, the simple large objects are embedded within
the row. When loaded from a pipe, the data might be staged to a
temporary area on disk because it does not fit into the buffer pool.

For more information, refer to the loading with external tables chapter in the
Administrator’s Reference.
Shared Memory 13-55

Blobpages Do Not Pass Through Shared Memory
Blobpages Do Not Pass Through Shared Memory
Blobpages store large amounts of data. Consequently, the database server
does not create or access blobpages by way of the shared-memory buffer
pool, and it does not write blobpages to either the logical or physical logs.

If blobpage data passed through the shared-memory pool, it has the potential
to dilute the effectiveness of the pool by driving out index pages and data
pages. Instead, blobpage data is written directly to disk when it is created.

To reduce logical-log and physical-log traffic, the database server writes
blobpages from magnetic media to dbspace backup tapes and logical-log
backup tapes in a different way than it writes dbspace pages. For a
description of how dbspaces are logged, refer to “Dbspace Logging” on
page 20-21.

TEXT and BYTE Objects Are Created Before the Data Row Is
Inserted
When TEXT or BYTE data is written to disk, the row to which it belongs might
not exist yet. During an insert, for example, the TEXT or BYTE data is trans-
ferred before the rest of the row data. After the TEXT or BYTE object is stored,
the data row is created with a 56-byte descriptor that points to its location.
For a description of how TEXT and BYTE data types are stored physically,
refer to the section on the structure of a dbspace blobpage in the disk storage
and structure chapter of the Administrator’s Reference.

Tracking Blobpages
Blobpages are allocated and tracked using the free-map page. Links that
connect the blobpages and pointers to the next blobpage segments are
created as needed.

A record of the operation (insert, update, or delete) is written to the
logical-log buffer.
13-56 Administrator’s Guide for Informix Extended Parallel Server

Memory Use on 64-Bit Platforms
Memory Use on 64-Bit Platforms
Because 64-bit platforms allow for larger memory-address space, the
maximum values for the following memory-related configuration param-
eters are larger on 64-bit platforms:

■ BUFFERS

■ CLEANERS

■ DS_MAX_QUERIES

■ DS_TOTAL_MEMORY

■ LOCKS

■ LRUS

■ SHMADD

■ SHMVIRTSIZE

The following configuration parameters allow noninteger values on 64-bit
platforms:

■ LRU_MAX_DIRTY

■ LRU_MIN_DIRTY

For more information about the minimum and maximum values for these
parameters, consult your Administrator’s Reference.
Shared Memory 13-57

14
Chapter
Managing Shared Memory
In This Chapter . 14-3

Setting Operating-System Shared-Memory Configuration Parameters . 14-4
Maximum Shared-Memory Segment Size 14-5
Maximum Number of Shared-Memory Identifiers. 14-5
Shared-Memory Lower-Boundary Address 14-6
Maximum Amount of Shared Memory for One Process 14-6

Setting Database Server Shared-Memory Configuration Parameters . . 14-7
Setting Parameters for Resident Shared Memory with a Text Editor. 14-7
Setting Parameters for Virtual Shared Memory with a Text Editor . 14-8
Setting Parameters for Shared-Memory Performance Options with a

Text Editor 14-9

Reinitializing Shared Memory 14-11

Turning Residency On or Off for Resident Shared Memory 14-11
Turning Residency On or Off in On-Line Mode 14-12
Turning Residency On or Off for the Next Time You Reinitialize Shared

Memory . 14-12

Adding a Segment to the Virtual Portion of Shared Memory 14-13

14-2 Ad
Monitoring Shared Memory 14-13
Monitoring Shared-Memory Segments 14-13
Monitoring the Shared-Memory Profile 14-14

Using Command-Line Utilities 14-14
Using SMI Tables 14-15

Monitoring Buffers 14-15
Using Command-Line Utilities 14-15
Using SMI Tables 14-18

Monitoring Buffer-Pool Activity 14-18
Using Command-Line Utilities 14-19
Using SMI Tables 14-21

Monitoring Latches 14-22
Using Command-Line Utilities 14-22
Using SMI Tables 14-23
ministrator’s Guide for Informix Extended Parallel Server

In This Chapter
This chapter tells you how to perform tasks related to managing the use of
shared memory with the database server. It assumes you are familiar with the
terms and concepts in Chapter 13, “Shared Memory.”

This chapter describes how to perform the following tasks:

■ Set the shared-memory configuration parameters

■ Reinitialize shared memory

■ Turn residency on or off for the resident portion of the database
server shared memory

■ Add a segment to the virtual portion of shared memory

■ Monitor shared memory

This chapter does not cover the DS_TOTAL_MEMORY configuration
parameter. This parameter places a ceiling on the allocation of memory for
decision-support queries. For information on this parameter, refer to your
Performance Guide.

Each coserver has its own shared memory. The shared memory as discussed
in this chapter is for an individual coserver.
Managing Shared Memory 14-3

Setting Operating-System Shared-Memory Configuration Parameters
Setting Operating-System Shared-Memory
Configuration Parameters
Several operating-system configuration parameters can affect the use of
shared memory by the database server.Parameter names are not provided
because names vary among platforms, and not all parameters exist on all
platforms. The following list describes these parameters by function:

■ Maximum operating-system shared-memory segment size,
expressed in bytes or kilobytes

■ Minimum shared-memory segment size, expressed in bytes

■ Maximum number of shared-memory identifiers

■ Lower-boundary address for shared memory

■ Maximum number of attached shared-memory segments per
process

■ Maximum amount of systemwide shared memory

■ Maximum number of semaphore identifiers

■ Maximum number of semaphores

■ Maximum number of semaphores per identifier

On UNIX, the machine notes file contains recommended values that you use
to configure operating-system resources. Use these recommended values
when you configure the operating system. For information on how to set
these operating-system parameters, consult your operating-system manuals.

For specific information about your operating-system environment, refer to
the machine notes file that is provided with the database server. For more
information about the machine notes file, refer to “Documentation Notes,
Release Notes, Machine Notes” on page 12 in the Introduction. ♦
14-4 Administrator’s Guide for Informix Extended Parallel Server

Maximum Shared-Memory Segment Size
Maximum Shared-Memory Segment Size
When the database server creates the required shared-memory segments, it
attempts to acquire as large an operating-system segment as possible. The
first segment size that the database server tries to acquire is the size of the
portion that it is allocating (resident, virtual, or communications), rounded
up to the nearest multiple of 8 kilobytes.

The database server receives an error from the operating system if the
requested segment size exceeds the maximum size allowed. If the database
server receives an error, it divides the requested size by two and tries again.
Attempts at acquisition continue until the largest segment size that is a
multiple of 8 kilobytes can be created. Then the database server creates as
many additional segments as it requires.

Maximum Number of Shared-Memory Identifiers
Shared-memory identifiers affect the database server operation when a
virtual processor attempts to attach to shared memory. The operating system
identifies each shared-memory segment with a shared-memory identifier.
For most operating systems, virtual processors receive identifiers on a first-
come, first-served basis, up to the limit that is defined for the operating system
as a whole. For more information about shared-memory identifiers, refer to
“How Virtual Processors Attach to Shared Memory” on page 13-13.

You might be able to calculate the maximum amount of shared memory that
the operating system can allocate by multiplying the number of
shared-memory identifiers by the maximum shared-memory segment size.
Managing Shared Memory 14-5

Shared-Memory Lower-Boundary Address
Shared-Memory Lower-Boundary Address
When the database server attaches shared-memory segments subsequent to
the first segment, it assumes that the segment can be attached contiguous
with the previous one; that is, that a segment can be attached at the address
of the previous segment plus the size of that segment. However, your
operating system might set a parameter that defines a lower-boundary
address for attaching shared-memory segments. If the size of a segment
would cause it to cross the lower-boundary address, the segment is attached
at a point beyond the end of the previous segment, creating a gap between
shared-memory segments. For an illustration of this situation, refer to “How
Virtual Processors Attach to Shared Memory” on page 13-13.

Maximum Amount of Shared Memory for One Process
Check that the maximum amount of memory that can be allocated for one
process is equal to the total addressable shared-memory size for a single
operating-system process. The following equation expresses the concept
another way:

Maximum amount of shared memory for one process =
(Maximum number of attached shared-memory segments per
process) x (Maximum shared-memory segment size)

If this relationship does not hold, one of two undesirable situations could
develop:

■ If the total amount of shared memory is less than the total addres-
sable shared-memory size, you can address more shared memory for
the operating system than is available.

■ If the total amount of shared memory is greater than the total
addressable size of shared memory, you can never address some
amount of shared memory that is available. That is, space that could
potentially be used as shared memory cannot be allocated.
14-6 Administrator’s Guide for Informix Extended Parallel Server

Setting Database Server Shared-Memory Configuration Parameters
Setting Database Server Shared-Memory
Configuration Parameters
Shared-memory configuration parameters fall into the following categories
based on their purposes:

■ Parameters that affect the resident portion of shared memory

■ Parameters that affect the virtual portion of shared memory

■ Parameters that affect performance

You can set shared-memory configuration parameters using a text editor. You
must be root or user informix.

Before any changes that you make to the configuration parameters take
effect, you must reinitialize shared memory by stopping and starting the
database server.

Setting Parameters for Resident Shared Memory with a
Text Editor
You can use a text editor to set shared-memory configuration parameters at
any time. Use the editor to locate the parameter in the ONCONFIG file, enter
the new value or values, and rewrite the file to disk. Before the changes take
effect, however, you must reinitialize shared memory.
Managing Shared Memory 14-7

Setting Parameters for Virtual Shared Memory with a Text Editor
Figure 14-1 lists the parameters in the ONCONFIG file that specify the config-
uration of the buffer pool and the internal tables in the resident portion of
shared memory. For a description of the configuration parameters, refer to
the Administrator’s Reference.

Figure 14-1
Configuring the Resident Portion of Shared Memory

Setting Parameters for Virtual Shared Memory with a Text
Editor
You can use a text editor at any time to set the virtual shared-memory config-
uration parameters. Use the editor to locate the parameter in the file, enter the
new value or values, and rewrite the file to disk.

Figure 14-2 lists the ONCONFIG parameters that you use to configure the
virtual portion of shared memory. For more information, see the chapter on
configuration effects on memory in your Performance Guide.

ONCONFIG
Parameter Purpose

BUFFERS Specifies the maximum number of shared-memory buffers

ISOLATION_LOCKS Specifies the maximum number of rows that can be locked on
a single scan when Cursor Stability isolation level is in effect.
For performance considerations when using this
ISOLATION_LOCKS parameter, refer to your Performance Guide.

LOCKS Specifies the initial number of locks for database objects; for
example, rows, key values, pages, and tables

LOGBUFF Specifies the size of the logical-log buffers

PHYSBUFF Specifies the size of the physical-log buffers

RESIDENT Specifies residency for the resident portion of the database
server shared memory

SERVERNUM Specifies a unique identification number for the database
server on the local host computer

SHMTOTAL Specifies the total amount of memory to be used by the
database server
14-8 Administrator’s Guide for Informix Extended Parallel Server

Setting Parameters for Shared-Memory Performance Options with a Text Editor
Figure 14-2
 Configuring the Virtual Portion of Shared Memory

Setting Parameters for Shared-Memory Performance
Options with a Text Editor
You can use a text editor to set ONCONFIG parameters at any time. To change
one of the configuration parameters that set shared-memory performance
options, use the text editor to locate the parameter in the file, enter the new
value or values, and rewrite the file to disk. The changes that you make do
not take effect until you reinitialize shared memory.

Figure 14-3 on page 14-10 lists the ONCONFIG parameters that set shared-
memory performance options. For more information, see the chapter on
configuration parameters in the Administrator’s Reference.

ONCONFIG
Parameter Purpose

PC_POOLSIZE Specifies the number of SPL routines that can be stored in the
SPL routine cache.

PC_HASHSIZE Specifies the number of hash buckets in the SPL routine
cache.

SHMVIRTSIZE Specifies the initial size of the virtual portion of shared
memory

STACKSIZE Specifies the stack size for the database server user threads

SHMADD Specifies the size of dynamically added shared-memory
segments

SHMTOTAL Specifies the total amount of memory to be used by the
database server
Managing Shared Memory 14-9

Setting Parameters for Shared-Memory Performance Options with a Text Editor
Figure 14-3
Setting Shared-Memory Performance Options

ONCONFIG
Parameter Purpose

CKPTINTVL Specifies the maximum number of seconds that can elapse
before the database server checks if a checkpoint is needed

CLEANERS Specifies the number of page-cleaner threads that the
database server is to run

LRU_MAX_DIRTY Specifies the percentage of modified pages in the LRU
queues that flags page cleaning to start

LRU_MIN_DIRTY Specifies the percentage of modified pages in the LRU
queues that flags page cleaning to stop

LRUS Specifies the number of LRU queues for the shared-memory
buffer pool

RA_PAGES Specifies the number of disk pages that the database server
should attempt to read ahead when it performs sequential
scans of data or index records

RA_THRESHOLD Specifies the number of unprocessed memory pages that,
after they are read, cause the database server to read ahead
on disk

IDX_RA_PAGES Specifies the number of disk pages that the database server
should attempt to read ahead when it performs sequential
scans of index records

IDX_RA_THRESHOLD Specifies the number of unprocessed memory pages that,
after they are read, cause the database server to read ahead
more index pages on disk
14-10 Administrator’s Guide for Informix Extended Parallel Server

Reinitializing Shared Memory
Reinitializing Shared Memory
The database server reinitializes shared memory when you take the database
server from off-line mode to quiescent mode or when you take it from off-line
mode directly to on-line mode. To reinitialize shared memory, first bring the
database server off-line. After the database server is off-line, bring it to
quiescent mode or on-line mode to reinitialize shared memory. For infor-
mation on how to take the database server from on-line mode to off-line, refer
to Chapter 9, “Managing Database Server Operating Modes.”

Turning Residency On or Off for Resident Shared
Memory
You can turn residency on or off for the resident portion of shared memory in
either of the following two ways:

■ Use the onmode utility to reverse the state of shared-memory
residency immediately while the database server is in on-line mode.

■ Change the RESIDENT parameter in the ONCONFIG file to turn
shared-memory residency on or off for the next time that you
initialize the database server shared memory.

For a description of the resident portion of shared memory, refer to “Resident
Portion of Shared Memory” on page 13-19.
Managing Shared Memory 14-11

Turning Residency On or Off in On-Line Mode
Turning Residency On or Off in On-Line Mode
To turn residency on or off while the database server is in on-line mode, use
the onmode utility.

To turn on residency immediately for the resident portion of shared memory,
execute the following command:

% onmode -r

To turn off residency immediately for the resident portion of shared memory,
execute the following command:

% onmode -n

These commands do not change the value of the RESIDENT parameter in the
ONCONFIG file. That is, this change is not permanent, and residency reverts
to the state specified by the RESIDENT parameter the next time that you
initialize shared memory. You cannot use the onmode -r command to turn
residency on or off unless the RESIDENT parameter is set in your ONCONFIG
file when you initialize the database server memory.

On UNIX, you must be root or user informix to turn residency on or off. On
Windows NT, you must be a user in the Informix Admin group to turn
residency on or off.

Turning Residency On or Off for the Next Time You
Reinitialize Shared Memory
You can use a text editor to turn residency on or off for the next time that you
reinitialize shared memory. To change the current state of residency, use a text
editor to locate the RESIDENT parameter. Set RESIDENT to 1 to turn residency
on or to 0 to turn residency off, and rewrite the file to disk. Before the changes
take effect, you must reinitialize shared memory.
14-12 Administrator’s Guide for Informix Extended Parallel Server

Adding a Segment to the Virtual Portion of Shared Memory
Adding a Segment to the Virtual Portion of Shared
Memory
The -a option of the onmode utility allows you to add a segment of specified
size to virtual shared memory.

You do not normally need to add segments to virtual shared memory because
the database server automatically adds segments as needed.

The option to add a segment with the onmode utility is useful if the number
of operating-system segments is limited, and the initial segment size is so
low, relative to the amount that is required, that the operating-system limit of
shared-memory segments is nearly exceeded.

Monitoring Shared Memory
This section describes how to monitor shared-memory segments, the shared-
memory profile, and the use of specific shared-memory resources (buffers,
latches, and locks).

You can use the onstat -o utility to capture a static snapshot of database
server shared memory for later analysis and comparison.

Monitoring Shared-Memory Segments
Monitor the shared-memory segments to determine the number and size of
the segments that the database server creates. The database server allocates
shared-memory segments dynamically, so these numbers can change. If the
database server is allocating too many shared-memory segments, you can
increase the SHMVIRTSIZE configuration parameter. For more information,
see the chapter on configuration parameters in the Administrator’s Reference.
Managing Shared Memory 14-13

Monitoring the Shared-Memory Profile
The onstat -g seg command lists information for each shared-memory
segment, including the address and size of the segment. Figure 14-4 shows
sample output.

Monitoring the Shared-Memory Profile
Monitor the database server profile to analyze performance and the use of
shared-memory resources. The Profile screen maintains cumulative statistics
on shared-memory use. To reset these statistics to zero, use the onstat -z
option.

Using Command-Line Utilities

Execute onstat -p to display statistics on database server activity. Figure 14-5
shows these statistics.

The onstat -p output contains several fields that are not included in the infor-
mation that the ON-Monitor Profile option displays. For a description of all
the fields that onstat displays, see the utilities chapter in the Administrator’s
Reference.

Segment Summary:
 (resident segments are not locked)
id key addr size ovhd class blkused blkfree
300 1381386241 400000 614400 800 R 71 4
301 1381386242 496000 4096000 644 V 322 178

Figure 14-4
onstat -g seg Output

Profile
dskreads pagreads bufreads %cached dskwrits pagwrits bufwrits %cached
382 400 14438 97.35 381 568 3509 89.14

isamtot open start read write rewrite delete commit rollbk
9463 1078 1584 2316 909 162 27 183 1

ovlock ovuserthread ovbuff usercpu syscpu numckpts flushes
0 0 0 13.55 13.02 5 18

bufwaits lokwaits lockreqs deadlks dltouts ckpwaits compress seqscans
14 0 16143 0 0 0 101 68

ixda-RA idx-RA da-RA RA-pgsused lchwaits
5 0 204 148 12

Figure 14-5
onstat -p Output
14-14 Administrator’s Guide for Informix Extended Parallel Server

Monitoring Buffers
Using SMI Tables

Query the sysprofile table to obtain shared-memory statistics. This table
contains all of the statistics available in onstat -p output except the ovbuff,
usercpu, and syscpu statistics.

Monitoring Buffers
You can obtain both statistics on buffer use and information on specific
buffers.

The statistical information includes the percentage of data writes that are
cached to buffers and the number of times that threads had to wait to obtain
a buffer. The percentage of writes cached is an important measure of perfor-
mance. (For information on how to use this statistic to tune the database
server, see your Performance Guide.) The number of waits for buffers gives a
measure of system concurrency.

Information on specific buffers includes a listing of all the buffers in shared
memory that are held by a thread. This information allows you to track the
status of a particular buffer. For example, you can determine if another thread
is waiting for the buffer.

Using Command-Line Utilities

You can use the following command-line utilities to monitor buffers:

■ onstat -p

■ onstat -B

■ onstat -b

■ onstat -X
Managing Shared Memory 14-15

Monitoring Buffers
onstat -p

Execute onstat -p to obtain statistics about cached reads and writes. The
following caching statistics appear in four fields on the top row of the output
display:

■ The number of reads from shared-memory buffers (bufreads)

■ The percentage of reads cached (%cached)

■ The number of writes to shared memory (bufwrits)

■ The percentage of writes cached (%cached)

Figure 14-6 shows these fields.

The number of reads or writes can appear as a negative number if the number
of occurrences exceeds 232.

The onstat -p option also displays a statistic (bufwaits) that indicates the
number of times that sessions had to wait for a buffer.

onstat -B

Execute onstat -B to obtain the following buffer information:

■ Address of every regular shared-memory buffer

■ Page numbers for all pages that remain in shared memory

■ Address of the thread that currently holds the buffer

■ Address of the first thread that is waiting for each buffer

Profile
dskreads pagreads bufreads %cached dskwrits pagwrits bufwrits %cached
382 400 14438 97.35 381 568 3509 89.14
...

Figure 14-6
Cached Read and
Write Statistics in

the onstat -p Output
14-16 Administrator’s Guide for Informix Extended Parallel Server

Monitoring Buffers
Figure 14-7 shows an example of onstat -B output.

onstat -b

Execute onstat -b to obtain the following information about each buffer:

■ Address of each buffer currently held by a thread

■ Page numbers for the page held in the buffer

■ Type of page held in the buffer (for example, data page, tblspace
page, and so on)

■ Type of lock placed on the buffer (exclusive or shared)

■ Address of the thread that is currently holding the buffer

■ Address of the first thread that is waiting for each buffer

You can compare the addresses of the user threads to the addresses that
appear in the onstat -u display to obtain the session ID number. Figure 14-8
shows sample output. For more information on the fields that onstat
displays, see the utilities chapter of the Administrator’s Reference.

Buffers
address userthread flgs pagenum memaddr nslots pgflgs xflgs owner waitlist
849ae8 0 86 100955 84e000 1 b0 0 0 0
849b40 0 6 10095b 84e800 0 4 0 0 0
849b98 0 6 1009eb 84f000 0 4 0 0 0
849bf0 0 6 1008f5 84f800 2 70 0 0 0
...

84dea0 0 86 10093e 8b0800 8 1 0 0 0
84def8 0 6 10094b 8b1000 0 4 0 0 0
84df50 0 86 1009cd 8b1800 9 b0 0 0 0
0 modified, 200 total, 256 hash buckets, 2048 buffer size

Figure 14-7
onstat -B Output

Buffers
address userthread flgs pagenum memaddr nslots pgflgs xflgs owner waitlist
84a748 0 27 1012b0 860000 19 2001 80 8067c4 0
84add0 0 0 101752 869800 19 2001 80 807890 0
84b2a0 0 27 100c31 870800 19 2001 80 8067c4 0
84c798 0 27 10108e 88f000 19 2001 80 8067c4 0
84d818 0 27 101272 8a7000 19 2001 80 8067c4 0
154 modified, 200 total, 256 hash buckets, 2048 buffer size

Figure 14-8
onstat -b Output
Managing Shared Memory 14-17

Monitoring Buffer-Pool Activity
onstat -X

Execute onstat -X to obtain the same information as for onstat -b, along with
the complete list of all threads that are waiting for buffers, not just the first
waiting thread.

Using SMI Tables

Query the sysprofile table to obtain statistics on cached reads and writes and
total buffer waits. The following rows are relevant.

Monitoring Buffer-Pool Activity
You can obtain statistics that relate to buffer availability as well as
information on the buffers in each LRU queue.

The statistical information includes the number of times that the database
server attempted to exceed the maximum number of buffers and the number
of writes to disk (categorized by the event that caused the buffers to flush).
These statistics help you determine if the number of buffers is appropriate.
For information on tuning database server buffers, see your Performance
Guide.

Information on the buffers in each LRU queue consists of the length of the
queue and the percentage of the buffers in the queue that have been
modified.

Row Description

dskreads Number of reads from disk

bufreads Number of reads from buffers

dskwrites Number of writes to disk

bufwrites Number of writes to buffers

buffwts Number of times that any thread had to wait for a buffer
14-18 Administrator’s Guide for Informix Extended Parallel Server

Monitoring Buffer-Pool Activity
Using Command-Line Utilities

You can use the onstat command-line utility to obtain information on buffer-
pool activity. For more information about the onstat options, refer to the
utilities chapter of the Administrator’s Reference.

onstat -p

The onstat -p output contains a statistic (ovbuff) that indicates the number of
times the database server attempted to exceed the maximum number of
shared buffers specified by the BUFFERS parameter in the ONCONFIG file.
Figure 14-9 shows onstat -p output, including the ovbuff field.

onstat -F

Execute onstat -F to obtain a count by write type of the writes performed.
(For an explanation of the different write types, see “Describing Flushing
Activity” on page 13-50.) Figure 14-10 on page 14-20 shows an example of the
output. This information tells you when and how the buffers are flushed.

The onstat -F command displays totals for the following write types:

■ Foreground write

■ LRU write

■ Chunk write

...

ovtbls ovlock ovuserthread ovbuff usercpu syscpu numckpts flushes
0 0 0 0 13.55 13.02 5 18
...

Figure 14-9
onstat -p Output
Showing ovbuff

Field
Managing Shared Memory 14-19

Monitoring Buffer-Pool Activity
The onstat -F command also lists the following information about the page
cleaners:

■ Page-cleaner number

■ Page-cleaner shared-memory address

■ Current state of the page cleaner

■ LRU queue to which the page cleaner was assigned

Figure 14-10 shows an example of the onstat -F output.

onstat -R

Execute onstat -R to obtain information about the number of buffers in each
LRU queue and the number and percentage of the buffers that are modified
or free. Figure 14-11 shows an example of onstat -R output.

...

Fg Writes LRU Writes Chunk Writes
0 146 140

address flusher state data
8067c4 0 I 0 = 0X0

states: Exit Idle Chunk Lru

Figure 14-10
onstat -F Output
14-20 Administrator’s Guide for Informix Extended Parallel Server

Monitoring Buffer-Pool Activity
Using SMI Tables

Query the sysprofile table to obtain the statistics on write types that are held
in the following rows.

8 buffer LRU queue pairs
f/m length % of pair total
 0 f 3 37.5% 8
 1 m 5 55.6%
 2 f 5 45.5% 11
 3 m 6 54.5%
 4 f 2 18.2% 11
 5 m 9 81.8%
 6 f 5 50.0% 10
 7 m 5 55.6%
 8 F 5 50.0% 10
 9 m 5 45.5%
10 f 0 0.0% 10
11 m 10 100.0%
12 f 1 11.1% 9
13 m 8 88.9%
14 f 2 28.6% 7
15 m 5 71.4%
53 dirty, 76 queued, 80 total, 128 hash buckets, 2048 buffer size
start clean at 60% (of pair total) dirty, or 6 buffs dirty, stop at 50%

Figure 14-11
onstat -R Output

Row Description

fgwrites Number of foreground writes

lruwrites Number of LRU writes

chunkwrites Number of chunk writes
Managing Shared Memory 14-21

Monitoring Latches
Monitoring Latches
You can obtain statistics on latch use and information on specific latches.

The statistics include the number of requests for latches and the number of
times that threads had to wait to obtain a latch. These statistics provide a
measure of the system activity.

Information on specific latches includes a listing of all the latches that are
held by a thread and any threads that are waiting for latches. This
information allows you to locate any specific resource contentions that exist.

Using Command-Line Utilities

You can use the following command-line utilities to obtain information about
latches.

onstat -p

Execute onstat -p to obtain the values in the fields lchreqs and lchwaits.
These fields store the number of requests for a latch and the number of times
that a thread was required to wait for a shared-memory latch. A large number
of latch waits typically results from a high volume of processing activity in
which the database server is logging most of the transactions. (The adminis-
trator cannot configure or tune the number of latches; the database server sets
this function internally.) Figure 14-12 shows onstat -p output, including the
lchreqs and lchwaits fields.

...

ixda-RA idx-RA da-RA RA-pgsused lchreqs lchwaits
5 0 204 148 151762 12

Figure 14-12
onstat -p Output

Showing lchwaits
Field
14-22 Administrator’s Guide for Informix Extended Parallel Server

Monitoring Latches
onstat -s

Execute onstat -s to obtain general latch information. The output includes the
userthread column, which lists the address of any user thread that is waiting
for a latch. (See Figure 14-13.) You can compare this address with the user
addresses in the onstat -u output to obtain the user-process identification
number.

Warning: Never kill a database server process that is holding a latch. If you do, the
database server immediately initiates an abort.

Using SMI Tables

Query the sysprofile table to obtain the number of requests for a latch and the
number of times a thread had to wait for a latch. The following rows are
relevant.

Latches with lock or userthread set
name address lock wait userthread
LRU1 402e90 0 0 6b29d8
bf[34] 4467c0 0 0 6b29d8

Figure 14-13
onstat -s Output

Row Description

latchreqs Number of requests for a latch

latchwts Number of times that a thread had to wait for a latch
Managing Shared Memory 14-23

15
Chapter
Data Storage
In This Chapter . 15-3

Overview of Data Storage 15-3

Physical Units of Storage 15-5
Chunks . 15-5

Uses of Chunks 15-5
Chunk Size, Number, and Names 15-6

Disk Allocation for Chunks 15-6
Unbuffered or Buffered Disk Access on UNIX 15-6
Offsets . 15-9

Pages . 15-10
Extents. 15-11

Disabling I/O Errors 15-13

Logical Units of Storage 15-14
Dbspaces . 15-14

Control of Where Data Is Stored 15-15
Root Dbspace 15-17
Temporary Dbspaces 15-18
Advantages of Using Temporary Dbspaces 15-18

Dbslices . 15-19
Rootslices 15-21
Temporary Dbslices 15-21

Databases. 15-22
Tables . 15-23
Table Types . 15-25

Scratch and Temp Tables 15-26
Raw Permanent Tables 15-27
Static Permanent Tables 15-27
Operational Permanent Tables 15-27

15-2 Ad
Standard Permanent Tables 15-28
External Tables. 15-28
Rollback of Operational and Raw Tables 15-28
Switching Between Table Types 15-29

Temporary Tables 15-30
Storage of Temporary Tables 15-31

Tblspaces . 15-34
Extent Interleaving 15-35

Table Fragmentation and Data Storage 15-36

Amount of Disk Space Needed to Store Data 15-36
Size of the Root Dbspace. 15-36

Physical and Logical Logs 15-37
Temporary Tables 15-37
Critical Data 15-38
Control Information 15-38
Safewrite Area 15-38

Amount of Space That Databases Require 15-39

Disk-Layout Guidelines 15-39
Dbspace and Chunk Guidelines 15-40

Strive to Associate Partitions with Chunks 15-40
Mirror Critical Data Dbspaces 15-40
Spread Temporary Storage Space Across Multiple Disks . . . 15-41
Move the Logical and Physical Logs from the Root Dbspace . . 15-41
Consider Account Backup-and-Restore Performance 15-42

Table-Location Guidelines 15-43
Isolate High-Use Tables. 15-43
Consider Mirroring 15-45
Group Tables with Backup and Restore in Mind 15-45
Place High-Use Tables on Middle Partition of Disk 15-46
Optimize Table-Extent Sizes 15-46

Sample Disk Layouts 15-47
Sample Layout When Performance Is Highest Priority 15-48
Sample Layout When Availability Is Highest Priority 15-50

Logical-Volume Manager 15-52
ministrator’s Guide for Informix Extended Parallel Server

In This Chapter
This chapter defines terms and explains the concepts that you must under-
stand to perform the tasks described in Chapter 16, “Managing Disk Space.”
This chapter covers the following topics:

■ Definitions of the physical and logical units that the database server
uses to store data on disk

■ Instructions on how to calculate the amount of disk space that you
need to store your data

■ Guidelines on how to lay out your disk space and where to place
your databases and tables

The release notes file contains supplementary information on the maximum
values related to the storage units discussed in this chapter. For information
on how to access this file, see “Documentation Notes, Release Notes,
Machine Notes” on page 12 of the Introduction.

Overview of Data Storage
The database server uses the following physical units to manage disk space:

■ Chunk

■ Page

■ Extent
Data Storage 15-3

Overview of Data Storage
Overlying the physical units of storage space, the database server supports
the following logical units associated with database management:

■ Dbspace

■ Dbslice

■ External table

■ Database

■ Table

■ Tblspace

The database server maintains the following additional disk-space storage
structures to ensure physical and logical consistency of data:

■ Logical log

■ Physical log

■ Reserved pages

Because these additional disk-space structures are not permanent storage
units, they are not described in this chapter. For information about the logical
log, see Chapter 20, “Logical Log.” For information about the physical log,
see Chapter 22, “Physical Logging.” For information about reserved pages,
see the disk structures and storage chapter in the Administrator’s Reference.

The following sections describe the various data-storage units that the
database server supports and the relationships between those units.
15-4 Administrator’s Guide for Informix Extended Parallel Server

Physical Units of Storage
Physical Units of Storage
The database server uses the physical units of storage to allocate disk space.
Unlike the logical units of storage whose size fluctuates, each of the physical
units has a fixed or assigned size that is determined by the disk architecture.

The following sections describe the physical units of storage in more detail.

Chunks
A chunk is the largest unit of physical disk dedicated to database server data
storage. Chunks provide administrators with a conveniently large unit for
allocating disk space.

Some operating systems use the concept of a logical volume, and others use
a logical unit. Each of these terms represents the smallest unit of physical disk
that you can assign. A database server chunk is the same as a logical volume
or a logical unit.

Uses of Chunks

The database server administrator assigns one or more chunks to dbspaces,
the logical storage spaces that the database server supports.

The database server administrator typically adds a chunk to these storage
spaces when that storage space approaches full capacity. For more infor-
mation on these logical storage spaces, refer to “Logical Units of Storage” on
page 15-14.

The database server also uses chunks for mirroring. A primary chunk is a
chunk from which the database server copies data to a mirrored chunk. If the
primary chunk fails, the database server brings the mirrored chunk on-line
automatically. For more information on mirroring, see Chapter 25,
“Mirroring.”
Data Storage 15-5

Disk Allocation for Chunks
Chunk Size, Number, and Names

Chunk names follow the same rules as dbspace names. For more details, see
“Naming Chunks and Storage Spaces” on page 16-21.

For information on the maximum size and number of chunks that you can
allocate on the database server system, see “Limiting Chunk Size and
Number” on page 16-22.

Disk Allocation for Chunks
The database server can use regular operating-system files to store data. On
operating systems that support raw disks, the database server can also use
raw disk space to store data. Informix recommends that you use raw disks to
store data whenever performance or data consistency is important.

Unbuffered or Buffered Disk Access on UNIX

You can allocate disk space in two ways:

■ Use files that are buffered through the operating system, also
referred to as cooked files.

■ Use unbuffered disk access.

Unbuffered disk access can be through a raw disk device, or character-special
files. As a general guideline, you experience better performance and
increased reliability when you use unbuffered file access.

On UNIX, the raw disk interface that character-special files provide yields
significant performance advantages. I/O to raw disk bypasses the buffering
operations that the operating system performs on regular (cooked) files.
15-6 Administrator’s Guide for Informix Extended Parallel Server

Disk Allocation for Chunks
Raw Disk Space on UNIX

UNIX uses the concept of a device to describe peripherals such as magnetic
disks and tapes, terminals, and communication lines. One type of device is a
block device, such as a hard disk or a tape. A block device can be configured
with an interface that provides buffering or with a raw interface that leaves
the buffering to the application. When you configure a block device with a
raw interface, the device is called a raw device, and the storage space that the
device provides is called raw disk space. Space in a chunk of raw disk space is
physically contiguous.

A raw interface is also referred to as a character-special device. The name of the
chunk is the name of the character-special file in the /dev directory. In many
operating systems, you can distinguish the character-special file from the
block-special file by the first letter in the filename (typically r). For example,
/dev/rsd0f is the character-special device that corresponds to the /dev/sd0f
block-special device.

Cooked Files

A cooked file is a regular file that the operating system manages. Although
the database server manages the contents of cooked files, the operating
system manages all I/O to cooked files. Unlike raw disk space, the logically
contiguous blocks of a cooked file might not be physically contiguous.

Even though a cooked file is a regular file, the database server manages the
internal arrangement of data within the file. Never edit the contents of a
cooked file that the database server manages. To do so puts the integrity of
your data at risk.

Data Management with Cooked Files Versus Raw Disk Devices

When the operating system reads from a cooked file, it reads the data from
disk to an internal buffer pool. Later, a second copy operation copies it from
the operating system to the location requested by the application. Therefore.
when two users both read the same file, the data is read from disk only once
but copied from the operating-system buffer twice.
Data Storage 15-7

Disk Allocation for Chunks
By contrast, when the operating system reads data from an unbuffered file or
a raw disk device, it bypasses the operating-system buffer pool and copies
the data directly to the location requested by the application. The database
server requests that the data be placed in shared memory, making it immedi-
ately available to all database server virtual processors and running threads
with no further copying.

Unbuffered Disk Access

A raw device or unbuffered file can directly transfer data between shared
memory and the disk with direct memory access (DMA), which results in
better performance by orders of magnitude.

When you use a raw device or unbuffered file to store your data, the database
server guarantees that committed data is stored on disk. (The next section
explains why no such guarantee can be made when you use cooked files to
store your data.)

When you decide to allocate raw disk space to store your data, you must take
the following steps:

1. Create and install a raw device.

2. Change the ownership and permissions of the device.

For more information on these steps, see “Allocating Raw Disk Space on
UNIX” on page 16-10.

Use of Cooked Files

You can more easily allocate cooked files than raw disk space. To allocate raw
space, you must have a disk partition available that is dedicated to raw space.
To allocate a cooked file, you need only create the file on any existing
partition. However, you sacrifice reliability and might experience diminished
performance when you store the database server data in cooked files.

The buffering mechanism that most operating systems provide can become a
performance bottleneck. If you must use cooked UNIX files, store the least
frequently accessed data in those files. Store the files in a file system located
near the center cylinders of the disk device or in a file system with minimal
activity.
15-8 Administrator’s Guide for Informix Extended Parallel Server

Disk Allocation for Chunks
In a learning environment, where reliability and performance are not critical,
cooked files can be convenient.

When performance is not a consideration, you can also use cooked files for
static data (which seldom or never changes). Such data is less vulnerable to
the problems associated with UNIX buffering in the event of a system failure.

When a chunk consists of cooked disk space, the name of the chunk is the
complete pathname of the file. Because the chunk of cooked disk space is an
operating-system file, space in the chunk might not be physically contiguous.

Warning: Cooked files are less reliable than raw disk space because the operating
system manages I/O for a cooked file. A write to a cooked file can result in data being
written to a memory buffer in the operating-system file manager instead of being
written immediately to disk. As a consequence, the database server cannot guarantee
that the committed data actually reaches the disk. Database server recovery depends
on the guarantee that data written to disk is actually on disk. In the event of system
failure, if the data is not present on disk, the database server automatic-recovery
mechanism might not be able to execute properly. The end result would be incon-
sistent data.

When you decide to allocate cooked space to store your data, you must take
the following steps:

1. Create a cooked file.

2. Change the ownership and permissions.

These steps are described in detail in “Allocating a File for Disk Space on
UNIX” on page 16-8.

Offsets

The system administrator might divide a physical disk into partitions, which
are different parts of a disk that have separate pathnames. Although Informix
recommends that you use an entire disk partition when you allocate a chunk
on a raw disk device, you can subdivide partitions or cooked files into
smaller chunks using offsets. For more information, see “Strive to Associate
Partitions with Chunks” on page 15-40.
Data Storage 15-9

Pages
An offset allows you to indicate the number of kilobytes into a device or
cooked file to reach a given chunk. For example, suppose that you create a
1000 kilobyte chunk that you want to divide into two chunks of 500 kilobytes
each. You can use an offset of zero kilobytes to mark the beginning of the first
chunk and an offset of 500 kilobytes to mark the beginning of the second
chunk.

You can specify an offset whenever you create, add, or drop a chunk from a
a dbspace.

On Extended Parallel Server, the maximum chunk size and offset can be 4
gigabytes or even larger for 64-bit platforms. To determine which chunk size
your platform supports, refer to your machine notes file.

You might also need to specify an offset to prevent the database server from
overwriting partition information. “Allocating Raw Disk Space on UNIX” on
page 16-10 explains when and how to specify an offset.

Pages
A page is the physical unit of disk storage that the database server uses to read
from and write to Informix databases. Figure 15-1 illustrates the concept of a
page, represented by a darkened sector of a disk platter.

The default page size is 4 kilobytes. Use the PAGESIZE parameter to configure
a page size of 2, 4, or 8 kilobytes. For more information on PAGESIZE, see
“Configuring the Database Server Page Size” on page 3-17 and the chapter on
configuration parameters in the Administrator’s Reference.

A chunk contains a certain number of pages, as Figure 15-2 illustrates. A page
is always entirely contained within a chunk; that is, a page cannot cross
chunk boundaries.

Figure 15-1
A Page on Disk
15-10 Administrator’s Guide for Informix Extended Parallel Server

Extents
For information on how the database server structures data within a page,
see the chapter on disk structures and storage in the Administrator’s Reference.

Extents
When you create a table, the database server allocates a fixed amount of space
to contain the data to be stored in that table. When this space fills, the
database server must allocate space for additional storage. The physical unit
of storage that the database server uses to allocate both the initial and subse-
quent storage space is called an extent. Figure 15-3 illustrates the concept of
an extent.

Figure 15-2
A Chunk, Logically

Separated into a
Series of Pages

Chunk

Page

Figure 15-3
An Extent That
Consists of Six

Contiguous Pages
on a Raw Disk

Device

Chunk

Page

Extent
Data Storage 15-11

Extents
An extent consists of a collection of contiguous pages that store data for a
given table. (See “Tables” on page 15-23.) Every permanent database table
has two extent sizes associated with it. The initial-extent size is the number of
kilobytes allocated to the table when it is first created. The next-extent size is
the number of kilobytes allocated to the table when the initial extent (and any
subsequent extents) becomes full. To specify the initial-extent size and next-
extent size, use the CREATE TABLE and ALTER TABLE statements. For more
information, see the Informix Guide to SQL: Syntax.

Figure 15-4 illustrates the following key concepts concerning extent
allocation:

■ An extent is always entirely contained in a chunk; an extent cannot
cross chunk boundaries.

■ If the database server cannot find the contiguous disk space that is
specified for the next-extent size (six pages in Figure 15-4), it searches
the next chunk in the dbspace for contiguous space.

Figure 15-4
Process of Extent Allocation

The database
server extends
its search to the
next chunk.

Free
page

Used
page

The database server decides
to allocate an extent and
begins a search for 6
contiguous free pages.

The database
server cannot find
6 contiguous free
pages in chunk 1.

The database server
finds 6 contiguous free
pages and allocates an
extent.

Chunk 1 Chunk 2

Extent
15-12 Administrator’s Guide for Informix Extended Parallel Server

Extents
Disabling I/O Errors

Informix divides disabling I/O errors into two general categories: destructive
and nondestructive. A disabling I/O error is destructive when the disk that
contains a database becomes damaged in some way. This type of event
threatens the integrity of data, and the database server marks the chunk and
dbspace as down. The database server prohibits access to the damaged disk
until you repair or replace the disk and perform a physical and logical
restore.

A disabling I/O error is nondestructive when the error does not threaten the
integrity of your data. Nondestructive errors occur when someone acciden-
tally disconnects a cable, you somehow erase the symbolic link that you set
up to point to a chunk, or a disk controller becomes damaged.

Before the database server considers an I/O error to be disabling, the error
must meet two criteria. First, the error must occur when the database server
attempts to perform an operation on a chunk that has at least one of the
following characteristics:

■ The chunk has no mirror.

■ The primary or mirror companion of the chunk under question is
off-line.

Second, the error must occur when the database server attempts unsuccess-
fully to perform one of the following operations:

■ Seek, read, or write on a chunk

■ Open a chunk

■ Verify that chunk information on the first used page is valid

The database server performs this verification as a sanity check
immediately after it opens a chunk.

You can prevent the database server from marking a dbspace as down while
you investigate disabling I/O errors. If you find that the problem is trivial,
such as a loose cable, you can bring the database server off-line and then on-
line again without restoring the affected dbspace from backup. If you find
that the problem is more serious, such as a damaged disk, you can use
onmode -O to mark the affected dbspace as down and continue processing.
Data Storage 15-13

Logical Units of Storage
Logical Units of Storage
The logical units of database server storage fall into the following categories:

■ Units of logical storage that are dictated by relational database
design:

❑ Databases

❑ Tables

■ Units of logical storage that function as accounting entities:

❑ Dbspaces

❑ Tblspaces

A tblspace, for example, does not correspond to any particular part of a
chunk or even to any particular chunk. The indexes and data that make up a
tblspace might be scattered throughout your chunks. The tblspace, however,
represents a convenient accounting entity for space across chunks devoted to
a particular table. (See “Tables” on page 15-23.)

Multiple dbspaces managed as a single storage object are as follows:

■ Dbslices

■ Rootslices

■ Logslices

The following sections describe these logical storage units.

Dbspaces
A key responsibility of the database server administrator is to control where
the database server stores data. By storing high-use access tables or critical
dbspaces (root dbspace, physical log, and logical log) on your fastest disk
drive, you can improve performance. By storing critical data on separate
physical devices, you ensure that when one of the disks holding noncritical
data fails, the failure affects only the availability of data on that disk.
15-14 Administrator’s Guide for Informix Extended Parallel Server

Dbspaces
These strategies require the ability to control the location of data. The logical
storage unit that provides this ability is the dbspace. The dbspace provides the
critical link between the logical and physical units of storage. It allows you to
associate physical units (such as chunks) with logical units (such as tables).

Control of Where Data Is Stored

As Figure 15-5 shows, to control the placement of databases or tables, you
can use the IN dbspace option of the CREATE DATABASE or CREATE TABLE
statements. (See “Tables” on page 15-23.)

Before you create a database or table in a dbspace, you must first create the
dbspace. For more information on how to create a dbspace, see “Creating a
Dbspace” on page 16-13.

A dbspace includes one or more chunks, as Figure 15-6 on page 15-16 shows.
You can add more chunks at any time. It is a high-priority task of a database
server administrator to monitor dbspace chunks for fullness and to anticipate
the need to allocate more chunks to a dbspace. (See “Monitoring the Database
Server for Disabling I/O Errors” on page 16-32.) When a dbspace contains
more than one chunk, you cannot specify the chunk in which the data resides.

Figure 15-5
Controlling Table Placement with the CREATE TABLE... IN Statement

% onutil
CREATE DBSPACE stores_space
CHUNK "/dev/rsd0f"
OFFSET 0 size 10000;

CREATE TABLE stores_demo IN stores_space

/dev/rsd0f

 Dbspace
Data Storage 15-15

Dbspaces
The database server uses the dbspace to store databases and tables. (See
“Tables” on page 15-23.)

You can mirror every chunk in a mirrored dbspace. As soon as the database
server allocates a mirrored chunk, it flags all space in that mirrored chunk as
full. See “Monitoring Disk Usage” on page 16-34.

You can use onutil to perform any of the following tasks related to dbspace
management:

■ Creating a dbspace (page 16-16)

■ Creating a dbslice (page 16-16)

■ Adding a chunk to a dbspace (page 16-20)

■ Dropping a chunk from a dbspace (page 16-24)

■ Dropping a dbspace (page 16-26)

■ Dropping a dbslice (page 16-26)

Figure 15-6
Dbspaces That Link

Logical and Physical
Units of Storage

Logical units of storage Physical units of storage

ChunksDatabase

Chunk 4

Chunk 3

Chunk 2

Chunk 1

System catalog

Table 2

Table 1

Dbspace

Dbspace

Dbspace 3
15-16 Administrator’s Guide for Informix Extended Parallel Server

Dbspaces
Root Dbspace

The root dbspace is the initial dbspace that the database server creates. The
root dbspace is special because it contains reserved pages and internal tables
that describe and track all physical and logical units of storage. (For more
information on these topics, see “Tables” on page 15-23 and the disk struc-
tures and storage chapter in the Administrator’s Reference.) The initial chunk
of the root dbspace and its mirror are the only chunks created during disk-
space initialization. You can add other chunks to the root dbspace after disk-
space initialization.

The following disk-configuration parameters in the ONCONFIG
configuration file refer to the first (initial) chunk of the root dbspace:

■ ROOTPATH

■ ROOTOFFSET

■ ROOTNAME

■ MIRRORPATH

■ MIRROROFFSET

The root dbspace is also the default dbspace location for any database created
with the CREATE DATABASE statement.

The default value for the DBSPACETEMP configuration parameter in
Extended Parallel Server is NOTCRITICAL. Therefore, implicit temporary
tables do not use the root dbspace in Extended Parallel Server. For more
information on temporary tables, refer to “Temporary Tables” on page 15-30.

“Size of the Root Dbspace” on page 15-36 explains how much space to
allocate for the root dbspace. You can also add extra chunks to the root
dbspace after you initialize database server disk space.
Data Storage 15-17

Dbspaces
Temporary Dbspaces

A temporary dbspace is a dbspace reserved for the exclusive use of
temporary tables. (See “Table Types” on page 15-25.)

The database server never drops a temporary dbspace unless it is explicitly
directed to do so. A temporary dbspace is temporary only in the sense that
the database server does not preserve any of the dbspace contents when the
database server shuts down abnormally. Temporary dbspaces are designed
exclusively for the storage of temporary tables.

Whenever you initialize the database server, all temporary dbspaces are
reinitialized. The database server clears any tables that might be left over
from the last time that the database server shut down.

The database server does not perform logical or physical logging for
temporary dbspaces. Backup utilities do not include temporary dbspaces as
part of a full-system dbspace backup. You cannot mirror a temporary
dbspace.

For detailed instructions on how to create a temporary dbspace, see
“Creating a Temporary Dbspace” on page 16-15.

For more information on temporary dbspaces on Extended Parallel Server,
see dbspaces for temporary tables in your Performance Guide.

Advantages of Using Temporary Dbspaces

The database server logs table creation, the allocation of extents, and the
dropping of the table for a temporary table in a standard dbspace. In contrast,
the database server suppresses all logical logging for implicit temporary
tables and explicit temporary tables created with the WITH NO LOG options
that reside in a temporary dbspace. Logical-log suppression in temporary
dbspaces reduces the number of log records to roll forward during logical
recovery as well, thus improving the performance during critical down time.
15-18 Administrator’s Guide for Informix Extended Parallel Server

Dbslices
The database server does not perform any physical logging in temporary
dbspaces. This practice helps performance in two ways. First, physical
logging itself generates I/O. Reducing I/O always improves performance.
Second, whenever the physical log becomes 75 percent full, a checkpoint
occurs. Checkpoints require a brief period of inactivity to complete, which
can have a negative impact on performance. When temporary tables reside
in temporary dbspaces, the database server does not perform physical
logging for operations on the temporary tables, thus requiring fewer
checkpoints.

Using temporary dbspaces to store temporary tables also reduces the size of
your dbspace backup because the database server does not backup
temporary dbspaces.

Dbslices
Informix recommends that you partition VLDBs across many coservers in
Extended Parallel Server. Each table fragment is stored in its own dbspace;
therefore, you can create thousands of storage objects (fragments, dbspaces,
chunks, and so on) spread across multiple coservers. Managing these
individual storage objects can be complex and error-prone unless you can
manage groups of them.

Extended Parallel Server uses a dbslice to manage many storage objects. A
dbslice is a named set of dbspaces that you can manage as a single storage
object. A dbslice contains all of the traditional database server storage units:
dbspaces, chunks, and so on.

A dbslice facilitates management of storage objects because you can refer to
all of the storage objects for a single table with a single name, the dbslice
name. For example, to fragment a table across 100 coservers, you can use the
following CREATE TABLE statement to specify a single dbslice name instead
of 100 dbspace names:

CREATE TABLE customer
(cust_id integer,
...

)
BY HASH (cust_id)

IN customer_dbslc;

In this example, the SQL operation takes place for all of the underlying
dbspaces in the customer_dbslc dbslice.
Data Storage 15-19

Dbslices
To define a dbslice, use the onutil CREATE DBSLICE command. The onutil
command-line utility accepts commands that create, alter, and drop storage
objects (dbslices and cogroups).

When you create a dbslice, you specify the cogroup name so that Extended
Parallel Server knows the coservers on which to create dbspaces. For
example, you might create a dbslice from an accounting cogroup. The
following partial commands show how to create a cogroup and dbslice:

% onutil
1> create cogroup acctg_group
2> .
3> .
4> .
5> create dbslice acctg_dbslc
6> FROM acctg_group . . .

You do not need to specify the names explicitly for all of the individual
dbspaces that are associated with the partitioned tables. Extended Parallel
Server generates the dbspace names for you.

Tip: To add dbspaces to a dbslice, use the onutil ALTER DBSLICE command.

For more details on the onutil CREATE COGROUP, onutil CREATE DBSLICE,
and onutil ALTER DBSLICE commands, see the utilities chapter of the Admin-
istrator’s Reference. Figure 15-7 illustrates a cogroup and a dbslice.
15-20 Administrator’s Guide for Informix Extended Parallel Server

Dbslices
Rootslices

A rootslice is a named set of root dbspaces that you can manage as a single
storage object. Extended Parallel Server creates a root dbspace on each
coserver. To facilitate management of multiple root dbspaces, Extended
Parallel Server provides rootslices.

Temporary Dbslices

A temporary dbslice is a named set of temporary dbspaces that reside on
multiple coservers. You can manage temporary dbspaces as a single storage
object by using the dbslice name.

For information on how to create a temporary dbslice, refer to the TEMP
keyword in the onutil CREATE DBSLICE command in the Administrator’s
Reference.

Figure 15-7
A Cogroup and Dbslice

. . .

Client

Dbspace M - 1 Dbspace M. . .Dbspace 1 Dbspace 2 Dbspace 3 Dbspace 4

. . .

Co
gr

ou
p

ac
ct_

gr
p

ac
cc

tg
_s

lic
e

Coserver 1

SELECT...

Coserver 2 Coserver N

customer .2 customer .4customer. 3customer .1 customer .m+1 customer .m+2
Data Storage 15-21

Databases
Databases
A database is a logical storage unit that contains tables and indexes. (See
“Tables” on page 15-23.) Each database also contains a system catalog that
tracks information about many of the elements in the database, including
tables, indexes, SPL routines, and integrity constraints.

A database resides in the dbspace specified by the CREATE DATABASE
statement. When you do not explicitly name a dbspace in the CREATE
DATABASE statement, the database resides in the root dbspace. When you do
specify a dbspace in the CREATE DATABASE statement, this dbspace is the
location for the following tables:

■ Database system catalog tables

■ Any table that belongs to the database

Figure 15-8 shows the tables contained in the stores_demo database.

Figure 15-8
The stores_demo

Database
customer
table

orders
table

items
table

stock
table

catalog
table

cust_calls
table

call_type
table

manufact
table

state
table

system catalog zip_ix
index

stores_demo database

systables
table

sysviews
table
15-22 Administrator’s Guide for Informix Extended Parallel Server

Tables
The size limits that apply to databases are related to their location in a
dbspace. To be certain that all tables in a database are created on a specific
physical device, assign only one chunk to the device, and create a dbspace
that contains only that chunk. Place your database in that dbspace. When you
place a database in a chunk assigned to a specific physical device, the
database size is limited to the size of that chunk.

For instructions on how to list the databases that you create, see “Displaying
Databases” on page 16-32.

Tables
In relational database systems, a table is a row of column headings together
with zero or more rows of data values. The row of column headings identifies
one or more columns and a data type for each column.

When users create a table, the database server allocates disk space for the
table in a block of pages called an extent. (See “Extents” on page 15-11.) You
can specify the size of both the first and any subsequent extents.

Users can place the table in a specific dbspace by naming the dbspace when
they create the table (usually with the IN dbspace option of CREATE TABLE).
When the user does not specify the dbspace, the database server places the
table in the dbspace where the database resides.

Users can also fragment a table over more than one dbspace. Users must
define a distribution scheme for the table that specifies which table rows are
located in which dbspaces.

Users can also fragment a table over more than one dbspace. Users must
define a distribution scheme for the table that specifies which table rows are
located in which dbspaces. For more information about distribution schemes,
see the Informix Guide to Database Design and Implementation.

A table or table fragment resides completely in the dbspace in which it was
created. The database server administrator can use this fact to limit the
growth of a table by placing a table in a dbspace and then refusing to add a
chunk to the dbspace when it becomes full.
Data Storage 15-23

Tables
A table, composed of extents, can span multiple chunks, as Figure 15-9
shows.

For advice on where to store your tables, see “Disk-Layout Guidelines” on
page 15-39 and your Performance Guide.

Figure 15-9
Table That Spans

More than One
Chunk

Chunk 1 Chunk 2

Two extents, both allocated
to the same table

Extent 1 Extent 2
15-24 Administrator’s Guide for Informix Extended Parallel Server

Table Types
Table Types
Figure 15-10 lists the properties of the six types of tables available with
Extended Parallel Server. The flag values are the octal values for each table
type in the flags column of systables.

Figure 15-10
Table Characteristics

For information about logging, see “Logging and Nonlogging Tables” on
page 18-8. For information about fast recovery, see “Fast Recovery of Tables”
on page 24-23. For information on restoring various table types, see the
Backup and Restore Guide.

Tip: “Depends” in Figure 15-10 means that a table is recoverable or restorable only
if it has not been updated.

Type Pe
rm

an
en

t

Lo
gg

ed

In
de

xe
s

Li
gh

t
Ap

pe
nd

Us
ed

Ro
llb

ac
k

Av
ai

la
bl

e

Re
co

ve
ra

bl
e

Re
st

or
ab

le
fr

om
Ba

ck
up

Lo
ad

in
g

M
od

e

Fl
ag

 V
al

ue
(0

x0
00

0-
)

SCRATCH No No No Yes No No No Either 40000

TEMP No Yes Yes Yes Yes No No Either 10000

RAW Yes No No Yes No Depends Depends Either 1000

STATIC Yes No Yes No No Depends Depends None 2000

OPERATIONAL Yes Yes Yes Yes Yes Yes Depends Either 4000

STANDARD Yes Yes Yes No Yes Yes Yes Deluxe 8000

EXTERNAL Yes No No Yes No No See 15-28 Either 20000
Data Storage 15-25

Table Types
Scratch and Temp Tables

Scratch and temp tables are temporary tables that are dropped when the user
session closes, the database server shuts down, or on reboot after a failure.
You cannot recover, back up, or restore temp and scratch tables.

Scratch and temp tables support bulk operations such as light appends,
which add rows quickly to the end of each table fragment. For more infor-
mation on light appends, refer to your Performance Guide.

Scratch tables are nonlogging temporary tables that do not support indexes,
constraints, or rollback.

Temp tables are logged tables by default, and they support indexes,
constraints, and rollback.

Extended Parallel Server creates explicit temporary tables according to the
following criteria:

■ If the query used to populate the TEMP table produces no rows, the
database server creates an empty, unfragmented table.

■ If the rows that the query produces do not exceed 8 kilobytes, the
temporary table resides in only one dbspace.

■ If the rows exceed 8 kilobytes, Extended Parallel Server creates
multiple fragments and uses a round-robin fragmentation scheme to
populate them.

SELECT...INTO TEMP or SELECT...INTO SCRATCH statements operate in
parallel across coservers, just as ordinary inserts do. Extended Parallel Server
automatically supports fragmented temporary tables across nodes when
those tables are explicitly created with SELECT...INTO TEMP or SELECT...INTO
SCRATCH.

Important: A TEMP type table is a logging table by default. If you want to use the
temporary dbspaces or dbslices specified in the DBSPACETEMP configuration
parameter or DBSPACETEMP environment variable, you must specify the WITH NO
LOG clause when you use the SELECT...INTO TEMP statement.

Tip: A SCRATCH table is nonlogging by default. When you execute the
SELECT...INTO SCRATCH statement, the database server uses the temporary
dbspaces or dbslices specified in the DBSPACETEMP configuration parameter or
DBSPACETEMP environment variable.
15-26 Administrator’s Guide for Informix Extended Parallel Server

Table Types
Raw Permanent Tables

Raw tables are nonlogging permanent tables that use light appends. You can
use the express loading mode to load them.

Updates, inserts, and deletes are supported but not logged. Raw tables do not
support indexes, referential constraints, or rollback. You can restore a raw
table from the last physical backup if it has not been updated since then. You
can recover a raw table if it has not been updated since the previous
checkpoint.

Raw tables are intended for the initial loading and validation of data. Once
you have completed these steps, you should alter the table to a higher level.
If an error or failure occurs during loading of a raw table, the resulting data
is whatever was on the disk at the time of the failure.

Static Permanent Tables

Static tables are nonlogging read-only permanent tables. They do not support
inserts, updates, and deletes. However, you can create and drop nonclustered
indexes and referential constraints because they do not affect the data. Their
advantage is that the server can use light scans and avoid locking during the
execution of queries because static tables are read-only.

Static tables do not support rollback. Static tables inherit the recovery charac-
teristics of the tables they were created from. If you alter a raw table to static
table, you will be able to recover or restore it if it was not updated since the
previous checkpoint or backup. If you alter a standard table to a static table,
you always will be able to recover or restore it.

Operational Permanent Tables

Operational tables are logging permanent tables that allow indexes and
constraints and fast update operations. They allow light appends only if the
table contains no indexes or constraints.

If an operational table has indexes, the database server uses deluxe mode to
load it. They perform row-by-row logging of insert, update, and delete
operations but do not log light appends. If an operational table does not have
indexes, the database server uses express mode to load it.
Data Storage 15-27

Table Types
You can roll back operations or recover after a crash with operational tables.
You can restore an operational table unless a light append occurred since the
most recent backup. Operational tables are intended for use in situations
when the data is derived from another source, so restorability is not an issue,
but when rollback and recoverability are required.

Standard Permanent Tables

A standard table is the same as a table in a logged database that the database
server creates. All operations are logged, record by record, so standard tables
can be restored from a backup and support recoverability and rollback.

Standard tables do not use light appends, so you must use the deluxe loading
mode. You must load standard tables record-by-record with every operation
logged.

External Tables

An external table is a data file that you use to load and unload data. The
database server performs express-mode and deluxe-mode loads. Use the
CREATE EXTERNAL TABLE statement to load data into an external table.

Because external tables are outside of the database server, you cannot recover,
roll back, or use ON-Bar to restore them. However, you can back up the
external tables with a file backup program.

You can use express mode to load a raw or operational table without any
indexes to an external table. You can use deluxe mode to load a raw or opera-
tional table with indexes, or a standard table to an external table. However,
you cannot load a static table to an external table. For more information, refer
to the chapter on loading with external tables in the Administrator’s Reference.

Rollback of Operational and Raw Tables

The following examples show how you can roll back transactions for opera-
tional tables but not for raw tables.
15-28 Administrator’s Guide for Informix Extended Parallel Server

Table Types
Rollback of Operational Tables

After you roll back the transaction on tab_op, the SELECT command shows
that the inserted row was rolled back.

CREATE OPERATIONAL TABLE tab_op (c1 int); # create op table
BEGIN WORK; #start transaction
INSERT INTO tab_op values (1); # insert a row into table
ROLLBACK WORK; # transaction rolled back
SELECT * FROM tab_op; # inserted row is gone

Rollback of RawTables

After you roll back the transaction on tab_raw, the SELECT command shows
that the inserted row is not rolled back.

CREATE RAW TABLE tab_raw (c1 int); # create raw table
BEGIN WORK; #start transaction
INSERT INTO tab_raw values (2); # insert a row into table
ROLLBACK WORK; # transaction rolled back
SELECT * FROM tab_raw; # inserted row remains

Switching Between Table Types

Use the ALTER TABLE command to switch between types of permanent
tables. If the table does not meet the restrictions of the new type, the alter fails
and produces an explanatory error message. The following restrictions apply
to table alteration:

■ You must drop indexes and referential constraints before you alter a
table to type RAW.

■ You must perform a level-0 backup before you alter a table to type
STANDARD.

■ You cannot alter a TEMP or SCRATCH temporary table.
Data Storage 15-29

Temporary Tables
Temporary Tables
The two types of temporary tables are explicit temporary tables and implicit
temporary tables. You can create temporary tables in a standard dbspace or
temporary dbspace.

An explicit temporary table is a temporary table that you create with one of
the following SQL statements:

■ TEMP TABLE option of the CREATE TABLE statement

■ INTO TEMP clause of the SELECT statement
SELECT * FROM customer INTO TEMP temp_table

■ SCRATCH TABLE option of the CREATE TABLE statement

■ INTO SCRATCH clause of the SELECT statement

When an application creates an explicit temporary table, it exists until the
application takes one of the following actions:

■ The application terminates.

■ The application closes the database in which the table was created
and opens a database in a different database server.

■ The application closes the database in which the table was created.

When any of these three events occurs, the database server deletes the
temporary table.

An implicit temporary table is a temporary table or file that the database
server creates as part of processing.

The following statements might require temporary disk space:

■ Statements that include a GROUP BY or ORDER BY clause

■ Statements that use aggregate functions with the UNIQUE or
DISTINCT keywords

■ SELECT statements that use auto-index or hash joins

■ Complex CREATE VIEW statements

■ DECLARE statements that create a scroll cursor

■ Statements that contain correlated subqueries

■ Statements that contain subqueries that occur within an IN or ANY
clause
15-30 Administrator’s Guide for Informix Extended Parallel Server

Temporary Tables
■ CREATE INDEX statements

■ DECLARE statements that use the SCROLL CURSOR option

The database server deletes an implicit temporary table when the processing
that initiated the creation of the table is complete.

If the database server shuts down without adequate time to clean up
temporary tables, it performs temporary table cleanup as part of the next
initialization. (To request shared-memory initialization without temporary
table cleanup, execute oninit with the -p option.)

Important: You cannot create a temporary external table on Extended Parallel
Server.

Storage of Temporary Tables

Adequate temporary space in the appropriate dbspaces to store temporary
tables and files is critical to the overall performance of your database server.
The output file of the SQL statement SET EXPLAIN ON lists temporary-file
requirements.

The dbspace in which the database server stores temporary tables depends
on whether the table is an explicit or implicit table. The following sections
examine both cases in detail.

Explicit Temporary Tables

When you create an explicit temporary table using the IN dbspace option of
CREATE TEMP TABLE, the database server stores the temporary table in that
dbspace.

When you do not use the IN dbspace option of CREATE TEMP TABLE, or when
you create the explicit table with SELECT... INTO TEMP, the database server
checks the DBSPACETEMP environment variable and the DBSPACETEMP
configuration parameter. (The environment variable supersedes the configu-
ration parameter.) When DBSPACETEMP is set, the database server stores the
explicit temporary table in one of the dbspaces specified in the list.
Data Storage 15-31

Temporary Tables
The database server keeps track of the last dbspace in the list that it used to
store a temporary table. When the database server receives another request
for temporary storage space, it uses the next dbspace in the list. In this way,
the database server spreads I/O evenly across the temporary storage space
that you specify in DBSPACETEMP.

Important: In the case of a database with logging, you must include the WITH NO
LOG clause in the SELECT... INTO TEMP statement to place the explicit temporary
tables in the dbspaces listed in the DBSPACETEMP configuration parameter or the
DBSPACETEMP environment variable.

When you do not specify any temporary dbspaces in DBSPACETEMP, or the
temporary dbspaces that you specify have insufficient space, the database
server creates the table in a standard (nontemporary) dbspace according to
the following rules:

■ If you created the temporary table with CREATE TEMP TABLE, the
database server stores this table in the dbspace that contains the
database to which the table belongs.

■ The default value for the DBSPACETEMP configuration parameter in
Extended Parallel Server is NOTCRITICAL. Therefore, explicit
temporary tables do not use the root dbspace in Extended Parallel
Server. For more information on temporary tables, refer to
“Temporary Tables” on page 15-30.

Flexible Temporary Tables

A flexible (flex) temporary table is an explicit temporary table that the database
server creates and then fragments (round-robin method) automatically. The
following query, for example, creates a flex temporary table:

SELECT * FROM customer INTO SCRATCH temp_table

One advantage of a flex temporary table over a table created with CREATE
TABLE syntax is that you do not need to know column names and data types.
15-32 Administrator’s Guide for Informix Extended Parallel Server

Temporary Tables
Extended Parallel Server uses an SQL operator to optimize use of dbspaces
and dbslices for temporary storage. When data is received, a fragment of that
table is created in one of the available dbspaces (as determined by the value
of DBSPACETEMP), and data is light-appended to the fragment. If the dbspace
that is being used becomes full, the SQL operator attempts to write incoming
data into another dbspace on the same node. For more information on
fragmenting a flex temporary table, refer to the Performance Guide.

Important: A coserver can use and access only its own dbspaces for temporary space.
Although temporary tables can be deliberately fragmented across dbspaces in the
same way as permanent tables, a coserver inserts data only into the fragments that it
manages.

Implicit Temporary Tables

The database server stores implicit temporary tables in one of the dbspaces
that you specify in the DBSPACETEMP environment variable or the
DBSPACETEMP configuration parameter. The environment variable super-
sedes the configuration parameter.

When the DBSPACETEMP environment variable and the DBSPACETEMP
configuration parameter are not set, Extended Parallel Server stores the
temporary table in the default dbspaces or dbslices specified in the
DBSPACETEMP configuration parameter. The default value of DBSPACETEMP
in onconfig.std or onconfig.xps is NOTCRITICAL, which includes all
standard dbspaces or dbslices except the root or logs.

For information on how to create temporary dbspaces, refer to “Creating a
Temporary Dbspace” on page 16-15.
Data Storage 15-33

Tblspaces
Tblspaces
Database server administrators sometimes need to track disk use by a
particular table. A tblspace contains all the disk space allocated to a given
table or table fragment (if the table is fragmented). A separate tblspace
contains the disk space allocated for the associated index.

The table tblspace contains the following types of pages:

■ Pages allocated to data

■ Pages allocated to indexes

■ Pages used to store TEXT or BYTE data in the dbspace

■ Bit-map pages that track page use within the table extents

The index tblspace contains the following types of pages:

■ Pages allocated to indexes

■ Bit-map pages that track page use within the index extents

 illustrates the tblspaces for three tables that form part of the stores_demo
database. Only one table (or table fragment) exists per tblspace. An index
resides in a separate tblspace from the associated table. Blobpages represent
TEXT or BYTE data stored in a dbspace.
15-34 Administrator’s Guide for Informix Extended Parallel Server

Tblspaces
Extent Interleaving

The database server allocates the pages that belong to a tblspace as extents.
Although the pages within an extent are contiguous, extents might be
scattered throughout the dbspace where the table resides (even on different
chunks). Figure 15-11 depicts this situation with two noncontiguous extents
that belong to the tblspace for table_1 and a third extent that belongs to the
tblspace for table_2. A table_2 extent is positioned between the first table_1
extent and the second table_1 extent. When this situation occurs, the extents
are interleaved. Because sequential access searches across table_1 require the
disk head to seek across the table_2 extent, performance is worse than if the
table_1 extents were contiguous. For instructions on how to avoid and
eliminate interleaving extents, see your Performance Guide.

Figure 15-11
Three Extents That Belong to Two Different Tblspaces in a Single Dbspace

Page

Table_1 Extent Table_2 Extent Table_1 Extent
Data Storage 15-35

Table Fragmentation and Data Storage
Table Fragmentation and Data Storage
The fragmentation feature gives you additional control over where the
database stores data. You are not limited to specifying the locations of
individual tables and indexes. You can also specify the location of table and
index fragments, which are different parts of a table or index that reside on
different storage spaces. You can fragment the following storage spaces:

■ Dbspaces

■ Dbslices

For more information about fragmentation, see “Fragmentation” on
page 17-3.

Amount of Disk Space Needed to Store Data
To determine how much disk space you need, follow these steps:

1. Calculate the size requirements of the root dbspace.

2. Estimate the total amount of disk space to allocate to all the database
server databases, including space for overhead and growth.

The following sections explain these steps.

Size of the Root Dbspace
To calculate the size of the root dbspace, take the following storage structures
into account:

■ The physical- and logical-log files

■ Temporary tables

■ Data

■ Control information

■ The safewrite area
15-36 Administrator’s Guide for Informix Extended Parallel Server

Size of the Root Dbspace
You need not store the physical log, the logical log, or the temporary tables in
the root dbspace. Include calculations for these items only if you plan to
continue to store them in the root dbspace.

If you plan to move the physical and logical logs, the initial configuration for
the root dbspace might differ markedly from the final configuration. You can
resize the root dbspace after you remove the physical and logical logs.
However, the root dbspace must be large enough for the minimum size
configuration during disk initialization.

The sections that follow discuss each storage structure in the root dbspace.

Physical and Logical Logs

The value stored in the ONCONFIG parameter PHYSFILE defines the size of
your physical log. Advice on sizing your physical log is contained in “Size
and Location of the Physical Log” on page 22-5.

To calculate the size of the logical-log files, multiply the value of the
ONCONFIG parameter LOGSIZE by the number of logical-log files. For advice
on sizing your logical log, see “Size and Number of Logical-Log Files” on
page 20-7.

Temporary Tables

Analyze end-user applications to estimate the amount of disk space that the
database server might require for implicit temporary tables. “Temporary
Tables” on page 15-30 contains a list of statements that require temporary
space. Try to estimate how many of these statements are to run concurrently.
The space occupied by the rows and columns that are returned provides a
good basis for estimating the amount of space required.

The database server creates implicit temporary files when you perform a
warm restore. The largest implicit temporary file that the database server
creates during a warm restore is equal to the size of your logical log. You
calculate the size of your logical log by multiplying the value of LOGSIZE by
LOGFILES. For more information on these configuration parameters, see
“Size and Number of Logical-Log Files” on page 20-7.

You must also analyze end-user applications to estimate the amount of disk
space that the database server might require for explicit temporary tables. See
“Temporary Tables” on page 15-30.
Data Storage 15-37

Size of the Root Dbspace
By default, the database server stores both implicit and explicit temporary
tables in the root dbspace. However, if you decide not to store your
temporary tables in the root dbspace, you can use the DBSPACETEMP
environment variable and configuration parameter to specify a list of
dbspaces for temporary files and tables. See “Storage of Temporary Tables”
on page 15-31.

Critical Data

Next, decide if users store databases or tables in the root dbspace. If the root
dbspace is the only dbspace that you intend to mirror, place all critical data
there for protection. Otherwise, store databases and tables in another
dbspace.

Estimate the amount of disk space, if any, that you need to allocate for tables
stored in the root dbspace.

Control Information

The total amount of disk space required for the database server control infor-
mation is 3 percent of the size of the root dbspace (sum of physical and logical
log, temporary space, and data) plus 25 pages, expressed as kilobytes (or 25
times the database server page size).

Safewrite Area

Each coserver stores information about the current coserver-configuration in
a portion of the root dbspace called the safewrite area. Storing this data in the
root dbspace ensures data consistency across coservers in the event of a
failure. You can use the CONFIGSIZE, MAX_CHUNKS, MAX_DBSPACES, and
MAX_DBSLICES configuration parameters to specify the size of the safewrite
area. For more information about these parameters, refer to the chapter on
configuration parameters in the Administrator’s Reference.

If you run out of space for the safewrite area, the database server writes a
message to the transaction log. To increase the amount of space in the
safewrite area, add a chunk to the root dbspace before you restart the
database server.
15-38 Administrator’s Guide for Informix Extended Parallel Server

Amount of Space That Databases Require
Amount of Space That Databases Require
The amount of additional disk space required for the database server data
storage depends on the needs of your end users, plus overhead and growth.
Every application that your end users run has different storage requirements.
The following list suggests some of the steps that you can take to calculate the
amount of disk space to allocate (beyond the root dbspace):

1. Decide how many databases and tables you need to store. Calculate
the amount of space required for each one.

2. Calculate a growth rate for each table and assign some amount of
disk space to each table to accommodate growth.

3. Decide which databases and tables you want to mirror.

For instructions about calculating the size of your tables, refer to your Perfor-
mance Guide.

Disk-Layout Guidelines
The following are typical goals for efficient disk layout:

■ Limiting disk-head movement

■ Reducing disk contention

■ Balancing the load

■ Maximizing availability

You must make some trade-offs between these goals when you design your
disk layout. For example, separating the system catalog tables, the logical log,
and the physical log can help reduce contention for these resources.
However, this action can also increase the chances that you have to perform
a system restore.

The sections that follow discuss various strategies for meeting disk-layout
goals.
Data Storage 15-39

Dbspace and Chunk Guidelines
Dbspace and Chunk Guidelines
This section lists some general strategies for disk layout that do not require
any information about the characteristics of a particular database.

Strive to Associate Partitions with Chunks

When you allocate disk space (buffered or unbuffered files), you allocate it in
chunks. A dbspace is associated with one or more chunks. You must allocate
at least one chunk for the root dbspace.

Informix recommends that you format your disks so that each chunk is
associated with its own disk partition. You can easily track disk-space use
when you define every chunk as a separate partition (or device). You can also
avoid errors caused by miscalculated offsets.

A disk that is already partitioned might require the use of offsets. For details,
see “Allocating Raw Disk Space on UNIX” on page 16-10.

Mirror Critical Data Dbspaces

Mirror the critical dbspaces: the root dbspace, the dbspace that contains the
physical log, and the dbspace that contains the logical-log files. You specify
mirroring on a chunk-by-chunk basis. Locate the primary and the mirrored
chunk on different disks. Ideally, different controllers handle the different
disks. Figure 15-12 shows a primary chunk and its mirror.

Figure 15-12
Ideal Disk Layout for
Primary Chunk and

Associated Mirrored
ChunkPrimary

chunk
Mirrored
chunk
15-40 Administrator’s Guide for Informix Extended Parallel Server

Dbspace and Chunk Guidelines
Spread Temporary Storage Space Across Multiple Disks

You can use the DBSPACETEMP environment variable and configuration
parameter to store a list of dbspaces used for temporary storage. The list can
include both temporary and standard dbspaces. To achieve load balancing,
design the list so that your temporary disk space is spread across multiple
disks. For instructions on how to set DBSPACETEMP, see the chapter on
configuration parameters in the Administrator’s Reference.

Move the Logical and Physical Logs from the Root Dbspace

Whether or not you use logging tables, the logical log and physical log both
contain data that the database server accesses frequently. Reserved pages are
also accessed frequently; they contain internal tables that describe and track
all dbspaces, chunks, databases, and tblspaces.

When you allocate disk space (buffered or unbuffered files), you allocate it in
chunks. A dbspace is associated with one or more chunks. You must allocate
at least one chunk for the root dbspace.

By default, the database server stores the logical and physical logs together
with the reserved pages in the root dbspace. Storing the logical and physical
logs together is convenient if you have a small, low-volume transaction-
processing system. However, maintaining these files together in the root
dbspace can become a source of contention as your database system grows.

To reduce this contention and provide better load balancing, move the logical
and physical logs to separate partitions or, even better, separate disk drives.
For optimum performance, consider creating two additional dbspaces: one
for the physical log and one for the logical log. When you move the logs,
avoid storing them in a dbspace that contains high-use tables. Instead,
consider storing them in a dbspace dedicated to storing only the physical or
logical log. For more advice on where to store your logs, see “Location of the
Physical Log” on page 22-8 and “Location of Logical-Log Files” on page 20-9.

For instructions on how to change the location of the logical and physical log,
see “Using a Text Editor to Change Physical-Log Location or Size” on
page 23-5 and “Moving a Logical-Log File to Another Dbspace” on
page 21-7.
Data Storage 15-41

Dbspace and Chunk Guidelines
Consider Account Backup-and-Restore Performance

When you plan your disk layout, consider how the configuration that you
choose affects your backup-and-restore procedure. This section describes
two configurations that can have a significant impact on your backup-and-
restore procedure.

Cluster Catalogs with the Data That They Track

When a disk that contains the system catalog of a particular database fails,
the entire database remains inaccessible until you restore the system catalog.
Informix recommends that you do not cluster the system catalog tables for all
databases in a single dbspace but instead place the catalogs with the data that
they track.

Reconsider Separating the Physical and Logical Logs

Although it makes sense from a performance perspective to separate the root
dbspace from the physical and logical logs, and the two logs from one
another, this configuration is the least desirable in terms of recovery.

Whenever a disk that contains critical information (the root dbspace, physical
log, and logical log) fails, the database server comes off-line. In addition, the
database server administrator must restore all the database server data,
starting in off-line mode, from a level-0 backup before processing can
continue.

When you separate the root dbspace from the physical- and logical-log files,
you increase the probability that, if a disk fails, it is one that contains critical
information (either the root dbspace, physical log, or logical log). For infor-
mation on how to fragment to improve backup and restore characteristics,
see your Performance Guide.
15-42 Administrator’s Guide for Informix Extended Parallel Server

Table-Location Guidelines
Table-Location Guidelines
This section lists some strategies for optimizing the disk layout, given certain
characteristics about the tables in a database. You can implement many of
these strategies with a higher degree of control using table fragmentation. For
a discussion of how to optimize your disk layout using table fragmentation,
refer to your Performance Guide.

Isolate High-Use Tables

You can place a table with high I/O activity on a disk device dedicated to its
use and thus reduce contention for the data stored in the table. When disk
drives have different performance levels, you can put the tables with the
highest frequency of use on the fastest drives. Placing two high-use tables on
separate disk devices reduces competition for disk access when joins are
formed between the two tables or when the two tables experience frequent,
simultaneous access from multiple applications.

To isolate a high-use table on its own disk device, assign the device to a
chunk, and assign the same chunk to a dbspace. Finally, place the frequently
used table in the dbspace just created using the IN dbspace option of CREATE
TABLE. Figure 15-13 on page 15-44 illustrates this strategy by showing
optimal placement of three frequently used tables.
Data Storage 15-43

Table-Location Guidelines
To take this strategy a step further, fragment a high-use table over multiple
disk devices. If you choose an appropriate distribution scheme, the database
server routes queries to the appropriate fragment, thereby reducing
contention on any single fragment. For more information, see your Perfor-
mance Guide.

If you have doubts whether spreading your tables across multiple disks can
improve performance for your particular configuration, run the -g iof option
of onstat. This option displays the level of I/O operations against each chunk.
For details about onstat, see the utilities chapter in the Administrator’s
Reference.

Figure 15-13
Example of High-

Use Table IsolationLogical units of storage Physical units of storage

ChunksDatabase

Chunk 3

Chunk 2

Chunk 1

High-use table
#1

High-use table
#3

High-use table
#2

Dbspace 2

Dbspace 1

Dbspace 3
15-44 Administrator’s Guide for Informix Extended Parallel Server

Table-Location Guidelines
Consider Mirroring

You can mirror critical tables and databases to maximize availability. You
specify mirroring on a chunk-by-chunk basis. Locate the primary and
mirrored chunks for critical tables on different disks. Ideally, different
controllers handle the different disks.

Fragmentation gives you a higher level of control over this process. That is,
you can mirror chunks that contain specific table fragments. For more infor-
mation, see your Performance Guide.

Group Tables with Backup and Restore in Mind

When you decide where to place your tables, keep in mind that if a device
containing a dbspace fails, all tables in that dbspace are inaccessible.
However, tables in other dbspaces remain accessible. The accessibility (or
inaccessibility) of dbspace might influence which tables you group together
in a particular dbspace.

Although you must perform a cold restore if a dbspace that contains critical
information fails, you need only perform a warm restore if a noncritical
dbspace fails. This situation might influence which dbspace you use to store
critical information. If you use ON-Bar for your backup and restore tool, refer
to your Backup and Restore Guide for more information. If you use ON-Archive
for your backup and restore tool, refer to your Archive and Backup Guide for
more information.

Fragmentation gives you greater granularity of backup and restore. When
you fragment a table, you can still access the fragments located in the other
dbspaces in the event of a dbspace failure. For more information, see your
Performance Guide.
Data Storage 15-45

Table-Location Guidelines
Place High-Use Tables on Middle Partition of Disk

To minimize disk-head movement, place the most-frequently accessed data
in partitions as close to the middle of the disk as possible. See Figure 15-14.
When a disk device is partitioned, the central partitions generally experience
the fastest access time. Place the least-frequently used data on the outermost
or innermost partitions. This overall strategy minimizes disk-head
movement.

To place high-use tables on the middle partition of the disk, create a chunk
using raw disk space that is composed of cylinders that reside midway
between the spindle and the outer edge of the disk. Then create a dbspace
with this same chunk as the initial and only chunk. When you create your
high-use tables, use the IN clause of the CREATE TABLE statement to place
them in the newly created dbspace.

For information about using raw disk space, see “Unbuffered or Buffered
Disk Access on UNIX” on page 15-6.

Optimize Table-Extent Sizes

When two or more large, growing tables share a dbspace, their new extents
can become interleaved. (See “Tblspaces” on page 15-34.) This interleaving
creates gaps between the extents of any one table. (See Figure 15-11 on
page 15-35.) Performance might suffer if disk seeks must span more than one
extent. Work with the table owners to optimize the table extent sizes and thus
limit head movement. For advice on how to alleviate this problem, see your
Performance Guide. You can also consider placing the tables in separate
dbspaces.

Figure 15-14
Disk Platter with
High-Use Table

Located on Middle
Partitions

Disk platter

Create high-use
table in dbspace

Single chunk in a
dbspace
15-46 Administrator’s Guide for Informix Extended Parallel Server

Sample Disk Layouts
Sample Disk Layouts
When setting out to organize disk space, the database server administrator
usually has one or more of the following objectives in mind:

■ High performance

■ High availability

■ Ease and frequency of backup and restore

Meeting any one of these objectives has trade-offs. For example, configuring
your system for high performance usually results in taking risks regarding
the availability of data. The sections that follow present an example in which
the database server administrator must make disk-layout choices given
limited disk resources. These sections describe two different disk-layout
solutions. The first solution represents a performance optimization, and the
second solution represents an availability-and-restore optimization.

The setting for the sample disk layouts is a fictitious sporting-goods database
that uses the structure (but not the volume) of the stores_demo database. In
this example, the database server is configured to handle approximately
350 users and 3 gigabytes of data. The disk space resources are shown in the
following table.

The database includes two large tables: cust_calls and items. Assume that
both of these tables contain more than 1,000,000 rows. The cust_calls table
represents a record of all customer calls made to the distributor. The items
table contains a line item of every order that the distributor ever shipped.

The database includes two high-use tables: items and orders. Both of these
tables are subject to constant access from users around the country.

Disk Drive Size of Drive High Performance

Disk 1 1.5 gigabytes No

Disk 2 2 gigabytes Yes

Disk 3 2 gigabytes Yes

Disk 4 1.5 gigabytes No
Data Storage 15-47

Sample Disk Layouts
The remaining tables are low-volume tables that the database server uses to
look up data such as postal code or manufacturer.

Sample Layout When Performance Is Highest Priority

Figure 15-15 shows a disk layout optimized for performance. This disk
layout uses the following strategies to improve performance:

■ Migration of the logical log from the rootdbs dbspace to a dbspace on
a separate disk

This strategy separates the logical log and the physical log and
reduces contention for the root dbspace.

■ Location of the two tables that undergo the highest use in dbspaces
on separate disks

Neither of these disks stores the logical log or the physical log.
Ideally you could store each of the items and orders tables on a
separate high-performance disk. However, in the present scenario,
this strategy is not possible because one of the high-performance
disks is needed to store the very large cust_calls table (the other two
disks are too small for this task).

Table Name Maximum Size Access Rate

cust_calls 1.5 gigabytes Low

items 0.5 gigabytes High

orders 50 megabytes High

customers 50 megabytes Low

stock 50 megabytes Low

catalog 50 megabytes Low

manufact 50 megabytes Low

state 50 megabytes Low

call_type 50 megabytes Low
15-48 Administrator’s Guide for Informix Extended Parallel Server

Sample Disk Layouts
.

Figure 15-15
Disk Layout Optimized for Performance

customerstate call_type

Database Disks

Disk 1
(1.5 gigabyte)

Disk 2
(4 gigabyte, high
performance)

Disk 3
(4 gigabyte, high
performance)

Disk 4
(1.5 gigabyte)

rootdbs

phys_log_space

log_log_space

look_up2

look_up3

manufactstock catalog

orders

items

cust_calls
cust_calls_space

orders_space

items_space
Data Storage 15-49

Sample Disk Layouts
Sample Layout When Availability Is Highest Priority
The weakness of the previous disk layout is that if either disk 1 or disk 2 fails,
the whole database server goes down until you restore the dbspaces on these
disks from backups. In other words, the disk layout is poor with respect to
availability.

An alternative disk layout that optimizes for availability is shown in
Figure 15-16. This layout mirrors all the critical data spaces (the system
catalog tables, the physical log, and the logical log) to a separate disk. Ideally
you could separate the logical log and physical log (as in the previous layout)
and mirror each disk to its own mirror disk. However, in this scenario the
required number of disks does not exist; therefore, the logical log and the
physical log both reside in the root dbspace.
15-50 Administrator’s Guide for Informix Extended Parallel Server

Sample Disk Layouts
Figure 15-16
Disk Layout Optimized for Availability

cust_calls_space

customerstate call_type

Database Disks

disk 1
(1.5

disk 2
(4 gigabyte high performance)

disk 3
(4 gigabyte high performance)

disk 4
(1.5 gigabyte)

rootdbs

phys_log_space

items_spa
ce

log_log_space

look_up1

look_up2

orders_space

manufactstock catalog

orders

items

cust_calls

cust_calls_space

customerstate call_type

Database Disks

Disk 1
(1.5 gigabyte)

Disk 2
(4 gigabyte high performance)

Dsk 3
(4 gigabyte high

Disk 4
(1.5 gigabyte)

rootdbs

phys_log_space

items_space

log_log_space

look_up1

look_up2

orders_space

manufactstock catalog

orders

items

cust_calls

Dsk 3
(4 gigabyte high performance)
Data Storage 15-51

Logical-Volume Manager
Logical-Volume Manager
A logical-volume manager (LVM) is a utility that allows you to manage your
disk space through logical volumes.

Many computer manufacturers ship their computers with a proprietary LVM.
You can use the database server to store and retrieve data on disks that are
managed by most proprietary LVMs. Logical-volume managers provide
some advantages and some disadvantages, as discussed in the remainder of
this section.

Most LVMs can manage multiple gigabytes of disk space. On Extended
Parallel Server, the maximum chunk size can be 4 gigabytes or even larger for
64-bit platforms. To determine which chunk size your platform supports,
refer to your machine notes file.

Because LVMs allow you to partition a disk drive into multiple volumes, you
can control where data is placed on a given disk. You can improve perfor-
mance by defining a volume that consists of the middle-most cylinders of a
disk drive and placing high-use tables in that volume. For more information,
see “Place High-Use Tables on Middle Partition of Disk” on page 15-46.
(Technically, you do not place a table directly in a volume. You must first
allocate a chunk as a volume, then assign the chunk to a dbspace, and finally
place the table in the dbspace. For more information, see “Control of Where
Data Is Stored” on page 15-15.)

You can also improve performance by using a logical volume manager to
define a volume that spreads across multiple disks and then placing a table
in that volume. This strategy helps reduce contention between programs that
access the same table, as explained in “Place High-Use Tables on Middle
Partition of Disk” on page 15-46.

Many logical volume managers also allow a degree of flexibility that
standard operating-system format utilities do not. One such feature is the
ability to reposition logical volumes after you define them. Thus getting the
layout of your disk space right the first time is not so critical as with
operating-system format utilities.

LVMs often provide operating-system-level mirroring facilities. For more
information, see “Alternatives to Mirroring” on page 25-6.
15-52 Administrator’s Guide for Informix Extended Parallel Server

Logical-Volume Manager
Figure 15-17 illustrates the role of fragments in specifying the location of
data.

Usually you fragment a table when you initially create it. The CREATE TABLE
statement takes one of the following forms:

CREATE TABLE tablename ... FRAGMENT BY ROUND ROBIN IN
dbspace1, dbspace2, dbspace3;

CREATE TABLE tablename ...FRAGMENT BY EXPRESSION
<Expression 1> in dbspace1,
<Expression 2> in dbspace2,
<Expression 3> in dbspace3;

The FRAGMENT BY ROUND ROBIN and FRAGMENT BY EXPRESSION
keywords refer to two different distribution schemes. Both statements
associate fragments with dbspaces. For more information on fragmentation
schemes, refer to the Informix Guide to Database Design and Implementation

Figure 15-17
Dbspaces That Link

Logical Units
(Including Table
Fragments) and

Physical Units of
Storage

Logical units of storage Physical units of storage

Chunks

Chunk 3

Chunk 2

Chunk 1

Dbspace 2

Dbspace 1

Dbspace 3

Database
System catalog

Table 2

Table 1

Fragment 1

Fragment 2

Fragment 3
Data Storage 15-53

16
Chapter
Managing Disk Space
In This Chapter . 16-5

Initializing Disk Space. 16-6

Allocating Disk Space 16-6
Specifying an Offset 16-7

Specifying an Offset for the Initial Chunk of Root Dbspace . . 16-7
Specifying an Offset for Additional Chunks 16-8
Using Offsets to Create Multiple Chunks 16-8

Allocating a File for Disk Space on UNIX 16-8
Allocating Raw Disk Space on UNIX 16-10

Configuring Disk Space for Multiple Coservers 16-11
Creating Standard Device Names 16-12
Setting Up Disk Access Across Nodes 16-12

Backing Up After You Change the Physical Schema 16-13

Creating a Dbspace 16-13
Specifying Pathnames for Dbspaces. 16-14
Specifying Names and Maximum Number of Storage Spaces . . . 16-14
Backing Up the New Dbspace. 16-15
Creating a Temporary Dbspace 16-15
Creating a Dbspace with onutil 16-16

16-2 Ad
Creating Dbslices 16-16
Naming Dbslices 16-17
Increasing the Number of Dbslices 16-17
Backing Up the New Dbslice 16-18
Altering a Dbslice 16-18
Increasing the Maximum Number of Dbspaces, Chunks, or Dbslices 16-19

Converting from Version 8.2 to Version 8.3 16-20
Recovering from Errors 16-20

Adding a Chunk to a Dbspace 16-20
Backing Up the New Chunk 16-21
Naming Chunks and Storage Spaces 16-21
Limiting Chunk Size and Number 16-22

Adding a Chunk with onutil 16-22

Loading Data Into a Table 16-23

Dropping a Chunk 16-23
Verifying Whether a Chunk Is Empty 16-24
Dropping a Chunk from a Dbspace with onutil 16-24

Dropping a Storage Space 16-25
Preparing to Drop a Storage Space 16-25
Backing Up After Dropping a Storage Space 16-25
Dropping a Mirrored Storage Space 16-25
Dropping a Dbspace with onutil 16-26

Dropping Dbslices 16-26

Skipping Inaccessible Fragments 16-27
Using the DATASKIP Configuration Parameter 16-27
Using the Dataskip Feature of onutil 16-28
Using onstat to Check Dataskip Status 16-28
Using the SQL Statement SET DATASKIP. 16-28
Effect of the Dataskip Feature on Transactions 16-29
Determining When to Use Dataskip 16-30

Determining When to Skip Selected Fragments 16-30
Determining When to Skip All Fragments 16-30

Monitoring Fragmentation Use 16-31
ministrator’s Guide for Informix Extended Parallel Server

Displaying Databases 16-32
Using SMI Tables 16-32

Monitoring the Database Server for Disabling I/O Errors 16-32
Using the Message Log to Monitor Disabling I/O Errors 16-32
Using Event Alarms to Monitor Disabling I/O Errors 16-33

Monitoring Disk Usage 16-34
Monitoring Chunks 16-34

Using Command-Line Utilities. 16-34
Using SMI Tables 16-37

Monitoring Tblspaces and Extents 16-38
Using Command-Line Utilities. 16-38
Using SMI Tables 16-40
Using System Catalog Tables 16-41

Monitoring Simple Large Objects in a Dbspace 16-41
No Compression of TEXT and BYTE Data Types 16-42
Managing Disk Space 16-3

16-4 Ad
ministrator’s Guide for Informix Extended Parallel Server

In This Chapter
This chapter provides the instructions that you need to manage effectively
the disk spaces and data that the database server controls. It assumes you are
familiar with the terms and concepts contained in Chapter 15, “Data
Storage.”

This chapter covers the following topics:

■ Initializing disk space

■ Allocating disk space

■ Setting configuration variables related to disk management

■ Backing up after you change the physical schema

■ Managing chunks and storage spaces

❑ Creating and dropping dbspaces and dbslices

❑ Allocating, adding, and dropping chunks from dbspaces

❑ Altering dbslices

❑ Optimizing blobpage size

■ Skipping inaccessible fragments

■ Monitoring disk space

■ Monitoring simple-large-object data

Your Performance Guide also contains information about managing disk
space. In particular, it describes how to eliminate interleaved extents and
how to reclaim space in an empty extent.
Managing Disk Space 16-5

Initializing Disk Space
Initializing Disk Space
Disk-space initialization uses the values stored in the configuration file to
create the initial chunk of the root dbspace on disk and to initialize shared
memory. When you initialize disk space, shared memory is automatically
initialized for you as part of the process.

Typically, you initialize disk space just once in the life of an database server.
This action occurs when you bring the database server on-line for the first
time.

Warning: When you initialize the database server disk space, you overwrite whatever
is on that disk space. If you reinitialize disk space for an existing database server, all
data in the earlier database server instance becomes inaccessible and, in effect, is
destroyed.

For information on initializing the database server, see “Initializing Disk
Space” on page 9-5.

Allocating Disk Space
This section explains how to allocate disk space for the database server. Read
the following sections before you allocate disk space:

■ “Unbuffered or Buffered Disk Access on UNIX” on page 15-6

■ “Amount of Disk Space Needed to Store Data” on page 15-36

■ “Disk-Layout Guidelines” on page 15-39

Before the database server can use disk space, you might need to perform
these tasks:

■ Initializing disk space

■ Creating a dbspace

■ Adding a chunk to an existing dbspace

■ Mirroring an existing dbspace

You can allocate either an empty file or a portion of raw disk for database
server disk space.
16-6 Administrator’s Guide for Informix Extended Parallel Server

Specifying an Offset
If you allocate raw disk space, Informix recommends that you use the ln
command to create a link between the character-special device name and
another filename. For more information on this topic, see “Creating Standard
Device Names” on page 16-12.

Using a UNIX file and its inherent operating-system interface for database
server disk space also is referred to as using cooked space.

Specifying an Offset
When you allocate a chunk of disk space to the database server, you might
want to specify an offset for one of the following two purposes:

■ To prevent the database server from overwriting the partition
information

■ To define multiple chunks on a partition, disk device, or cooked file

Many computer systems and some disk-drive manufacturers keep infor-
mation for a physical disk drive on the drive itself. This information is
sometimes referred to as a volume table of contents (VTOC) or disk label. (For
convenience, it is referred to here as the VTOC.) The VTOC is commonly
stored on the first track of the drive. A table of alternate sectors and bad-
sector mappings (also called revectoring table) might also be stored on the
first track.

If you plan to allocate partitions at the start of a disk, you might need to use
offsets to prevent the database server from overwriting critical information
required by the operating system. For the exact offset required, refer to your
disk-drive manuals.

Warning: If you are running two or more instances of the database server, be
extremely careful not to define chunks that overlap. Overlapping chunks can cause
the database server to overwrite data in one chunk with unrelated data from an
overlapping chunk. This overwrite effectively destroys overlapping data.

Specifying an Offset for the Initial Chunk of Root Dbspace

For the initial chunk of root dbspace and its mirror, if it has one, specify the
offsets with the ROOTOFFSET and MIRROROFFSET parameters, respectively.
For more information, see the chapter on configuration parameters in the
Administrator’s Reference.
Managing Disk Space 16-7

Allocating a File for Disk Space on UNIX
Specifying an Offset for Additional Chunks

To specify an offset for additional chunks of database server space, you must
supply the offset as a parameter when you assign the space to the database
server with the onutil utility.

For more information on specifying an offset for chunks of database server
space, see “Creating a Dbspace” on page 16-13.

Using Offsets to Create Multiple Chunks

You can create multiple chunks from a disk partition, disk device, or file, by
specifying offsets and assigning chunks that are smaller than the total space
available. The offset specifies the beginning location of a chunk. The database
server determines the location of the last byte of the chunk by adding the size
of the chunk to the offset.

For the first chunk, assign any initial offset, if necessary, and specify the size
as an amount that is less than the total size of the allocated disk space. For
each additional chunk specify the offset to include the sizes of all previously
assigned chunks, plus the initial offset, and assign a size that is less than or
equal to the amount of space remaining in the allocation.

Allocating a File for Disk Space on UNIX
To allocate a file for database server disk space on UNIX, log in as user
informix and concatenate null to the filename that the database server will
use for disk space. The file should have permissions set to 660 (rw-rw----).
Group and owner must be set to informix. Figure 16-1 illustrates these steps
and allocates the file /usr/data/my_chunk for disk space.
16-8 Administrator’s Guide for Informix Extended Parallel Server

Allocating a File for Disk Space on UNIX
Figure 16-1
Preparing Cooked File Space

For information on how to create a dbspace using the file you have allocated,
refer to “Creating a Dbspace” on page 16-13.

Once you have allocated the file space, you can create the dbspace or other
storage space as you normally would, using onutil. For information on how
to create a dbspace or a dbslice, refer to “Creating a Dbspace with onutil” on
page 16-16 and “Creating Dbslices” on page 16-16.

You must also follow the preceding steps prior to adding a chunk to a
dbspace.

Step Command Comments

1. su informix Log in as user informix.

(Enter the password.)

2. cd /usr/data Change directories to the directory where
the cooked space will reside.

3. cat /dev/null > my_chunk Create your chunk by concatenating null
to a file (in this example, a file named
my_chunk).

4. chmod 660 my_chunk Set the permissions of the file to 660
(rw-rw----).

5. ls -lg my_chunk -rw-rw----
1 informix informix
0 Oct 12 13:43 my_chunk

Use ls -l if you are using System V
UNIX. Verify that both group and owner
of the file are informix. You should see
something like this line (which has
wrapped around).
Managing Disk Space 16-9

Allocating Raw Disk Space on UNIX
Allocating Raw Disk Space on UNIX
For specific instructions on how to allocate raw disk space on UNIX, see your
operating-system documentation.

In general, to create raw disk space, you can either repartition your disks or
unmount an existing file system. In either case, take proper precautions to
back up any files before you unmount the device. (See “Unbuffered or
Buffered Disk Access on UNIX” on page 15-6.)

Change the group and owner of the character-special devices to informix.
The filename of the character-special device usually begins with the letter r.

Verify that the operating-system permissions on the character-special devices
are crw-rw----.

Warning: After you create the raw device that the database server uses for disk space,
carefully heed the following warnings:

■ Do not create file systems on the same raw device that you allocate for the
database server disk space.

■ Do not use the same raw device as swap space that you allocate for the
database server disk space.

Create a link between the character-special device name and another
filename with the UNIX link command, usually ln.

The link enables you to replace quickly the disk where the chunk is located.
The convenience becomes important if you need to restore your database
server data. The restore process requires all chunks that were accessible at the
time of the last dbspace backup to be accessible when you perform the
restore. The link means that you can replace a failed device with another
device and link the new device pathname to the same filename that you
previously created for the failed device. You do not need to wait for the
original device to be repaired.
16-10 Administrator’s Guide for Informix Extended Parallel Server

Configuring Disk Space for Multiple Coservers
Execute the command ls -lg (ls -l on System V UNIX) on your device directory
to verify that both the devices and the links exist. The following example
shows links to raw devices. If your operating system does not support
symbolic links, hard links will work as well.

% ls -lg
crw-rw--- /dev/rxy0h
crw-rw--- /dev/rxy0a
lrwxrwxrwx /dev/my_root@->/dev/rxy0h
lrwxrwxrwx /dev/raw_dev2@->/dev/rxy0a

Configuring Disk Space for Multiple Coservers
Configuring your disks is possibly the most important task for obtaining
optimum performance with VLDBs. Disk I/O is the longest portion of the
response time for an SQL operation that scans a large amount of data.
Extended Parallel Server offers the advantage of parallel access to multiple
disks spread across many coservers.

Your goal should be to make it easy for a DBA to administer a large database
server and to ensure that tables can be fragmented appropriately across disks
and coservers for fully parallel processing. To accommodate multiple
coservers and multiple nodes, perform the following steps:

■ Create the dbspaces that the coservers manage on as many physical
disk drives as possible. This step maximizes parallel I/O access to
multiple disks. To prevent I/O access problem, if possible make sure
that each disk can be accessed by only one coserver.

■ Create standard device names and chunk path names across all
coservers. Although you are not required to create standard device
names across all coservers, standard device names make managing
the database server easier. You must use unique chunk path names
for each disk on a node. Be careful not to duplicate chunk path
names.
Managing Disk Space 16-11

Creating Standard Device Names
Creating Standard Device Names
Use symbolic links to assign abbreviated standard device names. To create a
link between the character-special device name and another filename, use the
link command (usually ln).

To verify that both the devices and the links exist, execute the command ls -l
(ls -lg on BSD) on your device directory. The following example shows links
to raw devices. If your operating system does not support symbolic links,
hard links work as well.

% ls -lg
crw-rw--- /dev/rxy0h
crw-rw--- /dev/rxy0a
lrwxrwxrwx /dev/my_root@->/dev/rxy0h
lrwxrwxrwx /dev/raw_dev2@->/dev/rxy0a

Extended Parallel Server requires standard device names across all
coservers.

Setting Up Disk Access Across Nodes
The file system on which the INFORMIXDIR directory is installed should be
exported to, and mounted by, all nodes that are defined for the database
server. In addition, you must replicate the following utilities on each node:

■ oninit

■ onmode

■ onstat

Place the directory that contains these copied utilities before
$INFORMIXDIR/etc in the search path because the INFORMIXDIR directory
might be on another node.
16-12 Administrator’s Guide for Informix Extended Parallel Server

Backing Up After You Change the Physical Schema
Backing Up After You Change the Physical Schema
You must perform a level-0 backup of the root dbspace and the modified
storage spaces to ensure that you can restore the data when you:

■ add or drop mirroring.

■ add, move, drop, or resize a logical-log file.

■ change the size or location of the physical log.

■ change your storage-manager configuration.

■ add or drop a dbspace, dbslice, or logslice.

■ add, move, or drop a chunk to a dbspace.

You must perform a level-0 backup of the modified storage spaces to ensure
that you can restore the data when you convert a raw, static, or operational
table to standard. This backup ensures that the unlogged data is restorable
before you switch to a logging table type.

Creating a Dbspace
This section explains how to create a standard dbspace and a temporary
dbspace. See “Dbspaces” on page 15-14 and “Temporary Dbspaces” on
page 15-18.

You can use onutil to create a dbspace.

Before you create a dbspace, you must first allocate disk space as described
in “Allocating Disk Space” on page 16-6.

You must be logged in as user informix or root to create a dbspace.

If you are creating a standard dbspace, the database server can be in on-line
mode. The newly added dbspace (and its mirror, if one exists) is available
immediately.

If you are using mirroring, you can mirror the dbspace when you create it.
Mirroring takes effect immediately.
Managing Disk Space 16-13

Specifying Pathnames for Dbspaces
When the initial chunk of the dbspace that you are creating is a cooked file,
the database server verifies that the disk space is sufficient for the initial
chunk. If the size of the chunk is greater than the available space on the disk,
a message is displayed, and no dbspace is created. However, the cooked file
that the database server created for the initial chunk is not removed. Its size
represents the space left on your file system before you created the dbspace.
Remove this file to reclaim the space.

Specifying Pathnames for Dbspaces
Specify an explicit pathname for the initial chunk of the dbspace as follows:

■ If you are using raw disks, Informix recommends that you use a
linked pathname. (See “Creating Standard Device Names” on
page 16-12.)

■ If you are using a file for database server disk space, the pathname is
the complete path and filename.

Specifying Names and Maximum Number of Storage Spaces
Specify a dbspace name of up to 18 characters. The name must be unique and
begin with a letter or underscore. You can use letters, digits, and underscores
in the name.

If you use a CONFIGSIZE value of LARGE, you can create up to 8192 dbspaces.
Use the MAX_DBSPACES parameter to increase the maximum number of
dbspaces on the system to 32,767. For more information on MAX_DBSPACES,
see the chapter on configuration parameters in the Administrator’s Reference
and “Increasing the Maximum Number of Dbspaces, Chunks, or Dbslices”
on page 16-19.
16-14 Administrator’s Guide for Informix Extended Parallel Server

Backing Up the New Dbspace
Backing Up the New Dbspace
After you create the dbspace, you must perform a level-0 backup of the root
dbspace and the new dbspace.

Creating a Temporary Dbspace
To specify where to allocate the temporary files, create temporary dbspaces.

To define temporary dbspaces

1. Use onutil CREATE TEMP DBSPACE.

For more information, refer to “Creating a Dbspace with onutil” on
page 16-16.

2. Use the DBSPACETEMP environment variables or the DBSPACETEMP
configuration parameter to specify the dbspaces that the database
server can use for temporary storage.

For further information on DBSPACETEMP, refer to the chapter on
configuration parameters in the Administrator’s Reference.

3. If you create more than one temporary dbspace, the dbspaces should
reside on separate disks to optimize the I/O.

If you are creating a temporary dbspace, you must make the database server
aware of the existence of the newly created temporary dbspace by setting the
DBSPACETEMP configuration variable, the DBSPACETEMP environment
variable, or both. The database server does not begin to use the temporary
dbspace until you take both of the following steps:

■ Set the DBSPACETEMP configuration parameter, the DBSPACETEMP
environment variable, or both.

■ Reinitialize the database server.
Managing Disk Space 16-15

Creating a Dbspace with onutil
Creating a Dbspace with onutil
You can create a new dbspace or temporary dbspace on a specific coserver.

When you create separate dbspaces without using a dbslice, a specific
coserver owns and manages each dbspace. The physical disk on which the
dbspace resides belongs to the node on which the coserver executes. This
coserver is referred to as the home coserver.

The following example shows the onutil CREATE DBSPACE command to
create a dbspace that coserver eds.2 owns:

% onutil
1> CREATE DBSPACE acctg_dbsp
2> CHUNK '/work/dbspaces/dbs_0'
3> OFFSET 0 size 1500
4> COSERVER eds.2;

The above example assumes that one coserver exists on each node. For more
information on onutil, refer to the utilities chapter in the Administrator’s
Reference.

Creating Dbslices
You can create dbslices with the database server in on-line or quiescent mode.

To obtain the maximum performance benefit from multiple coservers,
Informix recommends that you fragment all tables, except very small tables,
across all available coservers. Dbslices allow you to manage a set of dbspaces
in parallel across multiple coservers. For instance, rather than issuing a
separate onutil CREATE DBSPACE command for each dbspace that you intend
to use for a fragmented table, you can use the onutil CREATE DBSLICE
command to create them all. The dbspaces that you create with onutil follow
the naming convention that you specify as an argument to the CREATE
DBSLICE command, as the following example indicates:

% onutil
1> CREATE DBSLICE dbsl
2> FROM COGROUP cogroup_all
3> CHUNK '/dev/dbsl_all'
4> OFFSET 1024 SIZE 1024;
16-16 Administrator’s Guide for Informix Extended Parallel Server

Naming Dbslices
The above example assumes that one coserver exists on each node. If the
cogroup_all coserver group contains coserver eds.1 through coserver eds.16,
this command creates the following dbspaces on the indicated chunks.

Naming Dbslices
Specify a dbslice name of up to 18 characters. The name must begin with a
letter or underscore. You can use letters, digits, and underscores in the name.

For more information on dbslices and their relationship to dbspaces, see
Chapter 1, “Introducing the Database Server.” For more information on the
allocation and management of dbslices and dbspaces, see onutil in the
utilities chapter of the Administrator’s Reference.

Increasing the Number of Dbslices
If you use a CONFIGSIZE value of LARGE, you can create up to 512 dbslices.
Use the MAX_DBSLICES parameter to increase the maximum number of
dbslices on the system to 2047. For more information on MAX_DBSLICES, see
the chapter on configuration parameters in the Administrator’s Reference and
“Increasing the Maximum Number of Dbspaces, Chunks, or Dbslices” on
page 16-19.

Coserver Dbspace_identifier Primary Chunk Offset

eds.1 dbsl.1 /dev/dbsl_all 1024

eds.2 dbsl.2 /dev/dbsl_all 1024

eds.3 dbsl.3 /dev/dbsl_all 1024

...

eds.16 dbsl.16 /dev/dbsl_all 1024
Managing Disk Space 16-17

Backing Up the New Dbslice
Backing Up the New Dbslice
After you create or alter a dbslice, you must perform a complete level-0
backup on all coservers.

Altering a Dbslice
To alter a dbslice, add dbspaces to it. You can either add dbspaces to a dbslice
on the same coservers on which they were created or expand a dbslice to
another coserver. These new dbspaces are not automatically visible to the
existing tables in the dbslice. Use the SQL statement ALTER FRAGMENT to
refragment the tables to enable them to use the new dbspaces in the dbslice.
After you alter the dbslice, you can store new tables in either the new or old
dbspaces.

Suppose you add coservers eds.4 and eds.5 to the dbslice dbsl that you
created in the previous example. (See “Creating Dbslices” on page 16-16.) To
expand the dbslice to the new coservers, use the following command:

% onutil
ALTER DBSLICE dbsl ADD DBSPACE
FROM COGROUP eds.%r(4..5)
CHUNK '/dev/dbsl_45' SIZE 2048;

This command creates two 2048-kilobyte dbspaces in the dbslice, one each on
coservers eds.4 and eds.5. If this dbslice also contains a logslice, use the
onutil ALTER LOGSLICE command to add logical logs to the logslice. The
above example assumes that one coserver exists on each node. For more
information on onutil, see the utilities chapter in the Administrator’s Reference.
16-18 Administrator’s Guide for Informix Extended Parallel Server

Increasing the Maximum Number of Dbspaces, Chunks, or Dbslices
Increasing the Maximum Number of Dbspaces, Chunks, or
Dbslices
In Version 8.2, the CONFIGSIZE configuration parameter determined the
maximum number of dbspaces, chunks, and dbslices. In Version 8.3, use the
MAX_DBSPACES, MAX_CHUNKS, and MAX_DBSLICES configuration param-
eters to increase the maximum number of dbspaces, chunks, or dbslices that
the database server can maintain. You can increase the maximum number of
dbspaces, chunks, or dbslices from the number that CONFIGSIZE specified up
to the new maximums listed below.

Like CONFIGSIZE, these MAX* parameters take effect at shared memory
initialization.

The database server ignores these MAX* parameters if their values are
smaller than the values that are set by CONFIGSIZE. The database server also
ignores their values if they are smaller than the maximum previously set by
CONFIGSIZE. Once you successfully increase the maximum number of
dbspaces, chunks, or dbslices, you cannot reduce it (without reinitializing the
database server). If the value of the parameter is greater than the new
maximum number listed above, the database server uses the new maximum
number instead.

Storage Space
Old Maximum (with
CONFIGSIZE=LARGE) Current Maximum Number

dbslices 512 2047

dbspaces 8192 32767

chunks 8192 32767
Managing Disk Space 16-19

Adding a Chunk to a Dbspace
Converting from Version 8.2 to Version 8.3

If you are converting from Version 8.2 to Version 8.3, Informix recommends
that you complete the conversion first. Set these MAX* parameters in the
ONCONFIG file and then bring up the Version 8.3 database server. The
database server expands some structures (such as the safewrite area) in the
root dbspace to accommodate the new maximum values. If the database
server expands the structures successfully, the following messages appear in
the on-line message log:

If MAX_DBSLICES has been set to 1024:
Configuration has been grown to handle up to 1024 dbslices.

If MAX_CHUNKS has been set to 32767:
Configuration has been grown to handle up to 32767 chunks.

Recovering from Errors

If the database server fails to expand the structures, the following message
appears in the on-line message log, and the database server halts:

error: Insufficient available disk in the root dbspace to
increase the entire Configuration save area.

If this error occurs, you must reset CONFIGSIZE, MAX_CHUNKS,
MAX_DBSPACES, or MAX_DBSLICES to a lower value and restart the database
server. For more information, see the chapter on the configuration param-
eters in the Administrator’s Reference.

Adding a Chunk to a Dbspace
If one of your dbspaces is becoming full, you might want to add a new chunk.
Before you do, however, you must first allocate disk space as described in
“Allocating Disk Space” on page 16-6.

You add a chunk when you need to increase the amount of disk space
allocated to a storage space. To add a chunk, you must be logged in as user
informix or root.
16-20 Administrator’s Guide for Informix Extended Parallel Server

Backing Up the New Chunk
If you are adding a chunk to a mirrored storage space, you must also add a
mirrored chunk.

When you add a chunk that is allocated as a cooked file, the database server
verifies that the disk space is sufficient for the new chunk by creating and
then removing a file of the size requested. If the size of the chunk is greater
than the available space on the disk, the database server might inadvertently
fill your file system in the process of verifying available disk space.

To add a chunk to a dbspace, use the onutil utility.

Important: You can add a chunk while the database server is in on-line or quiescent
mode. The newly added chunk (and its associated mirror, if one exists) is available
immediately.

Backing Up the New Chunk
After you create the new chunk, you must perform a level-0 backup of the
root dbspace and the dbspace that contains the chunk.

Naming Chunks and Storage Spaces
You must specify an explicit pathname for the chunk. For more information,
see “Creating a Dbspace” on page 16-13.

The name is case insensitive unless you use quotes around it. By default, the
database server converts uppercase characters in the name to lowercase. If
you want to use uppercase in names, put quotes around them and set the
DELIMIDENT environment variable to ON.

The onutil utility does not support the DELIMIDENT environment variable.
For the naming rules, see “Specifying Names and Maximum Number of
Storage Spaces” on page 16-14.
Managing Disk Space 16-21

Limiting Chunk Size and Number
Limiting Chunk Size and Number
The maximum number of chunks that you can allocate for a given Extended
Parallel Server depends on the value of the CONFIGSIZE or MAX_CHUNKS
configuration parameter. If CONFIGSIZE is set to LARGE and MAX_CHUNKS is
not set, the maximum number of chunks is 8192. However, you can use the
MAX_CHUNKS parameter to specify up to 32,767 chunks. For more infor-
mation on the CONFIGSIZE and MAX_CHUNKS configuration parameters, see
the Administrator’s Reference and “Increasing the Maximum Number of
Dbspaces, Chunks, or Dbslices” on page 16-19.

This maximum number of chunks is the total number of chunks across all
coservers. For example, if you configure 10 coservers, the maximum number
of chunks is 819 per coserver (if CONFIGSIZE is set to LARGE) or 3276 per
coserver (if MAX_CHUNKS is set to 32,767).

Adding a Chunk with onutil

To add a chunk to a dbspace, use the onutil ALTER DBSPACE command.

This example adds a chunk of 5000 kilobytes of raw disk space, at an offset of
5200 kilobytes, to dbspace dbspc3 on coserver 2.

% onutil
1> ALTER DBSPACE dbsp3
2> CHUNK '/dev/dbsl_45' OFFSET 5200 size 5000
3> COSERVER eds.2;
16-22 Administrator’s Guide for Informix Extended Parallel Server

Loading Data Into a Table
Loading Data Into a Table
You can load data into an existing table in the following ways.

Dropping a Chunk
Use onutil ALTER DBSPACE to drop a chunk from a dbspace.

Before you drop a chunk, ensure that the database server is in the correct
mode, using the following table as a guideline.

Method to Load Data
TEXT or BYTE
Data Reference

DB-Access LOAD statement Yes LOAD statement in the Informix
Guide to SQL: Syntax

dbload utility Yes Informix Migration Guide

dbimport utility No Informix Migration Guide

Informix ESQL/C programs Yes Informix ESQL/C Programmer’s
Manual

From external tables Yes Chapter on loading with
external tables in the Adminis-
trator’s Reference

Chunk Type
Database Server in
On-line Mode

Database Server in
Quiescent Mode

Database Server in
Off-line Mode

Dbspace chunk Yes Yes No

Temporary dbspace
chunk

Yes Yes No
Managing Disk Space 16-23

Verifying Whether a Chunk Is Empty
Verifying Whether a Chunk Is Empty
To drop a chunk successfully from a dbspace with either of these utilities, the
chunk must not contain any data. All pages other than overhead pages must
be freed. If any pages remain allocated to nonoverhead entities, the utility
returns the following error:

Chunk is not empty.

If this situation occurs, you must determine which table or other entity still
occupies space in the chunk by executing onutil CHECK SPACE. Usually, the
pages can be removed when you drop the table that owns them. Then reenter
the utility command.

Dropping a Chunk from a Dbspace with onutil
Use the onutil ALTER DBSPACE command with the DROP CHUNK clause to
drop a chunk. If you drop a chunk that is mirrored, the mirrored chunk is also
dropped.

The following example drops a chunk from dbsp3:

% onutil
1> ALTER DBSPACE dbspc3
2> DROP CHUNK '/dev/raw_dev1'
3> OFFSET 300;

You cannot drop the initial chunk of a dbspace with the syntax in the
previous example. Instead, you must drop the dbspace. For more infor-
mation, refer to “Dropping a Dbspace with onutil” on page 16-26.

Use the chunk column of xctl onstat -d to determine which chunk is the initial
chunk of a dbspace. For more information on onstat, see the utilities chapter
of the Administrator’s Reference.

After you drop the chunk, you must perform a level-0 backup of the root
dbspace and the modified dbspace on the affected coserver.
16-24 Administrator’s Guide for Informix Extended Parallel Server

Dropping a Storage Space
Dropping a Storage Space
Use onutil DROP DBSPACE to drop a storage space.

You must be logged in as root or informix to drop a storage space.

Before you drop a storage space, ensure that the database server is in either
on-line or quiescent mode. You cannot drop a storage space when it is in off-
line mode.

Preparing to Drop a Storage Space
Before you drop a dbspace, you must first drop all databases and tables that
you previously created in that dbspace.

Execute onutil CHECK SPACE. You cannot drop the root dbspace or dbslice.

Backing Up After Dropping a Storage Space
If you create a storage space with the same name as the deleted storage space,
perform another level-0 backup to ensure that future restores do not confuse
the new storage space with the old one.

If you are using ON-Bar for your backup and restore system, see the Backup
and Restore Guide. If you are using ON-Archive as your backup and restore
tool, refer to your Archive and Backup Guide.

Warning: After you drop a dbspace or blobspace, the newly freed chunks are available
for reassignment to other dbspaces or blobspaces. However, before you reassign the
newly freed chunks, you must perform a level-0 backup of the root dbspace and the
modified dbspace or blobspace. If you do not perform this backup, and you subse-
quently need to perform a restore, the restore might fail because the dbspace-backup
reserved pages are not up-to-date.

Dropping a Mirrored Storage Space
If you drop a storage space that is mirrored, the mirror spaces are also
dropped.
Managing Disk Space 16-25

Dropping a Dbspace with onutil
If you want to drop only a storage-space mirror, turn off mirroring. (See
“Ending Mirroring with onutil” on page 26-8.) This action drops the dbspace
mirrors and frees the chunks for other uses.

Dropping a Dbspace with onutil
To drop a storage space with onutil, use the DROP DBSPACE option, as the
following examples illustrate.

This example drops a dbspace called dbspce5 and its mirrors.

% onutil
1> DROP DBSPACE dbspc5;

This example drops a dbspace that is part of a dbslice called dbsl.

% onutil
1> DROP DBSPACE dbsl.16;

After you drop the dbspace, you must perform a level-0 backup of the root
dbspace and the modified dbspace on the affected coserver.

Dropping Dbslices
The database server must be in on-line or quiescent mode before you can
drop a dbslice.

Dbslices allow you to manage a set of dbspaces in parallel across multiple
coservers. For instance, rather than issuing a separate onutil DROP DBSPACE
command for each dbspace that you intend to drop after you have removed
a fragmented table, you can use the onutil DROP DBSLICE command to drop
them all. The dbspaces that you drop with onutil must follow the naming
convention that you specified when you created the dbslice.

Warning: After you drop a dbslice, perform a level-0 backup on the coservers that
contained the dbspaces that made up the dbslice.Then the newly freed chunks are
available for reassignment to other dbspaces. Otherwise, a restore operation on
reassigned chunks might fail.

If you drop a dbslice that is mirrored, the mirror dbslice is also dropped.
16-26 Administrator’s Guide for Informix Extended Parallel Server

Skipping Inaccessible Fragments
You must be logged in as root or informix to drop a dbslice. On Windows NT,
you must be a member of the Informix-Admin group.

For more information on dbslices and their relationship to dbspaces, see
“Dbslices” on page 15-19. For more information on the allocation and
management of dbslices and dbspaces, see the information on onutil in the
Administrator’s Reference.

Skipping Inaccessible Fragments
One benefit that fragmentation provides is the ability to skip table fragments
that are unavailable during an I/O operation. For example, a query can
proceed even when a fragment is located on a chunk that is currently down
as a result of a disk failure. When this situation occurs, a disk failure affects
only a portion of the data in the fragmented table. By contrast, tables that are
not fragmented can become completely inaccessible if they are located on a
disk that fails.

This functionality is controlled as follows:

■ By the database server administrator with the DATASKIP configu-
ration parameter

■ By individual applications with the SET DATASKIP statement

Using the DATASKIP Configuration Parameter
You can set the DATASKIP parameter to OFF, ALL, or ON dbspace_list. OFF
means that the database server does not skip any fragments. If a fragment is
unavailable, the query returns an error. ALL indicates that any unavailable
fragment is skipped. ON dbspace_list instructs the database server to skip any
fragments that are located in the specified dbspaces.
Managing Disk Space 16-27

Using the Dataskip Feature of onutil
Using the Dataskip Feature of onutil
Use the dataskip feature of the onutil utility to specify the dbspaces that are
to be skipped when they are unavailable. The following example sets the
DATASKIP parameter so that the database server skips two dbspaces in the
dbslice acctg_dbslc:

% onutil
1> SET DATASKIP ON acctg_dbslc.1,
2> acctg_dbslc.2;

Using onstat to Check Dataskip Status
Use the onstat utility to list the dbspaces currently affected by the dataskip
feature. The -f option lists the dbspaces that were set with the DATASKIP
configuration parameter. When you execute onstat -f, you see one of the
following messages:

dataskip is OFF for all dbspaces

dataskip is ON for all dbspaces

databskip is ON for dbspaces:
dbspace1 dbspace2 ...

Using the SQL Statement SET DATASKIP
An application can use the SQL statement SET DATASKIP TO control whether
a fragment should be skipped if it is unavailable. Applications should
include this statement only in limited circumstances because it causes queries
to return different results, depending on the availability of the underlying
fragments. Like the configuration parameter DATASKIP, the SET DATASKIP
statement accepts a list of dbspaces that indicate to the database server which
fragments to skip. For example, suppose that an application programmer
included the following statement at the beginning of an application:

SET DATASKIP ON dbspace1, dbspace5

This statement causes the database server to skip dbspace1 or dbspace5
whenever both of these conditions are met:

■ The application attempts to access one of the dbspaces.

■ The database server finds that one of the dbspaces is unavailable.
16-28 Administrator’s Guide for Informix Extended Parallel Server

Effect of the Dataskip Feature on Transactions
If the database server finds that both dbspace1 and dbspace5 are
unavailable, it skips both dbspaces.

The DEFAULT setting for the SET DATASKIP statement allows a database
server administrator to control the dataskip feature. Suppose that an appli-
cation developer includes the following statement in an application:

SET DATASKIP DEFAULT

When a query is executed subsequent to this SQL statement, the database
server checks the value of the configuration parameter DATASKIP. Encour-
aging end users to use this setting allows the database server administrator
to specify which dbspaces are to be skipped as soon as the database server
administrator becomes aware that one or more dbspaces are unavailable.

Effect of the Dataskip Feature on Transactions
If you turn the dataskip feature on, a SELECT statement always executes. In
addition, an INSERT statement always succeeds if the table is fragmented by
round-robin and at least one fragment is on-line. However, the database
server does not complete operations that write to the database if a possibility
exists that such operations might compromise the integrity of the database.
The following operations fail:

■ All UPDATE and DELETE operations where the database server
cannot eliminate the down fragments

If the database server can eliminate the down fragments, the update
or delete is successful, but this outcome is independent of the
DATASKIP setting.

■ An INSERT operation for a table fragmented according to an
expression-based distribution scheme where the appropriate
fragment is down

■ Any operation that involves referential constraint checking if the
constraint involves data in a down fragment

For example, if an application deletes a row that has child rows, the
child rows must also be available for deletion.

■ Any operation that affects an index value (for example, updates to a
column that is indexed) where the index in question is located in a
down chunk
Managing Disk Space 16-29

Determining When to Use Dataskip
Determining When to Use Dataskip
Use this feature sparingly and with caution because the results are always
suspect. Consider using it in the following situations:

■ You can accept the compromised integrity of transactions.

■ You can determine that the integrity of the transaction is not
compromised.

The latter task can be difficult and time consuming.

Determining When to Skip Selected Fragments

In certain circumstances, you might want the database server to skip some
fragments, but not others. This usually occurs in the following situations:

■ Fragments can be skipped because they do not contribute
significantly to a query result.

■ Certain fragments are down, and you decide that skipping these
fragments and returning a limited amount of data is preferable to
canceling a query.

When you want to skip fragments, use the ON dbspace-list setting to specify a
list of dbspaces with the fragments that the database server should skip.

Determining When to Skip All Fragments

Setting the DATASKIP configuration parameter to ALL causes the database
server to skip all unavailable fragments. Use this option with caution. If a
dbspace becomes unavailable, all queries initiated by applications that do not
issue a SET DATASKIP OFF statement before they execute could be subject to
errors.
16-30 Administrator’s Guide for Informix Extended Parallel Server

Monitoring Fragmentation Use
Monitoring Fragmentation Use
The database administrator might find the following aspects of fragmen-
tation useful to monitor:

■ Data distribution over fragments

■ I/O request balancing over fragments

■ The status of chunks that contain fragments

The administrator can monitor the distribution of data over table fragments.
If the goal of fragmentation is improved single-user response time, it is
important for data to be distributed evenly over the fragments. To monitor
fragmentation disk use, you must monitor database server tblspaces because
the unit of disk storage for a fragment is a tblspace. (For information on how
to monitor the data distribution for a fragmented table, see “Monitoring
Tblspaces and Extents” on page 16-38.)

The administrator must monitor I/O request queues for data that is contained
in fragments. When I/O queues become unbalanced, the administrator
should work with the DBA to tune the fragmentation strategy. (For a
discussion of how to monitor chunk use, including the I/O queues for each
chunk, see “Monitoring Chunks” on page 16-34.)

The administrator must monitor fragments for availability and take appro-
priate steps when a dbspace that contains one or more fragments fails. For
how to determine if a chunk is down, see “Monitoring Chunks” on
page 16-34.
Managing Disk Space 16-31

Displaying Databases
Displaying Databases
You can display databases that you create with SMI tables.

Using SMI Tables
Query the sysdatabases table to display a row for each database managed by
the database server. For a description of the columns in this table, see the
sysdatabases information in the chapter about the sysmaster database in the
Administrator’s Reference.

Monitoring the Database Server for Disabling I/O
Errors
The database server notifies you about disabling I/O errors in two ways: the
message log and event alarms.

Using the Message Log to Monitor Disabling I/O Errors
The database server sends the following message to the message log when a
disabling I/O error occurs:

Assert Failed: Chunk {chunk-number} is being taken OFFLINE.
Who: Description of user/session/thread running at the time
Result: State of the affected database server entity
Action: What action the database server administrator should
take
See Also: DUMPDIR/af.uniqid containing more diagnostics
16-32 Administrator’s Guide for Informix Extended Parallel Server

Using Event Alarms to Monitor Disabling I/O Errors
The result and action depend on the current setting of ONDBSPDOWN, as
described in the following table.

For more information about interpreting messages that the database server
sends to the message log, see the chapter about message-log messages in the
Administrator’s Reference.

Using Event Alarms to Monitor Disabling I/O Errors
When a dbspace incurs a disabling I/O error, the database server passes the
following values as parameters to your event-alarm executable file.

If you want the database server to use event alarms to notify you about
disabling I/O errors, write a script that the database server executes when it
detects a disabling I/O error. For information about how to set up this
executable file that you write, see the appendix on event alarms and the
chapter on configuration parameters in the Administrator’s Reference.

ONDBSPDOWN
Setting Result Action

0 Dbspace {space-name} is
disabled.

Restore dbspace {space-name}.

1 The database server must
abort.

Reinitialize shared memory.

2 The database server blocks at
next checkpoint.

Use onmode -k to shut down, or
use onmode -O to override.

Parameter Value

Severity 4 (Emergency)

Class 5

Class message Dbspace is disabled: 'dbspace-name'

Specific message Chunk {chunk-number} is being taken OFFLINE.
Managing Disk Space 16-33

Monitoring Disk Usage
Monitoring Disk Usage
This section describes methods of tracking the disk space used by various
database server storage units.

For background information about internal database server storage units
mentioned in this section, see the chapter about disk structures and storage
in the Administrator’s Reference.

Monitoring Chunks
You can monitor chunks for the following information:

■ Chunk size

■ Number of free pages

■ Tables within the chunk

This information allows you to track the disk space used by chunks, monitor
chunk I/O activity, and check for fragmentation.

Using Command-Line Utilities

You can use the following command-line utilities to obtain information about
chunks.

onstat -d

The onstat -d utility lists all dbspaces and the following information for the
chunks within those spaces.

■ The address of the chunk

■ The chunk number and associated dbspace number

■ The offset into the device (in pages)

■ The size of the chunk (in pages)

■ The number of free pages in the chunk

■ The pathname of the physical device

■ Whether to skip logical replay for the dbspace
16-34 Administrator’s Guide for Informix Extended Parallel Server

Monitoring Chunks
The dbspace flags indicate whether a dbspace is mirrored. The chunk flags
provide the following information:

■ Whether the chunk is the primary chunk or the mirrored chunk

■ Whether the chunk is on-line, is down, is being recovered, or is a new
chunk

Important: You must perform a level-0 backup of the root dbspace and the modified
dbspace before mirroring can become active, and after turning off mirroring.

Sample output for onstat -D, which displays the same information plus two
additional fields, appears in Figure 16-2 on page 16-35. For descriptions of
the onstat -d flags, see the utilities chapter in the Administrator’s Reference.

onstat -D

The onstat -D option displays the same information as onstat -d, plus the
number of pages read from the chunk (in the page Rd field).

Figure 16-2 shows sample output.

Dbspaces
address number flags fchunk nchunks flags owner name
40d100 1 1 1 1 N informix rootdbs
40d144 2 2 2 1 M informix cookedspace
40d188 3 10 3 1 N B informix cookedblob
 3 active, 10 total

Chunks
address chk/dbs offset page Rd page Wr pathname
40c274 1 1 0 146 4 /home/server/root_chunk
40c30c 2 2 0 1 0 /home/server/test_chunk
40c8fc 2 2 0 36 0 /home/server/test_mirr
40c3a4 3 3 0 4 0 /home/server/blob_chunk
 3 active, 10 total

Figure 16-2
onstat -D Output
Managing Disk Space 16-35

Monitoring Chunks
onstat -g iof

The onstat -g iof option displays the number of reads from each chunk and
the number of writes to each chunk. If one chunk has a disproportionate
amount of I/O activity against it, this chunk might be a system bottleneck.
This option is useful for monitoring the distribution of I/O requests against
the different fragments of a fragmented table. Figure 16-3 shows sample
output.

onutil CHECK RESERVED

To list the contents of the reserve pages, execute onutil CHECK RESERVED.

onutil CHECK SPACE

To obtain the physical layout of information, execute onutil CHECK SPACE.

The following information is displayed:

■ The name, owner, and creation date of the dbspace

■ The size in pages of the chunk, the number of pages used, and the
number of pages free

■ A listing of all the tables in the chunk, with the initial page number
and the length of the table in pages

The tables within a chunk are listed sequentially. This output is useful for
determining the extent of chunk fragmentation. If the database server is
unable to allocate an extent in a chunk despite an adequate number of free
pages, the chunk might be badly fragmented.

...
AIO global files:
gfd pathname totalops dskread dskwrite io/s
 3 raw_chunk 38808 27241 11567 6.7
 4 cooked_chk1 7925 5660 2265 1.4
 5 cooked_chk2 3729 2622 1107 0.6

Figure 16-3
onstat -g iof Output
16-36 Administrator’s Guide for Informix Extended Parallel Server

Monitoring Chunks
Using SMI Tables

Query the syschunks table to obtain the status of a chunk. The following
columns are relevant.

The syschkio table contains the following columns.

Column Description

chknum Number of the chunk within the dbspace

dbsnum Number of the dbspace

chksize Total size of the chunk in pages

nfree Number of pages that are free

is_offline Whether the chunk is down

is_recovering Whether the chunk is recovering

mis_offline Whether the mirrored chunk is down

mis_recovering Whether the mirrored chunk is being recovered

Column Description

pagesread Number of pages read from the chunk

pageswritten Number of pages written to the chunk
Managing Disk Space 16-37

Monitoring Tblspaces and Extents
Monitoring Tblspaces and Extents
Monitor tblspaces and extents to determine disk usage by database, table, or
table fragment. Monitoring disk usage by table is particularly important
when you are using table fragmentation, and you want to ensure that table
data and table index data are distributed appropriately over the fragments.

Using Command-Line Utilities

You can use the following command-line utilities to monitor tblspaces and
extents.

onutil CHECK TABLE INFO

Execute onutil CHECK TABLE INFO to obtain extent information.

You can include a database-name or table-name parameter with the
command. The command displays the following information:

■ Number of extents

■ Size of the first extent

■ Size of the next extent

■ Number of pages allocated

■ Number of pages used

Figure 16-4 shows sample output. The table in the example is fragmented
over multiple dbspaces. Because each fragment of a fragmented table resides
in a separate tblspace, the onutil CHECK TABLE INFO option always displays
separate information for each fragment. The number of pages of table data in
each fragment is displayed.

.

16-38 Administrator’s Guide for Informix Extended Parallel Server

Monitoring Tblspaces and Extents
TBLspace Report for tpc:informix.account

 Table fragment in DBspace rootdbs

 Physical Address 100033
 Creation date 03/31/99 13:25:21
 TBLspace Flags 2 Row Locking
 Maximum row size 100
 Number of special columns 0
 Number of keys 0
 Number of extents 2
 Current serial value 1
 First extent size 50
 Next extent size 25
 Number of pages allocated 2375
 Number of pages used 2370
 Number of data pages 2369
 Number of rows 45001

Partition partnum 2097154
 Partition lockid 2097154

 Extents
 Logical Page Physical Page Size
 0 100ad5 50
 50 100b2f 2325

 Table fragment in DBspace dbspace2

 Physical Address 200005
 Creation date 03/31/99 13:25:21
 TBLspace Flags 2 Row Locking
 Maximum row size 100
 Number of special columns 0
 Number of keys 0
 Number of extents 1
 Current serial value 1
 First extent size 50
 Next extent size 25
 Number of pages allocated 550
 Number of pages used 528
 Number of data pages 527
 Number of rows 10000
 Partition partnum 3145730
 Partition lockid 2097154

 Extents
 Logical Page Physical Page Size
 0 200035 550
...

Figure 16-4
onutil CHECK TABLE

INFO Output
Managing Disk Space 16-39

Monitoring Tblspaces and Extents
onutil CHECK TABLE ALLOCATION INFO

The onutil CHECK TABLE ALLOCATION INFO returns all of the information
from the onutil CHECK TABLE INFO option as well as additional information.

Figure 16-5 shows sample output. Each tblspace in the database or table that
you supply is listed.

Using SMI Tables

Query the systabnames table to obtain information about each tblspace. The
systabnames table has columns that indicate the corresponding table,
database, and table owner for each tblspace.

Query the sysextents table to obtain information about each extent. The
sysextents table has columns that indicate the database and the table that the
extent belongs to, as well as the physical address and size of the extent.

TBLSpace Usage Report for tpc:chrisw.account

Type Pages Empty Semi-Full Full Very-Full
---------------- ---------- ---------- ---------- ---------- ----------
Free 20
Bit-Map 1
Index 471
Data (Home) 3158

Total Pages 3650

Unused Space Summary

Unused data slots 2
Unused bytes per data page 44
Total unused bytes in data pages 138952

Index Usage Report for index iaccount on tpc:chrisw.account

Average Average
Level Total No. Keys Free Bytes
----- -------- -------- ----------

1 1 4 1973
2 4 116 506
3 466 128 217

----- -------- -------- ----------
Total 471 128 223

Figure 16-5
Additional

Information shown
by onutil CHECK

TABLE ALLOCATION
INFO
16-40 Administrator’s Guide for Informix Extended Parallel Server

Monitoring Simple Large Objects in a Dbspace
Using System Catalog Tables

Query the sysfragments table to obtain information about all tblspaces that
hold a fragment. This table has a row for each tblspace that holds a table
fragment or an index fragment. The sysfragments table includes the
following columns.

Not all columns of sysfragments are documented in the preceding list. For a
complete listing of columns, see the Informix Guide to SQL: Reference.

Monitoring Simple Large Objects in a Dbspace
You can monitor dbspaces to determine the number of dbspace pages that
TEXT and BYTE data use.

This command takes a database name or a table name as a parameter. For
each table in the database, or for the specified table, the database server
displays a general tblspace report.

Following the general report is a detailed breakdown of page use in the
extent, by page type. See the Type column for information on TEXT and BYTE
data.

Column Description

fragtype Table or index fragment

tabid Table identifier

indexname Index identifier

partn Physical location (tblspace ID)

strategy Distribution scheme (round-robin, expression, table-based index)

dbspace Dbspacename for fragment

npused Number of data pages or leaf pages

nrows Number of rows or unique keys
Managing Disk Space 16-41

No Compression of TEXT and BYTE Data Types
The database server can store more than one simple large object on the same
dbspace. Therefore, you can count the number of pages that store TEXT or
BYTE data in the tblspace, but you cannot estimate the number of simple large
objects in the table.

To view statistics for simple large objects, execute onutil CHECK TABLE
ALLOCATION INFO. Figure 16-4 shows sample output.

No Compression of TEXT and BYTE Data Types
The database server does not contain any mechanisms for compressing TEXT
and BYTE data after the data has been scanned into a database.

The database server scans TEXT and BYTE data into an existing table in the
following ways.

Method to Scan TEXT or BYTE Data Reference

DB-Access LOAD statement LOAD statement in the Informix Guide
to SQL: Syntax

dbload utility Informix Migration Guide

Informix ESQL/C programs Informix ESQL/C Programmer’s Manual

From external tables Chapter on loading with external
tables in the Administrator’s Reference
16-42 Administrator’s Guide for Informix Extended Parallel Server

17
Chapter
Table Fragmentation and PDQ
In This Chapter . 17-3

Fragmentation . 17-3
Fragmentation Goals 17-5
Responsibility for Fragmentation 17-6
Fragmentation Strategies 17-6

Table Fragmentation. 17-8
Temporary Table Fragmentation 17-8
Table Index Fragmentation 17-9

SQL Statements That Perform Fragmentation Tasks 17-10

Parallel Database Query 17-11
Parallelism . 17-12
Structure of a PDQ Query 17-14

SQL Operators. 17-14
Exchanges 17-16
PDQ Threads 17-17

Use of PDQ . 17-17
OLTP Applications 17-18
Decision-Support Applications 17-19

Database Server Use of PDQ 17-20
Resource Grant Manager 17-21
Fragmentation Enhancement to PDQ 17-22
How the Database Server Balances Workload 17-24

Resource Allocation with PDQ 17-25
Parameters for Controlling PDQ 17-25

17-2 Ad
ministrator’s Guide for Informix Extended Parallel Server

In This Chapter
This chapter provides an overview of the table fragmentation and parallel
database query (PDQ) features of your database server.

Table fragmentation allows you to store the parts of a table on different disks.
Table fragmentation allows you to store large amounts of data in a single
table and to balance the workload of large queries and high-transaction
volumes across multiple disks.

Parallel database query (PDQ) is an Informix database server feature that can
improve performance dramatically when the database server processes
queries initiated by decision-support applications. PDQ features allow the
database server to distribute the work for one aspect of a query among
several processors.and coservers. For example, if a query requires an aggre-
gation, the database server can distribute the work for the aggregation
among several processors. PDQ also includes tools for memory-resource
management.

PDQ delivers maximum performance benefits when the data that is being
queried is in fragmented tables. For information on how to use PDQ and
fragmentation for maximum performance, refer to your Performance Guide.

Fragmentation
Fragmentation is a database server feature that enables you to define groups
of rows or index keys within a table according to some algorithm or scheme.
You can store each group or fragment in a separate dbspace that is associated
with a specific physical disk. You create the fragments and assign them to
dbspaces with SQL statements.
Table Fragmentation and PDQ 17-3

Fragmentation
From the perspective of an end user or client application, a fragmented table
is identical to a nonfragmented table. Client applications do not require any
modifications to allow them to access the data that is contained in
fragmented tables.

The database server stores the location of each table and index fragment,
along with other related information, in the system catalog table named
sysfragments. You can use this table to access information about your
fragmented tables and indexes. For the complete listing of the information in
this system catalog table, refer to the Informix Guide to SQL: Reference.

Because the database server has information on which fragments contain
which data, the database server can route client requests for data to the
appropriate fragment without accessing irrelevant fragments, as Figure 17-1
illustrates. For more information on fragment elimination, refer to your
Performance Guide.

Figure 17-1
Routing Client

Requests To The
Appropriate Table

Fragments

Disks

Unified table
image as viewed
by the client
application

Table fragments
as stored by the
database server

Client applications
Client

Client Client
17-4 Administrator’s Guide for Informix Extended Parallel Server

Fragmentation Goals
The following sections cover these fragmentation topics:

■ Fragmentation goals

■ Fragmentation strategies

■ Summary of SQL statements for fragmentation

Fragmentation Goals
Consider fragmenting your tables if you have at least one of the following
goals:

■ Improved single-user response time
To improve the performance of individual queries, use fragmen-
tation with parallel database query (PDQ) to scan in parallel
fragments that are spread across multiple disks.

■ Improved concurrency
Fragmentation can reduce contention for data that is located in large
tables that are used by multiple queries and OLTP applications.
Fragmentation reduces contention because each fragment resides on
a separate I/O device, and the database server directs queries to the
appropriate fragment.

■ Improved availability
If a fragment becomes unavailable, the database server can still
access the remaining fragments.

■ Improved data-load performance
When the database server uses parallel inserts and external tables to
load a table that is fragmented across multiple coservers, it allocates
threads to light append the data into the fragments in parallel. For
more information on this load method, refer to the chapter on
loading with external tables in the Administrator’s Reference.

■ Improved ALTER FRAGMENT performance
You can also use the ALTER FRAGMENT TABLE with the ATTACH
clause to add data quickly to a very large table.

■ Improved backup-and-restore characteristics
Fragmentation gives you a finer backup-and-restore granularity.
This granularity can reduce the time that is required for backup-and-
restore operations. In addition, you can improve the performance of
backup-and-restore operations if you use ON-Bar to perform these
operations in parallel.
Table Fragmentation and PDQ 17-5

Responsibility for Fragmentation
Each of the preceding goals has its own implications for the fragmentation
strategy that you ultimately implement. “Fragmentation Strategies” on
page 17-6 discusses these issues. Your primary fragmentation goal deter-
mines, or at least influences, how you implement your fragmentation
strategy.

In deciding whether to use fragmentation to meet any of the preceding goals,
keep in mind that fragmentation requires some additional administration
and monitoring activity. For more information about fragmentation, refer to
your Performance Guide.

Responsibility for Fragmentation
Some overlap exists between the responsibilities of the database server
administrator and those of the DBA (database administrator) with respect to
fragmentation. The DBA creates the database schema. This schema can
include table fragmentation. The database server administrator, on the other
hand, lays out the disk space and creates the dbspaces where the fragmented
tables reside. Because these responsibilities cannot be performed in isolation,
implementing fragmentation requires a cooperative effort between the
database server administrator and the DBA.

Fragmentation Strategies
A fragmentation strategy consists of two parts:

■ A distribution scheme

The scheme that you use to group rows or index keys into fragments
is called the distribution scheme. You specify the distribution scheme
in the FRAGMENT BY clause of the CREATE TABLE, CREATE INDEX,
OR ALTER FRAGMENT statement.

■ The set of dbspaces in which you locate the fragments

You specify the set of dbspaces in the IN clause of these SQL
statements.
17-6 Administrator’s Guide for Informix Extended Parallel Server

Fragmentation Strategies
The database server supports the following distribution schemes:

■ Round-robin. This type of fragmentation places rows one after
another in fragments, rotating through the series of fragments to
distribute the rows evenly.

For INSERT statements, the database server uses a hash function on a
random number to determine the fragment in which to place the
row. For INSERT cursors, the database server places the first row in a
random fragment, and the second and subsequent rows are assigned
to fragments in sequence. If one of the fragments is full, that
fragment is skipped.

■ Expression-based. This type of fragmentation puts rows into
fragments based on a fragmentation expression that you specify. This
expression defines criteria, or rules, for assigning a set of rows to
each fragment. The expression can take the form of a range or some
other arbitrary rule. You can specify a remainder fragment that holds
all rows that do not match the criteria for any other fragment,
although a remainder fragment reduces the efficiency of the
expression-based distribution scheme.

■ System-defined hash. This type of fragmentation uses an internal,
system-defined rule that distributes rows with the object of keeping
the same number of rows in each fragment.

■ Hybrid fragmentation. This type of fragmentation combines two
types of distribution schemes to put rows into fragments in different
dbslices and dbspaces. You specify an expression-based distribution
scheme to choose a dbslice, and a system-defined hash distribution
scheme to fragment the table across dbspaces within that dbslice.
Table Fragmentation and PDQ 17-7

Fragmentation Strategies
Table Fragmentation

Formulating a fragmentation strategy for a table requires you to make the
following decisions:

1. Decide what your primary fragmentation goal is.

Your fragmentation goals depend, to a large extent, on the types of
applications that access the table.

2. Decide how the table should be fragmented.

You must make the following decisions:

■ Whether to fragment the table data, the table index, or both

This decision is usually based on your primary fragmentation
goal.

■ What the ideal distribution of rows or index keys is for the table

This decision is also based on your primary fragmentation goal.

3. Decide on a distribution scheme.

4. To complete the fragmentation strategy, you must decide on the
number and location of the fragments.

For more information on the decisions that you must make to formulate a
fragmentation strategy, see the Informix Guide to Database Design and Imple-
mentation. For information on optimizing the performance of your
fragmentation scheme, refer to your Performance Guide.

Temporary Table Fragmentation

Just as you fragment permanent tables, you also can fragment an explicit
temporary table across multiple disks.

To create a temporary, fragmented table, use the TEMP or SCRATCH keyword
of the CREATE TABLE statement.

You can specify what distribution scheme and which dbspaces to use for the
temporary table. For more information on the types of temporary tables, refer
to “Temporary Tables” on page 15-37.

You can define your own fragmentation strategy for an explicit temporary
table, or you can let the database server dynamically determine the fragmen-
tation strategy. For more information, refer to your Performance Guide.
17-8 Administrator’s Guide for Informix Extended Parallel Server

Fragmentation Strategies
Table Index Fragmentation

You can fragment both table data and table indexes. When you create an
index, you can:

■ create an attached index by omitting the storage specification from the
CREATE INDEX statement.

When you do, the attached index takes on the same fragmentation
strategy as the table. Each fragment of an attached index resides in
the same dbspace as the corresponding table data.

You create an attached index by omitting the FRAGMENT BY and IN
clauses from the CREATE INDEX statement.

CREATE TABLE tb1 (a int)
FRAGMENT BY EXPRESSION

(a >= 0 and a < 5) IN dbspace1,
(a >= 5 and a < 10) IN dbspace2

...

;
CREATE INDEX idx1 ON tb1(a);

■ create a detached index by including an explicit storage specification
in the CREATE INDEX statement.

When you do, the detached index uses its own fragmentation
strategy, which can differ from that of the table. A fragment in a
detached index can reside in a different dbspace than the corre-
sponding table data.

You cannot use the round-robin distribution scheme for an index. For
more information on the CREATE INDEX statement, refer to the
Informix Guide to SQL: Syntax.

Fragmenting table data and table indexes can greatly affect performance. For
detailed information on fragmenting table data and table indexes, see your
Performance Guide.
Table Fragmentation and PDQ 17-9

SQL Statements That Perform Fragmentation Tasks
SQL Statements That Perform Fragmentation Tasks
To perform most fragmentation tasks, you use appropriate SQL statements.
Figure 17-2 lists the fragmentation tasks and the SQL statements to accom-
plish these tasks.

For details on how to accomplish these fragmentation tasks, refer to the
Informix Guide to Database Design and Implementation. For the syntax of these
SQL statements, refer to the Informix Guide to SQL: Syntax.

Figure 17-2
Fragmentation Tasks and Corresponding SQL Statements

Fragmentation Task SQL Statements

Creating a new fragmented table CREATE TABLE statement,
FRAGMENT BY clause

Creating a fragmented table from a single
nonfragmented table

ALTER FRAGMENT statement,
INIT clause

Creating a fragmented table from more than one
nonfragmented table

ALTER FRAGMENT statement,
ATTACH clause

Modifying distribution scheme for a fragmented
table

ALTER FRAGMENT statement,
INIT clause

Adding a fragment to a table ALTER FRAGMENT statement,
ATTACH clause

Removing a fragment from a table ALTER FRAGMENT statement,
DETACH clause

Reinitializing a fragmentation scheme ALTER FRAGMENT statement,
INIT clause

Converting a fragmented table to a non-
fragmented table

ALTER FRAGMENT statement,
INIT clause

Creating a fragmented index CREATE INDEX statement

Adding an explicit rowid column to a fragmented
table

Not supported
17-10 Administrator’s Guide for Informix Extended Parallel Server

Parallel Database Query
Parallel Database Query
PDQ refers to the techniques that the database server can use to distribute the
execution of a single query over several processors and coservers in
Extended Parallel Server.

The database server can also use PDQ for queries that consume large
quantities of non-CPU resources, in particular large quantities of memory and
many disk scans.

A query that is processed with PDQ techniques is called a PDQ query. When
the database server processes a PDQ query, it first divides the query into
subplans. The database server then allocates the subplans to a number of
threads that process the subplans in parallel. Because each subplan repre-
sents a smaller amount of processing time when compared to the original
query, and because each subplan is processed simultaneously with all other
subplans, the database server can drastically reduce the time that is required
to process the query. Figure 17-3 illustrates this concept.

Figure 17-3
Parallel Database

QueryCPU

CPU

CPU
Subplan

Subplan

Subplan

Query
Table Fragmentation and PDQ 17-11

Parallelism
Parallelism
The degree of parallelism for a query refers to the number of subplans that
the database server executes in parallel to run the query. For example, a two-
table join that six threads execute (with each thread executing one sixth of the
required processing) has a higher degree of parallelism than one that two
threads execute.

The database server determines the best degree of parallelism for each
component of a PDQ query, based on various considerations: the number of
available coservers, the number of virtual processors (VPs) on each coserver,
the fragmentation of the tables that are being queried, the complexity of the
query, and so forth.

The database server achieves a high degree of parallelism, so SQL operations
are completely parallel. Completely parallel means that Extended Parallel
Server processes multiple threads simultaneously on all CPU VPs across all
coservers to speed execution of a single query.

The value of PDQPRIORITY does not determine when to use PDQ to process a
query in parallel. Even when the value of PDQPRIORITY is 0, the database
server executes a query in parallel across all CPU VPs on all coservers.

Important: In Extended Parallel Server, PDQPRIORITY does not affect the degree of
parallelism. PDQPRIORITY values that are set by the database server administrator,
by the user, and by the client application affect only the amount of memory available
for parallel processing.

PDQ provides performance advantages on parallel-processing platforms
composed of multiple computers.On a parallel-processing platform, PDQ
distributes the execution of a query across available processors on all nodes
that support coservers, and takes full advantage of the memory on each of
those nodes.

When the connection coserver determines that a query requires access to data
that is fragmented across coservers, the database server determines which
additional coservers are required to participate in the query. It then divides
the query plan into subplans for each of the participating coservers. This
division is based on the fragmentation scheme of the tables and the avail-
ability of resources on the connection coserver and the participating
coservers.
17-12 Administrator’s Guide for Informix Extended Parallel Server

Parallelism
Extended Parallel Server distributes each subplan to the pertinent coservers
and executes the subplans in parallel. Each subplan is processed simulta-
neously with the others. Because each subplan represents a smaller amount
of processing time than the original query plan, the database server can
drastically reduce the time that is required to process the query if each
portion of the query had to be performed consecutively.

Parallel execution is extremely useful for decision support queries in which
large volumes of data are scanned, joined, and sorted across multiple
coservers.

For example, consider the following SQL request:

SELECT geo_id, sum(dollars)
FROM customer a, cash b
WHERE a.cust_id=b.cust_id
GROUP BY geo_id
ORDER BY SUM(dollars)

In this example, the connection and participating coservers perform the
following tasks:

1. Each coserver scans relevant fragments of the customer table and the
cash table in parallel.

2. Each coserver joins rows from local fragments of both the customer
table and the cash table by customer ID.

3. As participating coservers complete local join operations, they can
go on to perform other portions of the join operation or aggregations.
They can also perform some of the steps that are involved in
selecting the geographic areas and dollar amounts that belong to
particular customers, the group-by operations, and the order-by
operations that are needed to complete the query.

4. When the query is complete, the connection coserver returns the
results to the client.
Table Fragmentation and PDQ 17-13

Structure of a PDQ Query
Structure of a PDQ Query
The database server divides a query into components that can be performed
in parallel to increase the speed of query execution significantly.

Depending on the number of tables or fragments that a query must search,
the optimizer determines if a query subplan can execute in parallel.

The Resource Grant Manager (RGM) assigns the different components of a
query to different threads across processors on different coservers.

The sqlexec thread initiates these component threads, which the SET
EXPLAIN output lists as secondary threads.

Secondary threads are further classified as either producers or consumers,
depending on their function. A producer thread supplies data to another
thread. For example, a scan thread might read data from shared memory that
corresponds to a given table and pass it along to a join thread. In this case, the
scan thread is considered a producer, and the join thread is considered a
consumer. The join thread, in turn, might pass data along to a sort thread.
When it does so, the join thread is considered a producer, and the sort thread
is considered a consumer.

The database server uses SQL operators and exchanges to divide a query plan
into subplans that can be performed in parallel to increase the speed of query
execution significantly.

SQL Operators

An SQL operator is a process that accepts a stream of rows from one or two
data tables. Each SQL operator reads each row in a stream and applies a
predefined behavior to the data.
17-14 Administrator’s Guide for Informix Extended Parallel Server

Structure of a PDQ Query
For example, a typical query plan might contain scan and hash join SQL
operators. The behavior of these SQL operators is as follows:

■ Scan

This type of SQL operator performs a sequential read on:

❑ a table or index fragment.

❑ an unfragmented table or index.

The scan SQL operators handle data from a local table or local index. A
local table or local index resides on the same coserver on which the
SQL operator executes.

■ Hash join

This type of SQL uses a hash method to join tables. It selects one table
from to constructs a hash table. It then uses that hash table to join
data from other tables involved in the join operation.

The database server creates multiple instances of each SQL operator to
execute on different parts of the data in parallel, as follows:

■ The scan operators execute in parallel, based on the fragmentation
strategy of the tables.

■ The hash join operators execute in parallel, based on the availability
of resources (such as memory and number of CPU VPs) on the
coservers.

The database server structures queries into a plan of SQL operators.
Figure 17-4 on page 17-16 shows the SQL operator plan that the database
server constructs to process the following SQL query:

SELECT geo_id, dollars
FROM customer a, cash b
WHERE a.cust_id=b.cust_id;
Table Fragmentation and PDQ 17-15

Structure of a PDQ Query
Exchanges

An exchange is another process that affects parallel processing. An exchange
takes the results of two or more instances of an SQL operator and initiates
another set of operators to process the next SQL operator that is required to
complete the query. The database server inserts exchanges at places within an
SQL operator plan where parallelism is beneficial.

When several instances of an SQL operator supply data to another SQL
operator, the exchange synchronizes the transfer of data from the multiple
instances to the next SQL operator. For instance, if two fragmented tables are
to be joined, the optimizer typically calls for a separate scan thread for each
fragment. Because of different I/O characteristics, the scan threads can
complete their work at different times. The database server uses an exchange
to funnel the data that the various scan threads produce into one or more join
threads with a minimum amount of buffering.

Figure 17-4
SQL Operator Plan

for a Query

SCAN

Customer
table

Cash
table

SCAN

HASH
17-16 Administrator’s Guide for Informix Extended Parallel Server

Use of PDQ
PDQ Threads

Depending on the resources that are available for a decision-support query,
the database server assigns the different components of a query plan to
different threads across coservers. The sqlexec thread initiates these PDQ
threads, which the SET EXPLAIN output lists as secondary threads.

The database server creates these secondary threads and exchanges automat-
ically and transparently. They are terminated automatically as they complete
processing for a given query. The database server creates new threads and
exchanges as needed for subsequent queries.

Some monitoring tools display only the SQL operator but not the exchanges.
For more information on monitoring PDQ, refer to your Performance Guide.

Use of PDQ
Applications that access data stored in a relational database can be divided
into the following two types:

■ On-line transaction-processing (OLTP) applications

■ Decision-support applications

The complex queries that are typical of decision-support applications can
benefit from PDQ.

The next sections describe the characteristics of OLTP and decision-support
applications.
Table Fragmentation and PDQ 17-17

OLTP Applications
OLTP Applications
OLTP applications are characterized by quick, indexed access to a small
number of data items. An order-entry system is an example of a typical OLTP
system. The transactions handled by OLTP applications are usually simple
and predefined.

OLTP applications can be characterized as follows:

■ Simple transactions that involve small amounts of data

■ Indexed access to data

■ Many users

■ Frequent requests

■ Very fast response times

The default behavior of the database server is ideal for OLTP transactions,
optimizing performance for short transactions that require rapid response
times. All queries have the same priority for CPU, memory, and disk I/O.

Queries that require quick response and generate only a small amount of
information should not use PDQ. For example, the following queries should
not use PDQ:

■ Do we have a hotel room available in Berlin on December 8?

■ Does the store in Mill Valley have green tennis shoes in size 4?

The impact of PDQ on OLTP queries can be dramatic. One PDQ parameter
limits the number of simultaneous queries the database server can perform.
Suppose the number of simultaneous queries is set to 4. If another query
requests service, it must wait until one of the previous four queries finishes.
If the four queries are decision-support queries, the delay could be several
minutes. Typical OLTP queries must be processed immediately.
17-18 Administrator’s Guide for Informix Extended Parallel Server

Decision-Support Applications
Decision-Support Applications
Decision-support applications provide information for strategic planning,
decision making, and report preparation. Decision-support applications
frequently generate queries that require the database server to scan entire
tables and manipulate large amounts of data. These queries can require
operations such as multiple joins, temporary tables, and hundreds, if not
thousands, of calculations. For example, the following queries should use the
PDQ features of the database server:

■ Based on the predicted number of housing starts, the known age of
existing houses, and the observed roofing choices for houses in
different areas and price ranges, what roofing materials should we
order for each of our regional distribution centers?

■ How does the cost of health-care plan X compare with the cost of
health-care plan Y, considering the demographic profile of our
company? Would plan X be better for some regions and plan Y for
others?

Such operations require large amounts of data and large amounts of memory.
As a result, the execution times for decision-support applications are far
longer than the execution times required for typical OLTP applications. Other
typical decision-support applications include payroll, inventory reporting,
and end-of-period accounting reports. These applications are frequently
executed in a batch environment.

Queries that contain one or more of the following operations require large
quantities of memory:

■ Hash joins

■ Sorting

■ Groups

Other factors can also influence how the database server allocates resources
to a query. Consider the following SELECT statement:

SELECT col1, col2 FROM table1 ORDER BY col1

If no indexes exist on table1, a sort is required, and hence the database server
must allocate memory and temporary disk space to sort the query. However,
if column col1 is indexed, the query does not require these resources.
Table Fragmentation and PDQ 17-19

Database Server Use of PDQ
Decision-support applications have the following characteristics:

■ Complex queries that involve large amounts of data

■ Large memory requirements

■ Few users

■ Periodic requests

■ Relatively long response times

When both OLTP and decision-support queries are running on the same
computer, the database server must balance its resources so that all users
receive the best possible performance.

Database Server Use of PDQ
In Extended Parallel Server, parallel execution automatically occurs when
the database operation involves data that is fragmented across multiple
dbspaces and multiple CPU VPs are available. Parallel processing can occur
on both a single coserver and across multiple coservers.

■ Single coserver execution

Extended Parallel Server executes database operations in parallel
when:

❑ the involved tables are fragmented across separate dbspaces on
separate disks that are local to one coserver.

❑ an SQL operator in the query plan processes a large amount of
data so that it dynamically allocates multiple threads to execute
in parallel across available CPU VPs on the (single) local coserver.

■ Multiple coserver execution

Extended Parallel Server achieves a high degree of parallelism for a
query when the involved tables are fragmented across all coservers
and multiple CPU VPs on multiple coservers execute the SQL
operators within the query plan.
17-20 Administrator’s Guide for Informix Extended Parallel Server

Resource Grant Manager
Important: In Extended Parallel Server, the value of PDQPRIORITY does not
determine when to use PDQ to process a query in parallel. The database server does
not use PDQ if the database operation accesses data on only one table fragment on a
single coserver or does not contain an SQL operator that can execute in parallel if
multiple CPU VPs are available.

Extended Parallel Server executes the following database operations in
parallel when the involved tables are fragmented into separate dbspaces:

■ DSS queries, which are usually complex SELECT statements that
involve a large number of rows to scan, join, aggregate, sort, or group

■ INSERT, DELETE, and UPDATE statements that process nonlocal data

■ SPL routines

■ Sorts

■ Index builds

■ Update statistics

■ onutil commands, such as CHECK DATA and CHECK INDEX
command options

■ Uncorrelated subqueries

■ Correlated subqueries if they cannot be unnested

For more information on how Extended Parallel Server uses PDQ to execute
these database operations, refer to your Performance Guide.

Resource Grant Manager
The Resource Grant Manager (RGM) is a database server component that
coordinates the use of resources, where parallel branches are executed, and
which queries to run if more than one query is in the queue.

The RGM dynamically allocates the following resources for PDQ queries and
other parallel database operations:

■ The amount of memory in the virtual portion of database server
shared memory that the query can reserve

The RGM uses configuration parameters, environment variables, and
SQL statements to determine how to grant memory to a decision-
support query.
Table Fragmentation and PDQ 17-21

Fragmentation Enhancement to PDQ
■ The number of parallel threads that can be started for each query

The RGM uses the SQL operators that make up the query plan to
determine the number of threads to start for a query.

For join, group, and sort SQL operators, the RGM uses the following
factors to determine the number of threads to start:

❑ The values of configuration parameters (NUMCPUVPS,
DS_TOTAL_MEMORY, DBSPACETEMP and so forth) that the
database server administrator sets

For more information on the parameters that you can set to affect
parallelism, refer to your Performance Guide.

❑ The number of CPU VPs available

❑ The availability of computer-system resources (CPUs, memory,
and disk I/O)

For scan and insert SQL operators, the RGM also uses the following
factor to determine the number of scan and insert threads (disk I/O
operators):

❑ The number of fragments that the database operation accesses

For information about RGM, SQL operators, and fragmentation strategy
guidelines to improve performance, refer to your Performance Guide.

Fragmentation Enhancement to PDQ
The complex queries that are typical of DSS applications benefit from PDQ
and fragmentation. DSS applications perform complex tasks that often
include scans of entire tables, manipulation of large amounts of data,
multiple joins, and the creation of temporary tables. Such operations can
involve many I/O operations, many calculations, and large amounts of
memory.

The performance of decision-support queries increases almost linearly with
the number of fragments added. With Extended Parallel Server, you can add
many more fragments based on the number of parallel nodes with attached
disks on separate I/O ports. Informix recommends that the number of
fragments be a multiple of the number of coservers.
17-22 Administrator’s Guide for Informix Extended Parallel Server

Fragmentation Enhancement to PDQ
When you fragment your data across multiple coservers, the database server
can start parallel SQL operators (scans, sorts, inserts, and so forth) on all
available CPU virtual processors on the different coservers.

In Extended Parallel Server, you can increase the degree of parallelism by
fragmenting tables across multiple coservers. Cross-coserver fragmentation
ensures that table fragments are processed in parallel by threads running on
each coserver.

Fragmenting tables across coservers provides these advantages:

■ More efficient use of shared memory

The database server uses the resources on each coserver when
fragments are processed in parallel.

■ More efficient hash algorithm

The system-defined hash fragmentation rule lets the database server
eliminate fragments immediately for queries that use the hashed
column as a join key.

■ Higher degree of parallelism for scans

The separate disks and CPU VPs on each coserver can process I/O in
parallel.

■ More efficient join operations

Co-located joins generate less traffic between coservers.

■ Higher degree of parallelism for sorts

If the data involved in the sort operation resides on different
coservers, parallel sorts can occur even when the PSORT_NPROCS
environment variable is not set.

For more information on fragmentation strategy guidelines to improve
performance, refer to your Performance Guide.
Table Fragmentation and PDQ 17-23

How the Database Server Balances Workload
How the Database Server Balances Workload
Data skew is a condition that occurs when the majority of the data involved in
an SQL operation resides on one coserver and is not distributed evenly across
multiple coservers.

For example, during a hash join, data skew occurs when a large number of
duplicate values exist in the join column. The bulk of the data values
involved in the hash join reside on one or two of the coservers. As a result,
one or two of the coservers are still processing rows for the hash join, while
the other coservers have completed and are waiting for the rest of the rows
before the next SQL operator can start processing.

RGM can detect data skew during the build or probe phase of the hash join.
The database server detects if one coserver has many more rows to process
than the other coservers. If data skew occurs, RGM distributes the data from
the coserver with the most rows to the other idle coservers to perform part of
hash join.

The database server creates a new SQL operator, the flex join operator, to
process the redistributed hash join rows on the other coservers.

For more information on the features that Extended Parallel Server provides
to balance the workload, refer to your Performance Guide.
17-24 Administrator’s Guide for Informix Extended Parallel Server

Resource Allocation with PDQ
Resource Allocation with PDQ
This section discusses the configuration parameters, environment variables,
and SELECT statements that you can use to balance resource use.

Parameters for Controlling PDQ
Figure 17-5 summarizes the configuration parameters, environment
variables, and the SQL statement that control how the database server
allocates resources to PDQ in Extended Parallel Server. The value set by the
SQL statement supersedes values set by the environment variables, and
values set by environment variables supersede values set by configuration
parameters.

Figure 17-5
Parameters Used for Controlling PDQ in Extended Parallel Server

For more information on the PDQ parameters, refer to the chapter on config-
uration parameters in the Administrator’s Reference and to your Performance
Guide.

Configuration
Parameters

Environment
Variables

SQL
Statements Purpose of Parameter

DS_ADM_POLICY Indicate policy that RGM should use to sched-
ule queries.

DS_MAX_QUERIES Maximum number of PDQ queries that can be
active at any one time

MAX_PDQPRIORITY Percentage of user’s requested PDQPRIORITY
value that the database server grants

OPTCOMPIND OPTCOMPIND Indicate a preferred join type to the query
optimizer

PDQPRIORITY PDQPRIORITY SET PDQPRIORITY Request minimum and maximum percentage
of PDQ memory for an application or a specific
query

SET SCHEDULE
LEVEL

Request scheduling priority for an application
or a specific query
Table Fragmentation and PDQ 17-25

n
V
Logging and Log

Administration
Se
ct

io
Chapter 18 Logging

Chapter 19 Managing Database-Logging Status

Chapter 20 Logical Log

Chapter 21 Managing Logical-Log Files

Chapter 22 Physical Logging

Chapter 23 Managing the Physical Log

Chapter 24 Checkpoints and Fast Recovery

18
Chapter
Logging
In This Chapter . 18-3

Database Server Processes That Require Logging 18-3

Transaction Logging 18-5

Database Server Activity That Is Logged 18-6
Activity That Is Always Logged 18-7
Activity Logged for Databases with Transaction Logging 18-7

Logging and Nonlogging Tables 18-8
Use of Logging Tables 18-8
Use of Nonlogging Tables 18-9
Activity That Is Not Logged 18-9

Database-Logging Status 18-9
Unbuffered Transaction Logging 18-10
Buffered Transaction Logging 18-10
ANSI-Compliant Transaction Logging 18-11
Databases with Different Log-Buffering Status 18-11

Settings or Changes for Logging Status or Mode. 18-12

18-2 Ad
ministrator’s Guide for Informix Extended Parallel Server

In This Chapter
This chapter describes logging of Informix database server functions and
addresses the following questions:

■ Which database server processes require logging?

■ What is transaction logging?

■ What database server activity is logged?

■ What are logging and nonlogging tables?

Next, the chapter describes logging of databases and addresses the following
questions:

■ What is the database-logging status?

■ Who can set or change the database logging status?

Database Server Processes That Require Logging
As the Informix database server operates—as it processes transactions, keeps
track of data storage, ensures data consistency, and so on—it automatically
generates logical-log records for some of the actions that it takes. Most of the
time, the database server makes no further use of the logical-log records.
However, when the database server needs to roll back a transaction, to
execute a fast recovery after a system failure, for example, the logical-log
records are critical. The logical-log records are at the heart of the data-
recovery mechanisms.
Logging 18-3

Database Server Processes That Require Logging
The database server stores the logical-log records in a logical log. The logical
log is made up of logical-log files that the database server manages on disk
until they have been safely transferred off-line (backed up). The database
server administrator keeps the off-line logical-log records (in the backed-up
logical-log files) until they are needed during a data restore, or until the
administrator decides that the records are no longer needed for a restore. For
more information, see Chapter 20, “Logical Log.”

The database server uses logical-log records when it performs various
functions that recover data and ensure data consistency, as follows:

■ Transaction rollback

If a database is using transaction logging and a transaction must be
rolled back, the database server uses the logical-log records to
reverse the changes made during the transaction. For more infor-
mation, see “Transaction Logging” on page 18-5.

■ Fast recovery

If the database server shuts down in an uncontrolled manner, the
database server uses the logical-log records to recover all transac-
tions that occurred since the oldest update not yet flushed to disk
and to roll back any uncommitted transactions. (When all the data in
shared memory and on disk are the same, they are physically
consistent.) The database server uses the logical-log records in the
second phase of fast recovery when it returns the entire database
server to a state of logical consistency up to the point of the most-
recent logical-log record. (For more information, see “Details of Fast
Recovery After A Full Checkpoint” on page 24-14.)

■ Data restoration

During a data restore, you use the logical-log backup with the most-
recent storage-space backup to re-create the database server system
up to the point of the most recently backed-up logical-log record.
After restoring the storage spaces, the database server restores the
logical logs to reimplement all the logged activity since the last
storage-space backup.
18-4 Administrator’s Guide for Informix Extended Parallel Server

Transaction Logging
■ Deferred checking

If a transaction uses the SET CONSTRAINTS statement to set checking
to DEFERRED, the database server does not check the constraints
until the transaction is committed. If a constraint error occurs while
the transaction is being committed, the database server uses logical-
log records from the transaction to roll back the transaction. For more
information, see SET Database Object Mode in the Informix Guide to
SQL: Syntax.

■ Cascading deletes

Cascading deletes on referential constraints use logical-log records to
ensure that a transaction can be rolled back if a parent row is deleted
and the system fails before the children rows are deleted. For infor-
mation on table inheritance, see the Informix Guide to Database Design
and Implementation. For information on primary key and foreign key
constraints, see the Informix Guide to SQL: Tutorial.

Transaction Logging
A database or table is said to have or use transaction logging when SQL data
manipulation statements in a database generate logical-log records.

The database-logging status indicates whether a database uses transaction
logging. The log-buffering mode indicates whether a database uses buffered or
unbuffered logging, or ANSI-compliant logging. For more information, see
“Database-Logging Status” on page 18-9 and Chapter 19, “Managing
Database-Logging Status.”

In Extended Parallel Server, databases always use transaction logging. If you
do not specify the buffering mode for a database, the default is unbuffered
logging. You can use the SQL statement SET LOG or the ondblog utility to
change the log-buffering mode. For information on ondblog, see the chapter
on utilities in the Administrator’s Reference.

Although databases are always logged, you can use logging or nonlogging
tables within a database. The user who creates the table specifies the type of
table. Even if you use nonlogging tables, the database server always logs
some events. For more information, see “Logging and Nonlogging Tables”
on page 18-8.
Logging 18-5

Database Server Activity That Is Logged
Transactions against multiple coservers are always unbuffered. If any regular
table or fragment involved in a transaction resides on a coserver other than
the connection coserver for the application that makes the request, the
database server uses unbuffered logging for that transaction. If all tables
involved in the transaction are raw tables, no buffering takes place.

For local transactions, you can specify either buffered or unbuffered logging.
(Local transactions are operations on the same coserver, including connection
to applications). The table type determines the log-buffering mode for local
transactions on one coserver.

Database Server Activity That Is Logged
The database server does not generate logical-log records for every operation
because it does not need a record of every action. The database server needs
logical-log records only to perform the functions listed in “Database Server
Processes That Require Logging” on page 18-3. Also, the space required to
store a record of everything that the database server did would quickly
become unwieldy.

The logical-log records themselves are variable length. This arrangement
increases the number of logical-log records that can be written to a page in
the logical-log buffer. However, the database server often flushes the logical-
log buffer before the page is full.

Two types of logged activity are possible in the database server:

■ Activity that is always logged

■ Activity that is logged only for databases that use transaction
logging

The following sections explain the two different types of activity. For more
information on the format of logical-log records, see the chapter on inter-
preting logical-log records in the Administrator’s Reference.
18-6 Administrator’s Guide for Informix Extended Parallel Server

Activity That Is Always Logged
Activity That Is Always Logged
Some database operations always generate logical-log records, even if you
use nonlogging tables on Extended Parallel Server.

The following operations are always logged for permanent tables:

■ SQL data definition statements:

■ Storage-space backups

■ Checkpoints

■ Administrative changes to the database server configuration such as
adding a chunk or dbspace

■ Allocation of new extents to tables

■ A change to the logging status of a database

Activity Logged for Databases with Transaction Logging
If a database uses transaction logging, all SQL data manipulation statements,
except SELECT, against that database generate one or more log records. These
statements are as follows:

■ DELETE

■ INSERT

■ LOAD

■ SELECT INTO TEMP

■ UNLOAD

■ UPDATE

If these statements are rolled back, the rollback also generates log records.

ALTER INDEX CREATE VIEW
ALTER TABLE DROP INDEX
CREATE DATABASE DROP PROCEDURE
CREATE INDEX DROP SYNONYM
CREATE PROCEDURE DROP TABLE
CREATE SCHEMA DROP TRIGGER
CREATE SYNONYM DROP VIEW
CREATE TABLE RENAME COLUMN
CREATE TRIGGER RENAME TABLE
Logging 18-7

Logging and Nonlogging Tables
Logging and Nonlogging Tables
Data warehousing and similar applications that involve very large amounts
of data and few or no inserts, updates, or deletes often need a mix of logged
and nonlogged tables within the same database. Extended Parallel Server
supports both logging and nonlogging tables. These tables can be permanent
or temporary.

STANDARD, OPERATIONAL, and TEMP tables are logging tables while
STATIC, RAW, and SCRATCH tables are nonlogging tables. The following are
some guidelines for choosing a table type:

■ Choose STANDARD tables for OLTP operations.

■ Choose OPERATIONAL tables when loading data from another
database, or if you need to log transactions but do not care about
restorability.

■ Choose STATIC tables for data that rarely changes.

■ Choose RAW tables when loading data from external tables.

■ Choose temporary tables to reduce sorting scope, select an ordered
subset of table rows, or to copy tables.

Whether you use SCRATCH or TEMP tables depends on whether you
need logging and indexing. If you do not need to rollback data in
temporary tables, you can achieve maximum performance by using
SCRATCH tables in temporary dbspaces.

For more information on the different table types, see “Table Types” on
page 15-25 and your Performance Guide.

To switch from one table type to another, use the ALTER TABLE command. For
more information, refer to the Informix Guide to SQL: Syntax and “Modifying
the Table-Logging Status” on page 19-6.

Use of Logging Tables
Use logging tables if users are updating the data frequently or the ability to
recover any updated data is critical. You must use logging tables if users are
executing data transactions.
18-8 Administrator’s Guide for Informix Extended Parallel Server

Use of Nonlogging Tables
Use of Nonlogging Tables
Choose nonlogging tables if users are primarily analyzing the data and
updating it infrequently. Back up nonlogging tables to ensure that you can
restore them if transactions or the database server should fail. When you use
RAW or SCRATCH tables, data consistency is not guaranteed when moving
rows from one fragment to another if an error occurs during an update of the
fragmentation columns.

Activity That Is Not Logged
For temp tables in temporary dbspaces, nothing is logged, not even the SQL
statements listed in “Activity That Is Always Logged” on page 18-7. If you
include temporary (nonlogging) dbspaces in DBSPACETEMP, the database
server places nonlogging tables in these temporary dbspaces first. For more
information, see “Logging and Nonlogging Tables” on page 18-8.

Database-Logging Status
You must use transaction logging with a database to take advantage of any
of the features listed in “Database Server Processes That Require Logging” on
page 18-3.

Every database that the database server manages has a logging status. The
logging status indicates whether the database uses transaction logging and,
if so, which log-buffering mechanism the database employs. To find out the
transaction-logging status of a database, use the database server utilities, as
explained in “Monitoring Transaction Logging” on page 19-7. The database-
logging status indicates any of the following types of logging:

■ Unbuffered transaction logging

■ Buffered transaction logging

■ ANSI-compliant transaction logging
Logging 18-9

Unbuffered Transaction Logging
All logical-log records pass through the logical-log buffer in shared memory
before the database server writes them to the logical log on disk. However,
the point at which the database server flushes the logical-log buffer is
different for buffered transaction logging and unbuffered transaction
logging. For more information, see “How the Database Server Uses Shared
Memory” on page 13-6 and “Flushing the Logical-Log Buffer” on page 13-52.

Unbuffered Transaction Logging
If transactions are made against a database that uses unbuffered logging, the
records in the logical-log buffer are guaranteed to be written to disk during
commit processing. When control returns to the application after the
COMMIT statement (and before the PREPARE statement for distributed trans-
actions), the logical-log records are on the disk. The database server flushes
the records as soon as any transaction in the buffer is committed (that is, a
commit record is written to the logical-log buffer).

When the database server flushes the buffer, only the used pages are written
to disk. Used pages include pages that are only partially full, however, so
some space is wasted. For this reason, the logical-log files on disk fill up faster
than if all the databases on the same database server use buffered logging.

Unbuffered logging is the best choice for most databases because it
guarantees that all committed transactions can be recovered. In the event of
a failure, only uncommitted transactions at the time of the failure are lost.
However, with unbuffered logging, the database server flushes the logical-
log buffer to disk more frequently, and the buffer contains many more
partially full pages, so it fills the logical log faster than buffered logging does.

Buffered Transaction Logging
If transactions are made against a database that uses buffered logging, the
records are held (buffered) in the logical-log buffer for as long as possible.
They are not flushed from the logical-log buffer in shared memory to the
logical log on disk until one of the following situations occurs:

■ The buffer is full.

■ A commit on a database with unbuffered logging flushes the buffer.

■ A checkpoint occurs.

■ The connection is closed.
18-10 Administrator’s Guide for Informix Extended Parallel Server

ANSI-Compliant Transaction Logging
If you use buffered logging, and a failure occurs, you cannot expect the
database server to recover the transactions that were in the logical-log buffer
when the failure occurred. Thus, you could lose some committed transac-
tions. In return for this risk, performance during alterations improves
slightly. Buffered logging is best for databases that are updated frequently
(when the speed of updating is important), as long as you can re-create the
updates in the event of failure. You can tune the size of the logical-log buffer
to find an acceptable balance for your system between performance and the
risk of losing transactions to system failure.

ANSI-Compliant Transaction Logging
The ANSI-compliant database logging status indicates that the database
owner created this database using the MODE ANSI keywords. ANSI-
compliant databases always use unbuffered transaction logging, enforcing
the ANSI rules for transaction processing. You cannot change the buffering
status of ANSI-compliant databases.

Databases with Different Log-Buffering Status
All databases on a database server use the same logical log and the same
logical-log buffers. Therefore, transactions against databases with different
log-buffering statuses can write to the same logical-log buffer. In that case, if
transactions exist against databases with buffered logging and against
databases with unbuffered logging, the database server flushes the buffer
either when it is full or when transactions against the databases with unbuf-
fered logging complete.
Logging 18-11

Settings or Changes for Logging Status or Mode
Settings or Changes for Logging Status or Mode
The user who creates a database with the CREATE DATABASE statement
establishes the logging status or buffering mode for that database. For more
information on the CREATE DATABASE statement, see the Informix Guide to
SQL: Syntax.

Databases are always logged in Extended Parallel Server.

Only the database server administrator can change logging status. Chapter
19, “Managing Database-Logging Status,” describes this topic. Ordinary end
users cannot change database-logging status.

If a database does not use logging, you do not need to consider whether
buffered or unbuffered logging is more appropriate. If you specify logging
but do not specify the buffering mode for a database, the default is unbuf-
fered logging.

End users can switch from unbuffered to buffered (but not ANSI-compliant)
logging and from buffered to unbuffered logging for the duration of a session.
The SET LOG statement performs this change within an application. For more
information on the SET LOG statement, see the Informix Guide to SQL: Syntax.
18-12 Administrator’s Guide for Informix Extended Parallel Server

19
Chapter
Managing Database-Logging
Status
In This Chapter . 19-3

Changing Database-Logging Status 19-4

Modifying Database-Logging Status with ondblog 19-5
Changing Buffering Status with ondblog 19-5
Canceling a Logging Mode Change with ondblog 19-5
Making a Database ANSI Compliant with ondblog 19-6

Modifying the Table-Logging Status 19-6
Altering a Table to Turn Off Logging 19-6
Altering a Table to Turn On Logging 19-6
Creating a Nonlogging Temporary Table 19-7

Monitoring Transaction Logging 19-7
Monitoring Transaction Logging with SMI Tables 19-7
Monitoring Transaction Logging with System Catalog Tables . . . 19-8

19-2 Ad
ministrator’s Guide for Informix Extended Parallel Server

In This Chapter
This chapter covers the following topics on changing the database-logging
status:

■ Understanding database-logging status

■ Modifying database-logging status with ondblog

■ Monitoring transaction logging

As a database server administrator, you can alter the logging status of a
database as follows:

■ Change transaction logging from buffered to unbuffered.

■ Change transaction logging from unbuffered to buffered.

■ Make a database ANSI compliant.

■ Change a table from logging to nonlogging.

■ Change a table from nonlogging to logging.

For information about database-logging status, when to use transaction
logging, and when to buffer transaction logging, see Chapter 18, “Logging.”
To find out the current logging status of a database, see “Monitoring Trans-
action Logging” on page 19-7.
Managing Database-Logging Status 19-3

Changing Database-Logging Status
Changing Database-Logging Status
You can use ondblog to change logging and then use ON-Bar to back up the
data. For information on ON-Bar, see the Backup and Restore Guide.

Figure 19-1 shows how the database server administrator can change the
database-logging status. Certain logging status changes take place
immediately while other changes require a level-0 backup.

Figure 19-1
Logging Status Transitions

Tip: To change the logging status of ANSI-compliant databases, unload and reload
the data. For more information, see “Making a Database ANSI Compliant with
ondblog” on page 19-6.

Some general points about changing the database-logging status follow:

■ When you change the logging status, the database server places an
exclusive lock on the database to prevent other users from accessing
the database.

■ If a failure occurs during a logging-mode change, check the logging
mode in ON-Monitor or the flags in the sysdatabases table in the
sysmaster database after you restore the database server data. For
more information, see “Monitoring Transaction Logging” on
page 19-7.

Converting
from:

Converting to:

No Logging Unbuffered Logging Buffered Logging ANSI Compliant

Unbuffered
logging

Yes Not applicable Yes Yes

Buffered
logging

Yes Yes Not applicable Yes

ANSI
compliant

Illegal Illegal Illegal Not applicable
19-4 Administrator’s Guide for Informix Extended Parallel Server

Modifying Database-Logging Status with ondblog
■ Once you choose either buffered or unbuffered logging, an appli-
cation can use the SQL statement SET LOG to change from one
logging mode to the other. This change lasts for the duration of the
session. For information on SET LOG, see the Informix Guide to SQL:
Syntax.

■ Databases always use transaction logging. You can specify what log-
buffering mode they use. You also can turn logging on or off for
tables.

Modifying Database-Logging Status with ondblog
You can use the ondblog utility to change the logging mode for one or more
databases. If you add logging to a database, you must create a level-0 backup
before the change takes effect. For more information, see the section on using
ondblog in the Administrator’s Reference.

Changing Buffering Status with ondblog
To change the buffering status from buffered to unbuffered logging on a
database called stores_demo, execute the following command:

ondblog unbuf stores_demo

To change the buffering status from unbuffered to buffered logging on a
database called stores_demo, execute the following command:

ondblog buf stores_demo

Canceling a Logging Mode Change with ondblog
To cancel the logging mode change request before the next level-0 backup
occurs, execute the following command:

ondblog cancel stores_demo
Managing Database-Logging Status 19-5

Making a Database ANSI Compliant with ondblog
Making a Database ANSI Compliant with ondblog
Once you convert a database to ANSI mode, you cannot change it to any other
logging mode. To make a database called stores_demo into an ANSI-
compliant database with ondblog, execute the following command:

ondblog ansi stores_demo

Modifying the Table-Logging Status
Extended Parallel Server creates standard tables that use logging by default.
For more information, refer to “Logging and Nonlogging Tables” on
page 18-8.

For more information on ALTER TABLE and SELECT, see the Informix Guide to
SQL: Syntax.

Altering a Table to Turn Off Logging
To switch a table from logging to nonlogging, use the SQL statement ALTER
TABLE with the TYPE option of RAW or STATIC. For example, the following
statement changes table tablog to a RAW table:

ALTER TABLE tablog TYPE (RAW)

Altering a Table to Turn On Logging
To switch from a nonlogging table to a logging table, use the SQL statement
ALTER TABLE with the TYPE option of STANDARD or OPERATIONAL. For
example, the following statement changes table tabnolog to a STANDARD
table:

ALTER TABLE tabnolog TYPE (STANDARD)

Warning: When you alter a table to STANDARD or OPERATIONAL from any other
table type, you turn logging on for that table. After you alter the table, perform a
level-0 backup if you need to be able to restore the table.
19-6 Administrator’s Guide for Informix Extended Parallel Server

Creating a Nonlogging Temporary Table
Creating a Nonlogging Temporary Table
When you create a temporary table with the SELECT...INTO TEMP statement,
the temporary table is a logging table by default. If you do not care to log
transactions in this temporary table, specify the WITH NO LOG clause on the
SELECT...INTO TEMP statement or create a scratch table.

The database server uses the dbspaces specified in the DBSPACETEMP config-
uration parameter or DBSPACETEMP environment variable when you specify
either of the following items:

■ SELECT...INTO TEMP <temp_table> WITH NO LOG

■ SELECT...INTO SCRATCH <temp_table>

If you use the default value of NONCRITICAL for DBSPACETEMP, the
optimizer stores temporary tables in any dbspace that does not contain
critical files such as logical logs.

For more information on improving performance with temporary tables, see
your Performance Guide and “Temporary Tables” on page 15-30.

Monitoring Transaction Logging
This section discusses ways to monitor the logging status of your database
and tables. For information on monitoring I/O and memory usage for
logging and checkpoints, see your Performance Guide.

Monitoring Transaction Logging with SMI Tables
Query the sysdatabases table in the sysmaster database to determine the
logging status. This table contains a row for each database that the database
server manages. The flags field indicates the logging status of the database.
The is_logging, is_buff_log, and is_ansi fields indicate whether logging is
active, and whether buffered logging or ANSI-compliant logging is used. For
a description of the columns in this table, see the sysdatabases section in the
chapter about the sysmaster database in the Administrator’s Reference.
Managing Database-Logging Status 19-7

Monitoring Transaction Logging with System Catalog Tables
Monitoring Transaction Logging with System Catalog
Tables
Query the systables system catalog to determine the table type. If the flag
value is 0002 (raw) or 0004 (static), the table is not logged. For more infor-
mation, see the Informix Guide to SQL: Reference.
19-8 Administrator’s Guide for Informix Extended Parallel Server

20
Chapter
Logical Log
In This Chapter . 20-3

Logical Log . 20-3
Logical-Log Files 20-4
Logical-Log Administration 20-4
Logical-Log Files on a Coserver 20-5
Logslices . 20-5

Creating Logical-Log Files on a Coserver 20-5

Size of the Logical Log 20-6
Performance Considerations 20-6
Long-Transaction Considerations 20-7
Size and Number of Logical-Log Files 20-7

Size of the Logical Log 20-7
Number of Logical-Log Files 20-8

Location of Logical-Log Files 20-9

Identification of Logical-Log Files 20-9

Status Flags of Logical-Log Files 20-11

Backup of Logical-Log Files 20-12
Logical-Log Restore 20-13
Point-In-Time Restore 20-13

20-2 Ad
Freeing of Logical-Log Files 20-13
Database Server Attempt to Free a Log File 20-14
Action If the Next Logical-Log File Is Not Free 20-14
Logical Log and Long Transactions 20-15

Factors That Influence the Rate at Which Logical-Log Files Fill . 20-16
Factors That Prevent Closure of Transactions 20-17
Setting High-Water Marks 20-18

Logs-Full High-Water Mark 20-19
Emergency Log Backup 20-19

System-Monitoring Interface 20-20
Fast Recovery 20-20
Small Logs, Many Users 20-20

Administrative Activity When Logs Need Backing Up 20-20

Logging Process . 20-21
Dbspace Logging 20-21

Read Page into Shared-Memory Buffer Pool 20-21
Copy the Page Buffer to the Physical-Log Buffer 20-21
Read Data into Buffer and Create Logical-Log Record 20-22
Flush Physical-Log Buffer to the Physical Log 20-22
Flush Page Buffer 20-22
Flush Logical-Log Buffer 20-23
ministrator’s Guide for Informix Extended Parallel Server

In This Chapter
As the database server administrator, you have responsibilities to configure
and manage the logical log. These responsibilities include the following
tasks:

■ Learning about the logical log

■ Allocating an appropriate amount of disk space for the logical log

■ Choosing an appropriate location for the logical-log files

■ Monitoring the logical-log file status

■ Backing up the logical-log files to media

The information in this chapter will help you understand these tasks and the
nature of the logging process. For information on how to perform other
logical-log tasks, see Chapter 21, “Managing Logical-Log Files.”

Logical Log
To keep a history of database and database server changes since the time of
the last storage-space backup, the database server generates and stores log
records. The database server stores the log records in the logical log, which is
made up of logical-log files. The log is called logical because the log records
represent units of work related to the logical operations of the database
server, as opposed to physical operations. At any time, the combination of a
storage-space backup plus logical-log backup contains a complete copy of
your database server data.
Logical Log 20-3

Logical-Log Files
Logical-Log Files
Logical-log files are not files in the operating-system sense of the word file.
Each logical-log file is a separate allocation of disk space that the database
server manages. You must always have at least three logical-log files in the
logical log.

The database server administrator needs to be concerned with the logical-log
files that make up the logical log. If the files are not managed properly, the
database server can suspend processing and, in the worst case, shut down.

The database server administrator must choose an appropriate number, size,
and physical location for logical-log files. The following sections discuss
these topics:

■ “Size of the Logical Log” on page 20-6

■ “Location of Logical-Log Files” on page 20-9

The database server administrator must also ensure that the next logical-log
file is always backed up and free. The following sections discuss this topic:

■ “Identification of Logical-Log Files” on page 20-9

■ “Backup of Logical-Log Files” on page 20-12

■ “Freeing of Logical-Log Files” on page 20-13

Most database users might be concerned with whether transaction logging is
buffered or whether a table uses logging.

Logical-Log Administration
All the databases managed by a single database server instance store their log
records in the same logical log, regardless of whether they use transaction
logging or whether their transaction logging is buffered. For information on
transaction logging, see Chapter 18, “Logging.” If you want to change the
database-logging status, see “Settings or Changes for Logging Status or
Mode” on page 18-12.

Most end users should not be concerned with the logical-log files. The
primary administrative tasks include managing individual logical-log files
and determining how much disk space to allocate to the logical log.
20-4 Administrator’s Guide for Informix Extended Parallel Server

Logical-Log Files on a Coserver
Logical-Log Files on a Coserver
You can also create individual logical-log files on a specified coserver or a
logslice across many coservers. For example, you can vary the number of
logical-log files per coserver in a way that reflects the different requirements
of each coserver. Each coserver must have a minimum of three logical-log
files.

For information on the onutil CREATE COGROUP, onutil CREATE LOGSLICE,
and onutil ALTER LOGSLICE commands, see the utilities chapter in the
Administrator’s Reference.

Logslices
A logslice is a set of logical-log files that occupy a dbslice and are owned by
multiple coservers, one logical-log file per dbspace. Logslices simplify the
process of adding and deleting logical-log files by treating sets of them as
single entities. You cannot perform operations on the individual logical-log
files that are part of a logslice.

A dbslice is a named set of dbspaces that you can manage as a single storage
object. If a dbslice has multiple dbspaces per coserver, each coserver has
multiple logical-log files. You can add multiple logslices to a dbslice as long
as all the dbspaces have enough free space to accommodate the new logical-
log files. Each logslice is a distinct set of logical-log files. Logical-log files are
not shared across logslices.

After you add dbspaces to a dbslice, you can add logical-log files to a logslice.
Logical Log 20-5

Size of the Logical Log
Size of the Logical Log
In determining how much disk space to allocate, you must balance disk space
and performance considerations. If you allocate more disk space than
necessary, space is wasted. If you do not allocate enough disk space,
however, performance might be adversely affected.

Performance Considerations
For a given level of system activity, the less logical-log disk space that you
allocate, the sooner that logical-log space fills up, and the greater the
likelihood that user activity is blocked due to logical-log backups and
checkpoints, as follows:

■ Logical-log backups

When the logical-log files that make up the logical log fill, you have
to back them up. The backup process can hinder transaction
processing that involves data located on the same disk as the logical-
log files. If enough logical-log disk space is available, however, you
can wait for periods of low user activity before you back up the
logical-log files. (See “Backup of Logical-Log Files” on page 20-12.)

■ Checkpoints

At least one checkpoint record must always be written to the logical
log. If you need to free the logical-log file that contains the last check-
point, the database server must write a new checkpoint record to the
current logical-log file. If the frequency with which logical-log files
are backed up and freed increases, the frequency at which check-
points occur increases. Although checkpoints block user processing,
they no longer last as long. Because other factors (such as the
physical-log size) also determine the checkpoint frequency, this
effect might not be significant. (See “Freeing of Logical-Log Files” on
page 20-13.)

■ Table logging

Whether tables use logging also affects the rate at which the logical
log fills.
20-6 Administrator’s Guide for Informix Extended Parallel Server

Long-Transaction Considerations
These performance considerations are related to how fast the logical log fills.
The rate at which the logical log fills, in turn, depends on other factors such
as the level of user activity on your system. You need to tune the logical-log
size, therefore, to find the optimum value for your system.

Long-Transaction Considerations
In addition to the performance considerations discussed in the previous
section, you risk a long-transaction situation if logical-log disk space is insuf-
ficient. For more information on the long-transaction situation, refer to
“Logical Log and Long Transactions” on page 20-15.

Size and Number of Logical-Log Files
After you know how much disk space to allocate for the entire logical log,
you can make decisions about how many log files you want and what size.

When you think about the size of the logical-log files, consider these points:

■ The minimum size for a logical-log file is 200 kilobytes.

■ The maximum size for a logical-log file is essentially unbounded.

■ If your tape device is slow, ensure that logical-log files are small
enough to be backed up quickly.

■ Smaller log files mean slower recovery because you potentially lose
the last unbacked-up logical-log file if the disk that contains the
logical-log files goes down.

Size of the Logical Log

Use the LOGSIZE configuration parameter to set the size of the logical log. It
is difficult to predict how much logical-log space your database server
system requires until it is fully in use. The following expression provides the
minimum total-log-space configuration, in kilobytes, that Informix
recommends:

LOGSIZE = (users * maxrows) * 512
Logical Log 20-7

Size and Number of Logical-Log Files
Set users to the maximum number of users that you expect to access the
database server concurrently. If you set the NETTYPE parameter, you can use
the value that you assigned to the NETTYPE users field. If you configured
more than one connection by setting multiple NETTYPE configuration param-
eters in your configuration file, sum the users fields for each NETTYPE, and
substitute this total for users in the preceding formula.

Set maxrows to the maximum number of rows that you expect in the tables.

You can increase the amount of space devoted to the logical log as necessary
and in several ways. The easiest way is to add another logical-log file. See
“Adding a Logical-Log File or Logslice” on page 21-4.

Number of Logical-Log Files

When you think about the number of logical-log files, consider these points:

■ You must always have at least three logical-log files.

■ You should create enough logical-log files so that you can switch log
files if needed without running out of free logical-log files.

■ The number of logical-log files cannot exceed the value of the
ONCONFIG parameter LOGSMAX.

■ The number of logical-log files affects the frequency of logical-log
backups.

The LOGFILES parameter provides the number of logical-log files. The
LOGSIZE parameter provides the size of the logical-log files that are created
when the database server initializes disk space. The database server admin-
istrator sets both of these configuration parameters in the ONCONFIG file. If
all your logical-log files are the same size, you can calculate the total space
allocated to the logical-log files as follows:

total logical log space = LOGFILES * LOGSIZE

If you add logical-log files that are not the size specified by LOGSIZE, you
cannot use the (LOGFILES * LOGSIZE) expression to calculate the size of the
logical log. Instead, you need to add the sizes for each individual log file on
disk. For information on how to access the size of logical-log files, see
“Monitoring the Logical Log for Fullness” on page 21-16.

For information on LOGSIZE, LOGFILES, and NETTYPE, see the chapter on
configuration parameters in the Administrator’s Reference.
20-8 Administrator’s Guide for Informix Extended Parallel Server

Location of Logical-Log Files
Location of Logical-Log Files
When the database server initializes disk space, it places the logical-log files
and the physical log in the root dbspace. You have no control over this action.
To improve performance (specifically, to reduce the number of writes to the
root dbspace and minimize contention), move the logical-log files out of the
root dbspace to a dbspace on a disk that is not shared by active tables or the
physical log. See “Moving a Logical-Log File to Another Dbspace” on
page 21-7.

To improve performance further, separate the logical-log files into two
groups and store them on two separate disks (neither of which contains
data). For example, if you have six logical-log files, you might locate files 1,
3, and 5 on disk 1, and files 2, 4, and 6 on disk 2. This arrangement improves
performance because the same disk drive never has to handle writes to the
current logical-log file and backups to tape at the same time.

The logical-log files contain critical information and should be mirrored for
maximum data protection. If you move logical-log files to a different
dbspace, plan to start mirroring on that dbspace.

Identification of Logical-Log Files
Each logical-log file, whether backed up to media or not, has a unique ID
number. The sequence begins with 1 for the first logical-log file filled after
you initialize the database server disk space. When the current logical-log file
becomes full, the database server switches to the next logical-log file and
increments the unique ID number for the new log file by one.

The actual disk space allocated for each logical-log file has an identification
number known as the logid. For example, if you configure six logical-log files,
these files have logid numbers one through six. As logical-log files are backed
up and freed, the database server reuses the disk space for the logical-log
files. However, the database server continues to increment the unique ID
numbers by one. Figure 20-1 on page 20-10 illustrates the relationship
between the logid numbers and the unique ID numbers.
Logical Log 20-9

Identification of Logical-Log Files
Figure 20-1
Logical-Log File-Numbering Sequence

For information on how to display the unique ID and logid numbers of a
logical-log file, refer to “Monitoring the Logical Log for Fullness” on
page 21-16.

Logid Number

First Rotation
Unique ID
Number

Second
Rotation
Unique ID
Number

Third Rotation
Unique ID
Number

Fourth Rotation
Unique ID
Number

1 1 7 13 19

2 2 8 14 20

3 3 9 15 21

4 4 10 16 22

5 5 11 17 23

6 6 12 18 24
20-10 Administrator’s Guide for Informix Extended Parallel Server

Status Flags of Logical-Log Files
Status Flags of Logical-Log Files
All logical-log files have one of the following three status flags in the first
position: Added (A), Free (F), or Used (U). Descriptions of all the individual
logical-log status flags follow.

Figure 20-2 shows the possible log-status flag combinations.

Figure 20-2
Logical-Log Status Flags

Status Flag Description

Added (A) A logical-log file has an added status when it is newly added. The
logical-log file does not become available for use until you
complete a level-0 backup of the root dbspace.

Free (F) A logical-log file is free when it is available for use. A logical-log file
is freed after it is backed up, all transactions within the logical-log
file are closed, and the oldest update stored in this file is flushed to
disk.

Used (U) A logical-log file is used when it is still needed by the database
server for recovery (rollback of a transaction or finding the last
checkpoint record).

Backed-Up (B) A logical-log file has a backed-up status after it has been backed up.

Current (C) A logical-log file has a current status if the database server is
currently filling the log file.

Last (L) A logical-log file has a status of last if it contains the most recent
checkpoint record in the logical log. This file and subsequent files
cannot be freed until the database server writes a new checkpoint
record to a different logical-log file.

Status Flag Status of Logical-Log File

A------ Log has been added since the last level-0 storage-space backup. Not
available for use.

F------ Log is free. Available for use.

U Log has been used but not backed up.

 (1 of 2)
Logical Log 20-11

Backup of Logical-Log Files
Tip: A logical-log file has a status flag of F only if the system has been reinitialized.

To find out the status of a logical-log file, use the methods explained in
“Monitoring the Logical Log for Fullness” on page 21-16.

Backup of Logical-Log Files
The logical logs contain a history of the transactions that have been
performed. The process of copying a logical-log file to media is referred to as
backing up a logical-log file. Backing up logical-log files achieves the following
two objectives:

■ It stores the logical-log records on media so that they can be rolled
forward if a data restore is needed.

■ It makes logical-log-file space available for new logical-log records.

You can initiate a manual logical-log backup or set up continuous logical-log
backups. If you use ON-Bar to perform logical-log backups, see the Backup
and Restore Guide.

U-B---- Log is backed up but still needed for recovery.

U-B---L Log is backed up but still needed for recovery. Contains the last check-
point record.

U---C Log is the current logical-log file.

U---C-L Log is the current logical-log file. It contains the last checkpoint
record.

Status Flag Status of Logical-Log File

 (2 of 2)
20-12 Administrator’s Guide for Informix Extended Parallel Server

Logical-Log Restore
Logical-Log Restore
After you restore the storage spaces, you must restore the logical logs to bring
all the data to a consistent state. A restore performed when the database
server is on-line is called a warm restore.

The database server automatically skips logical replay during a warm restore
when the dbspaces have not participated in a transaction. In the onstat -d
output, the S flag displays for a dbspace that is a candidate for skipping
logical replay. For information on logical replay, see the Backup and Restore
Guide.

Point-In-Time Restore
You can restore storage spaces and logical logs to a particular point in time
during a cold restore. If you use ON-Bar to perform point-in-time restores, see
the Backup and Restore Guide.

Freeing of Logical-Log Files
If you back up a logical-log file, that file is not necessarily free to receive new
log records. The following criteria must be satisfied before the database
server frees a logical-log file for reuse:

■ The log file is backed up.

■ No records within the logical-log file are associated with open
transactions.

■ The logical-log file does not contain the oldest update not yet flushed
to disk. Perform a full checkpoint using the onmode -c command to
ensure that the logical-log file does not contain the oldest update.

Tip: You can free a logical log with a status of U-B (and not L) only if it is not spanned
by an active transaction and does not contain the oldest update.
Logical Log 20-13

Database Server Attempt to Free a Log File
Database Server Attempt to Free a Log File
The database server attempts to free logical-log files each time that the
database server commits or rolls back a transaction, it attempts to free the
logical-log file in which the transaction began.

The attempt succeeds only if the criteria listed in the preceding section,
“Freeing of Logical-Log Files,” are met.

Action If the Next Logical-Log File Is Not Free
If the database server attempts to switch to the next logical-log file but finds
that the next log file in sequence is still in use, the database server immedi-
ately suspends all processing. Even if other logical-log files are free, the
database server cannot skip a file in use and write to a free file out of
sequence. Processing stops to protect the data within the logical-log file.

The logical-log file might be in use for any of the following reasons:

■ The file contains the latest checkpoint or the oldest update not yet
flushed to disk.

Issue the onmode -c command to perform a full checkpoint and free
the logical-log file. For more information, see “Forcing a Full Check-
point” on page 24-8.

■ The file contains an open transaction.

The open transaction is the long transaction discussed in “Logical
Log and Long Transactions” on page 20-15. In this situation, you
have to recover the database server data from storage-space backups
in a full-system restore.

■ The file is not backed up.

If the logical-log file is not backed up, processing resumes when you
perform the backup. Use ON-Bar to back up the logical-log files.
20-14 Administrator’s Guide for Informix Extended Parallel Server

Logical Log and Long Transactions
The database server does not suspend processing when the next log file
contains the last checkpoint or the oldest update. The database server always
forces a full checkpoint when it switches to the last available log, if the
previous checkpoint record or oldest updated not yet flushed to disk is
located in the log that follows the last available log. For example, if four
logical-log files have the status shown in the following list, the database
server forces a checkpoint when it switches to logical-log file 3.

Logical Log and Long Transactions
A long transaction is a transaction that starts in one logical-log file and is not
committed when the database server needs to reuse that same logical-log file.
In other words, a long transaction spans more than the total space allocated
to the logical log.

Because the database server cannot free a logical-log file until all records
within the file are associated with closed transactions, the long transaction
prevents the first logical-log file from becoming free and available for reuse.

To prevent long transactions from developing, take the following
precautions:

■ Ensure that the logical-log file does not fill too fast.

■ Ensure that transactions do not remain open too long.

■ Set high-water marks to have the database server automatically slow
down processing when a long transaction is developing.

The subsequent sections explain these steps.

logid Logical-Log File Status

1 U-B----

2 U---C--

3 F

4 U-B---L
Logical Log 20-15

Logical Log and Long Transactions
Factors That Influence the Rate at Which Logical-Log Files Fill

Several factors influence how fast the logical log fills. It is difficult to know
exactly which factor is the most important for a given instance of the database
server, so you need to use your own judgment to estimate how quickly your
logical log fills and how to prevent long-transaction conditions. Consider
these factors:

■ Size of the logical log

A smaller logical log fills faster than a larger logical log. If you need
to make the logical log larger, you can add another logical-log file, as
explained in “Adding a Logical-Log File or Logslice” on page 21-4.

■ Number of logical-log records

The more logical-log records written to the logical log, the faster it
fills. If databases that your database server manages use transaction
logging, transactions against those databases fill the logical log faster
than transactions against databases without transaction logging.

When you use logging tables (STANDARD or OPERATIONAL), the
logical log fills faster than when you use nonlogging tables. For more
information, refer to “Logging and Nonlogging Tables” on
page 18-8.

■ Type of log buffering

As explained in “Unbuffered Transaction Logging” on page 18-10,
databases that use unbuffered transaction logging fill the logical log
faster than databases that use buffered transaction logging.

■ Size of individual logical-log records

The sizes of the logical-log records vary, depending on both the
processing operation and the database server environment. In
general, the longer the data rows, the larger the logical-log records.
The logical log contains images of rows that have been inserted,
updated, or deleted. Also, updates can use up to twice as much space
as inserts and deletes because they might contain both before-images
and after-images. Inserts store only the after-image and deletes store
only the before-image.
20-16 Administrator’s Guide for Informix Extended Parallel Server

Logical Log and Long Transactions
■ Frequency of rollbacks

The frequency of rollbacks affects the rate at which the logical log
fills. More rollbacks fill the logical log faster. The rollbacks
themselves require logical-log file space although the rollback
records are small. In addition, rollbacks increase the activity in the
logical log.

Factors That Prevent Closure of Transactions

Several factors influence when transactions close. Be aware of these factors so
that you can prevent long-transaction problems:

■ Transaction duration

The duration of a transaction might be beyond your control. For
example, a client that does not write many logical-log records might
cause a long transaction if the users permit transactions to remain
open for long periods of time. (For example, a user who is running
an interactive application might leave a terminal to go to lunch part
of the way through a transaction.)

The larger the logical-log space, the longer a transaction can remain
open without a long-transaction condition developing. However, a
large logical log by itself does not ensure that long transactions do
not develop. Application designers should consider the transaction-
duration issue, and users should be aware that leaving transactions
open can be detrimental.

■ High CPU and logical-log activity

The amount of CPU activity can affect the ability of the database
server to complete the transaction. Repeated writes to the logical-log
file increase the amount of CPU time that the database server needs
to complete the transaction. Increased logical-log activity can imply
increased contention of logical-log locks and latches as well.
Logical Log 20-17

Logical Log and Long Transactions
Setting High-Water Marks

The database server alters processing at two critical points to manage the
long-transaction condition. To tune both points, you can set values in the
ONCONFIG file.

The first critical point is the long-transaction high-water mark. When the logical
log reaches the long-transaction high-water mark, the database server recog-
nizes that a long transaction exists and begins searching for an open
transaction in the oldest, used (but not freed) logical-log file. If a long trans-
action is found, the database server directs the thread to begin to roll back the
transaction. More than one transaction can be rolled back if more than one
long transaction exists.

The transaction rollback itself generates logical-log records, however, and as
other processes continue writing to the logical-log file, the logical log
continues to fill.

The second critical point is the exclusive-access, long-transaction high-water
mark. When the logical log reaches the exclusive-access, long-transaction
high-water mark, the database server dramatically reduces log-record gener-
ation. Most threads are denied access to the logical log. Only threads that are
currently rolling back transactions (including the long transaction) and
threads that are currently writing COMMIT records are allowed access to the
logical log. Restricting access to the logical log preserves as much space as
possible for rollback records that are being written by the user threads that
are rolling back transactions.

If the long transactions cannot be rolled back before the logical log fills, the
database server shuts down. If this situation occurs, you must perform a data
restore. During the data restore, you must not roll forward the last logical-log
file. Doing so re-creates the problem by filling the logical log again.

The default values for the configuration parameters LTXHWM and LTXEHWM
are 50 and 60, respectively. These values eliminate any risk of a long trans-
action having too little log space in which to roll back. The database server
initialization emits a warning if your ONCONFIG file contains values greater
than 50 and 60 for these parameters. To overcome these warnings, reduce
your parameters to conform. If your log space is finely tuned such that your
LTXHWM percentage represents precisely what your longest transaction
requires, you will need to add an amount to your log space equal to the
difference between your current LTXHWM value and the recommended value
of 50.
20-18 Administrator’s Guide for Informix Extended Parallel Server

Logs-Full High-Water Mark
For information on LTXHWM and LTXEHWM, see the chapter on configu-
ration parameters in the Administrator’s Reference.

Logs-Full High-Water Mark
To enable the logs-full high-water mark, set the LBU_PRESERVE configuration
parameter to 1. When you set LBU_PRESERVE to 1, the database server blocks
DB-Access, ESQL/C, and all other clients from generating log records in the
last logical-log file when the logs-full condition is reached. The default value
of LBU_PRESERVE is 0, or off.

Whenever you change the value of LBU_PRESERVE, you must reinitialize
shared memory for the change to take effect.

The LBU_PRESERVE configuration parameter, when set to 1, enables the
logical-log high-water mark. The high-water mark prevents transaction
records from filling the last free logical-log file. When the high-water mark
has passed, client transaction requests are frozen until the logical log is
backed up.

Extended Parallel Server does not use emergency log backup which is
discussed in the next section. Instead, it automatically sets the
LBU_PRESERVE parameter to ensure that the last free log is reserved for
backup and restore operations. You cannot change the LBU_PRESERVE value
in the ONCONFIG file. If LOG_BACKUP_MODE is set to MANUAL or CONT,
LBU_PRESERVE is enabled for all coservers. If LOG_BACKUP_MODE is set to
NONE, LBU_PRESERVE is disabled for all coservers.

Emergency Log Backup
Although the logs-full high-water mark eliminates the need for emergency
backup during transaction processing, four known scenarios still require the
database server administrators to use emergency logical-log backup. Each
case is examined in detail in the following sections.
Logical Log 20-19

Administrative Activity When Logs Need Backing Up
System-Monitoring Interface

A privileged client is responsible for building the system-monitoring
interface (SMI). This client can potentially invade the last logical-log file. If
you do not configure sufficient log space or a sufficient number of logical-log
files, the privileged client might not succeed in building SMI without a
logical-log backup. This situation can cause the logical log to fill.

Fast Recovery

When you start the database server after an uncontrolled shutdown, it needs
log space to roll back any transactions that were uncommitted when the
shutdown occurred. The threads that perform the recovery have privileges
that allow them to use the last logical-log file. Because of this privilege, the
logical log might become full, but only in the unlikely case that the number
and size of transactions open when the shutdown occurred exceed the size of
the logical log.

Small Logs, Many Users

Perhaps you configure your logical log files as follows:

Logical Log Size < 2 * page_size * number of users

If all users enter transactions of maximum complexity, applications might
invade the last logical-log file with OLTP activity. Only when you set the size
of the logical log much smaller than two pages per user can a logs-full
condition occur.

Administrative Activity When Logs Need Backing Up
Because certain administrative utilities have the privilege to invade the last
logical-log file, you might have to perform an emergency logical-log backup.
For example, when the logical log approaches full while you are doing large
quantities of administrative work, you might need to perform an emergency
logical-log backup.

Extended Parallel Server uses the following utilities.

onbar_d onbar_m onbar_w

ondblog onsmsync onutil
20-20 Administrator’s Guide for Informix Extended Parallel Server

Logging Process
Logging Process
This section describes in detail the logging process for dbspaces. This infor-
mation is not required for performing normal database server administration
tasks.

Dbspace Logging
The database server uses the following logging process for operations that
involve data stored in dbspaces:

1. Read the data page from disk to the shared-memory page buffer.

2. Copy the unchanged page to the physical-log buffer, if needed.

3. Write the new data to the page buffer, and create a logical-log record
of the transaction, if needed.

4. Flush the physical-log buffer to the physical log on disk.

5. Flush the logical-log buffer to a logical-log file on disk.

6. Flush the page buffer, and write it back to disk.

Read Page into Shared-Memory Buffer Pool

In general, an insert or an update begins when a thread requests a row. The
database server identifies the page on which the row resides and attempts to
locate the page in the shared-memory buffer pool. If the page is not already
in shared memory, the database server reads the page from disk. “Database
Server Thread Access to Buffer Pages” on page 13-42 explains this process in
more detail.

Copy the Page Buffer to the Physical-Log Buffer

Before the database server modifies a dbspace data page for a nonfuzzy
operation, it stores a copy of the unchanged page in the physical-log page
buffer if it is needed for fast recovery. The database server eventually flushes
the physical-log page buffer that contains this before-image to the physical log
on disk. Until the database server performs a new checkpoint, subsequent
modifications to the same page do not require another before-image to be
stored in the physical-log buffer.
Logical Log 20-21

Dbspace Logging
The database server knows if a page is already in the physical log. If the time
stamp on the page is more recent than the time stamp for the last checkpoint,
the page has been changed since the checkpoint and is therefore already in
the physical log.

For fuzzy operations, the database server does not store a copy of the before-
image of the page into the physical-log page buffer. For fast recovery, the
database server finds the oldest update in the logical log. For more infor-
mation, refer to “Details of Fast Recovery After A Fuzzy Checkpoint” on
page 24-18.

Read Data into Buffer and Create Logical-Log Record

The thread that performs the modifications receives data from the appli-
cation. After the database server stores a copy of the unchanged data page in
the physical-log buffer, the thread writes the new data to the page buffer and
writes records necessary to roll back or re-create the operation to the logical-
log buffer. For more information, refer to “When the Logical-Log Buffer
Becomes Full” on page 13-53.

Flush Physical-Log Buffer to the Physical Log

The database server must flush the physical-log buffer before it flushes the
data buffer. Flushing the physical-log buffer ensures that a copy of the
unchanged page is available until the changed page is written to the physical
log. For more information, refer to “Flushing the Physical-Log Buffer” on
page 13-46.

Flush Page Buffer

After the database server flushes the physical-log buffer, the database server
flushes the data buffer and writes the modified data pages for non-fuzzy
operations to disk at the next fuzzy checkpoint. The database server writes
all the modified data pages to disk at the next full checkpoint, or when a page
cleaner determines that the page should be written to disk. The database
server does not flush the data buffer as the transaction is committed. For
more information, see “Flushing Data to Disk” on page 13-45.
20-22 Administrator’s Guide for Informix Extended Parallel Server

Dbspace Logging
Flush Logical-Log Buffer

To flush the logical-log buffer, the database server writes the logical-log
records to the current logical-log file on disk. For more information, see
“Flushing the Logical-Log Buffer” on page 13-52.

For information on the criteria that must be satisfied before the database
server frees a logical-log file for reuse, see “Freeing of Logical-Log Files” on
page 20-13.
Logical Log 20-23

21
Chapter
Managing Logical-Log Files
In This Chapter . 21-3

Backing Up Logical-Log Files 21-4

Adding a Logical-Log File or Logslice 21-4
Adding a Logical-Log File or Logslice with onutil 21-4

Adding a Logical-Log File. 21-4
Adding a Logslice 21-5

Altering a Logslice 21-5

Dropping a Logical-Log File or Logslice 21-5
Dropping a Logical-Log File or Logslice with onutil 21-6

Dropping a Log File 21-6
Dropping a Logslice 21-7

Moving a Logical-Log File to Another Dbspace 21-7

Changing the Size of Logical-Log Files 21-9
Using a Text Editor to Change the Size of a Log File 21-9
Using onutil to Change the Size of a Log File or Logslice 21-9

Changing Logical-Log Configuration Parameters 21-11
Using a Text Editor to Change LOGSIZE or LOGFILES 21-11
Changing LOGSMAX, LTXHWM, or LTXEHWM in the

ONCONFIG File 21-12

Freeing a Logical-Log File 21-13
Freeing a Log File with Status A 21-13
Freeing a Log File with Status U 21-13
Freeing a Log File with Status U-B 21-14
Freeing a Log File with Status U-C or U-C-L 21-14
Freeing a Log File with Status U-B-L 21-15

21-2 Ad
Switching to the Next Logical-Log File 21-15

Monitoring Logging Activity 21-15
Monitoring the Logical Log for Fullness 21-16
Using Command-Line Utilities 21-16

onstat -l . 21-16
onutil CHECK RESERVED 21-17

Using SMI Tables 21-18

Monitoring Log-Backup Status 21-18

Displaying Logical-Log Records 21-19
ministrator’s Guide for Informix Extended Parallel Server

In This Chapter
This chapter contains information on managing the database server logical-
log files with command line utilities. You must manage logical-log files even
if none of your databases uses transaction logging.

The chapter covers the following tasks:

■ Adding a logical-log file

■ Dropping a logical-log file

■ Moving a logical-log file

■ Changing the size of a logical-log file

■ Changing the logical-log configuration parameters

■ Freeing a logical-log file

■ Switching to the next logical-log file

■ Monitoring log-backup status

■ Creating, altering, and dropping a logslice

For background information regarding the logical log, refer to Chapter 20,
“Logical Log.” When you add or drop logical-log files, the database server
must be in quiescent mode.

When you add or drop logslices, the database server must be in quiescent
mode.

You must log in as either informix or root on UNIX to make any of the
changes described in this chapter.
Managing Logical-Log Files 21-3

Backing Up Logical-Log Files
Backing Up Logical-Log Files
After you add, move, or delete a logical-log file, you must perform a level-0
backup of the root dbspace and the modified dbspace. For instructions on
backing up logical-log files with ON-Bar, refer to the Backup and Restore Guide.

Adding a Logical-Log File or Logslice
You might add a logical-log file or logslice for the following reasons:

■ To increase the disk space allocated to the logical log

■ To change the size of your logical-log files or logslice

■ As part of moving logical files or logslices to a different dbspace

Verify that you do not exceed the maximum number of logical-log files and
logslices allowed in your configuration, specified as LOGSMAX.

If you need to, you can increase LOGSMAX. See “Changing LOGSMAX,
LTXHWM, or LTXEHWM in the ONCONFIG File” on page 21-12. Also check
the values of LOGFILES and LOGSIZE and increase them if necessary. See
“Using a Text Editor to Change LOGSIZE or LOGFILES” on page 21-11.

Adding a Logical-Log File or Logslice with onutil
Use the onutil utility to add a logical-log file or logslice. You can use either
the default log-file size or specify a new size.

You add logical-log files or logslices one at a time with the database server in
quiescent mode. You cannot add a logical-log file or logslice during a storage-
space backup.

Adding a Logical-Log File

For an example of using the onutil CREATE LOG command, see the utilities
chapter in the Administrator’s Reference. You can specify the dbspace or
coserver where the logical-log file resides. Adding a log file of a new size does
not change the value of LOGSIZE.
21-4 Administrator’s Guide for Informix Extended Parallel Server

Altering a Logslice
The status of the new log file is A. The newly added log file becomes available
after you create a level-0 backup of the root dbspace and the dbspaces that
contain the log file on all coservers.

Adding a Logslice

For an example of using the onutil CREATE LOGICAL LOGSLICE command to
add a logslice in a dbslice, see the utilities chapter in the Administrator’s
Reference. You can specify the dbslice where the logslice resides.

Altering a Logslice
After you add dbspaces to a dbslice in a logslice, you can use the onutil
ALTER LOGSLICE ADD LOGS command to add logical-log files in the new
dbspaces. Execute the following command to add log files to logslice
mylogslice. Each new dbspace in the dbslice gets a new logical-log file.

% onutil
ALTER LOGSLICE mylogslice ADD LOGS;

After you alter a logslice, perform a level-0 backup of the root dbspace and
the dbspaces that contain the logslice on all coservers to enable access to the
new logical-log files. For more information on onutil ALTER LOGSLICE ADD
LOGS, see the utilities chapter of the Administrator’s Reference.

Dropping a Logical-Log File or Logslice
You can drop a logical-log file or logslice to increase the amount of the disk
space available within a dbspace. The database server requires a minimum of
three logical-log files per coserver (three logslices) at all times. You can also
drop a logslice to increase the amount of the disk space available within a
dbslice. For more information, see “Dropping a Logical-Log File or Logslice
with onutil” on page 21-6.

To make this change, you must log in as either informix or root, and the
database server must be in quiescent mode.
Managing Logical-Log Files 21-5

Dropping a Logical-Log File or Logslice with onutil
Log files or logslices that are newly added and have status A do not count
toward this minimum of three. You cannot drop a log if your logical log is
composed of only three log files.

You drop log files or logslices one at a time. You can only drop a log file or
logslice that has a status of Free (F) or newly Added (A). You must know the
logid number of each logical log or logslice that you intend to drop.

For information on obtaining a display of the logical-log files and logid
numbers, see “Displaying Logical-Log Records” on page 21-19.

Dropping a Logical-Log File or Logslice with onutil
Use onutil to drop a logical-log file or logslice. To obtain the logid, use the
xctl onstat -l command. You might want to back up the old logical-log files
and logslices before you drop them.

After you drop the log file or logslice, create a level-0 backup of the root
dbspace and dbspaces that contain the log files on all coservers. This action
ensures that the backup copy of the reserved pages contains information
about the current number of logical-log files or logslices. This information
prevents the database server from attempting to use the dropped log files or
logslices during a restore. For information on creating a level-0 backup with
ON-Bar, refer to the Backup and Restore Guide.

Dropping a Log File

Execute the following command to drop a logical-log file, whose logid
number is 6, that is on coserver eds.2:

onutil
1> DROP LOG 6 COSERVER eds.2;

For information on the onutil DROP LOGICAL LOG command, see the utilities
chapter in the Administrator’s Reference.
21-6 Administrator’s Guide for Informix Extended Parallel Server

Moving a Logical-Log File to Another Dbspace
Dropping a Logslice

You drop logslices one at a time. You can only drop a logslice that has a status
of Free (F) or newly Added (A). You must know the logid number of each
logslice that you intend to drop.

Execute the following command to drop a logslice whose name is logslice2:

onutil
1> DROP LOGSLICE logslice2;

For information on the onutil DROP LOGSLICE command, see the utilities
chapter in the Administrator’s Reference.

Moving a Logical-Log File to Another Dbspace
You might want to move a logical-log file for performance reasons or to make
more space in the dbspace, as explained in “Location of Logical-Log Files” on
page 20-9. To find out the location of logical-log files, see “Monitoring
Logging Activity” on page 21-15.

Changing the location of the logical-log files is actually a combination of two
simpler actions:

■ Dropping logical-log files from their current dbspace

■ Adding the logical-log files to their new dbspace

The database server must be in quiescent mode to move a logical-log file.
Although moving the logical-log files is not difficult, it can be time-
consuming.

The following procedure provides an example of how to move six logical-log
files from the root dbspace to another dbspace, dbspace_1.
Managing Logical-Log Files 21-7

Moving a Logical-Log File to Another Dbspace
To move the logical-log files

1. Free all log files except the current log file.

See “Freeing a Logical-Log File” on page 21-13.

2. Verify that the value of LOGSMAX is greater than or equal to the
number of log files after the move plus 3.

In this case, the value of LOGSMAX must be greater than or equal to
9. Change the value of LOGSMAX, if necessary. See “Changing
LOGSMAX, LTXHWM, or LTXEHWM in the ONCONFIG File” on
page 21-12.

3. Drop all but three of the logical-log files.

You cannot drop the current logical-log file. If you have only three
logical-log files in the root dbspace, skip this step.

See “Dropping a Logical-Log File or Logslice” on page 21-5.

4. Add the new logical-log files to the different dbspace. In this case,
add six new logical-log files to dbspace_1.

See “Adding a Logical-Log File or Logslice” on page 21-4.

5. Create a level-0 backup of the root dbspace and the dbspaces that
contain the log files to make the new logical-log files available to the
database server. For more information, see “Backing Up Logical-Log
Files” on page 21-4.

6. Switch the logical-log files to start a new current log file.

See “Switching to the Next Logical-Log File” on page 21-15.

7. Back up the former current logical-log file to free it.

8. Drop the three logical-log files that remain in the root dbspace.
21-8 Administrator’s Guide for Informix Extended Parallel Server

Changing the Size of Logical-Log Files
Changing the Size of Logical-Log Files
You can change the size of logical-log files or logslices in the following ways:

■ Use a text editor to change the LOGSIZE or LOGFILES parameter in
the ONCONFIG file.

■ Use onutil to drop the old logical-log file or logslice and to create a
new one of a different size.

This change has no effect on the LOGSIZE parameter. See “Using
onutil to Change the Size of a Log File or Logslice” on page 21-9.

Using a Text Editor to Change the Size of a Log File
Changing LOGSIZE changes the default size for all subsequent logical-log
files and logslices added but is time-consuming because it requires that you
reinitialize the database server to see the change. Subsequent log files are the
new size. See “Using a Text Editor to Change LOGSIZE or LOGFILES” on
page 21-11.

Using onutil to Change the Size of a Log File or Logslice
You can use onutil to add a new logical-log file or logslice with a different
size than LOGSIZE.

To use onutil to change the size of a logical-log file

1. Ensure that the database server is in quiescent mode.
xctl onmode -sy

2. Change the value of LOGSIZE in the ONCONFIG file.

3. If the database server contains the maximum number of logical logs
(specified in LOGSMAX), use the onutil DROP LOG command to drop
the old logical log before you add the new logical log.
Managing Logical-Log Files 21-9

Using onutil to Change the Size of a Log File or Logslice
4. Use the onutil CREATE LOG command to add a logical-log file, speci-
fying the new size. The following example shows how to add three
larger logical-log files to each dbspace on coserver eds.3:

% onutil
1> CREATE LOG dbspace logspace3
2> SIZE 50 MBYTES;
Logical log successfully added.
4> CREATE LOG dbspace logspace4
5> SIZE 50 MBYTES;
Logical log successfully added.
7> CREATE LOG dbspace logspace5
8> SIZE 50 MBYTES;
Logical log successfully added.

5. Back up the root dbspace and the dbspaces that contain the logs on
all coservers to enable your new logical logs.

6. Execute a series of onmode -l commands to determine which old log
is current and to make one of the new logs the current log.

For more information on the onutil DROP LOG command, onutil CREATE
LOGICAL LOG command, onutil DROP LOGSLICE command, and onutil
CREATE LOGSLICE command, see the utilities chapter in the Administrator’s
Reference.

To use onutil to change the size of a logslice

1. Ensure that the database server is in quiescent mode.
xctl onmode -sy

2. Use the onutil DROP LOGSLICE command to drop the old logslice.
For an example, see “Dropping a Logslice” on page 21-7.

3. Use the onutil CREATE LOGSLICE command to add a logslice, speci-
fying the new size. The following example adds a 50-megabyte
logslice to coserver eds.3:

% onutil
1> CREATE LOGSLICE mylogslice
2> SIZE 50 MBYTES;
Logslice successfully added.

4. Back up the root dbspace and the dbspaces that contain the logslices
on each coserver to enable your new logslices.
21-10 Administrator’s Guide for Informix Extended Parallel Server

Changing Logical-Log Configuration Parameters
Changing Logical-Log Configuration Parameters
The following configuration parameters affect the logical-log file and how the
database server works with it:

■ LOGSIZE

■ LOGFILES

■ LOGSMAX

■ LTXHWM

■ LTXEHWM

The following sections explain the procedure for changing each of these
configuration parameters. For more information on these parameters, see the
chapter on configuration parameters in the Administrator’s Reference.

You can use a text editor to change these parameters in the ONCONFIG file.
You must be logged in as root or informix to change these configuration
parameters.

Using a Text Editor to Change LOGSIZE or LOGFILES
If you want to change the size of the log files, you might find it easier to add
new log files of the desired size and then drop the old ones.

Important: The changes to LOGSIZE and LOGFILES do not take effect until you
reinitialize the disk space.

To change the size or number of logical-log files and logslices

1. Bring the database server off-line or into quiescent mode.

2. To change the size of the log files, change the value of LOGSIZE in the
ONCONFIG file.

3. To change the number of the log files, change the value of LOGFILES
in the ONCONFIG file. You might also need to increase the LOGSMAX
value.
Managing Logical-Log Files 21-11

Changing LOGSMAX, LTXHWM, or LTXEHWM in the ONCONFIG File
4. Unload all the database server data.

To retain your existing data when you reinitialize the disk, you must
unload the data beforehand and reload it once the disk is initialized.
This process makes changing these parameters relatively difficult.
You cannot rely on storage-space backups to unload and restore the
data because a restore returns the parameters to their previous value.

5. Reinitialize disk space.

After the database server disk space is reinitialized, re-create all
databases and tables. Then reload all database server data. For more
information, see “Initializing Disk Space” on page 9-5.

6. Re-create all databases and tables.

7. Reload all the database server data.

For information on loading and unloading data, see the Informix
Migration Guide.

8. Back up the root dbspace to enable your changed logical logs or
logslices.

Changing LOGSMAX, LTXHWM, or LTXEHWM in the
ONCONFIG File
You can use a text editor to change the value of LOGSMAX, LTXHWM, or
LTXEHWM while the database server is on-line. You must be logged in as root
or informix on UNIX to change these configuration parameters.

Changes to these configuration parameters take effect when you shut down
and restart the database server. For more information on LOGSMAX,
LTXHWM, or LTXEHWM, see the chapter on configuration parameters in the
Administrator’s Reference.
21-12 Administrator’s Guide for Informix Extended Parallel Server

Freeing a Logical-Log File
Freeing a Logical-Log File
For a description of what constitutes a free logical-log file, see “Status Flags
of Logical-Log Files” on page 20-11.

You might want to free a logical-log file for the following reasons:

■ So that the database server does not stop processing

■ To free the space used by deleted blobpages

The procedures for freeing log files vary, depending on the status of the log
file. Each procedure is described in the following sections. To find out the
status of logical-log files, see “Monitoring Logging Activity” on page 21-15.

Tip: For information using ON-Bar to back up storage spaces and logical logs, refer
to the “Backup and Restore Guide.”

Freeing a Log File with Status A
If a log file is newly added (status A), create a level-0 backup of the root
dbspace and the dbspace that contains the log file to activate the log file and
make it available for use.

Freeing a Log File with Status U
If a log file contains records but is not yet backed up (status U), back up the
file using the backup tool that you usually use.

If backing up the log file does not change the status to free (F), its status
changes to either U-B or U-B-L. See “Freeing a Log File with Status U-B” on
page 21-14 or “Freeing a Log File with Status U-B-L” on page 21-15.
Managing Logical-Log Files 21-13

Freeing a Log File with Status U-B
Freeing a Log File with Status U-B
If a log file is backed up but still in use (status U-B), some transactions in the
log file are still under way or it contains the oldest update which is required
for fast recovery.

To free a backed up log file that is in use

1. If you do not want to wait until the transactions complete, take the
database server to quiescent mode. See “Immediately from On-Line
to Quiescent” on page 9-8. Any active transactions are rolled back.

2. Because a log file with status U-B might contain the oldest update,
you must use the onmode -c command to force a full checkpoint.

A log file that is backed up but not in use (status U-B) does not need to be
freed. In the following example, log 34 does not need to be freed but logs 35
and 36 do. Log 35 contains the last checkpoint and log 36 is backed up but
still in use.

34 U-B-- Log is used, backed up, and not in use
35 U-B-L Log is used, backed up, contains last checkpoint
36 U-B-- Log is used, backed up, currently in use
37 U-C-- This is the current log file, not backed up

Freeing a Log File with Status U-C or U-C-L
If you want to free the current log file (status C), follow these steps:

1. Execute the following command:
% onmode -l

(Be sure to type a lowercase L on the command line, not a number 1.)
This command switches the current log file to the next available log
file.

2. Back up the original log file with the backup tool that you usually
use.

After all full log files are backed up, you are prompted to switch to
the next available logical-log file and back up the new current log file.
You do not need to do this because you just switched to this log file.
21-14 Administrator’s Guide for Informix Extended Parallel Server

Freeing a Log File with Status U-B-L
After you follow these steps, if the log file now has status U-B or U-B-L, refer
to “Freeing a Log File with Status U-B” on page 21-14 or “Freeing a Log File
with Status U-B-L.”

Freeing a Log File with Status U-B-L
If a log file is backed up and all transactions within it are closed, but the file
is not free (status U-B-L), this logical-log file contains the most-recent check-
point record.

To free log files with a status U-B-L, the database server must create a new
checkpoint. You can execute the following command to force a checkpoint:

onmode -c

Switching to the Next Logical-Log File
Switch to the next logical-log file before the current log file becomes full to
back up the current log.

The database server can be in on-line mode to make this change. Execute the
following command to switch to the next available log file:

onmode -l

The change takes effect immediately. (Be sure that you type a lowercase L on
the command line, not a number 1.)

Monitoring Logging Activity
This section discusses how to monitor the logical-log files. For information on
monitoring the logical-log buffers, see “Monitoring Physical and Logical
Logging Activity” on page 23-5.

Monitor the logical-log files to determine the total available space (in all the
files), the space available in the current file, and the status of a file (for
example, whether the log has been backed up yet). This information is
important for logical-log management.
Managing Logical-Log Files 21-15

Monitoring the Logical Log for Fullness
Monitoring the Logical Log for Fullness
When the database server is blocking to preserve log space for administrative
tasks, the onstat utility displays the following message just after its banner
line:

Blocked: LBU

Suppose every log except the last one is full.

In these circumstances, the second line of any of the onstat options appear as
shown in the following example:

Blocked: LBU

To unblock the database server, force a full checkpoint with the onmode -c
command or a fuzzy checkpoint with the onmode -c fuzzy command.

Using Command-Line Utilities
You can use the following command-line utilities to monitor logical-log files.

onstat -l

The onstat -l utility display consists of the following three sections: physical-
log information, logical-log information (general), and information on the
individual logical-log files.

The third section contains the following information for each logical-log file:

■ The address of the logical-log file descriptor

■ The logical-log file logid number

■ Status flags that indicate the status of each log

Flags indicate whether the log is free, backed up, current, and so on.

■ The unique ID of the log file

■ The beginning page of the file

■ The size of the file in pages, the number of pages used, and the
percentage of pages used
21-16 Administrator’s Guide for Informix Extended Parallel Server

Using Command-Line Utilities
For information on the onstat -l option, see the utilities chapter in the Admin-
istrator’s Reference. Figure 21-1 shows sample output.

onutil CHECK RESERVED

The database server stores logical-log file information in the reserved pages
dedicated to checkpoint information. Because the database server updates
this information only during a checkpoint, it is not as recent as the infor-
mation that the onstat -l option displays. For more details on using these
options to display reserved-page information, see the utilities chapter in the
Administrator’s Reference.

You can view the checkpoint reserve pages with the onutil CHECK RESERVED
command. Figure 21-2 shows sample output.

...

address number flags uniqid begin size used %used
846640 1 F------ 0 100233 250 0 0.00
84665c 2 F------ 0 10032d 250 0 0.00
846678 3 U---C-L 3 100427 250 175 70.00
846694 4 F------ 0 100521 250 0 0.00
8466b0 5 F------ 0 10061b 250 0 0.00

Figure 21-1
onstat -l Output

Showing Logical-
Log File Status

...
Log file number 1
Log file flags 0
Time stamp 6964
Date/Time file filled 07/28/99 14:48:32
Unique identifier 0
Physical location 100233
Log size 250
Number pages used 0
...

Figure 21-2
onutil CHECK

RESERVED Output
Containing Logical-

Log File Information
Managing Logical-Log Files 21-17

Using SMI Tables
Using SMI Tables
Query the syslogs table to obtain information on logical-log files. This table
contains a row for each logical-log file. The columns are as follows.

Monitoring Log-Backup Status
To monitor the status of the logs and to see which logs have been backed up,
use the onstat -l command. A status flag of B indicates that the log has been
backed up.

To monitor the status of the logs on different coservers, use the xctl onstat -l
command-line utility. This command allows you to see the status of every log
file on every coserver.

To monitor the backup status of both logs and dbspaces, execute the
onstat -g bus option. Figure 21-3 shows sample output.

Column Description

number Identification number of the logical-log file

uniqid Unique ID of the log file

size Size of the file in pages

used Number of pages used

is_used Flag that indicates whether the log file is being used

is_current Flag that indicates whether the log file is current

is_backed_up Flag that indicates whether the log file has been backed up

is_new Flag that indicates whether the log file has been added since the
last storage-space backup

is_archived Flag that indicates whether the log file has been written to the
archive tape

is_temp Flag that indicates whether the log file is flagged as a temporary
log file
21-18 Administrator’s Guide for Informix Extended Parallel Server

Displaying Logical-Log Records
The Backup Scheduler schedules backup and restore sessions. In Figure 21-3,
ON-Bar is backing up logical log, log.2.11. The 2 in the log name refers to the
coserver number and 11 refers to the logid. The other logical log, log.1.16 on
coserver 1, is ready to be backed up. Session leia_tli24062 is the name of the
backup session.

The suspended log backup sessions mean that LOG_BACKUP_MODE is set to
MANUAL or that the user turned off continuous logical-log backup. When a
logical log fills, it is ready to be backed up. The Backup Scheduler places it in
the queue until the user starts a backup. For more information on
LOG_BACKUP_MODE, see the Backup and Restore Guide and the chapter on
configuration parameters in the Administrator’s Reference.

Displaying Logical-Log Records
Use the onlog utility to display and interpret logical-log records. For infor-
mation on using onlog, see the utilities chapter in the Administrator’s
Reference.

Backup scheduler sessions
=========================

Session "Log backup 1" state SUSPENDED error 0
Session "Log backup 2" state SUSPENDED error 0
 LOG(log.2.11) BACKUP,RUNNING
Session "leia_tli24062" state WAITING error 0
 LOG(log.2.11) BACKUP,RUNNING
 LOG(log.1.16) BACKUP,READY

Figure 21-3
xctl onstat -g bus

Output
Managing Logical-Log Files 21-19

22
Chapter
Physical Logging
In This Chapter . 22-3

Physical Logging 22-3
Purpose of Physical Logging 22-4

Fast Recovery Use of Physically-Logged Pages 22-4
Backup Use of Physically-Logged Pages 22-4

Database Server Activity That Is Physically Logged 22-4
Physical Logging and Simple Large Objects 22-5

Size and Location of the Physical Log 22-5
Limit to the Size of the Physical Log 22-6

Physical-Log Overflow When Many Users Are in Critical Sections 22-6
Effect of Checkpoints on the Physical-Log Size 22-7
Physical-Log Overflow When Transaction Logging Is Turned Off 22-7
Physical-Log Overflow During Rollback of a Long Transaction . 22-8

Location of the Physical Log 22-8

Details of Physical Logging 22-9
Page Is Read into the Shared-Memory Buffer Pool. 22-9
A Copy of the Page Buffer Is Stored in the Physical-Log Buffer . . 22-10
Change Is Reflected in the Data Buffer 22-10
Physical-Log Buffer Is Flushed to the Physical Log 22-10
Page Buffer Is Flushed 22-10
When a Checkpoint Occurs 22-11
How the Physical Log Is Emptied 22-11

22-2 Ad
ministrator’s Guide for Informix Extended Parallel Server

In This Chapter
This chapter defines the terms and explains the concepts that you need to
know to perform effectively the tasks described in Chapter 23, “Managing
the Physical Log.” The chapter covers the following topics:

■ Physical logging and the purposes it serves

■ Some guidelines for the size and location of the physical log

■ Details of the physical-logging process

Physical Logging
Physical logging is the process of storing the pages that the database server is
going to change before the changed pages are actually recorded. Before the
database server modifies certain pages in the shared-memory buffer pool, it
stores an unmodified copy of the page (called a before-image) in the physical-
log buffer in shared memory.

The physical log is a set of contiguous disk pages where the database server
stores before-images.

The database server maintains the before-image page in the physical-log
buffer in shared memory for those pages until one or more page cleaners
flush the pages to disk. Once a checkpoint occurs, the database server
empties the physical log (except in the special circumstances explained in
“Limit to the Size of the Physical Log” on page 22-6). For more information
on checkpoints, see “Checkpoints” on page 24-4.

Important: The database server no longer logs the before-images for fuzzy operations
in the physical log. It still tracks these updates in the logical log. For a definition of
fuzzy operations, see “Fuzzy Checkpoint” on page 24-5.
Physical Logging 22-3

Purpose of Physical Logging
Purpose of Physical Logging
This seemingly odd activity of storing copies of pages before they are
changed ensures that the unmodified pages are available in case the database
server fails or the backup procedure needs them to provide an accurate
snapshot of the database server data. These snapshots are potentially used in
two activities: fast recovery and the database server backup.

Fast Recovery Use of Physically-Logged Pages

After a failure, the database server uses the before-images of pages modified
by non-fuzzy operations in the physical log to restore these pages on the disk
to their state at the last checkpoint. Then the database server uses the logical-
log records to return all data to physical and logical consistency, up to the
point of the most-recently completed transaction. Chapter 24, “Checkpoints
and Fast Recovery,” explains this procedure in more detail.

Backup Use of Physically-Logged Pages

When you perform a storage-space backup, the database server performs a
full checkpoint and checks disk pages to see which should be backed up. If a
backup is active, the database server sends physically-logged pages to the
backup program. For more details, see the Backup and Restore Guide if you use
ON-Bar.

Database Server Activity That Is Physically Logged
All dbspace page modifications except the following ones are physically
logged:

■ Pages that do not have a valid database server address

This situation usually occurs when the page was used by some other
database server or a table that was dropped.

■ Pages that the database server has not allocated and that are located
in a dbspace where no table has been dropped since the last
checkpoint.

■ Pages for fuzzy operations such as inserts, deletes, and updates.
22-4 Administrator’s Guide for Informix Extended Parallel Server

Size and Location of the Physical Log
In case of multiple modifications before the next checkpoint, only one
before-image is logged in the physical log (the first before-image).

Storing all before-images of page modifications in the physical log might
seem excessive. But the database server stores the before-images in the
physical log only until the next checkpoint. To control the amount of data that
the database server logs, you can tune the checkpoint interval configuration
parameter CKPTINTVL.

Physical Logging and Simple Large Objects

The database server pages in the physical log can be any database server
page, including simple large objects in tblspaces. Even overhead pages (such
as chunk free-list pages) are copied to the physical log before data on the page
is modified and flushed to disk.

Size and Location of the Physical Log
When you consider how large to make your physical log, you can begin by
using the following formula to calculate an approximate size:

PHYSFILE = (connections * max_log_pages_per_crit_sect * 4 * pagesize) / 1024

This PHYSFILE value represents a maximum. For more information on
monitoring and tuning the physical log, refer to the chapter on configuration
effects on I/O utilization in your Performance Guide.

Variable in Formula Description

connections Maximum number of users that you expect to access
the database server concurrently. If you set the
NETTYPE parameter, connections is the sum of the
values specified in the users field of each NETTYPE
parameter in your ONCONFIG file.

max_log_pages_per_crit_sect Maximum number of pages that the database server
can physically log in a critical section.

 (1 of 2)
Physical Logging 22-5

Limit to the Size of the Physical Log
Limit to the Size of the Physical Log
Because a checkpoint logically empties the physical log when it becomes 75
percent full, it is unlikely that the log would become 100 percent full before
the checkpoint completes. To assure further that the physical log does not
become full during a checkpoint, take the following actions:

■ Configure the database server according to the sizing guidelines for
the physical log and the logical-log files.

■ Fine-tune the size of the physical log by monitoring it during
production activity.

Fuzzy checkpoints keep the physical log from filling up too quickly when
applications are doing intensive updates. (See “Fuzzy Checkpoint” on
page 24-5.) However, the physical log could still become full, as the following
sections describe.

Physical-Log Overflow When Many Users Are in Critical Sections

Under normal processing, once a checkpoint is requested, and the checkpoint
begins, all threads are prevented from entering critical sections of code. (See
“Critical Sections” on page 24-4.) However, threads currently in critical
sections can continue processing. The physical log can become full if many
threads in critical sections are processing work and if the space that remains
in the physical log is very small. The many writes that are performed as
threads complete their critical section processing could conceivably cause the
physical log to become full.

4 Necessary factor because the following part of the
formula represents only 25 percent of the physical
log:
connections * max_log_pages_per_crit_sect

pagesize System page size in bytes that you can obtain with
onutil CHECK RESERVED.

1024 Necessary divisor because you specify PHYSFILE
parameter in units of kilobytes

Variable in Formula Description

 (2 of 2)
22-6 Administrator’s Guide for Informix Extended Parallel Server

Limit to the Size of the Physical Log
Effect of Checkpoints on the Physical-Log Size

Fuzzy checkpoints keep the physical log from filling up too quickly when
applications are doing intensive updates. You can reduce the size of the
physical log when applications require less intensive updates or when
updates tend to cluster within the same pages. You can decrease the size
of the physical log if you intend to use physical-log fullness to trigger
checkpoints.

If you increase the checkpoint interval or anticipate increased activity,
consider increasing the size of the physical log. For more information, see the
chapter on effects of configuration on I/O activity in your Performance Guide.

Physical-Log Overflow When Transaction Logging Is Turned Off

The physical log can overflow if you use simple large objects in a nonlogging
table. Consider the following example about simple large objects in dbspaces
stored in a logging table.

When the database server processes these simple large objects, each portion
of the simple large object that the database server stores on disk can be logged
separately, allowing the thread to exit the critical sections of code between
each portion. However, if logging is turned off, the database server must
carry out all operations on the simple large object in one critical section. If the
simple large object is large, and the physical log small, this scenario can cause
the physical log to become full. If this situation occurs, the database server
sends the following message to the message log:

Physical log file overflow

The database server then initiates a shutdown. For the suggested corrective
action, refer to this message in your message log.
Physical Logging 22-7

Location of the Physical Log
Physical-Log Overflow During Rollback of a Long Transaction

This same unlikely scenario could occur during the rollback of a long trans-
action after the second long-transaction high-water mark, LTXEHWM, is
reached. (See “Logical Log and Long Transactions” on page 20-15.) After the
LTXEHWM is reached, and after all threads have exited critical sections, only
the thread that is performing the rollback has access to the physical and
logical logs. However, the writes that are performed as threads complete
their processing could conceivably fill the physical log during the rollback if
the following conditions occur simultaneously:

■ Many threads were in critical sections.

■ The space remaining in the physical log was very small at the time
that the LTXEHWM was reached.

Location of the Physical Log
When the database server initializes disk space, it places the logical-log files
and the physical log in the root dbspace. You have no initial control over this
placement. To improve performance (specifically, to reduce the number of
writes to the root dbspace and minimize disk contention), you can move the
physical log out of the root dbspace to another dbspace, preferably on a disk
that does not contain active tables or the logical-log files.

The physical log is located in the dbspace specified by the ONCONFIG
parameter PHYSDBS. (For information on PHYSDBS, see the chapter on
configuration parameters in the Administrator’s Reference.) Change PHYSDBS
only if you decide to move the physical-log file from the root dbspace. (See
“Changing the Physical-Log Location and Size” on page 23-3.)

Because the physical log is critical, Informix recommends that you mirror the
dbspace that contains the physical log.
22-8 Administrator’s Guide for Informix Extended Parallel Server

Details of Physical Logging
Details of Physical Logging
This section describes the details of physical logging. It is provided to satisfy
your curiosity; you do not need to understand the information here in order
to manage your physical log.

The database server performs physical logging in the following six steps:

1. Reads the data page from disk to the shared-memory page buffer (if
the data page is not there already)

2. Copies the unchanged page to the physical-log buffer

3. Reflects the change in the page buffer after an application modifies
data

4. Flushes the physical-log buffer to the physical log on disk

5. Flushes the page buffer and writes it back to disk

6. When a checkpoint occurs, flushes the physical-log buffer to the
physical log on disk and empties the physical log

The paragraphs that follow explain each step in detail.

Page Is Read into the Shared-Memory Buffer Pool
When a session requests a row, the database server identifies the page on
which the row resides and attempts to locate the page in the database server
shared-memory buffer pool. If the page is not already in shared memory, it is
read into the resident portion of the database server shared memory from
disk.
Physical Logging 22-9

A Copy of the Page Buffer Is Stored in the Physical-Log Buffer
A Copy of the Page Buffer Is Stored in the Physical-Log
Buffer
If the before-image of a modified page is stored in the physical-log buffer, it
is eventually flushed from the physical-log buffer to the physical log on disk.
If the same page is modified again before the next checkpoint, it does not
require another before-image to be stored in the physical-log buffer. (Fuzzy
operations do not physically log before-images of pages.) The before-image
of the page plays a critical role in restoring data and fast recovery. For more
details, see “Physical-Log Buffer” on page 13-24.

Change Is Reflected in the Data Buffer
The database server reflects changes to the data in the shared-memory data
buffer. Data from the application is passed to the database server. After a
copy of the unchanged data page is stored in the physical-log buffer, the new
data is written to the page buffer already acquired.

Physical-Log Buffer Is Flushed to the Physical Log
The database server flushes the physical-log buffer before it flushes the data
buffer to ensure that a copy of the unchanged page is available until the
changed page is copied to disk. The before-image of the page is no longer
needed after a checkpoint occurs. For more details, see “Flushing the
Physical-Log Buffer” on page 13-46.

Page Buffer Is Flushed
After the physical-log buffer is flushed, the shared-memory page buffer is
flushed to disk (such as during a checkpoint), and the data page is written to
disk. Only non-fuzzy pages are flushed to disk during a fuzzy checkpoint.
For conditions that lead to the flushing of the page buffer, see “Flushing Data
to Disk” on page 13-45.
22-10 Administrator’s Guide for Informix Extended Parallel Server

When a Checkpoint Occurs
When a Checkpoint Occurs
A checkpoint can occur at any point in the physical-logging process. The
database server performs two types of checkpoints: full and fuzzy. After a full
checkpoint occurs, all modified pages in shared memory are flushed to disk.
The database server is physically consistent because all changes to the data
since the prior checkpoint are recorded on disk and in the logical log. For
information, see “Full Checkpoint” on page 24-5

After a fuzzy checkpoint occurs, the database server might not be physically
consistent, but the checkpoint completes much quicker and does not tie up
the database server during heavy update activity. All changes to the data
since the last full checkpoint or fast recovery are recorded in the logical log.
For information, see “Fuzzy Checkpoint” on page 24-5.

How the Physical Log Is Emptied
The database server manages the physical log as a circular file, constantly
overwriting unneeded data. The checkpoint procedure empties the physical
log by resetting a pointer in the physical log that marks the beginning of the
next group of required before-images.
Physical Logging 22-11

23
Chapter
Managing the Physical Log
In This Chapter . 23-3

Changing the Physical-Log Location and Size 23-3
Reasons to Change the Physical-Log Location and Size 23-4
Preparing to Make the Changes 23-4
Checking For Adequate Contiguous Space 23-4
Using a Text Editor to Change Physical-Log Location or Size . . . 23-5

Monitoring Physical and Logical Logging Activity 23-5
Using Command-Line Utilities 23-6

onstat -l . 23-6
onutil CHECK RESERVED 23-7

Using SMI Tables 23-8

23-2 Ad
ministrator’s Guide for Informix Extended Parallel Server

In This Chapter
This chapter describes procedures for changing the location and size of the
physical log and for monitoring the physical log. For background infor-
mation about the physical log, see Chapter 22, “Physical Logging.”

Changing the Physical-Log Location and Size
To change your physical-log location or size, use a text editor to edit the
ONCONFIG file.

Log in as user informix or root when you make the changes. The following
sections describe each of these methods.

For any of the three methods, to activate the changes to the size or location of
the physical log as soon as you make them, shut down and restart the
database server to reinitialize shared memory. If you use onparams, you can
reinitialize shared memory in the same step.

Create a complete level-0 backup immediately after you reinitialize shared
memory. This storage-space backup is critical for database server recovery.
Managing the Physical Log 23-3

Reasons to Change the Physical-Log Location and Size
Reasons to Change the Physical-Log Location and Size
You can move the physical-log file to try to improve performance. When the
database server initializes disk space, it places the disk pages allocated for the
logical log and the physical log in the root dbspace. You might improve
performance by moving the physical log, the logical-log files, or both to other
dbspaces.

For advice on where to place the physical log, see “Location of the Physical
Log” on page 22-8. For advice on sizing the physical log, see“Size and
Location of the Physical Log” on page 22-5. To obtain information about the
physical log, see “Monitoring Physical and Logical Logging Activity” on
page 23-5.

Preparing to Make the Changes
The space allocated for the physical log must be contiguous. If you move the
physical log to a dbspace without adequate contiguous space, or if you
increase the log size beyond the available contiguous space, a fatal shared-
memory error occurs when you attempt to reinitialize shared memory with
the new values. If this error occurs, resize the physical log, or choose another
dbspace with adequate contiguous space and then reinitialize shared
memory.

Checking For Adequate Contiguous Space
You can check if adequate contiguous space is available with the CHECK
SPACE option of the onutil utility. For more information on the onutil CHECK
SPACE command, see the utilities chapter in the Administrator’s Reference.

For more information, see “Monitoring Chunks” on page 16-34.
23-4 Administrator’s Guide for Informix Extended Parallel Server

Using a Text Editor to Change Physical-Log Location or Size
Using a Text Editor to Change Physical-Log Location or Size
You can change the physical-log location and size by editing the ONCONFIG
file while the database server is in on-line mode.

The changes do not take effect until you shut down and restart the database
server. Then, create a level-0 backup immediately to ensure that all recovery
mechanisms are available.

For information on PHYSSLICE, PHYSFILE, and PHYSDBS, see the chapter on
configuration parameters in the Administrator’s Reference.

Monitoring Physical and Logical Logging Activity
This section discusses monitoring the physical-log file, physical-log buffers,
and logical-log buffers.

Monitor the physical log to determine the percentage of the physical-log file
that gets used before a checkpoint occurs. This information allows you to find
the optimal size of the physical-log file. It should be large enough that the
database server does not have to force checkpoints too frequently and small
enough to conserve disk space and guarantee fast recovery.

Monitor physical-log and logical-log buffers to determine if they are the
optimal size for the current level of processing. The important statistic to
monitor is the pages-per-disk-write statistic. For more information on tuning
the physical-log and logical-log buffers, see your Performance Guide.

Parameter Description

PHYSFILE Specifies the size of the physical log file in kilobytes

PHYSDBS Moves the physical log to the specified dbspace

PHYSSLICE Moves the physical log to the specified dbspace or dbslice on
each coserver
Managing the Physical Log 23-5

Using Command-Line Utilities
Using Command-Line Utilities
You can use the following command-line utilities to obtain information about
the physical-log file.

onstat -l

The first line of the onstat -l output displays the following information for
each physical-log buffer:

■ The number of buffer pages used (bufused)

■ The size of each physical log buffer in pages (bufsize)

■ The number of pages written to the buffer (numpages)

■ The number of writes from the buffer to disk (numwrits)

■ The ratio of pages written to the buffer to the number of writes to
disk (pages/IO)

The second line of the onstat -l output displays the following information
about the physical log:

■ The page number of the first page in the physical-log file (phybegin)

■ The size of the physical-log file (physize)

■ The current position in the log where the next write occurs (physpos)

■ The number of pages in the log that have been used (phyused)

■ The percentage of the total physical-log pages that have been used
(%used)

The third line of the onstat -l output displays the following information
about each logical-log buffer:

■ The number of buffer pages used (bufused)

■ The size of each logical-log buffer in pages (bufsize)

■ The number of records written to the buffer (numrecs)

■ The number of pages written to the buffer (numpages)

■ The number of writes from the buffer to disk (numwrits)

■ The ratio of records to pages in the buffer (recs/pages)

■ The ratio of pages written to the buffer to the number of writes to
disk (pages/IO)
23-6 Administrator’s Guide for Informix Extended Parallel Server

Using Command-Line Utilities
Figure 23-1 shows sample output from the onstat -l option that contains the
relevant fields.

onutil CHECK RESERVED

The database server stores the physical-log file information in those reserved
pages dedicated to checkpoint information (PAGE_1CKPT and PAGE_2CKPT).
You can view the checkpoint reserve pages with the onutil CHECK RESERVED
command. The reserve pages contain the state of the physical log at the last
checkpoint. Figure 23-2 shows an example of the relevant output.

Physical Logging
Buffer bufused bufsize numpages numwrits pages/io
P-2 0 16 110 10 11.00

phybegin physize phypos phyused %used
10003f 500 233 0 0.00

Logical Logging
Buffer bufused bufsize numrecs numpages numwrits recs/pages pages/io
L-1 0 16 3075 162 75 19.0 2.2

...

Figure 23-1
onstat -l Output That
Shows Information
About the Physical

and Logical Logs

Validating Informix database server reserved pages - PAGE_1CKPT & PAGE_2CKPT
Using check point page PAGE_2CKPT.

Time stamp of checkpoint 16024
Time of checkpoint 07/30/99 09:34:33
Physical log begin address 10003f
Physical log size 500
Physical log position at Ckpt e9

...

Figure 23-2
onutil CHECK

RESERVED Output
That Includes
Physical-Log
Information
Managing the Physical Log 23-7

Using SMI Tables
Using SMI Tables
Query the sysprofile table to obtain statistics on the physical-log and logical-
log buffers. The following rows contain the relevant statistics.

Row Description

plgpagewrites Number of pages written to the physical-log buffer

plgwrites Number of writes from the physical-log buffer to the physical
log file

llgrecs Number of records written to the logical-log buffer

llgpagewrites Number of pages written to the logical-log buffer

llgwrites Number of writes from the logical-log buffer to the logical-log
files
23-8 Administrator’s Guide for Informix Extended Parallel Server

24
Chapter
Checkpoints and Fast Recovery
In This Chapter . 24-3

How the Database Server Achieves Data Consistency 24-3

Critical Sections . 24-4

Checkpoints . 24-4
Full Checkpoint 24-5
Fuzzy Checkpoint 24-5

Fuzzy Operations 24-5
Write-Ahead Logging and Fast Recovery 24-6
Fuzzy Checkpoints Improve Performance 24-6

Events That Initiate a Fuzzy Checkpoint 24-7
Events That Initiate a Full Checkpoint 24-7
Forcing a Full Checkpoint 24-8
Forcing a Fuzzy Checkpoint 24-9
Sequence of Events in a Checkpoint. 24-9

User Threads Cannot Enter a Critical Section 24-10
Logical-Log Buffer Is Flushed to the Logical-Log File on Disk . 24-10
Page-Cleaner Thread Flushes the Physical-Log Buffer 24-10
Page-Cleaner Threads Flush Modified Pages in the Buffer Pool . 24-10
Checkpoint Thread Writes Checkpoint Record. 24-11
Physical Log Is Logically Emptied 24-11

Backup and Restore Considerations. 24-11

Time Stamps . 24-12
Time Stamps on Disk Pages 24-12
Time Stamps on Logical-Log Pages 24-12

24-2 Ad
Fast Recovery . 24-13
Need for Fast Recovery 24-13
Situations When Fast Recovery Is Initiated 24-14

Fast Recovery and Buffered Logging 24-14
Fast Recovery and No Logging 24-14

Details of Fast Recovery After A Full Checkpoint 24-14
Returning to the Last-Checkpoint State 24-15
Finding the Checkpoint Record in the Logical Log 24-16
Rolling Forward Logical-Log Records 24-17
Rolling Back Incomplete Transactions 24-17

Details of Fast Recovery After A Fuzzy Checkpoint 24-18
Returning to the Last-Checkpoint State for Nonfuzzy Operations 24-19
Locating the Oldest Update in the Logical Log 24-19
Applying the Log Records for Fuzzy Operations 24-20
Rolling Forward Logical-Log Records 24-21
Rolling Back Incomplete Transactions 24-21

Fast Recovery of Tables 24-22

Monitoring Checkpoint Information 24-24
Using onstat Options 24-24
Using SMI Tables 24-25
ministrator’s Guide for Informix Extended Parallel Server

In This Chapter
This chapter describes how the database server achieves data consistency
through checkpoints and the fast-recovery feature. Read this chapter if you
are interested in learning how checkpoints and fast recovery work.

This chapter covers the following topics:

■ How the database server achieves data consistency

■ Critical sections

■ Checkpoints to achieve data consistency

■ Time stamps to synchronize events

■ Fast recovery

■ Monitoring checkpoints

How the Database Server Achieves Data
Consistency
The database server uses the following three procedures to ensure that data
destined for disk is actually recorded intact on disk:

■ Critical sections

■ Checkpoints

■ Time stamps

These procedures ensure that multiple, logically related writes are recorded
as a unit; that data in shared memory is periodically made consistent with
data on disk; and that a buffer page that is written to disk is actually written
in entirety.
Checkpoints and Fast Recovery 24-3

Critical Sections
Critical Sections
A critical section of code makes a set of disk modifications that must be
performed as a single unit; either all the modifications must occur, or none
can occur.

A thread that is in a critical section is holding shared-memory resources.
Within the space of the critical section, the database server cannot determine
which shared-memory resources should be released and which changes
should be undone to return all data to a consistent point. Therefore, if a
virtual processor is terminated while a thread is in a critical section, the
database server takes the following two steps to ensure that all data is
returned to the last known point of consistency:

■ The database server aborts immediately.

■ The database server initiates fast recovery the next time that it is
initialized.

Fast recovery is the procedure that the database server uses to restore the
physical and logical consistency of data quickly, up to and including the last
record in the logical log. For a description of fast recovery, refer to “Fast
Recovery” on page 24-13.

Checkpoints
The database server performs two types of checkpoints: full checkpoints
(also known as sync checkpoints) and fuzzy checkpoints. The term checkpoint
refers to the point in the database server operation when the pages on disk
are synchronized with the pages in the shared-memory buffer pool.

The database server generates at least one checkpoint for each span of the
logical-log space to guarantee that it has a checkpoint at which to begin fast
recovery.
24-4 Administrator’s Guide for Informix Extended Parallel Server

Full Checkpoint
Although the database server performs checkpoints automatically, you can
initiate one manually or control how often the database server checks to see
if a checkpoint is needed. You can specify the checkpoint interval in the
CKPTINTVL configuration parameter. To reduce the amount of work required
at checkpoint, lower the LRU_MAX and LRU_MIN values. For more infor-
mation about CKPTINTVL, LRU_MAX, and LRU_MIN, see the chapter on
configuration parameters in the Administrator’s Reference. For information on
monitoring and tuning checkpoint parameters, see your Performance Guide.

Full Checkpoint
In a full checkpoint, the database server flushes all modified pages in the
shared-memory buffer pool to disk. When a full checkpoint completes, all
physical operations are complete, the MLRU queue is empty, and the database
server is said to be physically consistent.

Fuzzy Checkpoint
In a fuzzy checkpoint, the database server does not flush the modified pages in
the shared-memory buffer pool to disk for certain types of operations, called
fuzzy operations. When a fuzzy checkpoint completes, the checkpointed pages
might not be consistent with each other because the database server does not
flush all data pages to disk. When necessary, the database server performs a
full checkpoint to ensure the physical consistency of all data on disk.

Fuzzy Operations

The following commonly used operations are fuzzy:

■ Inserts

■ Updates

■ Deletes
Checkpoints and Fast Recovery 24-5

Fuzzy Checkpoint
These following operations are nonfuzzy:

■ Rows that contain simple large objects (TEXT and BYTE data types)

■ Table alters

■ Operations that modify index keys

The database server flushes all the modified data pages for nonfuzzy opera-
tions to disk during a fuzzy checkpoint in the same way as for a full
checkpoint.

Write-Ahead Logging and Fast Recovery

Fuzzy checkpoint depends on write-ahead logging for fast recovery to work
correctly. Write-ahead logging means that the logical-log records representing
changes to fuzzy data must be on disk before the changed data replaces the
previous version of the data on disk. Fast recovery begins with the oldest
update not yet flushed to disk rather than with the previous checkpoint.

Fuzzy Checkpoints Improve Performance

Fuzzy checkpoints are much faster than full checkpoints and improve trans-
action throughput. Because the database server does not log fuzzy operations
in the physical log, the physical log does not fill as quickly, and checkpoints
occur less often. For example, if you are inserting and updating a lot of data,
checkpoints occur less frequently and are shorter.

The database server skips a full checkpoint if all data is physically consistent
when the checkpoint interval expires. It skips a fuzzy checkpoint only if no
pages have been dirtied since the last checkpoint.

For information on improving checkpoint performance, see the chapter
about configuration impacts on I/O in your Performance Guide. For infor-
mation about the physical log, see Chapter 22, “Physical Logging”
24-6 Administrator’s Guide for Informix Extended Parallel Server

Events That Initiate a Fuzzy Checkpoint
Events That Initiate a Fuzzy Checkpoint
Usually, when the database server performs an automatic checkpoint, it is a
fuzzy checkpoint. Any one of following conditions initiates a fuzzy
checkpoint:

■ The checkpoint interval, specified by the configuration parameter
CKPTINTVL, has elapsed, and one or more modifications have
occurred since the last checkpoint.

■ The physical log on disk becomes 75 percent full.

■ The database server detects that the next logical-log file to become
current contains the most recent checkpoint record.

■ Certain administrative tasks, such as adding a chunk or a dbspace,
take place.

Events That Initiate a Full Checkpoint
In the following situations, the database server performs a full checkpoint to
ensure the physical consistency of all data on disk:

■ When you issue onmode -ky to shut down the database server

■ When you initiate a checkpoint from the command line with
onmode -c

■ When you convert the database server to a newer version or revert to
a previous version

■ When you perform a backup or restore using ON-Bar

The backup tool performs a full checkpoint automatically to ensure
the physical consistency of all data before it writes it to the backup
media.

■ At the end of fast recovery or full recovery
Checkpoints and Fast Recovery 24-7

Forcing a Full Checkpoint
■ If the database server is about to switch to the next free log and the
log following the free log contains the oldest update

For example, suppose four logical-log files have the status shown in
the following list. The database server forces a full checkpoint when
it switches to logical-log file 3 if the logical-log file 4 has the oldest
update. The full checkpoint advances the oldest update to logical-log
file 3.

The database server performs a full checkpoint to prevent problems
with fast recovery of old log records.

For a list of situations in which you should initiate a full checkpoint, see the
following section.

Forcing a Full Checkpoint
You might want to force a full checkpoint for any of the following reasons, as
well as others:

■ You should initiate a full checkpoint to free a logical-log file that
contains the most recent checkpoint record and that is backed up but
not yet released (onstat -l status of U-B-L or U-B).

■ You should initiate a full checkpoint before you issue onmode -sy to
place the database server in quiescent mode.

■ You have just finished building a large index. If the database server
terminates before the next checkpoint, the index build will restart the
next time that you initialize the database server.

■ You are about to attempt a system operation that might interrupt the
database server. If a checkpoint has not occurred for a long time, fast
recovery could take longer than you want.

logid Logical-Log File Status

1 U-B----

2 U---C--

3 F

4 U-B---L
24-8 Administrator’s Guide for Informix Extended Parallel Server

Forcing a Fuzzy Checkpoint
■ Foreground writes are taking more resources than you want. You can
manually force a checkpoint to bring this down to zero for a while.

■ You should initiate a full checkpoint before you execute dbexport or
unload a table. The full checkpoint ensures the physical consistency
of all data before you export or unload it.

To force a checkpoint, execute the following command from the command
line:

onmode -c

Forcing a Fuzzy Checkpoint
To force a fuzzy checkpoint, execute the following command:

onmode -c fuzzy

Sequence of Events in a Checkpoint
The following section outlines the main events that occur during a check-
point once a user thread raises the checkpoint-requested flag. This section
also notes the differences between full and fuzzy checkpoints:

1. The database server prevents user threads from entering critical
sections.

2. The logical-log buffer is flushed to the current logical-log file on disk.

3. The page-cleaner thread flushes the physical-log buffer.

4. In a fuzzy checkpoint, the page-cleaner threads flush modified pages
for nonfuzzy operations in the buffer pool to disk.

In a full checkpoint, the page-cleaner threads flush all modified
pages in the buffer pool to disk.

5. The checkpoint thread writes a checkpoint record to the logical-log
buffer.

6. The physical log on disk is logically emptied. (Current entries can be
overwritten).
Checkpoints and Fast Recovery 24-9

Sequence of Events in a Checkpoint
User Threads Cannot Enter a Critical Section

This step is the same for both fuzzy and full checkpoints. Once the check-
point-requested flag is set, user threads are prevented from entering portions
of code that are considered critical sections. User threads that are within
critical sections of code are permitted to continue processing to the end of the
critical sections.

Logical-Log Buffer Is Flushed to the Logical-Log File on Disk

This step is the same for both fuzzy and full checkpoints. Next, the logical-
log buffer is flushed to the logical-log file on disk.

Page-Cleaner Thread Flushes the Physical-Log Buffer

After all threads have exited from critical sections, the page-cleaner thread
resets the shared-memory pointer from the current physical-log buffer to the
other buffer and flushes the buffer. After the buffer is flushed, the page-
cleaner thread updates the time stamp that indicates the most recent point at
which the physical-log buffer was flushed.

Page-Cleaner Threads Flush Modified Pages in the Buffer Pool

In a fuzzy checkpoint, the page-cleaner threads flush modified pages for
nonfuzzy operations in the buffer pool to disk. They do not flush modified
pages for fuzzy operations (inserts, deletes, updates) to disk. Figure 24-1
shows how the database server writes only the nonfuzzy pages to disk. The
shaded squares, marked F, represent the fuzzy pages.

Figure 24-1
Selectively Writing

Modified Pages
from Shared

Memory to Disk

Storage space

Shared memory

F
F

FF
24-10 Administrator’s Guide for Informix Extended Parallel Server

Backup and Restore Considerations
In a full checkpoint, the page cleaners flush all modified pages in the shared-
memory buffer pool to disk. This flushing is performed as a chunk write.

Checkpoint Thread Writes Checkpoint Record

This step is the same for both fuzzy and full checkpoints. The page-cleaner
thread writes a checkpoint-complete record to the logical-log buffer after the
modified pages have been written to disk.

In a fuzzy checkpoint, the checkpoint thread also writes a dirty-pages table
(DPT) record to the logical-log buffer. For more information, see the chapter
on logical-log record types in the Administrator’s Reference.

Physical Log Is Logically Emptied

This step is the same for both fuzzy and full checkpoints. After the check-
point-complete record is written to disk, the physical log is logically emptied,
meaning that current entries in the physical log can be overwritten.

Backup and Restore Considerations
If you perform a backup, the database server performs a full checkpoint and
flushes all changed pages, including those for fuzzy operations, to the disk.
If you perform a restore, the database server reapplies all logical-log records.

Important: Because the logical log contains records of fuzzy operations not yet
written to disk, you must back up the logical logs regularly.

For information on ON-Bar, see the Backup and Restore Guide.
Checkpoints and Fast Recovery 24-11

Time Stamps
Time Stamps
The database server uses a time stamp to identify a time when an event
occurred relative to other events of the same kind. The time stamp is not a
literal time that refers to a specific hour, minute, or second. It is a 4-byte
integer that the database server assigns sequentially. When the database
server compares two time stamps, its algorithm accounts for the possibility
that wraparound has occurred.

Time Stamps on Disk Pages
Each disk page has one time stamp in the page header and a second time
stamp in the last 4 bytes on the page. The page-header and page-ending time
stamps are synchronized after each write, so they should be identical when
the page is read from disk. Each read compares the time stamps as a test for
data consistency. If the test fails, an error is returned to the user thread,
indicating either that the disk page was not fully written to disk or that the
page has been partially overwritten on disk or in shared memory. For a
description of the content of a dbspace page, refer to dbspace structure and
storage in the chapter on disk structures and storage in the Administrator’s
Reference.

Time Stamps on Logical-Log Pages
Each logical-log record contains a time stamp, a 4-byte integer. During a
restore, the database server uses these time stamps to determine where to
start the logical restore.

For fuzzy operations, the database server uses the same time stamp for both
the log record and disk page. During fast recovery, the database server
compares the disk-page and log time stamps to determine which log record
to apply. After fast recovery applies the log record to the dirty page, it copies
the time stamp from the log record to the time stamp for the disk page.
24-12 Administrator’s Guide for Informix Extended Parallel Server

Fast Recovery
Fast Recovery
Fast recovery is an automatic, fault-tolerant feature that the database server
executes every time that it moves from off-line to quiescent mode or from off-
line to on-line mode. You do not need to take any administrative actions for
fast recovery; it is an automatic feature.

The fast-recovery process checks if, the last time that the database server
went off-line, it did so in uncontrolled conditions. If so, fast recovery returns
the database server to a state of physical and logical consistency, as described
in “Details of Fast Recovery After A Full Checkpoint” on page 24-14.

If the fast-recovery process finds that the database server came off-line in a
controlled manner, the fast-recovery process terminates, and the database
server moves to on-line mode.

Need for Fast Recovery
Fast recovery restores the database server to physical and logical consistency
after any failure that results in the loss of the contents of memory for the
database server. Such failures are usually caused by system failures. System
failures do not damage the database but instead affect transactions that are in
progress at the time of the failure.

Fast recovery addresses the following kinds of system failure:

■ The database server is processing tasks for more than 40 users.

■ Dozens of transactions are in process.

■ Without warning, the operating system fails.

How does the database server bring itself to a consistent state again? What
happens to ongoing transactions? The answer to both questions is fast
recovery.
Checkpoints and Fast Recovery 24-13

Situations When Fast Recovery Is Initiated
Situations When Fast Recovery Is Initiated
Every time that the administrator brings the database server to quiescent
mode or on-line mode from off-line mode, the database server checks to see
if fast recovery is needed.

As part of shared-memory initialization, the database server checks the
contents of the physical log. The physical log is empty when the database
server shuts down under control. The move from on-line mode to quiescent
mode includes a checkpoint, which flushes the physical log. Therefore, if the
database server finds pages in the physical log, the database server clearly
went off-line under uncontrolled conditions, and fast recovery begins.

Fast Recovery and Buffered Logging

If a database uses buffered logging (as described in “Buffered Transaction
Logging” on page 18-10), some logical-log records associated with
committed transactions might not be written to the logical log at the time of
the failure. If this occurs, fast recovery cannot restore those transactions. Fast
recovery can restore only transactions with an associated COMMIT record
stored in the logical log on disk. (For this reason, buffered logging represents
a trade-off between performance and data vulnerability.)

Fast Recovery and No Logging

For databases or tables that do not use logging, fast recovery restores the
database to its state at the time of the most recent checkpoint. All changes
made to the database since the last checkpoint are lost. All fuzzy operations
(inserts, deletes, updates) not yet flushed to disk are also lost.

Details of Fast Recovery After A Full Checkpoint
Fast recovery works differently depending on whether the previous check-
point was a full or fuzzy checkpoint. This section discusses fast recovery after
a full checkpoint.

Fast recovery returns the database server to a consistent state as part of
shared-memory initialization. The consistent state means that all committed
transactions are restored, and all uncommitted transactions are rolled back.
24-14 Administrator’s Guide for Informix Extended Parallel Server

Details of Fast Recovery After A Full Checkpoint
Fast recovery is accomplished in the following two stages:

■ The database server uses the physical log to return to the most recent
point of known physical consistency, the most recent checkpoint.

■ The database server uses the logical-log files to return to logical
consistency by rolling forward all committed transactions that
occurred after the last checkpoint and rolling back all transactions
that were left incomplete.

Fast recovery occurs in the following steps:

1. Use the data in the physical log to return all disk pages to their
condition at the time of the most recent checkpoint.

2. Locate the most recent checkpoint record in the logical-log files.

3. Roll forward all logical-log records written after the most recent
checkpoint record.

4. Roll back transactions that do not have an associated COMMIT or
BEGIN COMMIT record in the logical log.

The paragraphs that follow describe each step in detail.

Returning to the Last-Checkpoint State

To accomplish the first step, returning all disk pages to their condition at the
time of the most recent checkpoint, the database server writes the before-
images stored in the physical log to shared memory and then back to disk.
Each before-image in the physical log contains the address of a page that was
updated after the checkpoint. When the database server writes each before-
image page in the physical log to shared memory and then back to disk,
changes to the database server data since the time of the most recent check-
point are undone. Figure 24-2 on page 24-16 illustrates this step.
Checkpoints and Fast Recovery 24-15

Details of Fast Recovery After A Full Checkpoint
The database server is now physically consistent.

Finding the Checkpoint Record in the Logical Log

In the second step, the database server locates the address of the most recent
checkpoint record in the logical log. The most recent checkpoint record is
guaranteed to be in the logical log on disk. Figure 24-3 illustrates this step.

Figure 24-2
Writing All

Remaining Before-
Images in the

Physical Log Back
to Disk

Tblspace Physical log

Shared memory

Figure 24-3
Locating the Most
Recent Checkpoint

Record in the
Logical Log

Checkpoint
record address

Checkpoint record

Database server

Logical log
24-16 Administrator’s Guide for Informix Extended Parallel Server

Details of Fast Recovery After A Full Checkpoint
Rolling Forward Logical-Log Records

The third step in fast recovery rolls forward the logical-log records that were
written after the most recent checkpoint record. This action reproduces all
changes to the databases since the time of the last checkpoint, up to the point
at which the uncontrolled shutdown occurred. Figure 24-4 illustrates this
step.

Rolling Back Incomplete Transactions

The final step in fast recovery rolls back all logical-log records for transac-
tions that were not committed at the time the system failed. All databases are
logically consistent because all committed transactions are rolled forward
and all uncommitted transactions are rolled back.

Figure 24-4
Rolling Forward the

Logical-Log
Records Written

Since the Most
Recent Checkpoint

Records since
the checkpoint

Dbspace

Logical log

 Changes rolled
 forward since
 the checkpoint
Checkpoints and Fast Recovery 24-17

Details of Fast Recovery After A Fuzzy Checkpoint
Because one or more transactions possibly spanned several checkpoints
without being committed, this rollback procedure might read backward
through the logical log past the most recent checkpoint record. All logical-log
files that contain records for open transactions are available to the database
server because a log file is not freed until all transactions that it contains are
closed. Figure 24-5 illustrates the rollback procedure. When fast recovery is
complete, the database server goes to quiescent or on-line mode.

Details of Fast Recovery After A Fuzzy Checkpoint
This section discusses fast recovery after a fuzzy checkpoint. Fast recovery is
accomplished in the following stages:

■ The database server uses the physical log to return to the most recent
checkpoint. The database server might not be physically consistent
at this point in fast recovery because fuzzy operations do not physi-
cally log the before-image of pages.

■ The database server processes the logical-log records starting with
the oldest update that has not yet been flushed to disk rather than
starting with the previous checkpoint.

■ The database server uses the logical-log files to return to logical
consistency by rolling forward all committed transactions that
occurred after the last checkpoint and rolling back all transactions
that were left incomplete.

These stages can also be expressed as the following steps, which are
described in detail in the paragraphs that follow:

Figure 24-5
Rolling Back All

Incomplete
TransactionsDbspace

Disk A

Logical log

 Uncommitted changes
 rolled back
24-18 Administrator’s Guide for Informix Extended Parallel Server

Details of Fast Recovery After A Fuzzy Checkpoint
1. Use the data in the physical log to return disk pages for nonfuzzy
operations to their condition at the time of the most recent
checkpoint.

2. Locate the oldest update in the logical-log that is not yet flushed to
disk.

3. Apply the log records for fuzzy operations that occurred before the
most recent checkpoint.

4. Roll forward all logical-log records written after the most recent
checkpoint record.

5. Roll back transactions that do not have an associated COMMIT or
BEGIN COMMIT record in the logical log.

Although fast recovery after a fuzzy checkpoint takes longer than after a full
checkpoint, you can optimize it. For details, see your Performance Guide.

Returning to the Last-Checkpoint State for Nonfuzzy Operations

To accomplish the first step, returning all disk pages for nonfuzzy operations
to their condition at the time of the most recent checkpoint, the database
server writes the before-images stored in the physical log to shared memory
and then back to disk. Each before-image in the physical log contains the
address of a page that was updated after the checkpoint. When the database
server writes each before-image page in the physical log to shared memory
and then back to disk, changes to the database server data since the time of
the most recent checkpoint are undone. Figure 24-6 illustrates this step.

Figure 24-6
Writing Nonfuzzy
Before-Images in
the Physical Log

Back to Disk

Tblspace Physical log

Shared memory

Nonfuzzy pages
Checkpoints and Fast Recovery 24-19

Details of Fast Recovery After A Fuzzy Checkpoint
Pages on which fuzzy operations occurred are not physically consistent
because the database server does not physically log their before-images. If
the most recent checkpoint was a fuzzy checkpoint, the changed pages for
fuzzy operations were not flushed to disk. The dbspace disk still contains the
before-image of each page. To undo changes to these pages prior to the fuzzy
checkpoint, the database server uses the logical log, as the next step
describes.

Locating the Oldest Update in the Logical Log

In this step of fast recovery, the database server locates the oldest update
record in the logical log that was not flushed to disk during the most recent
checkpoint. The database server uses the log sequence numbers (LSN) in the
logical log to find the oldest update record. The database server no longer
starts fast recovery at the most recent checkpoint record.

Figure 24-7 shows that the oldest update in the logical log occurred several
checkpoints ago and that all the log records are applied.

You cannot free the logical log that contains the oldest update record until
after the changes are recorded on disk. The database server automatically
performs a full checkpoint to prevent problems with fast recovery of very old
log records.

Figure 24-7
Locating the Oldest

Update Record in
the Logical Log

Dbspace

Logical log

 Fast recovery starts
 at the oldest update
 not flushed to disk

Records before
fuzzy checkpoint

Fuzzy checkpoint
24-20 Administrator’s Guide for Informix Extended Parallel Server

Details of Fast Recovery After A Fuzzy Checkpoint
Applying the Log Records for Fuzzy Operations

In the second step, the database server processes the log records for fuzzy
operations that occurred following the oldest update and before the last
checkpoint. The log records that represent changes to data must be on disk
before the changed data replaces the previous version on disk.

Log records for fuzzy operations are selectively redone, depending on
whether the update has already been applied to the page. If the time stamp
in the logical-log record is older than the time stamp in the disk page, the
database server applies the record. Otherwise, the database server skips that
record.

Figure 24-8 illustrates how the database server processes fuzzy records only
prior to checkpoint.

Figure 24-8
Applying the Log

Records for Fuzzy
Operations

Dbspace

Logical log

 Changes not flushed to
 disk since the oldest
 update was applied

Records after the
oldest update
Checkpoints and Fast Recovery 24-21

Details of Fast Recovery After A Fuzzy Checkpoint
Rolling Forward Logical-Log Records

In the third step, the database server processes all logical-log records
following the last checkpoint. Fast recovery rolls forward the logical-log
records that were written after the most recent checkpoint record. This action
reproduces all changes to the databases since the time of the last checkpoint,
up to the point at which the uncontrolled shutdown occurred. Figure 24-9
illustrates the roll forward of all records after the fuzzy checkpoint.

Rolling Back Incomplete Transactions

The final step in fast recovery rolls back all logical-log records for transac-
tions that were not committed at the time that the system failed. This rollback
procedure ensures that all databases are left in a consistent state.

Figure 24-9
Rolling Forward the

Logical-Log
Records Written

Since the Most
Recent Fuzzy

Checkpoint

Dbspace

Logical log

 Changes since the
 fuzzy checkpoint
 rolled forward

Records after the
oldest update
24-22 Administrator’s Guide for Informix Extended Parallel Server

Fast Recovery of Tables
Because one or more transactions possibly spanned several checkpoints
without being committed, this rollback procedure might read backward
through the logical log past the most recent checkpoint record. All logical-log
files that contain records for open transactions are available to the database
server because a log file is not freed until all transactions contained within it
are closed. Figure 24-10 illustrates the rollback procedure. When fast
recovery is complete, the database server goes to quiescent or on-line mode.

Fast Recovery of Tables
Figure 24-11 on page 24-24 presents fast-recovery scenarios for the six table
types available with Extended Parallel Server. For more information about
the table types, see “Table Types” on page 15-25.

Important: To ensure data integrity when you use raw, static, or operational tables,
force a checkpoint or perform a level-0 backup after you modify or load the table.

Figure 24-10
Rolling Back All

Incomplete
TransactionsDbspace

Logical log

 Uncommitted changes
 rolled back
Checkpoints and Fast Recovery 24-23

Fast Recovery of Tables
Figure 24-11
Fast Recovery of Tables

Table Type Fast-Recovery Behavior

Standard Fast recovery is successful. All committed log records are rolled
forward, and all incomplete transactions are rolled back.

Temp or Scratch Temp and scratch tables are not recoverable because they are
dropped when the database server restarts. All changes made
to these tables are lost, and the space can be reused.

Raw If a checkpoint completed since the raw table was modified
last, all the data is recoverable.

Updates and deletions that occurred after the last checkpoint
are lost. The raw table looks as it did at the last checkpoint.

If inserts occurred after the last checkpoint, the raw table might
contain empty rows or be corrupted.

If a light append was in progress at the time of the failure, all
appended records are lost on reboot.

Static If you alter a raw table to static, you can recover it only if it was
not updated since the previous checkpoint. If the raw table was
updated before it was altered, it might contain empty rows or
be corrupted.

If you alter an operational table to static, you can recover it only
if light appends did not occur. If light appends occurred, they
are lost on reboot.

If you alter a standard table to static, you can recover it
successfully.

Operational All inserts, deletions, and updates are successfully recovered.
All committed log records are rolled forward and incomplete
transactions are rolled back.

If a light append was in progress at the time of the failure, all
appended records are lost on reboot.
24-24 Administrator’s Guide for Informix Extended Parallel Server

Monitoring Checkpoint Information
Monitoring Checkpoint Information
Monitor checkpoint activity to determine basic checkpoint information. This
information includes the number of times that threads had to wait for the
checkpoint to complete. This information is useful for determining if the
checkpoint interval is appropriate. For information on tuning the checkpoint
interval, see your Performance Guide.

Using onstat Options
You can use the following onstat options to obtain checkpoint information:

■ -m

■ -p

Execute onstat -m to view the last 20 entries in the message log. If a check-
point record does not appear in the last 20 entries, read the message log
directly with a text editor. The database server writes individual checkpoint
records to the log when the checkpoint ends. If a checkpoint check occurs, but
the database server has no pages to write to disk, the database server does not
write any records to the message log.

Execute onstat -p to obtain these checkpoint statistics:

■ Number of checkpoints that occurred since the database server was
brought on-line (numckpts)

■ Number of times that a user thread waits for a checkpoint to finish
(ckpwaits)

The database server prevents a user thread from entering a critical
section during a checkpoint.
Checkpoints and Fast Recovery 24-25

Using SMI Tables
Using SMI Tables
The sysprofile table provides the same checkpoint statistics that are available
from the onstat -p option.

The sysprofile table contains two columns, name and value. The name
column contains the statistic name, and the value column contains the
statistic value. These rows contain the following checkpoint information.

Checkpoint
Statistic Description

numckpts Number of checkpoints that have occurred since the database server
was brought on-line

ckptwaits Number of times that threads waited for a checkpoint to finish to
enter a critical section during a checkpoint
24-26 Administrator’s Guide for Informix Extended Parallel Server

 V
I
Fault Tolerance
Se
ct

io
n

Chapter 25 Mirroring

Chapter 26 Using Mirroring

Chapter 27 Consistency Checking

25
Chapter
Mirroring
In This Chapter . 25-3

Mirroring . 25-4
Benefits of Mirroring 25-4
Costs of Mirroring 25-5
Consequences of Not Mirroring 25-5
Data to Mirror 25-5
Alternatives to Mirroring 25-6

Logical Volume Managers 25-6
Hardware Mirroring. 25-7

Mirroring Process 25-7
Creation of a Mirrored Chunk. 25-7
Mirror Status Flags 25-8
Recovery . 25-8
Actions During Processing 25-9

Disk Writes to Mirrored Chunks 25-9
Disk Reads from Mirrored Chunks. 25-9
Detection of Media Failures 25-10
Chunk Recovery 25-10

Result of Stopping Mirroring 25-11
Structure of a Mirrored Chunk 25-11

25-2 Ad
ministrator’s Guide for Informix Extended Parallel Server

In This Chapter
The first part of this chapter answers the following basic questions about the
database server mirroring feature:

■ What are the benefits of mirroring?

■ What are the costs of mirroring?

■ What happens if you do not mirror?

■ What should you mirror?

■ What mirroring alternatives exist?

The second part of the chapter discusses the actual mirroring process. The
following aspects of the process are discussed:

■ What happens when you create a mirrored chunk?

■ What are the mirror status flags?

■ What is recovery?

■ What happens during processing?

■ What happens if you stop mirroring?

■ What is the structure of a mirrored chunk?

For instructions on how to perform mirroring tasks, refer to Chapter 26,
“Using Mirroring.”
Mirroring 25-3

Mirroring
Mirroring
Mirroring is a strategy that pairs a primary chunk of one defined dbspace with
an equal-sized mirrored chunk.

Every write to the primary chunk is automatically accompanied by an
identical write to the mirrored chunk. This concept is illustrated in
Figure 25-1. If a failure occurs on the primary chunk, mirroring enables you
to read from and write to the mirrored chunk until you can recover the
primary chunk, all without interrupting user access to data.

Mirroring is not supported on disks that are managed over a network. The
same database server instance must manage all the chunks of a mirrored set.

Benefits of Mirroring
If a media failure occurs, mirroring provides the database server adminis-
trator with a means of recovering data without having to take the database
server off-line. This feature results in greater reliability and less system
downtime. Furthermore, applications can continue to read from and write to
a database whose primary chunks are on the affected media, provided that
the chunks that mirror this data are located on separate media.

Any critical database should be located in a mirrored dbspace. Above all, the
root dbspace, which contains the database server reserved pages, should be
mirrored.

Figure 25-1
Writing Data to Both

the Primary Chunk
and the Mirrored

Chunk

Writes

Mirrored chunkPrimary chunk
Database server
25-4 Administrator’s Guide for Informix Extended Parallel Server

Costs of Mirroring
Costs of Mirroring
Disk-space costs as well as performance costs are associated with mirroring.
The disk-space cost is due to the additional space required for storing the
mirror data. The performance cost results from having to perform writes to
both the primary and mirrored chunks. The use of multiple virtual
processors for disk writes reduces this performance cost. The use of split
reads, whereby the database server reads data from either the primary chunk
or the mirrored chunk, depending on the location of the data within the
chunk, actually causes performance to improve for read-only data. For more
information on how the database server performs reads and writes for
mirrored chunks, see “Actions During Processing” on page 25-9.

Consequences of Not Mirroring
If you do not mirror your dbspaces, the frequency with which you have to
restore from a storage-space backup after a media failure increases.

When a mirrored chunk suffers a media failure, the database server reads
exclusively from the chunk that is still on-line until you bring the down
chunk back on-line. On the other hand, when an unmirrored chunk goes
down, the database server cannot access the data stored on that chunk. If the
chunk contains logical-log files, the physical log, or the root dbspace, the
database server goes off-line immediately. If the chunk does not contain
logical-log files, the physical log, or the root dbspace, the database server can
continue to operate, but threads cannot read from or write to the down
chunk. Unmirrored chunks that go down must be restored by recovering the
dbspace from a backup.

Data to Mirror
Ideally, you should mirror all of your data. If disk space is an issue, however,
you might not be able to do so. In this case, select certain critical chunks to
mirror.

Critical chunks always include the chunks that are part of the root dbspace,
the chunk that stores the logical-log files, and the chunk that stores the
physical logs. If any one of these critical chunks fail, the database server goes
off-line immediately.
Mirroring 25-5

Alternatives to Mirroring
If some chunks hold data that is critical to your business, give these chunks
high priority for mirroring.

Also give priority for mirroring to other chunks that store frequently used
data. This action ensures that the activities of many users are not halted if one
widely used chunk goes down.

Alternatives to Mirroring
Mirroring, as discussed in this manual, is a database server feature. Your
operating system or hardware might provide alternative mirroring solutions.

If you are considering a mirroring feature provided by your operating system
instead of database server mirroring, compare the implementation of both
features before you decide which to use. The slowest step in the mirroring
process is the actual writing of data to disk. The database server strategy of
performing writes to mirrored chunks in parallel helps to reduce the time
required for this step. (See “Disk Writes to Mirrored Chunks” on page 25-9.)
In addition, database server mirroring uses split reads to improve read
performance. (See “Disk Reads from Mirrored Chunks” on page 25-9.)
Operating-system mirroring features that do not use parallel mirror writes
and split reads might provide inferior performance.

Nothing prevents you from running database server mirroring and
operating-system mirroring at the same time. They run independently of
each other. In some cases, you might decide to use both the database server
mirroring and the mirroring feature provided by your operating system. For
example, you might have both database server data and other data on a
single disk drive. You could use the operating-system mirroring to mirror the
other data and database server mirroring to mirror the database server data.

Logical Volume Managers

Logical volume managers are an alternative mirroring solution. Some
operating-system vendors provide this type of utility to have multiple disks
appear as one file system. Saving data to more than two disks gives you
added protection from media failure, but the additional writes have a
performance cost.
25-6 Administrator’s Guide for Informix Extended Parallel Server

Mirroring Process
Hardware Mirroring

Another solution is to use hardware mirroring such as RAID (redundant
array of inexpensive disks). An advantage of this type of hardware mirroring
is that it requires less disk space than database server mirroring does to store
the same amount of data in a manner resilient to media failure. The disad-
vantage is that it is slower than database server mirroring for write
operations.

Mirroring Process
This section describes the mirroring process in greater detail. For instructions
on how to perform mirroring operations such as creating mirrored chunks,
starting mirroring, changing the status of mirrored chunks, and so on, refer
to Chapter 26, “Using Mirroring.”

Creation of a Mirrored Chunk
When you specify a mirrored chunk, the database server copies all the data
from the primary chunk to the mirrored chunk. This copy process is known
as recovery. Mirroring begins as soon as recovery is complete.

The recovery procedure that marks the beginning of mirroring is delayed if
you start to mirror chunks within a dbspace that contains a logical-log file.
Mirroring for dbspaces that contain a logical-log file does not begin until you
create a level-0 backup of the root dbspace. The delay ensures that the
database server can use the mirrored logical-log files if the primary chunk
that contains these logical-log files becomes unavailable during a dbspace
restore. The level-0 backup copies the updated database server configuration
information, including information about the new mirrored chunk, from the
root dbspace reserved pages to the backup. If you perform a data restore, the
updated configuration information at the beginning of the backup directs the
database server to look for the mirrored copies of the logical-log files if the
primary chunk becomes unavailable. If this new storage-space backup infor-
mation does not exist, the database server is unable to take advantage of the
mirrored log files.
Mirroring 25-7

Mirror Status Flags
For similar reasons, you cannot mirror a dbspace that contains a logical-log
file while a dbspace backup is being created. The new information that must
appear in the first block of the dbspace backup tape cannot be copied there
once the backup has begun.

For more information on creating mirrored chunks, refer to Chapter 26,
“Using Mirroring.”

Mirror Status Flags
Dbspaces have status flags that indicate whether it is mirrored, unmirrored,
or mirrored.

You must perform a level-0 backup of the root dbspace before mirroring
starts.

Chunks have status flags that indicate the following information:

■ Whether the chunk is a primary or mirrored chunk

■ Whether the chunk is currently on-line, down, a new mirrored chunk
that requires a level-0 backup of the root dbspace, or being recovered

For descriptions of these chunk status flags, refer to the description of the
onstat -d option in the utilities chapter of the Administrator’s Reference. For
information on how to display these status flags, refer to “Monitoring Disk
Usage” on page 16-34.

Recovery
When the database server recovers a mirrored chunk, it performs the same
recovery procedure that it uses when mirroring begins. The mirror-recovery
process consists of copying the data from the existing on-line chunk onto the
new, repaired chunk until the two are considered identical.

When you initiate recovery, the database server puts the down chunk in
recovery mode and copies the information from the on-line chunk to the
recovery chunk. When the recovery is complete, the chunk automatically
receives on-line status. You perform the same steps whether you are recov-
ering the primary chunk of a mirrored pair or recovering the mirrored chunk.
25-8 Administrator’s Guide for Informix Extended Parallel Server

Actions During Processing
Tip: You can still use the on-line chunk while the recovery process is occurring. If
data is written to a page that has already been copied to the recovery chunk, the
database server updates the corresponding page on the recovery chunk before it
continues with the recovery process.

For information on how to recover a down chunk, refer to the information on
recovering a mirrored chunk on page 26-10.

Actions During Processing
This section discusses some of the details of disk I/O for mirrored chunks and
how the database server handles media failure for these chunks.

Disk Writes to Mirrored Chunks

During database server processing, the database server performs mirroring
by executing two writes for each modification: one to the primary chunk and
one to the mirrored chunk. Virtual processors of the AIO class perform the
actual disk I/O. For more information, refer to “Asynchronous I/O” on
page 11-24.

The requesting thread submits the two write requests (one for the primary
chunk and one for the mirrored chunk) asynchronously. That is, if two AIO
virtual processors are idle, they can perform the two disk writes in parallel.
In the meantime, the requesting thread can perform any additional
processing that does not depend on the result of the mirror I/O.

Disk Reads from Mirrored Chunks

The database server uses mirroring to improve read performance because
two versions of the data reside on separate disks. A data page is read from
either the primary chunk or the mirrored chunk, depending on which half of
the chunk includes the address of the data page. This feature is called a split
read. Split reads improve performance by reducing the disk-seek time. Disk-
seek time is reduced because the maximum distance over which the disk
head must travel is reduced by half. Figure 25-2 on page 25-10 illustrates a
split read.
Mirroring 25-9

Actions During Processing
Detection of Media Failures

The database server checks the return code when it first opens a chunk and
after any read or write. Whenever the database server detects that a primary
(or mirror) chunk device has failed, it sets the chunk-status flag to down (D).
For information on chunk-status flags, refer to “Mirror Status Flags” on
page 25-8.

If the database server detects that a primary (or mirror) chunk device has
failed, reads and writes continue for the one chunk that remains on-line. This
statement is true even if the administrator intentionally brings down one of
the chunks.

Once the administrator recovers the down chunk and returns it to on-line
status, reads are again split between the primary and mirrored chunks, and
writes are made to both chunks.

Chunk Recovery

The database server uses asynchronous I/O to minimize the time required for
recovering a chunk. The read from the chunk that is on-line can overlap with
the write to the down chunk, instead of the two processes occurring serially.
That is, the thread that performs the read does not have to wait until the
thread that performs the write has finished before it reads more data.

Figure 25-2
Split Read Reducing

the Maximum
Distance Over

Which the Disk Head
Must Travel

Data on this half of the chunk is
read from the mirrored chunk.

Data on this half of the chunk is
read from the primary chunk.

Primary chunk Mirrored chunk
Database server
25-10 Administrator’s Guide for Informix Extended Parallel Server

Result of Stopping Mirroring
Result of Stopping Mirroring
When you end mirroring, the database server immediately frees the mirrored
chunks and makes the space available for reallocation. The action of ending
mirroring takes only a few seconds.

Create a level-0 backup of the root dbspace after you end mirroring to ensure
that the reserved pages with the updated mirror-chunk information are
copied to the backup. This action prevents the restore procedure from
assuming that mirrored data is still available.

Structure of a Mirrored Chunk
The mirrored chunk contains the same control structures as the primary
chunk, so mirrors of dbspace chunks contain dbspace overhead pages.

For information on these structures, refer to the section on the structure of a
mirrored chunk in the disk structures and storage chapter of the Adminis-
trator’s Reference.

A display of disk-space use, provided by one of the methods discussed under
“Monitoring Chunks” on page 16-34, always indicates that the mirrored
chunk is full, even if the primary chunk has free space. The full mirrored
chunk indicates that none of the space in the chunk is available for use other
than as a mirror of the primary chunk. The status remains full for as long as
both primary chunk and mirrored chunk are on-line.

If the primary chunk goes down, and the mirrored chunk becomes the
primary chunk, disk-space allocation reports then accurately describe the
fullness of the new primary chunk.
Mirroring 25-11

26
Chapter
Using Mirroring
In This Chapter . 26-3

Steps Required for Mirroring Data 26-3

Enabling Mirroring 26-4
Changing the MIRROR Parameter with ONCONFIG. 26-4

Allocating Disk Space for Mirrored Data 26-5
Linking Chunks 26-5
Relinking a Chunk to a Device After a Disk Failure 26-5

Using Mirroring . 26-6
Mirroring the Root Dbspace During Initialization 26-7
Changing the Mirror Status 26-7
Taking Down a Mirrored Chunk 26-7
Ending Mirroring 26-8
Ending Mirroring with onutil 26-8

Managing Mirroring in Extended Parallel Server 26-8
Starting Mirroring for Unmirrored Dbspaces 26-8
Starting Mirroring for New Dbspaces and Dbslices 26-9
Adding Mirrored Chunks to a Dbspace 26-9
Taking Down a Mirrored Chunk 26-9
Recovering a Mirrored Chunk. 26-10
Modifying Mirroring of All Root Dbspaces 26-10
Ending Mirroring for a Dbspace 26-11

26-2 Ad
ministrator’s Guide for Informix Extended Parallel Server

In This Chapter
This chapter describes the various mirroring tasks that are required to use the
database server mirroring feature. It provides an overview of the steps
required for mirroring data. Then it describes the following tasks:

■ Enabling mirroring

■ Allocating disk space for mirrored chunks

■ Starting mirroring (creating mirrored chunks)

■ Adding chunks to mirrored dbspaces

■ Changing the mirror status of chunks

■ Modifying mirroring on all coservers

■ Relinking mirrored chunks after a disk failure

■ Ending mirroring

Steps Required for Mirroring Data
To start mirroring data on a database server that is not running with the
mirroring function enabled, you must perform the following steps:

1. Take the database server off-line and enable mirroring. See
“Enabling Mirroring” on page 26-4.

2. Bring the database server back on-line.

3. Allocate disk space for the mirrored chunks. You can allocate this
disk space at any time, as long as the disk space is available when
you specify mirrored chunks in the next step. See “Allocating Disk
Space for Mirrored Data” on page 26-5.
Using Mirroring 26-3

Enabling Mirroring
4. Choose the dbspace that you want to mirror, and create mirrored
chunks by specifying a mirror-chunk pathname and offset for each
primary chunk in that storage space. The mirroring process starts
after you perform this step. Repeat this step for all the storage spaces
that you want to mirror. See “Using Mirroring” on page 26-6.

Enabling Mirroring
When you enable mirroring, you invoke the database server functionality
required for mirroring tasks. However, when you enable mirroring, you do
not initiate the mirroring process. Mirroring does not actually start until you
create mirrored chunks for a dbspace, blobspace, or sbspace. See “Using
Mirroring” on page 26-6.

Enable mirroring when you initialize the database server if you plan to create
a mirror for the root dbspace as part of initialization; otherwise, leave
mirroring disabled. If you later decide to mirror a storage space, you can
change the value of the MIRROR configuration parameter.

Changing the MIRROR Parameter with ONCONFIG
To enable mirroring for the database server, you must set the MIRROR
parameter in ONCONFIG to 1. The default value of MIRROR is 0, indicating
that mirroring is disabled.

To change the value of MIRROR, you can edit the ONCONFIG file with a text
editor while the database server is in on-line mode. After you change the
ONCONFIG file, reinitialize shared memory (take the database server off-line
and then to quiescent mode) for the change to take effect.
26-4 Administrator’s Guide for Informix Extended Parallel Server

Allocating Disk Space for Mirrored Data
Allocating Disk Space for Mirrored Data
Before you can create a mirrored chunk, you must allocate disk space for this
purpose. You can allocate either raw disk space or cooked file space for
mirrored chunks. For a discussion of allocating disk space, refer to
“Allocating Disk Space” on page 16-6.

Always allocate disk space for a mirrored chunk on a different disk than the
corresponding primary chunk with, ideally, a different controller. This setup
allows you to access the mirrored chunk if the disk on which the primary
chunk is located goes down, or vice versa.

Linking Chunks
Use the UNIX link (ln) command to link the actual files or raw devices of the
mirrored chunks to mirror pathnames. If a disk failure occurs, you can link a
new file or raw device to the pathname, eliminating the need to physically
replace the disk that failed before the chunk is brought back on-line.

Relinking a Chunk to a Device After a Disk Failure
On UNIX, if the disk on which the actual mirror file or raw device is located
goes down, you can relink the chunk to a file or raw device on a different
disk. This action allows you to recover the mirrored chunk before the disk
that failed is brought back on-line. Typical UNIX commands that you can use
for relinking are shown in the following examples.

The original setup consists of a primary root chunk and a mirror root chunk,
which are linked to the actual raw disk devices, as follows:

% ln -lg
lrwxrwxrwx 1 informix 10 May 3 13:38 /dev/root@->/dev/rxy0h
lrwxrwxrwx 1 informix 10 May 3 13:40 /dev/mirror_root@->/dev/rsd2b

Assume that the disk on which the raw device /dev/rsd2b resides has gone
down. You can use the rm command to remove the corresponding symbolic
link, as follows:

% rm /dev/mirror_root
Using Mirroring 26-5

Using Mirroring
Now you can relink the mirrored chunk pathname to a raw disk device, on a
disk that is running, and proceed to recover the chunk, as follows:

% ln -s /dev/rab0a /dev/mirror_root

Using Mirroring
Mirroring starts when you create a mirrored chunk for each primary chunk
in a dbspace.

This action consists of specifying disk space that you have already allocated,
either raw disk space or a cooked file, for each mirrored chunk.

When you create a mirrored chunk, the database server performs the recovery
process, copying data from the primary chunk to the mirrored chunk. When
this process is complete, the database server begins mirroring data. If the
primary chunk contains logical-log files, the database server does not
perform the recovery process immediately after you create the mirrored
chunk but waits until you perform a level-0 backup. For an explanation of
this behavior see “Creation of a Mirrored Chunk” on page 25-7.

You must always start mirroring for an entire dbspace. The database server
does not permit you to select particular chunks in a dbspace to mirror.

When you select a space to mirror, you must create mirrored chunks for every
chunk within the space.

You start mirroring a storage space when you perform the following
operations:

■ Create a mirrored root dbspace during system initialization

■ Change the status of a dbspace from unmirrored to mirrored

■ Create a mirrored dbspace

Each of these operations requires you to create mirrored chunks for the
existing chunks in the storage space.
26-6 Administrator’s Guide for Informix Extended Parallel Server

Mirroring the Root Dbspace During Initialization
Mirroring the Root Dbspace During Initialization
If you enable mirroring when you initialize the database server, you can also
specify a mirror pathname and offset for the root chunk. The database server
creates the mirrored chunk when the server is initialized. However, because
the root chunk contains logical-log files, mirroring does not actually start
until you perform a level-0 backup.

To specify the root mirror pathname and offset, set the values of
MIRRORPATH and MIRROROFFSET in the ONCONFIG file before you bring up
the database server.

If you do not provide a mirror pathname and offset, but you do want to start
mirroring the root dbspace, you must change the mirroring status of the root
dbspace once the database server is initialized.

Changing the Mirror Status
You can make the following two changes to the status of a mirrored chunk:

■ Change a mirrored chunk from on-line to down

■ Change a mirrored chunk from down to recovery

You can take down or restore a chunk only if it is part of a mirrored pair. You
can take down either the primary chunk or the mirrored chunk, as long as the
other chunk in the pair is on-line.

For information on how to determine the status of a chunk, refer to
“Monitoring Disk Usage” on page 16-34.

Taking Down a Mirrored Chunk
When a mirrored chunk is down, the database server cannot write to it or read
from it. You might take down a mirrored chunk to relink the chunk to a
different device. (See “Relinking a Chunk to a Device After a Disk Failure”
on page 26-5.)

Taking down a chunk is not the same as ending mirroring. You end mirroring
for a complete dbspace, which causes the database server to drop all the
mirrored chunks for that dbspace.
Using Mirroring 26-7

Ending Mirroring
Ending Mirroring
When you end mirroring for a dbspace, the database server immediately
releases the mirrored chunks of that dbspace. These chunks are immediately
available for reassignment to other dbspaces.

Only users informix and root can initiate this action.You cannot end
mirroring if any of the primary chunks in the dbspace are down. The system
can be in on-line mode when you end mirroring.

Ending Mirroring with onutil
When you end mirroring for a dbspace, the database server immediately
releases the mirrored chunks of that space.

You can end mirroring with the onutil utility. For example, to end mirroring
for the root dbspace, enter the following command:

% onutil
1> ALTER DBSPACE rootdbs STOP MIRRORING

For more information on the onutil utility, refer to the Administrator’s
Reference.

Managing Mirroring in Extended Parallel Server
Use the onutil ALTER DBSPACE command to manage mirroring.

Starting Mirroring for Unmirrored Dbspaces
To start mirroring for a dbspace, use the onutil ALTER DBSPACE command
with the START MIRRORING clause.

The following example shows how to start mirroring for a dbspace:

% onutil
1> alter dbspace dbsp1 start mirroring
2> chunk "/dev/chk1" offset 1024
3> mirror "/dev/mirror1" offset 1024 ;
Starting Mirroring for New Dbspaces and Dbslices
26-8 Administrator’s Guide for Informix Extended Parallel Server

Starting Mirroring for New Dbspaces and Dbslices
Starting Mirroring for New Dbspaces and Dbslices
To start mirroring when you create a new dbslice, use the onutil CREATE
DBSLICE command with the MIRROR clause. The following example shows
how to create a dbslice with mirroring for all of its dbspaces:

% onutil
1> create dbslice acctg_sl
2> from cogroup acctg_cogroup
3> chunk "/dev/dbsl_acctg.%r(1..2)"
4> offset 1024 size 1024
5> mirror "/dev/mirr_dbsl_acctg.%r(1..2)";

Adding Mirrored Chunks to a Dbspace
If you add a chunk to a dbspace that is mirrored, you must also add a
corresponding mirrored chunk. You can use the onutil ALTER DBSPACE
command to add chunks to a dbspace and its mirror, as the following
example shows:

% onutil
1> alter dbspace dbsp1 add chunk
2> chunk "/dev/chunk2" offset 1024 size 1 gbytes
3> mirror "/dev/mirror2" offset 1024 ;

Taking Down a Mirrored Chunk
When a mirrored chunk is down, the database server cannot write to it or read
from it. You might take down a mirrored chunk to relink the chunk to a
different device. (See “Relinking a Chunk to a Device After a Disk Failure”
on page 26-5.) Taking down a chunk is not the same as ending mirroring. You
end mirroring for a complete dbspace, which causes the database server to
drop all the mirrored chunks for that dbspace. Use the onutil ALTER
DBSPACE command with the OFFLINE clause to take down a chunk.

% onutil
1> alter dbspace dbsp1 (offline)
2> chunk "/dev/chunk2" offset 1024;
Using Mirroring 26-9

Recovering a Mirrored Chunk
Recovering a Mirrored Chunk
You recover a down chunk to begin mirroring the data in the chunk that is
on-line. Use the onutil ALTER DBSPACE command with the ONLINE clause to
recover a down chunk.

% onutil
1> alter dbspace dbsp1 (online)
2> chunk "/dev/chunk2" offset 1024;

Modifying Mirroring of All Root Dbspaces
You can change mirroring for all root dbspaces on all coservers in your
database server.

1. Shut down Extended Parallel Server (bring down all coservers) with
the following command:

xctl onmode -ky

2. Add the MIRROR, MIRRORPATH, and MIRROROFFSET configuration
parameters in the global parameter section of your ONCONFIG file.

The following is an excerpt from the global section of a sample
ONCONFIG file to turn on mirroring for all root dbspaces in Extended
Parallel Server:

DBSERVERNAME xps

ROOTSLICE rootdbs
ROOTPATH /work/dbspaces/rootdbs_%c
ROOTOFFSET 0
ROOTSIZE 40000

MIRROR 1 # 1 = yes
MIRRORPATH /work/dbspaces/mirror_%c
MIRROROFFSET 0

3. Bring up the database server in either on-line or quiescent mode with
the following command:

xctl -b -X= oninit -X=

Important: Turn mirroring on or off for all coservers.
26-10 Administrator’s Guide for Informix Extended Parallel Server

Ending Mirroring for a Dbspace
Ending Mirroring for a Dbspace
When you end mirroring for a dbspace, the database server releases the
mirrored chunks. These chunks are immediately available for reassignment
to other dbspaces. You cannot end mirroring if any of the primary chunks in
the dbspace are down. The database server can be in on-line mode when you
end mirroring. Use the onutil ALTER DBSPACE command with the STOP
MIRRORING clause to end mirroring.

% onutil
1> alter dbspace dbsp1 stop mirroring
Using Mirroring 26-11

27
Chapter
Consistency Checking
In This Chapter . 27-3

Performing Periodic Consistency Checking 27-3
Verifying Consistency 27-4

Validating Data Pages 27-5
Validating Extents 27-5
Validating Indexes 27-5
Validating Logical Logs 27-5
Validating Reserved Pages 27-5
Validating System Catalog Tables 27-6

Monitoring for Data Inconsistency 27-6
Assertion Failures in the Message Log and Dump Files . . . 27-6
Validating Table and Tablespace Data 27-7

Retaining Consistent Level-0 Backups 27-8

Dealing with Corruption 27-8
Symptoms of Corruption 27-9
Fixing Index Corruption. 27-9
I/O Errors on a Chunk 27-10

Collecting Diagnostic Information 27-11

27-2 Ad
ministrator’s Guide for Informix Extended Parallel Server

In This Chapter
Informix database servers are designed to detect database server malfunc-
tions or problems caused by hardware or operating-system errors. It detects
problems by performing assertions in many of its critical functions. An
assertion is a consistency check that verifies that the contents of a page,
structure, or other entity match what would otherwise be assumed.

When one of these checks finds that the contents are not what they should be,
the database server reports an assertion failure and writes text that describes
the check that failed in the database server message log. The database server
also collects further diagnostics information in a separate file that might be
useful to Informix Technical Support staff.

This chapter provides an overview of consistency-checking measures and
ways of handling inconsistencies. It covers the following topics:

■ Performing periodic consistency checking

■ Dealing with data corruption

■ Collecting advanced diagnostic information

Performing Periodic Consistency Checking
To gain the maximum benefit from consistency checking and to ensure the
integrity of dbspace backups, Informix recommends that you periodically
take the following actions:

■ Verify that all data and the database server overhead information is
consistent.

■ Check the message log for assertion failures while you verify
consistency.

■ Create a level-0 dbspace backup after you verify consistency.
Consistency Checking 27-3

Verifying Consistency
The following sections describe each of these actions.

Verifying Consistency
Because of the time needed for this check and the possible contention that the
check can cause, schedule this check for times when activity is at its lowest.
Informix recommends that you perform this check just before you create a
level-0 dbspace backup.

Run the onutil commands shown in Figure 27-1 as part of the consistency
check.

Figure 27-1
Checking Data Consistency

You can run each of these commands while the database server is in on-line
mode. For information about how each command locks objects as it checks
them and which users can perform validations, see onutil in the Adminis-
trator’s Reference.

In most cases, if one or more of these validation procedures detects an error,
the solution is to restore the database from a dbspace backup. However, the
source of the error might also be your hardware or operating system.

Type of Validation Command

Data onutil CHECK DATA IN DATABASE dbname

Extents onutil CHECK SPACE

Indexes onutil CHECK INDEX WITH DATA
DATABASE dbname

or

onutil CHECK ALLOCATION INFO

Logical logs onutil CHECK LOGS

Reserved pages onutil CHECK RESERVED

System catalog tables onutil CHECK CATALOGS
27-4 Administrator’s Guide for Informix Extended Parallel Server

Verifying Consistency
Validating Data Pages

To validate data pages, use the onutil CHECK DATA command.

If data-page validation detects errors, try to unload the data from the
specified table, drop the table, re-create the table, and reload the data. For
information about loading and unloading data, see the Informix Migration
Guide. If this procedure does not succeed, perform a data restore from a
storage-space backup.

Validating Extents

To validate extents in every database, use the onutil CHECK SPACE
command.

Extents must not overlap. If this command detects errors, perform a data
restore from a storage-space backup.

Validating Indexes

To validate indexes on each of the tables in the database, use the onutil
CHECK INDEX WITH DATA command.

If this command detects errors, drop and re-create the affected index.

Validating Logical Logs

To validate logical logs, use the onutil CHECK LOGS command.

Validating Reserved Pages

To validate reserved pages, use the onutil CHECK RESERVED command.

Reserved pages are pages that reside at the beginning of the initial chunk of
the root dbspace. These pages contain the primary database server overhead
information. If this command detects errors, perform a data restore from
storage-space backup.

This command might provide warnings. In most cases, these warnings call
your attention to situations of which you are already aware.
Consistency Checking 27-5

Monitoring for Data Inconsistency
Validating System Catalog Tables

To validate system catalog tables, use the onutil CHECK CATALOGS
command.

Each database contains its own system catalog, which contains information
about the database tables, columns, indexes, views, constraints, stored proce-
dures, and privileges.

If a warning appears when validation completes, its only purpose is to alert
you that no records of a specific type were found. These warnings do not
indicate any problem with your data, your system catalog, or even your
database design. For example, the following warning might appear if you
validate system catalog tables for a database that has no synonyms defined
for any table:

WARNING: No syssyntable records found.

This message indicates only that no synonym exists for any table; that is, the
system catalog contains no records in the table syssyntable.

However, if you receive an error message when you validate system catalog
tables, the situation is quite different. Contact Informix Technical Support
immediately.

Monitoring for Data Inconsistency
If the consistency-checking code detects an inconsistency during database
server operation, an assertion failure is reported to the database server
message log. (See the message-log chapter in the Administrator’s Reference.)

Assertion Failures in the Message Log and Dump Files

Figure 27-2 shows the form that assertion failures take in the message log.

Assert Failed: Short description of what failed
Who: Description of user/session/thread running at the time
Result: State of the affected database server entity
Action: What action the database server administrator should take
See Also: file(s) containing additional diagnostics

Figure 27-2
Form of Assertion

Failures in the
Message Log
27-6 Administrator’s Guide for Informix Extended Parallel Server

Monitoring for Data Inconsistency
The See Also: line contains one or more of the following filenames:

■ af.xxx

■ shmem.xxx

■ /pathname/core

In all cases, xxx is a hexadecimal number common to all files associated with
the assertion failures of a single thread. The files af.xxx, shmem.xxx, and
gcore.xxx are in the directory that the ONCONFIG parameter DUMPDIR
specifies.

The file af.xxx contains a copy of the assertion-failure message that was sent
to the message log, as well as the contents of the current, relevant structures
and data buffers.

The file shmem.xxx contains a complete copy of the database server shared
memory at the time of the assertion failure, but only if the ONCONFIG
parameter DUMPSHMEM is set to 1.

The file gcore.xxx contains a core dump of the database server virtual process
on which the thread was running at the time, but only if the ONCONFIG
parameter DUMPGCORE is set to 1 and your operating system supports the
gcore utility. The core file contains a core dump of the database server virtual
process on which the thread was running at the time, but only if the
ONCONFIG parameter DUMPCORE is set to 1. The pathname for the core file
is the directory from which the database server was last invoked.

Validating Table and Tablespace Data

To validate table and tablespace data, use the onutil CHECK TABLE DATA
command on the database or table.

Most of the general assertion-failure messages are followed by additional
information that usually includes the tblspace where the error was detected.
If this check verifies the inconsistency, unload the data from the table, drop
the table, re-create the table, and reload the data. Otherwise, no other action
is needed.

In many cases, the database server stops immediately when an assertion fails.
However, when failures appear to be specific to a table or smaller entity, the
database server continues to run.
Consistency Checking 27-7

Retaining Consistent Level-0 Backups
When an assertion fails because of inconsistencies on a data page that the
database server accesses on behalf of a user, an error is also sent to the appli-
cation process. The SQL error depends on the operation in progress.
However, the ISAM error is almost always be either -105 or -172, as follows:

-105 ISAM error: bad isam file format
-172 ISAM error: Unexpected internal error

For additional details about the objectives and contents of messages, see the
chapter on message-log messages in the Administrator’s Reference.

Retaining Consistent Level-0 Backups
After you perform the checks described in “Verifying Consistency” on
page 27-4 without errors, create a level-0 backup. Retain this storage-space
backup and all subsequent logical-log backup tapes until you complete the
next consistency check. Informix recommends that you perform the consis-
tency checks before every level-0 backup. If you do not, then at minimum
keep all the tapes necessary to recover from the storage-space backup that
was created immediately after the database server was verified to be
consistent.

Dealing with Corruption
This section describes some of the symptoms of database server system
corruption and actions that the database server or you, as administrator, can
take to resolve the problems. Corruption in a database can occur as a conse-
quence of hardware or operating-system problems, or from some unknown
database server problems. Corruption can affect either data or database
server overhead information.
27-8 Administrator’s Guide for Informix Extended Parallel Server

Symptoms of Corruption
Symptoms of Corruption
The database server alerts the user and administrator to possible corruption
in the following ways:

■ Error messages reported to the application state that pages, tables, or
databases cannot be found. One of the following errors is always
returned to the application if an operation has failed because of an
inconsistency in the underlying data or overhead information:

-105 ISAM error: bad isam file format
-172 ISAM error: Unexpected internal error

■ Assertion-failure reports are written to the database server message
log. They always indicate files that contain additional diagnostic
information that can help you determine the source of the problem.
See “Monitoring for Data Inconsistency” on page 27-6.

■ The onutil utility returns errors.

Fixing Index Corruption
At the first indication of corruption, run the onutil CHECK INDEX WITH
DATA command to determine if corruption exists in the index.

If you run onutil CHECK INDEX in quiescent mode, and corruption is
detected, you are prompted to confirm whether the utility should attempt to
repair the corruption. The onutil repair keyword automatically repairs
corruption if it can, without prompting you for confirmation.

If your utility reports bad key information in an index, drop the index and
re-create it. If your utility cannot find or access the table or database, perform
the checks described in “Verifying Consistency” on page 27-4.
Consistency Checking 27-9

I/O Errors on a Chunk
I/O Errors on a Chunk
If an I/O error occurs during the database server operation, the status of the
chunk on which the error occurred changes to down. If a chunk is down, the
onstat -d display shows the chunk status as PD- for a primary chunk and MD-
for a mirrored chunk.

Figure 27-3 shows an example in which chunk 2 is down.

Additionally, the message log lists a message with the location of the error
and a suggested solution. The listed solution is a possible fix but does not
always correct the problem.

If the down chunk is mirrored, the database server continues to operate using
the mirrored chunk. Use operating-system utilities to determine what is
wrong with the down chunk and correct the problem. You must then direct
the database server to restore mirrored chunk data.

For information about recovering a mirrored chunk, refer to “Recovering a
Mirrored Chunk” on page 26-10.

If the down chunk is not mirrored and contains logical-log files, the physical
log, or the root dbspace, the database server immediately initiates an abort.
Otherwise, the database server can continue to operate but cannot write to or
read from the down chunk or any other chunks in the dbspace of that chunk.
You must take steps to determine why the I/O error occurred, correct the
problem, and restore the dbspace from a backup.

If you take the database server to off-line mode when a chunk is marked as
down (D), you can reinitialize the database server, provided that the chunk
marked as down does not contain critical data (logical-log files, the physical
log, or the root dbspace).

Dbspaces
address number flags fchunk nchunks flags owner name
40c980 1 1 1 1 N informix rootdbs
40c9c4 2 1 2 1 N informix fstdbs
2 active, 8192 maximum

Chunks
address chk/dbs offset size free bpages flags pathname
40c224 1 1 0 20000 14001 PO- /home/server/root_chunk
40c2bc 2 2 0 2000 1659 PD- /home/server/fst_chunk
2 active, 8192 maximum

Figure 27-3
onstat -d Output
27-10 Administrator’s Guide for Informix Extended Parallel Server

Collecting Diagnostic Information
Collecting Diagnostic Information
Several ONCONFIG parameters affect the way in which the database server
collects diagnostic information. Because an assertion failure is generally an
indication of an unforeseen problem, notify Informix Technical Support
whenever one occurs. The diagnostic information collected is intended for
the use of Informix technical staff. The contents and use of af.xxx files and
shared core are not further documented.

To determine the cause of the problem that triggered the assertion failure, it
is critically important that you not destroy diagnostic information until
Informix Technical Support indicates that you can do so. Send a fax or email
with the af.xxx file to Informix Technical Support. This file often contains
information that they need to resolve the problem.

Several ONCONFIG parameters direct the database server to preserve
diagnostic information whenever an assertion failure is detected or
whenever the database server enters into an abort sequence:

■ DUMPDIR

■ DUMPSHMEM

■ DUMPCNT

■ DUMPCORE

■ DUMPGCORE

For more information about the configuration parameters, see the Adminis-
trator’s Reference.

You decide whether to set these parameters. Diagnostic output can consume
a large amount of disk space. (The exact content depends on the environment
variables set and your operating system.) The elements of the output could
include a copy of shared memory and a core dump.

Tip: A core dump is an image of a process in memory at the time that the assertion
failed. On some systems, core dumps include a copy of shared memory. Core dumps
are useful only if this is the case.

Database server administrators with disk-space constraints might prefer to
write a script that detects the presence of diagnostic output in a specified
directory and sends the output to tape. This approach preserves the
diagnostic information and minimizes the amount of disk space used.
Consistency Checking 27-11

@

Index

O QCA B D E F G H I J K L M N P R S T U V W X Y Z
Index
Numerics
64-bit addressing

and buffer pool 13-21
chunk size 15-10, 15-52
description 13-57

A
Adding coservers 5-14
Adding listen threads 11-31
Adding virtual processors 11-15
ADM (administration) virtual

processor 11-15
Administering the database

server 1-25
Administrative tasks

configuration tasks 2-4
consistency checking 27-3
controlling location of

storage 15-14
cron jobs 3-21
initial tasks 2-4
list of tasks 3-18
of database administrator 1-4
of database server

administrator 1-4
of database server operator 1-4
planning 3-4
routine tasks 2-7
startup and shutdown

scripts 3-18
types of 2-3

AFF_NPROCS parameter 4-17
description of 4-17
purpose of 11-20

AFF_SPROC parameter 4-17, 11-20
Aggregate, parallel processing

of 11-8
AIO virtual processors

how many 11-25
NUMAIOVPS parameter 11-25

ALARMPROGRAM
parameter 2-13

Aliases. See DBSERVERALIASES
parameter.

ALL keyword, with
DATASKIP 16-30

Allocating
cooked file space 16-8

Allocating disk space
extent 15-12
for mirrored data 26-5
procedure 16-6

Allocating disks 3-9
ALTER DBSLICE, onutil 16-18
ALTER DBSPACE, onutil 16-22,

16-24
ALTER FRAGMENT statement

ATTACH clause 17-5
Attaching fragments 17-10
refragmenting tables and

dbslices 16-18
ALTER LOGSLICE, onutil 16-18
ALTER TABLE statement

mentioned 6-43
switching table types 15-29

ANSI compliance
level Intro-13

ANSI-compliant transaction
logging. See Logging.

Application developer, role of 1-4
Applications, types of 17-17

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
Application, client. See Client
application.

archecker utility
description 1-15
See also Backup and Restore Guide.

Archive
preparing environment in

multiple-residency setting 8-8
with multiple residency 8-8

ASF. See Connectivity.
Assertion failure

and data corruption 27-9
description of 27-3
determining cause of 27-11
during consistency checking 27-6
during processing of user

request 27-8
form in message log 27-6

Assertion failure file
af.xxx 27-7
gcore.xxx 27-7
list of 27-7
shmem.xxx 27-7

Asterisk, as wildcard in hostname
field 6-39

Asynchronous I/O
description of 11-24
kernel (KAIO) 11-22
write requests for mirrored

data 25-9
ASYNCRQT configuration

parameter 5-6
Attaching fragments 17-5
Attaching to shared memory

database server utilities 13-13
description 13-12
virtual processors 13-13
virtual processors and key

value 13-14
Authentication

default policy 6-12
description of 6-12

Availability
and critical data 15-14
as goal in efficient disk

layout 15-39
improving with

fragmentation 17-5
sample disk layout 15-47

B
Backing up

chunks 16-21
converting table type 16-13
dbslices 16-13, 16-18
dbspaces 16-13, 16-15
log files 16-13, 21-4
physical log 16-13

Backup
active users, and 1-14
and checkpoints 24-11
and fragmentation 17-5
dbspace backup, mentioned 1-14
description of 2-7
external 1-15
freeing a log file 21-13
reducing size of 15-19
strategy 3-4
transaction records 1-14
verification with archecker 1-15
verifying 1-15
with multiple residency 8-8

Bad-sector mapping, absence
of 1-16

BAR_DBS_COSVR configuration
parameter 5-9

BAR_IDLE_TIMEOUT
configuration parameter 5-9

BAR_LOG_COSVR configuration
parameter 5-9

BAR_SM configuration
parameter 5-9

BAR_SM_NAME configuration
parameter 5-9

BAR_WORKER_COSVR
configuration parameter 5-9

BAR_WORKER_MAX
configuration parameter 5-9

base 15-22
Before-image

contents 24-15, 24-19
described 22-3
flushing of 13-46
in physical log buffer 13-46
journal. See Physical log.
role in buffer modification 13-45

Big buffers,description of 13-30
Binding CPU virtual processors

benefit of 11-10
parameters 11-20

Bit-map page
component of a index

tblspace 15-34
component of a tblspace 15-34

Blobpage
free-map page

role in tracking
blobpages 13-55, 13-56

writes, bypassing shared
memory 13-56

Blobspace
names 16-14

Block device 15-7
Boldface type Intro-8
Boot file. See Startup script.
B-tree

cleaner thread 13-30
B-tree index. See Performance Guide.
Buffer

big buffers 13-30
concurrent access 13-42
current lock-access level for 13-27
dirty 13-45
exclusive mode 13-35
flushing 13-45
how a thread accesses a buffer

page 13-42
how a user thread acquires 13-38
how thread releases after

modification 13-45
least-recently used 13-37
lock types 13-35
lock-access level of 13-43
logical-log buffer 13-22, 13-45
monitoring statistics and use

of 14-15
most-recently used 13-37
not dirty 13-45
physical-log buffer 13-24, 13-45
reading from disk 13-43
releasing if no thread

waiting 13-44
releasing if thread waiting 13-44
2 Administrator’s Guide for Informix Extended Parallel Server

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
releasing when modified 13-44
releasing when not

modified 13-44
share lock 13-35
status 13-27
synchronizing flushing 13-46
threads waiting for 13-27
what occurs when

modified 13-44
write types during flushing 13-50

Buffer flushing
description of 13-45
how synchronized 13-49

Buffer pool
64-bit addressing 13-21
bypassed by blobpage data 13-56
contents of 13-20
description of 13-20
flushing 13-46
full checkpoint 24-5
fuzzy checkpoint 24-5, 24-6
LRU queues management 13-37
minimum requirement 13-20
monitoring activity 14-18
read-ahead 13-41
size of buffer 13-21
synchronizing buffer

flushing 13-49
Buffer table

contents of 13-27
description of 13-27
LRU queues 13-36

Buffered logging, when
flushed 18-10

Buffered transaction logging. See
Logging.

BUFFERS parameter
64-bit addressing 13-21
description 13-20

Buffer-size option, in options
field 6-30

BUFFSIZE. See Page size.
Built-in data types

mentioned 1-5
BYTE data type

See also TEXT and BYTE data;
Simple large object.

C
Cache

coordinated data-dictionary 1-28
shared-memory buffer

monitoring 14-15
SPL routine cache hash size 4-14,

14-9
SPL routine cache size 4-13
SPL routine cachesize 14-9

Calculating size
root dbspace 15-36

Cascading deletes 18-5
Changing the physical

schema 16-13
Character-special devices 1-12
CHECK RESERVED, onutil 16-36
CHECK SPACE, onutil 16-24, 16-36
CHECK TABLE ALLOCATION

INFO, onutil 16-40
CHECK TABLE INFO, onutil 16-38
Checkpoint

and chunk writes 13-52
and flushing of regular

buffers 13-46
and logical-log buffer 13-22
and logical-log file 24-7
and physical-log buffer 13-47,

22-11, 24-7
backup considerations 24-11
description of 24-4
events that initiate 24-7
full 20-22, 24-5
fuzzy 24-5
how it works 24-9 to 24-11
mentioned 10-8
monitoring activity 24-25
role in fast recovery 24-15, 24-16
step in shared-memory

initialization 10-8
Chunk

activity during mirror
recovery 25-8

adding to a dbspace 16-20
adding with onutil 16-22
and associated partitions 15-40
backing up 16-21
changing mirror chunk

status 26-7

checking status 16-34, 16-35,
27-10

concepts 15-5
creating a link to the

pathname 3-9, 16-10, 16-12,
26-5

general disk layout
guidelines 15-40

I/O errors during
processing 27-10

limits on size and number 15-6
maximum number 16-22
maximum size 16-22
monitoring 16-34, 16-36, 27-10
multiple residency 8-8
name, when allocated as raw

device 15-7
recovering a down chunk 26-7
relation to extent 15-12

Chunk size
64-bit addressing 15-10, 15-52

Chunk table
and mirroring 13-28
contents of 13-28
description of 13-28

Chunk write
checkpoints 13-52
monitoring 14-19

CKPTINTVL configuration
parameter 4-13

CKPTINTVL parameter
description of 4-13
initiating checkpoints 24-7

Classes of virtual processor 11-5
CLEANERS configuration

parameter 4-14
CLEANERS parameter

description of 4-14
purpose of 13-29

Client
description of 1-6
enabling communication 6-13
finding and connecting to a

host 6-21
loopback connection 6-10
remote 6-16
security requirements 6-16
specifying a dbservername 6-43
Index 3

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
Client application
testing 7-4
wildcard addressing 6-41

Client/server architecture,
description of 1-6

Client/server configuration
example

local loopback 6-47
multiple connection types 6-50
multiple database servers 6-52
multiple residency 6-52
network connection 6-49
shared memory 6-46
using IPX/SPX 6-50

listen and poll threads 11-28
local loopback 6-10
shared memory 6-9

Client/server operations,
description of 1-22

Code set, ISO 8859-1 Intro-4
Code, sample, conventions

for Intro-10
Cogroup

changing coservers in 5-18
defining a new 5-17
description of 1-26
modifying 5-18
system-defined 1-26

cogroup_all 5-17
Comment icons Intro-9
COMMIT statement, unbuffered

logging 18-10
Communication configuration file.

See ONCONFIG configuration
file.

Communication support module
password encryption 6-13, 6-20
sqlhosts option field 6-32

Communication Support
Modules 6-12

Communication support services
description of 6-12
message confidentiality 6-12
message integrity 6-12

Communications portion of shared
memory

contents of 13-33
description of 13-33

how client attaches 13-12
size of 13-33

Communication, client to database
server. See Connectivity.

Compliance
with industry standards Intro-13

concsm.cfg file
configuring communication

support module 6-13
entry for password

encryption 6-20
format of entries 6-19
location of 6-19

Concurrency
improving with

fragmentation 17-5
Concurrency control 13-34
Confidentiality, of communication

messages 6-12
CONFIGSIZE configuration

parameter 16-19
and the safewrite area 15-38
description of 4-7

Configuration
coserver-specific parameters 5-5
dbspaces 16-13
defining storage managers 5-8
estimating required disk

space 15-39
global parameters 5-4
monitoring 3-22
multiple coservers 5-3
multiple coservers on a single

node 5-11
multiple coservers on multiple

nodes 5-14
planning for the database

server 3-4
single coserver on a single

node 5-11
single coserver on multiple

nodes 5-13
storage devices 3-21
UNIX parameters 5-6

Configuration file
and multiple residency 7-3, 8-5
connectivity 6-13
onconfig.std 3-15

warning about not modifying
onconfig.std 3-15

Configuration parameter
AFF_NPROCS 4-17
AFF_SPROC 4-17
ALARMPROGRAM 2-13
ASYNCRQT 5-6
BAR_DBS_COSVR 5-9
BAR_IDLE_TIMEOUT 5-9
BAR_LOG_COSVR 5-9
BAR_SM 5-9
BAR_SM_NAME 5-9
BAR_WORKER_COSVR 5-9
BAR_WORKER_MAX 5-9
BUFFERS 13-20
CKPTINTVL 4-13, 24-7
CLEANERS 4-14
CONFIGSIZE 4-7, 15-38, 16-19
COSERVER 4-20, 6-43
DATASKIP 16-27
DBSERVERALIASES 6-44
DBSERVERNAME 5-17, 6-23,

6-43
DBSPACETEMP 15-41, 16-15
DGINFO 5-6
DUMPCNT 27-11
DUMPCORE 27-11
DUMPDIR 27-7, 27-11
DUMPGCORE 27-7, 27-11
DUMPSHMEM 27-7, 27-11
END 4-20
HADDR 5-6
IDX_RA_PAGES 13-41
LADDR 5-6
LOGBUFF 13-23
LOG_BACKUP_MODE 5-9
LRUS 13-38
LRU_MAX_DIRTY 13-39
LTXHWM 13-53
MAX_CHUNKS 4-7, 16-19
MAX_DBSLICES 4-7, 16-19
MAX_DBSPACES 4-7, 16-19
MIRROROFFSET 16-7
NETTYPE 6-45
NODE 4-20
NUMFIFOVPS 4-17
OFF_RECOVERY_THREADS

4-18
4 Administrator’s Guide for Informix Extended Parallel Server

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
ON_RECOVERY_THREADS
4-18

OPTCOMPIND 17-25
PAGESIZE 3-17, 4-13
PC_HASHSIZE 4-14, 14-9
PC_POOLSIZE 4-13, 14-9
PHYSSLICE 4-10
RA_PAGES 13-42
RA_THRESHOLD 13-41, 13-42
RESIDENT 14-12
ROOTOFFSET 16-7
ROOTSLICE 4-5
SADDR 5-6
SENDEPDS 5-6
SERVERNUM 13-13, 13-14
SHMADD 4-12, 13-26
SHMBASE 4-12, 13-13, 13-15, 14-6
SHMTOTAL 4-12, 13-10
SHMVIRTSIZE 4-12, 13-26
STACKSIZE 13-31
See also Administrator’s Reference;

Configuration parameter use;
and individual parameter names.

Configuration parameter use
and initial chunk of root

dbspace 15-17
enabling Logs Full HWM 20-19
for diagnostic information 27-11
for multiple residency 7-5
shared memory 14-4

Configuring multiple ports 6-15
Configuring the database

server 1-25
CONNECT statement

example 6-44
mentioned 6-43

Connecting
and multiple residency 8-7
description of 11-28
methods 11-26
to multiple database servers 6-52
to multiple servers 7-3

Connection
database versus network 6-6
IPX/SPX 6-50
local loopback, definition of 6-10
local loopback, example 6-47
multiple connection types

example 6-50

multiple residency, example 6-52
multiplexed 6-6
network, example 6-49
security restrictions 6-16
shared memory, description

of 6-9
TCP/IP 6-16

Connection coserver
description of 1-22
for client 6-11

Connection-redirection option 6-31
Connectivity

ASF 6-5
configuration file 6-13
configuration parameters 6-42

Connectivity file
sqlhosts 3-14

Consistency checking
corruption of data 27-8
data and overhead 27-4
index corruption 27-9
monitoring for data

inconsistency 27-6
overview 27-3
periodic tasks 27-3

Console messages 2-13
CONSOLE parameter

changing 2-13
Constraint, deferred checking 18-5
Contact information Intro-13
Contention. See Disk contention.
Context switching

description of 11-12
how functions when OS

controls 11-8
OS versus multithreaded 11-8

Contiguous space for physical
log 23-4

Control structures
description of 11-11
queues 11-14
session control block 11-11
stacks 11-13
thread control block 11-11

Conventions,
documentation Intro-7

Conversion
during initialization 10-8

Cooked file space
allocating 16-8
and buffering 15-8
compared with raw space 15-7
contiguity of space 15-9
database server management

of 15-7
description of 15-7
for static data 15-9
rationale for using 15-8
reliability 15-9
warning 15-7

Cooked files 1-13
Coordinated data-dictionary

cache 1-28
Core dump

contents of gcore.xxx 27-7
when useful 27-11
See also DUMPCNT; DUMPDIR;

DUMPGCORE;
DUMPSHMEM.

Corruption
corrective actions 27-9
determining if exists 27-9
I/O errors from a chunk 27-10
symptoms of 27-9

Coserver 2
adding 5-14
configuring multiple 5-3
description of 1-18
monitoring activities 5-20

Coserver configuration
multiple coservers on a single

node 5-11
multiple coservers on multiple

nodes 5-14
single coserver on a single

node 5-11
single coserver on multiple

nodes 5-13
Coserver name 6-11
Coserver number

part of coserver name 6-11
prefix in message log 1-27

COSERVER parameter 4-20, 6-43
Coserver-specific configuration

parameters
defined 5-3
examples 5-5
Index 5

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
CPU
binding to virtual processor 11-10
relationship to virtual

processor 11-4
CPU virtual processor

adding and dropping in on-line
mode 11-19

AFF_NPROCS parameter 11-20
AFF_SPROC parameter 11-20
and poll threads 11-26, 11-27
description of 11-17
how many 11-18
NUMCPUVPS parameter 11-18
on a multiprocessor

computer 11-18
on a single-processor

computer 11-18, 11-19
preventing priority aging 11-20
types of threads run by 11-17

CREATE DATABASE statement
IN dbspace option 15-15

CREATE DBSLICE, onutil 16-16
CREATE DBSPACE, onutil 16-16
CREATE EXTERNAL TABLE

statement 15-28
CREATE TABLE statement

FRAGMENT BY clause 17-10
IN dbspace option 15-15
mentioned 6-43
specifying dbslices 15-17
TEMP 17-8

CREATE TEMP DBSPACE,
onutil 16-15

Creating
dbspaces 16-9
fragmented tables 17-10
temporary dbspaces 16-15

Critical dbspaces
mirroring 15-40
storage of 15-14

Critical media 1-16
mirroring 15-50

Critical section of code
and checkpoints 24-10
and filling of physical-log

buffer 13-48
description of 24-4

cron jobs, warning about 3-21
CSM 6-12

D
Data block. See Page.
Data consistency

fast recovery 24-13
how achieved 24-3
monitoring for 27-6
symptoms of corruption 27-9
time stamps 24-12
verifying consistency 27-4

Data definition statements, when
logged 18-7

Data dictionary 1-28
Data files. See Logging.
Data management 15-7
Data manipulation statements,

when logged 18-7
Data mart 1-7, 1-24
Data replication

read-only mode 9-4
Data storage

concepts 15-3
control of 15-15
types of 15-6
See also Disk space.

Data Type segment
See also Disk space.

Data types
built-in, mentioned 1-5

Data warehouse 1-7
Database

description of 15-22
estimating size of 15-39
fragmentation 15-23
location of 15-22
migration. See Informix Migration

Guide.
monitoring 16-32, 19-7
purpose of 15-22
recovery. See Recovery.
size limits 15-23
tuning. See Performance tuning.

Database administrator
role of 1-4
See also Administrative tasks.

Database I/O 11-24

Database logging status
ANSI-compliant,

description 18-11
buffered, description 18-10
canceling logging

using ondblog 19-5
changes permitted 19-4
changes, general info 19-4
changing buffering status

using ondblog 19-5
description of 18-9
making ANSI-compliant

using ondblog 19-6
modifying

using ondblog 19-5
setting 18-5
unbuffered, description 18-10
who can change 18-12

Database schema. See Informix
Migration Guide.

Database server
client/server architecture 1-6
connecting to multiple 6-52, 7-3
fault-tolerant features 1-14
high performance of 1-12
maximum number of dbspaces,

chunks, or dbslices 16-19
multiple instances 7-3
multithreaded 1-11, 11-4
remote 6-17
safewrite area 16-20
scalability of 1-11
security 1-17
upgrading 3-11

Database server administrator 1-4
Database server name. See

dbservername.
DATABASE statement,

mentioned 6-43
Databases 15-22
Data-recovery mechanisms

fast recovery 24-13
mirroring 25-4

DATASKIP parameter 16-27
using 16-27
with ALL keyword 16-30

Data, estimating disk space
for 15-38
6 Administrator’s Guide for Informix Extended Parallel Server

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
DATE and DATETIME values 1-17
DB-Access utility Intro-5
DBCENTURY environment

variable 1-17
DBEXPORT. See Informix Migration

Guide.
DBIMPORT. See Informix Migration

Guide.
DBPATH environment variable

and dbserver group 6-35
DBSCHEMA. See Informix Migration

Guide.
Dbserver group

purpose of 6-33
DBSERVERALIASES parameter

and multiple residency 7-5
description of 6-44
example 6-44
in sqlhosts file 6-23
multiple connection types

example 6-50
dbservername

field 5-17
part of coserver name 6-11

DBSERVERNAME configuration
parameter

coserver name in 6-43
defining a cogroup 5-17

DBSERVERNAME parameter
and multiple residency 7-5
associated protocol 11-27
database server ID 4-8
description of 6-43
in sqlhosts file 6-23
multiple residency 8-6
syntax rules 6-23
virtual processor for poll

thread 11-27
Dbslices

advantages of 15-19
backing up 16-13, 16-18
creating 15-20
creating with onutil 15-20
description of 15-19
dropping 16-26
names 16-17
onutil utility 15-20
specifying in DBSPACETEMP

parameter 15-26

temporary 15-21
temporary dbspaces 15-21

Dbspace
adding a chunk 16-20
as link between logical and

physical units of storage 15-15
backing up 16-13, 16-15
configuration 16-13
creating 16-9
creating a temporary 16-15
creating during initial

configuration 3-22
description of 15-14
dropping a chunk from 16-24
dropping using onutil 16-26
initial dbspace 15-17
mirroring if logical-log files

included 25-7
monitoring simple large

objects 16-41
multiple residency 8-8
names 16-14
purpose of 15-14
role in fragmentation 17-3
root dbspace defined 15-17
shared-memory table 13-28
temporary 15-18

Dbspace table
contents of 13-28
description of 13-28

DBSPACETEMP environment
variable 16-15

DBSPACETEMP parameter 16-15
and load balancing 15-41
if not set 15-33
query threads 17-22
relationship to DBSPACETEMP

environment variable 15-31
Decision-support application

characteristics 17-20, 17-22
compared to OLTP 1-23
definition of 17-19
uses of 1-7, 17-19

Decision-support query
DS_MAX_QUERIES

parameter 4-15
See also PDQ.

Default configuration file 3-15, 10-6

DEFAULT keyword, with SET
DATASKIP 16-29

Deferred checking of
constraints 18-5

Defining cogroups 5-17
Defining storage managers 5-8
Deluxe-mode loads 15-28
Demonstration databases Intro-5
Dependencies, software Intro-4
Detached index 17-9
Device 15-7

when offsets are needed 16-7
DGINFO configuration

parameter 5-6
Diagnostic information

and disk space restraints 27-11
collecting 27-11
parameters to set 27-11

Diagnostic messages. See Message
log.

Dictionary cache 13-32
Dirty buffer, description of 13-45
Disabling I/O error

circumstances under which they
occur 15-13

defined 15-13
destructive versus

nondestructive 15-13
monitoring with event

alarms 16-33
monitoring with message

log 16-32
Disk allocation 3-9
Disk configuration 3-5
Disk contention

and high-use tables 15-43
of critical media 15-41
reducing 15-39

Disk failure 1-14
Disk I/O

errors during processing 27-10
kernel asynchronous I/O 11-22
logical log 11-22
operating system I/O 15-7
physical log 11-22
priorities 11-22
queues 11-25
raw I/O 15-7
reads from mirrored chunks 25-9
Index 7

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
role of shared memory in
reducing 13-6

virtualprocessor classes 11-21
writes to mirrored chunks 25-9

Disk layout
and archiving 15-42, 15-45
and logical volume

managers 15-52
and mirroring 15-45
and table isolation 15-43
for optimum performance 15-40,

15-41
sample disk layouts 15-47
trade-offs 15-47

Disk management 3-9
Disk page

before-images in physical
log 13-46

function of time-stamp
pairs 24-12

read ahead 13-41
Disk space

allocating cooked file space 16-8
allocating raw disk space

on UNIX 15-8
caution with multiple

residency 8-8
configuring for multiple

residency 7-6
creating a link to chunk

pathname 3-9, 16-10, 16-12
description of 16-6
estimating size of 15-36
initialization 10-7

definition of 10-3, 16-6
with new database server 3-18

layout guidelines 15-39
limits on due to maximum chunk

size 3-9, 15-52
multiple residency 8-8
offsets for chunk pathnames 16-7
optimizing temporary space

layout 15-41
performance

considerations 15-39, 15-46
requirements 15-39
temporary. See Temporary disk

space.
tracking usage by tblspace 15-34

Distribution scheme 17-6
Documentation notes Intro-12
Documentation, types of

documentation notes Intro-12
error message files Intro-12
machine notes Intro-12
on-line manuals Intro-11
printed manuals Intro-11
related reading Intro-13
release notes Intro-12

DROP DBSLICE, onutil 16-26
DROP DBSPACE, onutil 16-26
Dropping

dbslices 16-26
DSA. See Dynamic Scalable

Architecture.
DSS application. See Decision-

support application.
DS_MAX_QUERIES parameter

description of 4-15
DS_TOTAL_MEMORY parameter

description of 4-15
DUMPCNT parameter 27-11
DUMPCORE parameter 27-11
DUMPDIR parameter 27-7, 27-11
DUMPGCORE parameter 27-7,

27-11
DUMPSHMEM parameter 27-7,

27-11
Dynamic Scalable Architecture

advantages 1-9
description of 1-9

E
Encryption, of password 6-13
END parameter 4-20
Environment variable

DBCENTURY 1-17
DBSPACETEMP 16-15
for users of client

applications 3-20
INFORMIXCONCSMCFG 6-19
INFORMIXDIR 3-19
INFORMIXSHMBASE 13-12
INFORMIXSQLHOSTS 6-21
ONCONFIG 3-12
PATH 3-19

Environment variables Intro-8
en_us.8859-1 locale Intro-4
Error message files Intro-12
Error messages

I/O errors on a chunk 27-10
/etc/hosts file 6-13
/etc/services file 6-13

multiple residency 8-8
Event alarm

description 2-13
Example

DBSERVERALIASESandsqlhosts
file 6-44

DBSERVERALIASES
parameter 6-44

/etc/services file entry 6-14
how page cleaning begins 13-40
IPX/SPX connection 6-50
local-loopback connection 6-47
multiple connection types 6-50
shared-memory connection 6-46
TCP/IP connection 6-49

Exchange 17-16
Exclusive lock (buffer), description

of 13-35
Explicit temporary table 15-31
Expression-based fragmentation

scheme 17-7
Express-mode loads 15-28
Extent

description 15-11
how database server

allocates 15-12
initial size 15-12
key concepts concerning 15-12
monitoring 16-38
next-extent size 15-12
purpose of 15-11
relationship to chunk 15-12
structure 15-12

External backup and restore 1-15
External backup and restore. See

also Backup and Restore Guide and
Administrator’s Reference.

External space. See Extspace.
External tables

description of 15-28
loading 5-15, 16-42
temporary table restriction 15-31
8 Administrator’s Guide for Informix Extended Parallel Server

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
F
Fast recovery 24-24

description of 1-15, 24-13
details of process 24-14, 24-18
effects of buffered logging 24-14
how database server detects need

for 24-14
mentioned 9-4, 10-8, 18-4
no logging 24-14
purpose of 24-13
when needed 24-13
when occurs 24-13

Fault tolerance
backup verification 1-15
backups, and 1-14
fast recovery 1-15, 24-13
mirroring 1-16

Feature icons Intro-9
Features of this product,

new Intro-5
File

configuration 3-15
connectivity configuration 6-13
cooked 1-13
hosts.equiv 6-16
network security 6-16
oncfg_servername.servernum

10-9
onconfig, during

initialization 10-5
onconfig.std

during initialization 10-5
permissions 16-8
sqlhosts 3-14

File I/O. See Disk I/O.
Find Error utility Intro-12
finderr utility Intro-12
First-in-first-out

virtual processor, FIF 11-33
Flex temporary table, description

of 15-32
FLRU queues

and reading a page from
disk 13-43

and releasing buffer 13-44
description of 13-37
See also LRU queues.

Flushing
buffers 13-45
of before-images 13-46

Forced residency
initialization 10-9

Forcing a checkpoint. See
Checkpoint.

Foreground write
and before-image 13-46
description of 13-51
monitoring 13-51, 14-19

Formula
size of physical log 22-5

Fragment
attaching 17-5, 17-10
creating fragmented tables 17-10
description of 17-3
monitoring disk usage 16-38,

16-41
monitoring I/O requests

for 16-36
skipping 16-28

selected fragments 16-30
unavailable fragments 16-30

See also Fragmentation.
Fragmentation 1-20

and dbslices 16-18
and mirroring 15-45
description of 17-3
distribution schemes for 17-6
for improved concurrency 15-44
goals of 17-5, 17-8
of temporary tables 17-8
skipping inaccessible

fragments 16-27
strategy 17-6
with PDQ 17-5
See also Fragment.

Full checkpoint
description 24-5
emptying the physical log 24-11
events that initiate 24-7
flushing buffer pool 24-6, 24-11
forcing 24-8
last available log 20-15
oldest update 24-8

Fuzzy checkpoint
and logical-log buffer 13-22
and physical-log buffer 13-47
definition of 24-4
description 24-5
emptying the physical log 24-11
fast recovery 24-18 to 24-23
flushing buffer pool 24-6, 24-10
flushing buffers 20-22
flushing the logical-log

buffer 20-22
forcing 24-9
how it works 24-9 to 24-11
oldest update 20-15
physical logging 22-7 to 22-11

Fuzzy operations
buffer pool 24-10
description 24-5
physical log 20-22

G
gcore

file 27-7
Global configuration

parameters 5-10
defined 5-3

Global Language Support
(GLS) Intro-4, 3-13

Global pool, description of 13-33
Group, parallel processing of 11-8

H
HADDR configuration

parameter 5-6
Hash table

to buffer table 13-28
Heaps 13-32
Host name, specifying in NODE

parameter 4-20
hostname field

multiple network interface
cards 11-32

syntax rules 6-26
using IP addresses 6-38
wildcard addressing 6-39
Index 9

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
with IPX/SPX 6-27
with shared memory 6-27, 6-29

hosts file
multiple residency 8-8
on UNIX 6-14

hosts.equiv file 6-16
Hot site backup. See Data

replication.
Hybrid distribution scheme

definition 17-7

I
Icons

feature Intro-9
Important Intro-9
platform Intro-9
product Intro-9
Tip Intro-9
Warning Intro-9

IDX_RA_PAGES parameter
description of 13-41
purpose of 13-42

Impersonate, client 6-18
Important paragraphs, icon

for Intro-9
Inconsistency information

how to detect 27-3
Incremental backup

description of 2-7
Index

parallel building of 11-8
tblspace 15-34

Industry standards, compliance
with Intro-13

.informix file
multiple residency 8-9

Informix recommendations
on allocation of disk space 15-9
on consistency checking 27-3
on mirroring the physical

log 22-8
Informix Storage Manager

(ISM) 3-21
INFORMIXCONCSMCFG

environment variable 6-19

INFORMIXDIR
directory, number of copies 1-28
environment variable

in shutdown script 3-20
in startup script 3-19
multiple residency startup

script 8-9
$INFORMIXDIR/etc/sqlhosts. See

sqlhosts file.
INFORMIXDIR/bin

directory Intro-5
INFORMIXSERVER environment

variable
and dbserver group 6-35
multiple residency startup

script 8-9
multiple versions of the database

server 3-19
with multiple residency 8-9

INFORMIXSHMBASE
environment variable 13-12

INFORMIXSQLHOSTS
environment variable 6-21

INFORMIXSTACKSIZE
environment variable 13-31

informix.rc environment file
multiple residency 8-9

Initial configuration
creating storage spaces 3-22
disk layout 15-39
guidelines for root dbspace 15-17

Initial-extent size 15-12
Initialization

checkpoint 10-8
configuration changes 10-8
configuration files 10-5
control returned to user 10-10
conversion of internal files 10-8
disk space 3-18, 10-3, 10-7, 16-6

for multiple residency 8-8
fast recovery 10-8
forced residency 10-9
message log 10-10
oncfg_servername.servernum

file 10-9
onconfig file 10-5
onconfig.std file 10-5
shared memory 10-3
SMI tables 10-10

steps in 10-4
temporary tablespaces 10-9
virtual processors 10-7

INSERT cursor 17-7
Installation, definition of 3-11
Integrity, data. See Consistency

checking.
Integrity, of communication

messages 6-12
Interprocess communications

in nettype field 6-25
shared memory for 13-6

IP address
how to find 6-38
use in hostname field 6-38

ipcshm protocol and
communications portion
(shared memory) 13-33

IPC. See Interprocess
communications.

IPX/SPX
in hostname field 6-50
in servicename field 6-29
multiple residency 8-8
service, definition of 6-29
sqlhosts entry 6-50

ISO 8859-1 code set Intro-4
I/O. See Disk I/O.

J
Join, parallel processing of 11-8

K
KAIO thread 11-22, 11-24
Keep-alive option, in options

field 6-35
Kernel asynchronous I/O

description of 11-24
nonlogging disk I/O 11-22

Key value
for shared memory 13-14
10 Administrator’s Guide for Informix Extended Parallel Server

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
L
LADDR configuration

parameter 5-6
Large objects

storage, mentioned 1-5
Latch

and wait queue 11-16
monitoring statistics and

use 14-22
mutex 11-17
See also mutex.

Level-0 backup
use in consistency checking 27-8

Levels, backup
description of 2-7

Light append in flex temporary
table 15-33

Light scans
mentioned 13-30

Lightweight processes 11-4
Limits

chunk size 16-22
number of chunks 15-6, 16-22

Links, creating 16-12
LIO virtual processors

description of 11-22
how many 11-23

Listen threads
and multiple interface

cards 11-32
description of 11-28

Load balancing
as performance goal 15-39
done by virtual processors 11-7
of critical media 15-41
through use of

DBSPACETEMP 15-41
Loading data

from external tables 5-15, 16-42
methods 16-23

Loading modes 15-28
Local data 17-20
Local index 17-15
Local loopback

connection 6-10, 11-26
example 6-47
restriction 6-10

Local table 17-15

Locale Intro-4
en_us.8859-1 Intro-4

Lock
and wait queue 11-16
description of 13-34
types 13-35

Lock table
configuration 13-25
contents of 13-24
description 13-24

Lock-access level, of a buffer 13-43
Locking

when occurs 13-43
when released 13-44

LOGBUFF parameter
and logical log buffers 13-23

LOGFILES parameter
changing 21-11
use in logical-log size

determination 20-8
Logging

activity that is always logged 18-7
database server processes

requiring 18-4
definition of transaction

logging 18-5
effect of buffering on logical log

fill rate 20-16
monitoring activity 23-5
physical logging

description of 22-3
process of 22-9
purpose of 22-4
sizing guidelines for 22-5
suppression in temporary

dbspaces 15-19
process for dbspace data 20-21
suppression for implicit

tables 15-18
table types 19-6
when to buffer transaction

logging 18-10
when to use logging tables 18-8
when to use transaction

logging 18-9
See also Database-logging status.

Logging table
characteristics of 15-25
types of 18-8

Logical consistency, description
of 24-15, 24-18

Logical log
configuration parameters 21-11
description of 13-22, 18-4, 20-3
determining disk space

allocated 20-8
monitoring for fullness using

onstat 21-16
optimal storage of 15-41, 15-42
purpose of 1-14
setting high-water marks 20-18
size, guidelines 20-7
size, performance

considerations 20-6
skipping replay 20-13
types of records 13-22
See also Logical-log buffer;

Logical-log file.
Logical units of storage

description 15-14
list of 15-4

Logical volume manager (LVM)
description of 15-52
mirroring alternative 25-6

Logical-log backup
and checkpoints 24-11
description of 2-7

Logical-log buffer
and checkpoints 13-22
and logical-log records 13-52
description 13-22
description of 13-22
flushing 13-52
flushing for nonlogging

databases 13-54
flushing when a checkpoint

occurs 13-54
flushing when no before-

image 13-55
flushing with unbuffered

logging 13-54
fuzzy checkpoints 20-22
monitoring 23-5
synchronizing flushing 13-46
when flushed to disk 13-52, 20-23
when it becomes full 13-53
Index 11

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
Logical-log file
allocating disk space for 20-6
backing up 16-13
backing up after adding, moving,

or deleting 21-4
backup

effect on performance 20-6
goals of 20-12

changing the size of 21-9
consequences of not freeing 20-14
description of 18-4, 20-4
file status 20-11
full checkpoint to free 24-8
how to free 21-13
how to switch 21-15
I/O to 11-21
location 20-9
logid number 20-9
mirroring a dbspace that contains

a file 25-7
moving to another dbspace 21-7
number of files 20-8
rate at which files fill 20-16
relationship between unique ID

and logid 20-9
role in fast recovery 24-15,

24-17 to 24-18, 24-22 to 24-23
size 20-7
status flags 20-11
unique ID number 20-9
when database server tries to free

files 20-14
when freed for reuse 20-13
See also Logical log.

Logical-log I/O virtual
processors 11-22

Logical-log record
database server processes

requiring 18-4
SQL statements that

generate 18-7
when written to logical-log

buffer 20-22
logid 20-9
LOGSIZE parameter

changing 21-11
use in logical-log size

determination 20-8
Logslice 20-5

LOGSMAX parameter
changing 21-12
mentioned 20-8

LOG_BACKUP_MODE
configuration parameter 5-9

Long transaction
consequences of 20-14
description of 20-15
preventing development of 20-15

LRU queues
and buffer pool

management 13-37
components 13-36
composition of 13-36
description of 13-36
FLRU queues 13-37
how database server selects 13-38
MLRU queues 13-37
ordering of 13-37
rationale for ordering 13-37
reason for multiple 13-38

LRU write
description of 13-51
monitoring 14-19
triggering of 13-51
who performs 13-51

LRUS parameter
configuration 13-38
description of 13-36

LRU_MAX_DIRTY parameter
and LRU_MIN_DIRTY

parameter 13-36
description 13-39
example of use 13-40
how to calculate value 13-40
role in buffer-pool

management 13-40
LRU_MIN_DIRTY parameter

and LRU_MAX_DIRTY
parameter 13-36

default value 13-40
example of use 13-40
how to calculate value 13-40
role in buffer pool

management 13-40
when tested 13-50

LTXEHWM parameter
and physical log 22-8
changing 21-12

role in preventing long
transactions 20-18

LTXHWM parameter
changing 21-12
flushing of logical-log

buffer 13-53
role in preventing long

transactions 20-18

M
Machine notes Intro-12
Main_loop() thread 24-10
Management of data 15-7
Mapping, bad sector 1-16
Maximum size and number of

chunks 16-22
MAX_CHUNKS configuration

parameter 16-19
description of 4-7

MAX_DBSLICES configuration
parameter 16-19

description of 4-7
MAX_DBSPACES configuration

parameter 16-19
description of 4-7

Media failure
detecting 25-10
recovering from 25-5
restoring data 1-14

Memory
64-bit addressing 13-57
adding a segment 14-13

Memory. See Shared memory.
Message file for error

messages Intro-12
Message log

and data corruption 27-9
description of 2-12
during initialization 10-10

meter 5
Migration. See Informix Migration

Guide.
Mirror chunk

changing status of 26-7
creating 26-6
disk reads from 25-9
disk writes to 25-9
12 Administrator’s Guide for Informix Extended Parallel Server

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
recovering 25-10, 26-7
structure 25-11

Mirror dbspace
root dbspace 15-17

MIRROR parameter
changing 26-4
description of 26-4
initial configuration value 26-4

Mirroring
activity during processing 25-9
alternatives 25-6
and chunk table 13-28
and multiple residency 8-7
asynchronous write requests 25-9
benefits of 25-4
changing chunk status 26-7
costs of 25-5
creating mirror chunks 26-6
description of 1-16, 25-4
detecting media failures 25-10
during system initialization 26-7
enabling 26-4
ending 26-8, 26-11
if the dbspace holds logical-log

files 25-7
network restriction 25-4
recommended disk layout 15-45
recovering a chunk 26-7
recovery activity 25-8
split reads 25-9
starting 26-3, 26-6
status flags 25-8
steps required 26-3
what happens during

processing 25-9
when mirroring begins 25-7
when mirroring ends 25-11

MIRROROFFSET parameter
root dbspace 15-17
when needed 16-7

MIRRORPATH parameter
and multiple residency 7-5
mentioned 15-17
multiple residency 8-7
pathname-format 5-5

Miscellaneous (MSC) virtual
processor 11-34

MLRU queues
and flushing of regular

buffers 13-46
and LRU_MIN_DIRTY

parameter 13-40
description of 13-37
end of cleaning 13-40
how buffer is placed 13-38
how to end page-cleaning 13-40
limiting number of pages 13-39
role in buffer modification 13-45
See also LRU queues.

Mode
description of 9-3
graceful shutdown 9-7
immediate shutdown 9-8
off-line from any mode 9-8
off-line to on-line 9-6
off-line to quiescent 9-6
on-line to quiescent,

gracefully 9-7
on-line to quiescent,

immediately 9-8
quiescent to on-line 9-7
reinitializing shared memory 9-6
taking off-line 9-8

MODE ANSI keywords, and
database logging status 18-11

Modifying cogroups 5-18
Monitoring

memory size 14-6
Monitoring database server

backup status of logs 21-18
buffer-pool activity 14-18
buffers 14-15
checkpoints 24-25
chunks 16-34
configuration parameter

values 3-22
coservers 5-20
databases 16-32, 19-7
disk I/O queues 11-25
extents 16-38
fragment load 16-36
fragmentation disk use 16-38,

16-41
latches 14-13, 14-22
length of disk I/O queues 11-25
logging status 19-7

logical-log buffers 23-5
logical-log files 21-15
logs 21-18
physical-log buffer 13-24, 23-5
physical-log file 23-5
profile of activity 14-14
shared memory 14-13
shared-memory segments 14-13
simple large objects in

dbspaces 16-41
sources of information 2-11
user threads 13-30
using onstat 2-14
using SMI tables 2-13
virtual processors 12-8

MSGPATH parameter
and multiple residency 7-5, 8-6

Multiple concurrent threads
(MCT) 11-11

Multiple connection types
example 6-50
in sqlhosts 6-44
See also Connection.

Multiple instances of database
server on same computer 7-3

Multiple network interface
cards 11-32

Multiple residency
and chunk assignment 8-8
and dbspaces 8-8
and multiple binaries,

warning 8-4
archiving 8-8
backups 8-8
benefits of 7-3
configuration file 7-3
configuration parameters 7-5
DBSERVERNAME parameter 8-6
definition of 3-11, 6-52, 7-3
editing the ONCONFIG file 8-6
example 6-52
hosts and services files 8-8
how it functions 7-4
INFORMIXSERVER environment

variable 8-9
informix.rc & .informix files 8-9
initializing disk space 8-8
IPX/SPX 8-8
MIRRORPATH parameter 8-7
Index 13

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
MSGPATH parameter 8-6
ONCONFIG environment

variable 7-5
planning for 8-5
requirements 8-4
ROOTNAME parameter 8-7
ROOTPATH parameter 8-7
SERVERNUM parameter 8-6
sqlhosts 8-7
startup script 8-9
to isolate applications 7-4
use for testing 7-4

Multiplexed connection 6-6
description of 6-6
limitations 6-6

Multiprocessor computer
advantages on 1-9
AFF_SPROC parameter 4-17
MULTIPROCESSOR

parameter 11-18
processor affinity 11-10

MULTIPROCESSOR parameter
description of 11-18
for single-processor

computer 11-18, 11-19
Multithreaded database server. See

Dynamic Scalable Architecture.
Multithreaded processes,

description of 1-10, 11-4
Multithreading, use of OS

resources 11-8
Mutex

description of 11-17, 13-34
on buffer-table hash table 13-43
synchronization 11-17
when used 13-34

N
Names, storage spaces 16-14, 16-17
nettype field

format of 6-24
summary of values 6-26
syntax of 6-24
use of interface type 6-49

NETTYPE parameter 6-45
and multiple network

addresses 11-32
for multiplexed connection 6-6
mentioned 6-45
poll threads 11-26
purpose of 6-45
role in specifying a protocol 11-26
vp class entry 11-27

NetWare file server 6-27
Network communication

using IPX/SPX 6-27, 6-29, 6-50
using TCP/IP 6-26, 6-27

Network connection
how implemented 11-28
types of 11-26

Network Information Service 6-15
Network interface cards

and listen threads 11-32
sqlhosts file 11-32
using multiple 11-32

Network protocols,
specifying 11-26

Network security
files 6-16
hosts.equiv 6-16
.netrc file 6-17

Network virtual processors
and poll threads 11-26
description of 11-26
how many 11-27

New features of this
product Intro-5

Next-extent size 15-12
NIS servers, effect on /etc/hosts

and /etc/services 6-15
NOAGE parameter

purpose of 11-20
NODE parameter

description of 4-20
obtaining values from the hosts

file 3-8
specifying host name 4-20

Node, description of 1-18, 5-10
Nonfuzzy operations

description 24-6
flushing buffer pool 24-6
flushing buffers 20-22, 24-9, 24-10
physical log 20-21

Nonlogging table 15-25, 18-8
nt 15-46
NUMAIOVPS parameter

purpose of 11-25
NUMCPUVPS parameter

and poll threads 11-27
purpose of 11-18

NUMFIFOVPS parameter
description of 4-17

O
Offset

definition of 15-9
purpose of 16-7
use in prevention of overwriting

partition information 15-10
use in subdividing

partitions 15-10
when needed 16-7

OFF_RECOVERY_THREADS
configuration parameter 4-18

Oldest update, freeing logical-log
file 20-13

OLTP application
characteristics of 1-7, 17-18
definition of 17-18
uses of 1-7, 17-18

OLTP applications
See also PDQ (parallel database

query).
ON-Bar

backing up logical-log files 20-12
storage-manager parameters 5-8

oncfg_servername.servernum
file 10-9

ONCONFIG configuration file
adding coservers 5-12, 5-15
coserver names in 5-17
during initialization 10-5
editing to change cogroups 5-18
editing with multiple

residency 8-6
mentioned 6-42
multiple residency 6-52, 8-5
parameters 6-43
14 Administrator’s Guide for Informix Extended Parallel Server

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
ONCONFIG environment
variable 3-12

changes for multiple
residency 8-6

multiple database servers 3-19
multiple residency startup

script 8-9
use with multiple residency 7-5

ONCONFIG file parameters. See
Configuration parameter.

ONCONFIG parameter, and
multiple residency 8-5

onconfig.std file
during initialization 10-5

ondblog utility
modifying database logging

status 19-5
oninit utility

-p option 10-9, 15-31
temporary tables 15-31

On-line manuals Intro-11
On-line transaction processing. See

OLTP applications.
onload utility. See Informix

Migration Guide.
onmode utility

-a option 14-13
adding a segment 14-13
changing shared-memory

residency 14-12
forcing a full checkpoint 24-9
forcing a fuzzy checkpoint 24-9
freeing a logical-log file 21-14,

21-15
-O option 15-13
switching logical-log files 21-15
user thread servicing requests

from 11-5
onsmsync utility. See Backup and

Restore Guide.
onstat utility

and CPU virtual processors 11-18
-g seg option 14-6
monitoring buffer use 14-16,

14-17, 14-18
monitoring buffer-pool 14-19,

14-20
monitoring checkpoints 24-25
monitoring chunk status 16-34

monitoring configuration 3-22
monitoring database server

profile 14-14
monitoring fragment load 16-36
monitoring latches 14-22, 14-23
monitoring log buffers 23-6
monitoring logical-log files 20-13,

21-16
monitoring physical log 23-6
monitoring shared

memory 14-13, 14-14
monitoring virtual

processors 12-8
onunload utility. See Informix

Migration Guide.
onutil

obtaining fragmentation
information 16-38

onutil utility
ALTER DBSLICE 16-18
ALTER DBSPACE 16-22, 16-24
ALTER LOGSLICE 16-18
changing cogroup with 5-18
CHECK RESERVED 16-36, 22-6,

23-7
CHECK SPACE 16-24, 16-36
CHECK TABLE ALLOCATION

INFO 16-40
CHECK TABLE INFO 16-38
CREATE COGROUP 5-19
CREATE DBSLICE 15-20, 16-16
CREATE DBSPACE 16-16
CREATE TEMP DBSPACE 16-15
description of 15-20
DROP COGROUP 5-18
DROP DBSLICE 16-26
DROP DBSPACE 16-26
ending mirroring 26-8
SET DATASKIP ON 16-28
use in consistency checking 27-4

ON_RECOVERY_THREADS
configuration parameter 4-18

Operating system, scheduled
jobs 3-21

Operating-system files. See Cooked
file space.

Operating-system parameters
description of 14-4

Operational tables
altering 19-6
description of 15-27

OPTCOMPIND
description 17-25

OPTCOMPIND environment
variable

See also OPTCOMPIND
parameter.

options field
buffer-size option 6-30
keep-alive option 6-35
security option 6-36
syntax rules 6-30

P
Page

description 15-10
least-recently used 13-37
locating in shared memory 13-43
most-recently used 13-37
relationship to chunk 15-10

Page size
configurable 13-21

Page-cleaner table
description of 13-29
number of entries 13-29

Page-cleaner threads
alerted during foreground

write 13-51
description of 13-45
flushing buffer pool 13-46
flushing of regular buffers 13-46
monitoring 13-29
role in chunk write 13-52
sleeping forever 13-50

PAGESIZE configuration
parameter

description of 3-17, 4-13, 13-21
PAGE_CONFIG reserved page

mentioned 10-6, 10-8
PAGE_PZERO reserved page

mentioned 10-7
Parallel database query. See PDQ.
Parallel processing

mentioned 1-13, 1-20
virtual processors 11-8
Index 15

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
Parallelism
degree of, definition 17-12
factors that affect 17-12, 17-20
on single coserver 17-20
when not used 17-21

Parallel-processing platform 1-17,
1-22

Parameters
used with PDQ 17-25

parameters,setting
with a text editor 14-8

Password encryption 6-13, 6-20
PATH environment variable

in shutdown script 3-20
in startup script 3-19
multiple residency startup

script 8-9
Pathname-format

specifying in MIRRORPATH 5-5
specifying in ROOTPATH 5-5

PC_HASHSIZE configuration
parameter 4-14, 14-9

PC_POOLSIZE configuration
parameter 4-13, 14-9

PDQ (Parallel Database Query)
configuring page size 13-21

PDQ (parallel database query) 1-20
degree of parallelism 17-12
description of 17-11
DS_TOTAL_MEMORY

parameter 4-15
effect of table fragmentation 17-3
mentioned 1-20
parameters used to control 17-25
priority 17-12
resource allocation 17-25
scalability 1-21
used with fragmentation 17-5
uses of 17-3
when to use 17-17, 17-20

Performance 14-8
and resident shared-

memory 13-18
and shared memory 13-5
and yielding functions 11-12
effect of read-ahead 13-41
effects of VP-controlled context

switching 11-8

how frequently buffers are
flushed 13-36

of CPU virtual processors 11-18
shared-memory connection 6-9
See also Performance Guide.

Performance tuning
and extent size 15-46
and foreground writes 13-51
and logical volume

managers 15-52
disk-layout guidelines 15-39
logical-log size 20-6
LRU write 13-51
mechanisms 1-12
minimizing disk-head

movement 15-46
moving the physical log 23-4
sample disk layout for optimal

performance 15-48
spreading data across multiple

disks 15-52
tuning amount of data

logged 22-5
Permissions, file 16-8
PHYSBUFF parameter

and physical-log buffers 13-24
PHYSDBS parameter

changing size and location 23-5
where located 22-8

PHYSFILE parameter
changing size and location 23-5

Physical consistency
description of 24-15
during fast recover 24-18

Physical consistency, description
of 24-5

Physical log
and virtual processors 11-21
backing up 16-13
becoming full 22-6
before-image contents 22-5
buffer 22-9
changing size and location

possible methods 23-3
rationale 23-4
restrictions 23-4
using a text editor 23-5

contiguous space 23-4
description of 22-3

ensuring does not become
full 22-6

flushing of buffer 22-10
how emptied 22-11
I/O, virtual processors 11-23
managing 23-3
monitoring 23-5
optimal storage of 15-41, 15-42
reinitialize shared memory 23-3
role in fast recovery 24-14, 24-15,

24-19
scenario for filling 22-8
sizing guidelines 22-5, 22-7
where located 22-8

Physical logging
activity logged 22-4
and backups 22-4
and data buffer 22-10
and fast recovery 22-4
description of 22-3
details of logging process 22-9
fuzzy checkpoints 22-7 to 22-11
purpose of 22-4

Physical units of storage, list
of 15-3

Physical-log buffer
amount written 13-49
and checkpoints 13-47, 22-11
description of 13-24
events that prompt flushing 13-47
flushing of 13-46, 22-10
mentioned 13-48
monitoring 23-5
number of 13-24
PHYSBUFF parameter 13-24
role in dbspace logging 20-21,

22-10
when it becomes full 13-48

PHYSSLICE parameter
description of 4-10

PIO virtual processors
description of 11-23
how many 11-23

Planning for resources 3-4
Platform icons Intro-9
Platform-specific configuration

parameters 5-6
Platform, parallel-processing 1-17,

1-22
16 Administrator’s Guide for Informix Extended Parallel Server

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
Point-in-time recovery. See Backup
and Restore Guide.

Poll threads
and message queues 13-33
DBSERVERNAME

parameter 11-27
description of 11-28
how many 11-27
multiple for a protocol 11-26
nettype entry 11-26
on CPU or network virtual

processors 11-27
Printed manuals Intro-11
Priorities for disk I/O 11-22
Priority aging

description of 11-20
preventing 11-19

Privileges
on databases and tables 1-17

Processes
attaching to shared

memory 13-12
comparison to threads 11-3
DSA versus dual process

architecture 11-7
Processor affinity

and AFF_SPROC parameter 4-17
description of 11-10
using 11-20

Product icons Intro-9
Profile statistics 14-14
Program counter and thread

data 13-31
Protocol, specifying 11-26
PSWDCSM. See Password

encryption.

Q
Queues

description of 11-14
disk I/O 11-25
ready 11-15
sleep 11-15
wait 11-16

R
RAID. See Redundant array of

inexpensive disks.
Raw device 15-7

and character-special
interface 15-7

definition of 15-7
Raw disk space 15-7

comparison to cooked space 15-7
how to allocate, UNIX 16-10
rationale for using 15-8
steps for allocating 15-8

Raw tables
altering 19-6
altering to 15-29
definition f 15-27

RA_PAGES parameter
description of 13-42
purpose of 13-41
reading a page from disk 13-43

RA_THRESHOLD parameter
description of 13-41, 13-42

RDBMS. See Relational database
management system.

Read-ahead
description of 13-41
IDX_RA_PAGES

parameter 13-41
RA_PAGES parameter 13-42
RA_THRESHOLD

parameter 13-41, 13-42
when it occurs 13-43
when used 13-41

Read-only mode, description of 9-4
Ready queue

description of 11-15
moving a thread to 11-15, 11-16

Recovery
fast, description of 24-13
from media failure 25-5
parallel processing of 11-8

Recovery mode, description of 9-4
Redundant array of inexpensive

disks (RAID), mirroring
alternative 25-7

Referential constraints 18-5
Refragmenting tables 16-18

Regular buffers
events that prompt flushing 13-46
monitoring status of 13-20

Related reading Intro-13
Relational database management

system (RDBMS) 1-6, 1-7, 1-11
Release notes Intro-12
Remote client 6-16
Remote hosts 6-16
Reserved pages

estimating disk space for 15-38
optimal storage 15-41

Residency. See Multiple residency.
RESIDENT parameter

during initialization 10-9
mentioned 14-12

Resident shared memory 10-6,
13-19

conditions for 13-18
contents of 13-19
description 13-18, 13-19
internal tables 13-27

Resource allocation
effects of PDQ 17-25

Resource planning 3-5
Restore

data 1-14
external 1-15

RGM (Resource Grant Manager)
described 17-21

rofferr utility Intro-12
Roll back

in fast recovery 24-17, 24-22
mentioned 1-15

Roll forward
in fast recovery 24-17, 24-22
mentioned 1-15

Root dbspace
calculating size of 15-36
default location 15-17
description of 15-17
location of logical-log files 20-9
mirroring 26-7

ROOTNAME parameter
mentioned 15-17
multiple residency 8-7
Index 17

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
ROOTOFFSET parameter
mentioned 15-17
multiple residency 8-7
when needed 16-7

ROOTPATH parameter
and multiple residency 7-5
mentioned 15-17
multiple residency 8-7

Rootslice
description of 15-21

ROOTSLICE parameter
description of 4-5

Round-robin fragmentation
distribution scheme 17-7

S
SADDR configuration

parameter 5-6
Safewrite area 15-38, 16-20

configuring 4-7
sales_demo database Intro-5
Sample-code conventions Intro-10
Sbspace

names 16-14
Scalability 1-21
Scalability of database server 1-11
Scans

of indexes 13-41
of sequential tables 13-41
parallel processing of 11-8

Scheduled system jobs 3-21
Scratch tables

creating 19-7
Security

database server 1-17
how enforced 1-17
isolating applications 7-4
risks with shared-memory

communications 6-9
Security options, sqlhosts 6-36
Security option, in options

field 6-36
Segment identifier (shared-

memory) 13-15
Segment. See Chunk.
SENDEPDS configuration

parameter 5-6

SERVERNUM parameter
and multiple database

servers 13-14
and multiple residency 7-4, 7-5,

8-6
description of 13-13, 13-14
how used 13-14

servicename
syntax rules 6-26

servicename field in sqlhosts file
choosing an appropriate

name 6-27
with IPX/SPX 6-29
with shared memory 6-28
with stream pipes 6-28

services file
multiple residency 8-8

Service, in IPX/SPX 6-29
Session

and active tblspace 13-29
and dictionary cache 13-32
and locks 13-25
and shared memory 13-30
and SPL routine cache 13-33
control block 11-11
description of 11-11
primary thread 13-31
shared-memory pool 13-25, 13-26
sqlexec threads 11-5
threads 11-5

Session control block 11-11
description of 13-30
shared memory 13-30

SET DATASKIP ON, onutil 16-28
SET DATASKIP statement 16-27,

16-28
Setting the year 1-17
Share lock (buffer), description

of 13-35
Shared data 13-5
Shared memory

allocating 13-25
and blobpages 13-56
and critical sections 24-4
and SERVERNUM

parameter 13-13
and SHMBASE parameter 13-13
attaching additional

segments 13-14, 13-16

attaching to 13-12
buffer allocation 13-20
buffer hash table 13-28
buffer locks 13-35
buffer pool 13-20, 22-9
buffer table 13-27
changing residency with

onmode 14-12
checkpoint 24-4
chunk table 13-28
communication 6-27, 6-29
communications portion 13-33
configuration 13-10, 13-26, 14-4
configuring for multiple

residency 7-6
contents 13-9
copying to a file 14-13
dbspace table 13-28
description 13-5
dictionary cache 13-32
dynamic management of 1-12,

1-24
effect of operating-system

parameters 14-4
first segment 13-14
for interprocess

communication 13-6
global pool 13-33
header 13-16, 13-19
heaps 13-32
how utilities attach 13-13
identifier 13-14
initializing 10-3
initializing structures 10-7
internal tables 13-27
key value 13-14
locating a page 13-43
logical-log buffer 13-22
lower-boundary address

problem 13-17
mirror chunk table 13-28
monitoring 14-13
mutex 13-34
operating-system segments 13-10
page-cleaner table 13-29
parameters 4-13
performance considerations 13-5
physical-log buffer 13-24
pools 13-25
18 Administrator’s Guide for Informix Extended Parallel Server

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
portions 13-8
purposes of 13-5
reinitializing 14-11
resident portion, mentioned 10-6
segment identifier 13-15
session control block 13-30
session data 13-30
SHMADD parameter 13-26
SHMTOTAL parameter 4-12,

13-10
SHMVIRTSIZE parameter 4-12,

13-26
size of virtual portion 13-26
size, displayed by onstat 13-10
sorting 13-32
SPL routine cache 13-33
stacks 13-31
STACKSIZE parameter 13-31
synchronizing buffer

flushing 13-46
tables 13-27
tblspace table 13-29
the resident portion 13-19
thread control block 13-31
thread data 13-31
thread isolation and buffer

locks 13-35
transaction table 13-29
user table 13-30
virtual portion 13-25, 13-26, 14-13

Shared-memory connection
example 6-46
how a client attaches 13-12
in servicename field 6-28
message 11-29
message buffers 13-33
virtual processor 11-26

SHMADD parameter 4-12, 13-26
SHMBASE parameter

attaching first shared-memory
segment 13-13, 13-14

description of 4-12, 13-15
setting higher 14-6
warning 13-15

shmem file
and assertion failures 27-7

shmkey
attaching additional

segments 13-16
description of 13-14

SHMTOTAL parameter 4-12, 13-10
SHMVIRTSIZE parameter 4-12,

13-26
Shutdown

graceful 9-7
immediate 9-8
mode, description of 9-4
taking off-line 9-8

Shutdown script
multiple residency 8-9
steps to perform 3-19

Simple large object
See also TEXT and BYTE data.

Single processor computer 11-18
SINGLE_CPU_VP parameter

and single processor
computer 11-18, 11-19

Sizing guidelines
logical log 20-7
physical log 22-5, 22-7

Skipping fragments
all fragments 16-30
all unavailable 16-27, 16-30
effect on transactions 16-29
selected fragments 16-30
when to use feature 16-30

Sleep queues, description of 11-15
Sleeping threads

forever 11-16
types of 11-15

SMI table
aborted table build 10-10
during initialization 10-10
monitoring buffer use 14-18
monitoring buffer-pool 14-21
monitoring checkpoints 24-26
monitoring chunks 16-37
monitoring databases 16-32, 19-7
monitoring fragmentation 16-41
monitoring latches 14-23
monitoring log buffer use 23-8
monitoring logical-log files 21-18
monitoring shared memory 14-15
monitoring virtual

processors 12-10

preparation during
initialization 10-10

See also Administrator’s Reference;
System-monitoring interface.

Sockets
in nettype field 6-25

Software dependencies Intro-4
Sorting

and shared memory 13-32
as parallel process 11-8

SPL routine
PC_POOLSIZE parameter 4-13

SPL routine cache 13-33
specifying hash size 4-14, 14-9
specifying size 4-13, 14-9

Split read 25-9
SQL code Intro-10
SQL operator

description of 17-14
scan 17-15

SQL statements
ALTER FRAGMENT 16-18
CREATE DBSPACE 15-15
CREATE TABLE 15-15, 15-17
using temporary disk space 15-30

sqlexec thread
and client application 11-11
as user thread 11-5
role in client/server

connection 11-29
sqlhosts

and multiplexed connection 6-6
CSM option 6-32
dbservername field 6-23
keep alive option 6-35
local-loopback example 6-47
multiple connection types,

example 6-44
multiple residency 8-7
network connection example 6-49
security options 6-36
shared-memory example 6-46

sqlhosts file 3-14
adding coservers 5-12, 5-16
communication support module

option 6-32
defining multiple network

addresses 11-31
description of 6-21
Index 19

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
end of group option 6-32
entries for multiple interface

cards 11-32
for initialization 3-17
group option 6-33
identifier option 6-35
mentioned 1-8
number of copies 1-28
specifying network poll

threads 11-26
Stack

and thread control block 11-14
description of 11-13
INFORMIXSTACKSIZE

environment variable 13-31
pointer 11-14
size of 13-31
STACKSIZE parameter 13-31
thread 13-31

STACKSIZE parameter
changing the stack size 13-31
description 13-31

Standard tables
altering 19-6
altering to 15-29
description of 15-28

Starting the database server
and initializing disk space 3-18

Startup script
multiple residency 8-9
multiple versions of the database

server 3-19
Static tables

altering 19-6
description of 15-27

Statistics. See onstat utility.
Storage devices, setup 3-21
Storage manager

ISM 3-21
parameters 5-8
role in ON-Bar system 3-21

Stored procedure. See SPL routine.
stores_demo database Intro-5
Stream-pipe connection

in servicename field 6-28
Structured Query Language 1-6

INSERT statement 17-7
See also SQL statement.

Swapping memory 13-18

Switching between threads 11-14
Sync checkpoint. See Checkpoint.
sysmaster database

See SMI table; System-monitoring
interface.

System catalog tables
and dictionary cache 13-32
location of 15-22
optimal storage of 15-42
sysfragments table 17-4

System failure, defined 24-13
System requirements

database Intro-4
software Intro-4

System startup script, multiple
residency 8-9

System timer 11-15
System-defined hash distribution

scheme
definition 17-7, 17-17, 17-20, 17-25

System-monitoring interface (SMI)
See also SMI table.
using to monitor database

server 2-13

T
Table

creating temporary 17-8
description of 15-23
disk-layout guidelines 15-43
high-use 15-46
isolating 15-43
migration. See Informix Migration

Guide.
recommendations for

storage 15-46
relationship to extent 15-23
storage considerations 15-23
storage on middle partition of

disk 15-46, 15-50
temporary

cleanup during shared-memory
initialization 15-31

estimating disk space for 15-37
storage of explicit 15-31
storage of implicit 15-33

Table fragmentation 1-20

Table types
backing up before

converting 16-13
table types 24-24
Tables

external 15-28
fast recovery 24-24
operational 15-27, 19-6
raw 15-27, 19-6
scratch 15-26, 19-7
standard 15-28, 19-6
static 15-27
temp 15-26, 19-7

Tblspace
description of 15-14, 15-34
temporary tblspace during

initialization 10-9
types of pages contained in 15-34

Tblspace table
contents of 13-29
description of 13-29

TCP/IP communication protocol
in hostname field 6-26
in servicename field 6-27
listen port number 6-42
using 6-15, 6-16
using a wildcard 6-39
using the internet IP address 6-38
using the TCP listen port

number 6-42
TEMP TABLE clause, of CREATE

TABLE 17-8
Temp tables

creating 19-7
Temporary dbspace

and DBSPACETEMP 15-31
creating 16-15
description 15-18
temporary dbslices 15-21

Temporary disk space
amount required for temporary

tables 15-37
operations requiring 15-30

Temporary table
and fragmentation 17-8
during initialization 10-9
explicit 15-30
flexible 15-32
scratch 15-26
20 Administrator’s Guide for Informix Extended Parallel Server

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
where stored 15-31
Testing environment 7-4
TEXT and BYTE data

absence of compression 16-42
descriptor 13-56
entering 16-42
illustration of object storage 13-56
inserting 13-56
monitoring in a dbspace 16-41
writing to a blobpage 13-56
writing to disk 13-56
See also Simple large object.

TEXT data type
See TEXT and BYTE data.

Text editor
setting performance configuration

parameters 14-9
setting shared-memory

parameters 14-7, 14-8
setting virtual-processor

parameters 12-4
Thread

access to resources 11-8
accessing shared buffers 13-36
and heaps 13-32
and stacks 13-31
concurrency control 13-34
context of 11-11
control block 11-11, 13-31
description of 11-4
dynamic allocation of 1-13
for client applications 11-3
for primary session 11-11
for recovery 11-5
how virtual processors

service 11-10
internal 11-5, 11-17
kernel asynchronous I/O 11-24
main_loop() 24-10
migrating 11-14
mirroring 11-5
multiple concurrent 11-11
page cleaner 11-5, 13-45
relationship to a process 1-10,

11-4
scheduling and

synchronizing 11-11
session 11-5, 11-17
sleeping 11-16, 13-44

switching between 11-14
user 11-5
waking up 11-15
yielding 11-11

Thread control block
creation of 13-31
role in context switching 11-12

Time stamp
description of 24-12
mentioned 13-45
page-header and page-ending

pair 24-12
role in

data consistency 24-12
flushing physical-log

buffer 13-49
Tip icons Intro-9
TLI. See Transport-layer interface.
Transaction

factors which prevent
closure 20-17

Transaction logging
buffered 18-10
definition of 18-5
unbuffered 18-10
when to use 18-8, 18-9
See also Logging.

Transaction table
description of 13-29
tracking with onstat 13-29

Transport-layer interface
in nettype field 6-25

Types of applications 17-17
Types of buffer writes 13-50

U
Unbuffered disk access

compared to buffered 15-6
improved I/O 1-24
raw disk devices 1-12

Unbuffered disk space
in data storage 15-6

Unbuffered logging
flushing the logical-log

buffer 13-54
Unbuffered transaction logging. See

Logging.

Unique ID 20-9
Units of storage 15-3
UNIX devices

creating a link to a
pathname 16-11

displaying links to a
pathname 3-10, 16-12

ownership, permissions on
character-special 16-10

UNIX files
ownership, permissions on

cooked files 16-8
UNIX operating system

default locale for Intro-4
link command 3-9, 16-10
shutdown script 3-19

Unloading from external
tables 5-15

Upgrading the database
server 3-11

User impersonation 6-18
User table

description of 13-30
maximum number of

entries 13-30
User thread

acquiring a buffer 13-42
description of 11-5
in critical sections 24-4
monitoring 13-30
tracking 13-30

User-defined routines
shared-memory location 13-9

Users, types of Intro-3
Utilities

onmode
-a option 14-13
adding a segment 14-13

onstat
-g seg option 14-6

Utility
attaching to shared-

memory 13-13
rofferr Intro-12
See also Administrator’s Reference.
Index 21

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
V
Virtual portion (shared memory)

adding a segment 14-13
configuration 13-26
contents of 13-25, 13-26
global pool 13-33
SHMVIRTSIZE parameter 4-12,

13-26
SPL routine cache 13-33
stacks 13-31

Virtual processing
sharing processing 11-7

Virtual processor
access to shared memory 13-8
adding and dropping 11-9
ADM class 11-15
advantages 11-7
AIO class 11-25
AIO, how many 11-25
and context switching 11-8
and ready queue 11-15
as multithreaded process 1-10,

11-4
attaching to shared memory 13-8,

13-13
binding to CPUs 11-10
classes of 11-5, 11-17
coordination of access to

resources 11-8
CPU class 11-17
description of 11-3
disk I/O 11-21
during initialization 10-7
FIF (first-in-first-out) class 11-33
how threads serviced 11-10
LIO class 11-21
LIO, how many 11-23
logical-log I/O 11-22
monitoring 12-8
moving a thread 11-7
MSC (miscellaneous) class 11-34
network 11-26, 11-27
number in FIF class 4-17, 11-33
parallel processing 11-8
physical log I/O 11-23
PIO class 11-21
PIO, how many 11-23

setting configuration
parameters 12-3

sharing processing 11-7
use of stack 11-13

VP class in NETTYPE
parameter 11-27

W
Wait queue

and buffer locks 13-35
description of 11-16

Waking up threads 11-15
Warning

files on NIS systems 6-15
interpreting after running onutil

CHECK CATALOG 27-6
Warning icons Intro-9
Wildcard addressing

by a client application 6-41
example 6-40
in hostname field 6-39

Write types
chunk write 13-52
foreground write 13-51
LRU write 13-51

X
xctl utility

adding coservers 5-15
description of 1-27
monitoring logs 21-18

X/Open compliance level Intro-13

Y
Year 2000 compliance 1-17
Year values 1-17
Yielding threads

and ready queue 11-15
at predetermined point 11-12
description of 11-11
on some condition 11-12
switching between 11-10

ypcat hosts command 6-15
ypcat services command 6-15

Symbols
.informix file 3-13
.netrc file 6-17

sqlhosts security options 6-36
.rhosts file 6-17
22 Administrator’s Guide for Informix Extended Parallel Server

	Answers OnLine Web Site
	Table of Contents
	Introduction
	In This Introduction
	About This Manual
	Types of Users
	Software Dependencies
	Assumptions About Your Locale
	Demonstration Databases

	New Features
	Configuration Enhancements
	Performance Enhancements
	New SQL Functionality
	Year 2000 Compliance
	Utility Features
	Version 8.3 Features from Version 7.30

	Documentation Conventions
	Typographical Conventions
	Icon Conventions
	Comment Icons
	Feature, Product, and Platform Icons

	Sample-Code Conventions

	Additional Documentation
	On-Line Manuals
	Printed Manuals
	Error Message Documentation
	Documentation Notes, Release Notes, Machine Notes
	Related Reading

	Compliance with Industry Standards
	Informix Welcomes Your Comments

	Introducing the Database Server
	In This Chapter
	Database Server Users
	End Users
	Application Developers
	Database Administrators
	Database Server Administrators
	Database Server Operators

	Extended Parallel Server
	Client/Server Architecture
	Client Application Types
	Connection to a Database Server

	Dynamic Scalable Architecture
	Parallel-Processing Architecture
	Scalability

	High Performance
	Dynamic Shared-Memory Management
	Direct Disk Access
	Dynamic Thread Allocation
	Fragmentation and Parallelism

	Fault Tolerance
	Storage Space and Logical-Log Backups of Transaction Records
	Backup Verification
	External Backup and Restore
	Fast Recovery
	Point-in-Time Restore
	Mirroring

	Database Server Security
	Year 2000 Compliance
	Extended Parallel-Processing Architecture
	Extended Multithreaded Operation
	Parallel Execution Within a Coserver
	Parallel Execution on Multiple Coservers

	Extended Scalability
	Extended Client/Server Operations
	Connection Coserver
	Participating Coserver
	On-Line Transaction Processing and Decision-Support Applications

	Extended Dynamic Shared-Memory Management
	Direct Disk Access
	Single Point of Administration
	Centralized Configuration
	Coserver Groups
	Dbslices
	Logslices
	Centralized Message Log
	Centralized Database Server Utilities
	Coordinated Data-Dictionary Cache

	Control of Resources in Parallel
	Request Manager
	Query Optimizer
	Data-Dictionary Manager
	Scheduler

	Overview of Database Server Administration
	In This Chapter
	Database Server Administrator
	Initial Tasks
	Configuration Tasks
	Managing Disk Space
	Managing Database-Logging Status
	Managing the Logical Log
	Managing the Physical Log
	Using Mirroring
	Managing Shared Memory
	Managing Virtual Processors
	Managing Parallel Database Query

	Routine Tasks
	Changing Modes
	Backing Up Data and Logical-Log Files
	Monitoring Database Server Activity
	Checking for Consistency

	Summary of Administration Tasks
	Monitoring Database Server Activity
	Sources of Information for Monitoring
	Message Log
	Monitoring the Message Log
	Changing the Destination for Message-Log Messages

	Event Alarm
	System Console
	SMI Tables
	onstat Utility
	onutil CHECK Utility
	xctl Utility

	Installing and Configuring the Database Server
	In This Chapter
	Planning for the Database Server
	Considering Your Priorities
	Considering Your Environment

	Configuring the Operating System
	Modifying UNIX Kernel Parameters
	Preparing the Operating System for the Database Server
	Setting Up Node Names
	Using Operating-System Administration Facilities

	Allocating Disk Space
	Creating a Raw Device or Unbuffered File
	Creating Standard Device Names
	Setting Permissions, Ownership, and Group
	Setting Up Disk Access Across Nodes

	Installing the Database Server
	Using Multiple Residency
	Upgrading the Database Server

	Setting Environment Variables
	Required Environment Variables
	Global Language Support
	Other Environment Variables
	Environment Variable Files

	Configuring Connectivity
	The sqlhosts File

	Preparing the ONCONFIG Configuration File
	Creating a Configuration File
	Creating an ONCONFIG File

	Starting and Administering the Database Server
	Preparing to Connect to Applications
	Configuring the Database Server Page Size
	Starting the Database Server and Initialize Disk Space
	Performing Administrative Tasks
	Preparing the Startup and Shutdown Scripts
	Making Sure That Users Have the Correct Environment Variables
	Warning UNIX System Administrator About cron Jobs

	Setting Up Your Storage Manager and Storage Devices
	Creating Storage Spaces

	Monitoring Configuration Information
	Using Command-Line Utilities
	onstat -c
	onutil CHECK RESERVED

	Configuration Parameters
	In This Chapter
	Disk-Space Parameters
	Root Dbspace
	Mirror of Root Dbspace
	Number of Storage Spaces
	Other Space-Management Parameters

	Database Server Identification Parameters
	Logging Parameters
	Logical Log
	Physical Log
	Storage-Space and Logical-Log Backups

	Message-Log Parameters
	Shared-Memory Parameters
	Shared-Memory Size Allocation
	Shared-Memory Space Allocation
	Shared-Memory Buffer Control

	Decision-Support Parameters
	Database Server Process Parameters
	Processor Type
	Processor Affinity
	Time Intervals

	Restore Parameters
	Event-Alarm Parameters
	Dump Parameters
	Coserver Parameters
	Specialized Parameters
	Optical Media
	UNIX

	Configuring the Database Server
	In This Chapter
	Configuring Multiple Coservers
	Global Configuration Parameters
	Root and Log Dbspaces on Multiple Coservers
	Using Formatting Characters with ROOTPATH and MIRRORPATH

	Coserver-Specific Configuration Parameters
	Platform-Specific Configuration Parameters
	Organizing the Configuration File

	Setting Storage-Manager Parameters for ON-Bar
	Choosing a Coserver Configuration
	Single Coserver on a Single-Node Platform
	Multiple Coservers on a Single-Node Platform
	Single Coservers on Each Node of a Multiple-Node Platform
	Multiple Coservers on Each Node of a Multiple-Node Platform

	Adding Coservers
	Defining Cogroups
	Modifying Cogroups
	Monitoring Coserver Activities
	Creating and Loading Tables Fragmented Across Coservers

	Client/�Server �Communications
	In This Chapter
	 Client/�Server Architecture
	Network Protocol
	Network Programming Interface
	Database Server Connection
	Multiplexed Connection

	Connections That the Database Server Supports
	Local Connections
	Shared-Memory Connections
	Stream-Pipe Connections
	Local-Loopback Connections

	Coserver Client Connections
	Communication Support Services
	Informix Password Communication Support Module

	Connectivity Files
	Network-Configuration Files
	TCP/IP Connectivity Files
	Multiple TCP/IP Ports
	IPX/SPX Connectivity Files

	Network-Security Files
	The hosts.equiv File
	The netrc Information

	CSM Configuration File
	Format of the CSM Configuration File
	The concsm.cfg Entry for Password Encryption

	The sqlhosts File

	The sqlhosts Information
	Connectivity Information
	Database Server Name
	The Connection Type Field
	Host Name Field
	Service Name Field
	Options Field

	Group Information
	Database Server Group
	Group Keyword in the Connection-Type Field

	Alternatives for TCP/IP Connections
	IP Addresses for TCP/IP Connections
	Wildcard Addressing for TCP/IP Connections
	Port Numbers for TCP/IP Connections

	ONCONFIG Parameters for Connectivity
	COSERVER Configuration Parameter
	DBSERVERNAME Configuration Parameter
	DBSERVERALIASES �Configuration Parameter
	NETTYPE Configuration Parameter

	Environment Variables for Network Connections
	Examples of Client/Server Configurations
	Using a Shared-Memory Connection
	Using a Local-Loopback �Connection
	Using a �Network Connection
	Using Multiple Connection Types
	Accessing Multiple Database Servers

	Multiple �Residency
	In This Chapter
	Benefits of Multiple �Residency
	How Multiple Residency Works
	The Role of the ONCONFIG Environment Variable
	The Role of the SERVERNUM Configuration �Parameter

	Using Multiple �Residency
	In This Chapter
	Planning for Multiple Residency
	Creating a New Database Server
	Prepare a Configuration File
	Set the ONCONFIG Environment Variable
	Edit the New Configuration File
	Add Connection Information
	Update the sqlhosts File
	Initialize Disk Space
	Prepare Dbspace and Logical-Log Backup Environment
	Update the Operating-System Boot File
	Check INFORMIXSERVER Environment Variables for Users

	Managing Database Server Operating Modes
	In This Chapter
	Database Server Operating Modes
	Initializing Disk Space
	Changing Database Server Operating Modes
	Users Permitted to Change Modes
	From Off-Line to Quiescent
	From Off-Line to Microkernel
	From Off-Line to On-Line
	From Quiescent to On-Line
	Gracefully from On-Line to Quiescent
	Immediately from On-Line to Quiescent
	From Any Mode Immediately to Off-Line

	Initializing the Database Server
	In This Chapter
	Types of Initialization
	Initializing the Database Server
	Initialization Steps
	Process Configuration File
	Create Shared-Memory Portions
	Initialize Shared-Memory Structures
	Initialize Disk Space
	Start All Required Virtual Processors
	Make Necessary Conversions
	Initiate Fast Recovery
	Initiate a Checkpoint
	Document Configuration Changes
	Create the oncfg_servername.servernum File
	Drop Temporary Tblspaces
	Set Forced Residency If Specified
	Return Control to User
	Prepare SMI Tables

	Virtual Processors and Threads
	In This Chapter
	Virtual Processors
	Threads
	Types of Virtual Processors
	Advantages of Virtual Processors
	Sharing Processing
	Saving Memory and Resources
	Processing in Parallel
	Adding and Dropping Virtual Processors in On-Line Mode
	Binding Virtual Processors to CPUs

	How Virtual Processors Service Threads
	Control Structures
	Context Switching
	Stacks
	Queues
	Ready Queues
	Sleep Queues
	Wait Queues

	Mutexes

	Virtual-Processor Classes
	CPU Virtual Processors
	Determining the Number of CPU Virtual Processors Needed
	Running on a Multiprocessor Computer
	Running on a Single-Processor Computer
	Adding and Dropping CPU Virtual Processors in On-Line Mode
	Preventing Priority Aging
	Using Processor Affinity

	Disk I/O Virtual Processors
	I/O Priorities
	Logical-Log I/O
	Physical-Log I/O
	Asynchronous I/O

	Network Virtual Processors
	Specifying Network Connections
	Running Poll Threads on CPU or �Network Virtual Processors
	Number of Networking Virtual Processors Needed
	Listen and Poll Threads for the Client/Server Connection
	Starting Multiple Listen Threads

	First-In-First-Out Virtual Processor
	Communications Support Module Virtual Processor
	Miscellaneous Virtual Processor

	Managing Virtual Processors
	In This Chapter
	Setting Virtual-Processor Configuration Parameters
	Setting Virtual-Processor Configuration Parameters with a Text Editor
	Specifying Virtual Processor Parameters for Uniprocessors or Symmetric Multiprocessors
	Disabling Priority Aging

	Starting and Stopping Virtual �Processors
	Adding Virtual �Processors in �On�Line Mode
	Adding Virtual �Processors in �On-Line Mode with onmode
	Adding Network Virtual Processors

	Monitoring Virtual Processors
	Monitoring Virtual Processors with Command-Line Utilities
	Monitoring Virtual Processors with SMI Tables

	Shared Memory
	In This Chapter
	Shared Memory
	Shared-Memory Use
	Shared-Memory Allocation
	Shared-Memory Size
	Action to Take If SHMTOTAL Is Exceeded

	Processes That Attach to Shared Memory
	How a Client Attaches to the Communications �Portion
	How Utilities Attach to Shared Memory
	How Virtual Processors Attach to Shared Memory
	Defining a Unique Key Value
	Specifying Where to Attach the First Shared-Memory Segment
	Attaching Additional Shared-Memory Segments
	Defining the Shared-Memory Lower-Boundary Address

	Resident Shared-Memory Segments
	Resident Portion of Shared Memory
	Shared-Memory Header
	Shared-Memory Buffer Pool
	Buffer Overflow to the Virtual Portion
	Buffer Size
	Configurable Page Size

	Logical-Log Buffer
	Physical-Log Buffer
	Lock Table

	Virtual Portion of Shared Memory
	Management of the Virtual Portion of Shared Memory
	Size of the Virtual Portion of Shared Memory

	Components of the Virtual Portion of Shared Memory
	Shared-Memory Internal Tables
	Big Buffers
	Session Data
	Thread Data
	Dictionary Cache
	Sorting Memory
	SPL Routine Cache
	Global Pool

	Communications Portion of Shared Memory
	Concurrency Control
	Shared-Memory Mutexes
	Shared-Memory Buffer Locks
	Types of Buffer Locks

	Database Server Thread Access to Shared Buffers
	LRU Queues
	Components of LRU Queue
	Pages in Least-Recently Used Order
	LRU Queues and Buffer-Pool Management
	Number of LRU Queues to Configure
	Number of Cleaners to Allocate
	Number of Pages Added to the MLRU Queues
	End of MLRU Cleaning

	Configuring the Database Server to Read Ahead
	Database Server Thread Access to Buffer Pages
	Identify the Page
	Determine the Level of Lock Access
	Try to Locate the Page in Shared Memory
	Locate a Buffer and Read Page from Disk
	Lock the Buffer If Necessary
	Release the Buffer Lock and Wake a Waiting Thread

	Flushing Data to Disk
	Events That Prompt Flushing of Buffer-Pool Buffers
	Flushing Before-�Images First
	Flushing the Physical-Log Buffer
	Events That Prompt Flushing of the Physical-Log Buffer
	When the Physical-Log Buffer Becomes Full

	Synchronizing Buffer Flushing
	Ensuring That Physical-Log Buffers Are Flushed First
	Flushing the Shared-Memory Pool Buffer

	Describing Flushing Activity
	Foreground Write
	LRU Write
	Chunk Write

	Flushing the �Logical-Log Buffer
	When the Logical-Log Buffer Becomes Full
	After a Transaction Is Prepared or Terminated in a Database with Unbuffered Logging
	When a Session That Uses Nonlogging Databases or Unbuffered Logging Terminates
	When a Checkpoint Occurs
	When a Page Is Modified That Does Not Require a Before-Image in the Physical-Log File

	Buffering Simple-Large-Object Data Types
	Blobpages Do Not Pass Through Shared Memory
	TEXT and BYTE Objects Are Created Before the Data Row Is Inserted
	Tracking Blobpages

	Memory Use on 64-Bit Platforms

	Managing Shared Memory
	In This Chapter
	Setting Operating-System Shared-Memory Configuration Parameters
	Maximum Shared-Memory Segment Size
	Maximum Number of Shared-Memory Identifiers
	Shared-Memory Lower-Boundary Address
	Maximum Amount of Shared Memory for One Process

	Setting Database Server Shared-Memory Configuration Parameters
	Setting Parameters for Resident Shared Memory with a Text Editor
	Setting Parameters for Virtual Shared Memory with a Text Editor
	Setting Parameters for Shared-Memory Performance Options with a Text Editor

	Reinitializing Shared Memory
	Turning Residency On or Off for Resident Shared Memory
	Turning Residency On or Off in On�Line Mode
	Turning Residency On or Off for the Next Time You Reinitialize Shared Memory

	Adding a �Segment to the Virtual Portion of Shared Memory
	Monitoring Shared Memory
	Monitoring Shared-Memory Segments
	Monitoring the Shared-Memory Profile
	Using Command-Line Utilities
	Using SMI Tables

	Monitoring Buffers
	Using Command-Line Utilities
	Using SMI Tables

	Monitoring Buffer-Pool Activity
	Using Command-Line Utilities
	Using SMI Tables

	Monitoring Latches
	Using Command-Line Utilities
	Using SMI Tables

	Data Storage
	In This Chapter
	Overview of Data Storage
	Physical Units of Storage
	Chunks
	Uses of Chunks
	Chunk Size, Number, and Names

	Disk Allocation for Chunks
	Unbuffered or Buffered Disk Access on UNIX
	Offsets

	Pages
	Extents
	Disabling I/O Errors

	Logical Units of Storage
	Dbspaces
	Control of Where Data Is Stored
	Root Dbspace
	Temporary Dbspaces
	Advantages of Using Temporary Dbspaces

	Dbslices
	Rootslices
	Temporary Dbslices

	Databases
	Tables
	Table Types
	Scratch and Temp Tables
	Raw Permanent Tables
	Static Permanent Tables
	Operational Permanent Tables
	Standard Permanent Tables
	External Tables
	Rollback of Operational and Raw Tables
	Switching Between Table Types

	Temporary Tables
	Storage of Temporary Tables

	Tblspaces
	Extent Interleaving

	Table Fragmentation and Data Storage
	Amount of Disk Space Needed to Store Data
	Size of the Root Dbspace
	Physical and Logical Logs
	Temporary Tables
	Critical Data
	Control Information
	Safewrite Area

	Amount of Space That Databases Require

	Disk-Layout Guidelines
	Dbspace and Chunk Guidelines
	Strive to Associate Partitions with Chunks
	Mirror Critical Data Dbspaces
	Spread Temporary Storage Space Across Multiple Disks
	Move the Logical and Physical Logs from the Root Dbspace
	Consider Account Backup-and-Restore Performance

	Table-Location Guidelines
	Isolate High-Use Tables
	Consider Mirroring
	Group Tables with Backup and Restore in Mind
	Place High-Use Tables on Middle Partition of Disk
	Optimize Table-Extent Sizes

	Sample Disk Layouts
	Sample Layout When Performance Is Highest Priority
	Sample Layout When Availability Is Highest Priority

	Logical-Volume Manager

	Managing Disk Space
	In This Chapter
	Initializing Disk Space
	Allocating Disk Space
	Specifying an �Offset
	Specifying an Offset for the Initial Chunk of Root Dbspace
	Specifying an Offset for Additional Chunks
	Using Offsets to Create Multiple Chunks

	Allocating a File for Disk Space on UNIX
	Allocating Raw Disk Space on UNIX

	Configuring Disk Space for Multiple Coservers
	Creating Standard Device Names
	Setting Up Disk Access Across Nodes

	Backing Up After You Change the Physical Schema
	Creating a Dbspace
	Specifying Pathnames for Dbspaces
	Specifying Names and Maximum Number of Storage Spaces
	Backing Up the New Dbspace
	Creating a Temporary Dbspace
	Creating a Dbspace with onutil

	Creating Dbslices
	Naming Dbslices
	Increasing the Number of Dbslices
	Backing Up the New Dbslice
	Altering a Dbslice
	Increasing the Maximum Number of Dbspaces, Chunks, or Dbslices
	Converting from Version 8.2 to Version 8.3
	Recovering from Errors

	Adding a Chunk to a Dbspace
	Backing Up the New Chunk
	Naming Chunks and Storage Spaces
	Limiting Chunk Size and Number
	Adding a Chunk with onutil

	Loading Data Into a Table
	Dropping a Chunk
	Verifying Whether a Chunk Is Empty
	Dropping a Chunk from a �Dbspace with onutil

	Dropping a Storage Space
	Preparing to Drop a Storage Space
	Backing Up After Dropping a Storage Space
	Dropping a Mirrored Storage Space
	Dropping a Dbspace with onutil

	Dropping Dbslices
	Skipping Inaccessible Fragments
	Using the DATASKIP Configuration Parameter
	Using the Dataskip Feature of onutil
	Using onstat to Check Dataskip Status
	Using the SQL Statement SET DATASKIP
	Effect of the Dataskip Feature on Transactions
	Determining When to Use Dataskip
	Determining When to Skip Selected Fragments
	Determining When to Skip All Fragments

	Monitoring Fragmentation Use

	Displaying �Databases
	Using SMI Tables

	Monitoring the Database Server for Disabling I/O Errors
	Using the Message Log to Monitor Disabling I/O Errors
	Using Event Alarms to Monitor Disabling I/O Errors

	Monitoring Disk Usage
	Monitoring Chunks
	Using Command-Line Utilities
	Using SMI Tables

	Monitoring �Tblspaces and Extents
	Using Command-Line Utilities
	Using SMI Tables
	Using System Catalog Tables

	Monitoring Simple Large Objects in a Dbspace
	No Compression of TEXT and BYTE Data Types

	Table Fragmentation and PDQ
	In This Chapter
	Fragmentation
	Fragmentation Goals
	Responsibility for Fragmentation
	Fragmentation Strategies
	Table Fragmentation
	Temporary Table Fragmentation
	 Table Index Fragmentation

	SQL Statements That Perform Fragmentation Tasks

	Parallel Database Query
	Parallelism
	Structure of a PDQ Query
	SQL Operators
	Exchanges
	PDQ Threads

	Use of PDQ
	OLTP Applications
	Decision-Support Applications

	Database Server Use of PDQ
	Resource Grant Manager
	Fragmentation Enhancement to PDQ
	How the Database Server Balances Workload

	Resource Allocation with PDQ
	Parameters for Controlling PDQ

	Logging
	In This Chapter
	Database Server Processes That Require Logging
	Transaction Logging
	Database Server Activity That Is Logged
	Activity That Is Always Logged
	Activity Logged for Databases with Transaction Logging

	Logging and Nonlogging Tables
	Use of Logging Tables
	Use of Nonlogging Tables
	Activity That Is Not Logged

	Database-Logging Status
	Unbuffered Transaction Logging
	Buffered Transaction Logging
	ANSI-Compliant Transaction Logging
	Databases with Different Log-Buffering Status

	Settings or Changes for Logging Status or Mode

	Managing Database-Logging Status
	In This Chapter
	Changing Database-Logging Status
	Modifying Database-Logging Status with ondblog
	Changing Buffering Status with ondblog
	Canceling a Logging Mode Change with ondblog
	Making a Database ANSI Compliant with ondblog

	Modifying the Table-Logging Status
	Altering a Table to Turn Off Logging
	Altering a Table to Turn On Logging
	Creating a Nonlogging Temporary Table

	Monitoring Transaction Logging
	Monitoring Transaction Logging with SMI Tables
	Monitoring Transaction Logging with System Catalog Tables

	Logical Log
	In This Chapter
	Logical Log
	Logical-Log Files
	Logical-Log Administration
	Logical-Log Files on a Coserver
	Logslices

	Size of the Logical Log
	Performance Considerations
	Long-Transaction Considerations
	Size and Number of Logical-Log Files
	Size of the Logical Log
	Number of Logical-Log Files

	Location of Logical-Log Files
	Identification of Logical-Log Files
	Status Flags of Logical-Log Files
	Backup of Logical-Log Files
	Logical-Log Restore
	Point-In-Time Restore

	Freeing of Logical-Log Files
	Database Server Attempt to Free a Log File
	Action If the Next Logical-Log File Is Not Free
	Logical Log and Long Transactions
	Factors That Influence the Rate at Which Logical-Log Files Fill
	Factors That Prevent Closure of Transactions
	Setting High-Water Marks

	Logs-Full High-Water Mark
	Emergency Log Backup
	System-Monitoring Interface
	Fast Recovery
	Small Logs, Many Users

	Administrative Activity When Logs Need Backing Up

	Logging Process
	Dbspace Logging
	Read Page into Shared-Memory Buffer Pool
	Copy the Page Buffer to the Physical-Log Buffer
	Read Data into Buffer and Create Logical-Log Record
	Flush Physical-Log Buffer to the Physical Log
	Flush Page Buffer
	Flush Logical-Log Buffer

	Managing Logical-Log Files
	In This Chapter
	Backing Up Logical-Log Files
	Adding a �Logical-Log File or Logslice
	Adding a Logical-Log File or Logslice with onutil
	Adding a Logical-Log File
	Adding a Logslice

	Altering a Logslice

	 Dropping a �Logical�Log File or Logslice
	Dropping a Logical-Log File or Logslice with onutil
	Dropping a Log File
	Dropping a Logslice

	 Moving a Logical-Log File to Another Dbspace
	Changing the Size of Logical-Log Files
	Using a Text Editor to Change the Size of a Log File
	Using onutil to Change the Size of a Log File or Logslice

	Changing Logical-Log �Configuration Parameters
	Using a Text Editor to Change LOGSIZE or LOGFILES
	Changing LOGSMAX, LTXHWM, or LTXEHWM in the ONCONFIG File

	Freeing a Logical-Log File
	Freeing a Log File with Status A
	Freeing a Log File with Status U
	Freeing a Log File with Status U-B
	Freeing a Log File with Status U-C or U-C-L
	Freeing a Log File with Status U�B�L

	 Switching to the Next Logical-Log File
	Monitoring Logging Activity
	Monitoring the Logical Log for Fullness
	Using Command-Line Utilities
	onstat -l
	onutil CHECK RESERVED

	Using SMI Tables

	Monitoring Log-Backup Status
	Displaying Logical-Log Records

	Physical Logging
	In This Chapter
	Physical Logging
	Purpose of Physical Logging
	Fast Recovery Use of Physically-Logged Pages
	Backup Use of Physically-Logged Pages

	Database Server Activity That Is Physically Logged
	Physical Logging and Simple Large Objects

	Size and Location of the Physical Log
	Limit to the Size of the Physical Log
	Physical-Log Overflow When Many Users Are in Critical Sections
	Effect of Checkpoints on the Physical-Log Size
	Physical-Log Overflow When Transaction Logging Is Turned Off
	Physical-Log Overflow During Rollback of a Long Transaction

	Location of the Physical Log

	Details of Physical Logging
	Page Is Read into the Shared-Memory Buffer Pool
	A Copy of the Page Buffer Is Stored in the Physical-Log Buffer
	Change Is Reflected in the Data Buffer
	Physical-Log Buffer Is Flushed to the Physical Log
	Page Buffer Is Flushed
	When a Checkpoint Occurs
	How the Physical Log Is Emptied

	Managing the Physical Log
	In This Chapter
	Changing the Physical-Log Location and Size
	Reasons to Change the Physical-Log Location and Size
	Preparing to Make the Changes
	Checking For Adequate Contiguous Space
	Using a Text Editor to Change Physical-Log Location or Size

	Monitoring Physical and Logical Logging Activity
	Using Command-Line Utilities
	onstat -l
	onutil CHECK RESERVED

	Using SMI Tables

	Checkpoints and Fast Recovery
	In This Chapter
	How the Database Server Achieves Data �Consistency
	Critical Sections
	Checkpoints
	Full Checkpoint
	Fuzzy Checkpoint
	Fuzzy Operations
	Write-Ahead Logging and Fast Recovery
	Fuzzy Checkpoints Improve Performance

	Events That Initiate a Fuzzy Checkpoint
	Events That Initiate a Full Checkpoint
	Forcing a Full Checkpoint
	Forcing a Fuzzy Checkpoint
	Sequence of Events in a Checkpoint
	User Threads Cannot Enter a Critical Section
	Logical-Log Buffer Is Flushed to the Logical-Log File on Disk
	Page-Cleaner Thread Flushes the Physical-Log Buffer
	Page-Cleaner Threads Flush Modified Pages in the Buffer Pool
	Checkpoint Thread Writes Checkpoint Record
	Physical Log Is Logically Emptied

	Backup and Restore Considerations

	Time Stamps
	Time Stamps on Disk Pages
	Time Stamps on Logical-Log Pages

	Fast Recovery
	Need for Fast Recovery
	Situations When Fast Recovery Is Initiated
	Fast Recovery and Buffered Logging
	Fast Recovery and No Logging

	Details of Fast Recovery After A Full Checkpoint
	Returning to the Last-Checkpoint State
	Finding the Checkpoint Record in the Logical Log
	Rolling Forward Logical�Log Records
	Rolling Back Incomplete Transactions

	Details of Fast Recovery After A Fuzzy Checkpoint
	Returning to the Last-Checkpoint State for Nonfuzzy Operations
	Locating the Oldest Update in the Logical Log
	Applying the Log Records for Fuzzy Operations
	Rolling Forward Logical�Log Records
	Rolling Back Incomplete Transactions

	Fast Recovery of Tables
	Monitoring Checkpoint Information
	Using onstat Options
	Using SMI Tables

	Mirroring
	In This Chapter
	Mirroring
	Benefits of Mirroring
	Costs of Mirroring
	Consequences of Not Mirroring
	Data to Mirror
	Alternatives to Mirroring
	Logical Volume Managers
	Hardware Mirroring

	Mirroring Process
	Creation of a Mirrored Chunk
	Mirror Status Flags
	Recovery
	Actions During Processing
	Disk Writes to Mirrored Chunks
	Disk Reads from Mirrored Chunks
	Detection of Media Failures
	Chunk Recovery

	Result of Stopping Mirroring
	Structure of a Mirrored Chunk

	Using Mirroring
	In This Chapter
	Steps Required for Mirroring Data
	Enabling �Mirroring
	Changing the MIRROR Parameter with ONCONFIG

	Allocating Disk Space for Mirrored Data
	Linking Chunks
	Relinking a Chunk to a Device After a Disk Failure

	Using Mirroring
	Mirroring the Root Dbspace During Initialization
	Changing the Mirror Status
	Taking Down a Mirrored Chunk
	 Ending Mirroring
	Ending Mirroring with onutil

	Managing Mirroring in Extended Parallel Server
	Starting Mirroring for Unmirrored Dbspaces
	Starting Mirroring for New Dbspaces and Dbslices
	Adding Mirrored Chunks to a Dbspace
	Taking Down a Mirrored Chunk
	Recovering a �Mirrored Chunk
	Modifying Mirroring of All Root Dbspaces
	 Ending Mirroring for a Dbspace

	Consistency Checking
	In This Chapter
	Performing Periodic Consistency Checking
	Verifying Consistency
	Validating Data Pages
	Validating Extents
	Validating Indexes
	Validating Logical Logs
	Validating Reserved Pages
	Validating System Catalog Tables

	Monitoring for Data Inconsistency
	Assertion Failures in the Message Log and Dump Files
	Validating Table and Tablespace Data

	Retaining Consistent Level-0 Backups

	Dealing with Corruption
	Symptoms of Corruption
	Fixing Index Corruption
	I/O Errors on a Chunk

	Collecting Diagnostic Information

	Index

