Performance Guide

for Informix® Dynamic Server®

Informix Dynamic Server
Informix Dynamic Server, Developer Edition
Informix Dynamic Server, Workgroup Edition

Version 7.3
February 1998
Part No. 000-4357

Published by INFORMIX" Press Informix Software, Inc.
4100 Bohannon Drive
Menlo Park, CA 94025-1032

Copyright " 1981-1998 by Informix Software, Inc. or its subsidiaries, provided that portions may be
copyrighted by third parties, as set forth in documentation. All rights reserved.

The following are worldwide trademarks of Informix Software, Inc., or its subsidiaries, registered in the
United States of America as indicated by “D," and in numerous other countries worldwide:

AnswersDOnLineD; INFORMIX; InformixY; Illustra™; C-ISAM"; DataBlade"; Dynamic Server™ ; Gateway";
NewEra

All other names or marks may be registered trademarks or trademarks of their respective owners.
Documentation Team: Diana Chase, Geeta Karmarkar, Virginia Panlasigui, Liz Suto
RESTRICTED RIGHTS/SPECIAL LICENSE RIGHTS

Software and documentation acquired with US Government funds are provided with rights as follows: (1) if
for civilian agency use, with Restricted Rights as defined in FAR 52.227-19; (2) if for Dept. of Defense use, with
rights as restricted by vendor's standard license, unless superseded by negotiated vendor license as prescribed
in DFAR 227.7202. Any whole or partial reproduction of software or documentation marked with this legend
must reproduce the legend.

ii Performance Guide for Informix Dynamic Server

Table of Contents

Introduction

About This Manual . 3
Types of Users . . 3
Software Dependencies . . 4
Assumptions About Your Locale. 4
Demonstration Database 5

New Features . . 5

Documentation Conventions 6
Typographical Conventions 7
Icon Conventions . . G e e 7
Command-Line Conventlons e e e 9
Sample-Code Conventions. 12
Screen-lllustration Conventions 12

Additional Documentation 13
On-LineManuals 13
Printed Manuals 13
Error Message Files . . . G 13
Documentation Notes, Release Notes Machlne Notes o 14
Related Reading T 15

Compliance with Industry Standards e 16

Informix Welcomes Your Comments 17

Chapter 1 Performance Basics

Informix Dynamic Server 14
Parallel-Process Architecture 14
High Performance. 15

Client ApplicationTypes 18
OLTP Applications 18
DSS Applications 18

A Basic Approach to Performance Measurement and Tunlng ... 19

PerformanceGoals 110

Measurements of Performance 11
Throughput 11
Response Time 114
Cost per Transaction . . . T L

Resource Utilization and Performance e R
Resource Utilization. 119
CPU Utilization 121
Memory Utilization. 122
Disk Utilization 124

Factors That Affect Resource Utilization 1-26

Maintenance of Good Performance 128

Topics Beyond the Scope of ThisManual 130

Chapter 2 Performance Monitoring

Creating a Performance History . . . G e 2-3
The Importance of a Performance Hlstory e e 2-3
Tools That Create a Performance History 2-4

Operating-System Tools e e 2-4

Capturing Database Server Performance Data Coe e e 2-6
The onstat Utility. 2-7
Theonlog Utility. 210
The oncheck Utility 211

Chapter 3 Configuration Impacts on Performance

Your Current Configuration . . . e e 3-5

How Configuration Affects CPU Utlllzatlon e 3-6
UNIX Parameters That Affect CPU Utilization 3-6
Configuration Parameters and Environment Variables

That Affect CPU Utilization. 3-10
Virtual Processors and CPU Utilization 321
Multiplexed Connections e 322

How Configuration Affects Memory Utlllzatlon o 323
Allocating Shared Memory 324
Configuring UNIX Shared Memory 329
Using onmode -F to Free Shared Memory 330
Configuration Parameters That Affect Memory Utlllzatlon .. 331
Algorithm for Determining DS_TOTAL_MEMORY 3-39
Data-Replication Buffers and Memory Utilization 3-42
Memory-Resident Tables and the Buffer Pool 3-42

iv Performance Guide for Informix Dynamic Server

Chapter 4

How Configuration Affects I/0 Activity 3-44
Chunk and Dbspace Configuration . 3-44
Placement of Critical Data . 3-46
Configuration Parameters That Affect Crltlcal Data 3-49
Dbspaces for Temporary Tables and Sort Files . . 3-50
Parameters and Variables That Affect Temporary Tables

and Sorting . . 3-51
How Blobspace Configuration Affects Performance . 3-54
How Optical Subsystem Affects Performance 3-56
Environment Variables and Configuration Parameters

Related to Optical Subsystem. 3-57
1/0 for Tables 3-58
Configuration Parameters That Affect I/ O for Tables 3-60
Background 1/0 Activities 361
Configuration Parameters That Affect Background I/O 363

Table and Index Performance Considerations

Placement of Tables on Disk . 4-3
Isolating High-Use Tables 44
Placing High-Use Tables on Middle Partltlons of DISkS 45
Using Multiple Disks for a Dbspace . . 4-6
Spreading Temporary Tables and Sort Files Across Multlple DISkS 4-7
Backup-and-Restore Considerations . .. 4T

Improving Performance for Nonfragmented Tables

and Table Fragments . 4-8
Estimating Table and Index Size . 4-8
Managing Indexes . 4-19
Improving Performance for Index Bunds 4-26
Managing Extents . 4-29

Changing Tables . . 4-38
Loading and Unloading Tables 4-38
Attaching or Detaching Fragments . 4-39
Altering a Table Definition . . o 4-40

Denormalizing the Data Model to Improve Performance . 4-49
Shorter Rows for Faster Queries . 4-49
Expelling Long Strings 4-50
Splitting Wide Tables . 4-52
Redundant Data 4-53

Table of Contents v

Vi

Chapter 5

Chapter 6

Locking

Lock Granularity
Row and Key Locks
Page Locks .
Table Locks.
Database Locks
Waiting for Locks. .

Locks with the SELECT Statement
Isolation Level.
Update Cursors

Locks Placed with INSERT, UPDATE, and DELETE
Key-Value Locking .

Monitoring and Administering Locks
Monitoring Locks . .
Configuring and Monitoring the Number of Locks .
Monitoring Lock Waits and Lock Errors .
Monitoring Deadlocks .

Fragmentation Guidelines

Planning a Fragmentation Strategy .

Setting Fragmentation Goals .

Examining Your Data and Queries.

Physical Fragmentation Factors.
Designing a Distribution Scheme .

Choosing a Distribution Scheme

Designing an Expression-Based Dlstnbutlon Scheme

Suggestions for Improving Fragmentation .
Fragmenting Indexes .

Attached Indexes.

Detached Indexes

Restrictions on Indexes for Fragmented Tables
Fragmenting a Temporary Table . .
Distribution Schemes for Fragment EI|m|nat|0n

Query Expressions for Fragment Elimination .

Effectiveness of Fragment Elimination
Improving the Performance of Attaching and Detachlng Fragments

Improving ALTER FRAGMENT ATTACH Performance

Improving ALTER FRAGMENT DETACH Performance .
Monitoring Fragment Use

Using the onstat Utility.

Using SET EXPLAIN

Performance Guide for Informix Dynamic Server

5-3
5-4
5-4

5-7
5-7
5-7
5-8
5-11
5-12
5-12
5-13
5-14
5-14
5-15
5-17

6-5

6-9
6-10
6-12
6-13
6-15
6-16
6-18
6-18
6-19
6-21
6-21
6-22
6-22
6-24
6-29
6-30
6-37
6-40
6-40
6-41

Chapter 7

Chapter 8

Queries and the Query Optimizer
The Query Plan

Access Plan .

Join Plan .

Join Order. .

How OPTCOMPIND Affects the Query Plan
How Available Memory Affects the Query Plan
Query Plans for Subqueries.

An Example of How Query Plans Are Executed

How the Optimizer Evaluates Query Plans .
How to Display the Query Plan .

Factors That Affect the Query Plan

Using Statistics .
Assessing Filters
Assessing Indexes .

Time Costs of a Query .

Memory Activity Costs .
Sort-Time Costs.
Row-Reading Costs
Sequential Access Costs .
Nonsequential Access Costs
Index Look-Up Costs . .
In-Place ALTER TABLE Costs .
View Costs

Small-Table Costs .
Data-Mismatch Costs.

GLS Functionality Costs.
Network-Access Costs

SQL Within Stored Procedures .

When SQL Is Optimized.
How a Stored Procedure Is Executed

Optimizer Directives
Optimizer Directives

Why Use Optimizer D|rect|ves’> .
Before You Use Directives .
Types of Directives.

Directives and Stored Procedures
Guidelines for Using Directives .

7-3
7-4
7-4

7-7
7-8
7-9

7-10

7-14

7-14

7-18

7-19

7-20

7-22

7-23

7-23

7-24

7-26

7-27

7-27

7-28

7-28

7-29

7-30

7-30

7-31

7-31

7-33

7-33

7-35

8-3
8-3

8-6

8-15
8-16

Table of Contents vii

viii

Chapter 9

Chapter 10

Chapter 11

Parallel Database Query
How the Optimizer Structures a PDQ Query
The Memory Grant Manager
Allocating Resources for PDQ Queries .
Limiting the Priority of DSS Queries .
Adjusting the Amount of Memory . .
Limiting the Number of Concurrent Scans .
Limiting the Maximum Number of Queries
Managing Applications .
Using SET EXPLAIN
Using OPTCOMPIND .
Using SET PDQPRIORITY
User Control of Resources.
Dynamic Server Administrator Control of Resources
Monitoring PDQ Resources
Using the onstat Utility.
Using SET EXPLAIN

Improving Individual Query Performance
Using a Dedicated Test System

Improving Filter Selectivity

Updating Statistics .

Creating Data Dlstrlbutlons .

UPDATE STATISTICS Performance Con5|derat|ons
How to Improve Performance with Indexes .
Improving Sequential Scans
Reducing the Impact of Join and Sort Operatlons
Reviewing the Optimization Level

Optimizing User-Response Time for Queries
How to Specify the Query Performance Goal .

Preferred Query Plans for User-Response-Time Optlmlzatlon

The onperf Utility on UNIX

Overview of the onperf Utility
Basic onperf Functions .
The onperf Tools . .
Requirements for Running onperf
Starting and Exiting onperf .

Performance Guide for Informix Dynamic Server

9-4
9-5

9-7
9-12
9-13
9-13
9-14
9-14
9-14
9-15
9-15
9-15
9-17
9-17
9-22

10-4
10-5
10-6
10-7
10-10
10-11
10-14
10-15
10-18
10-18
10-19
10-20

11-3
11-3
11-6
11-7
11-8

The onperf User Interface .
Graph Tool
Query-Tree Tool.
Status Tool
Activity Tools

Ways to Use onperf .
Routine Monitoring

Diagnosing Sudden Performance Loss .
Diagnosing Performance Degradation .

The onperf Metrics .
Database Server Metrlcs
Disk-Chunk Metrics .
Disk-Spindle Metrics .
Physical-Processor Metrics .
Virtual-Processor Metrics
Session Metrics .
Tblspace Metrics
Fragment Metrics .

Appendix A Case Studies and Examples

Index

11-9

11-9
. 11-19
. 11-20
. 11-21
. 11-22
. 11-22
. 11-22
. 11-22
. 11-23
. 11-23
. 11-26
. 11-26
. 11-27
. 11-27
. 11-28
. 11-29
. 11-30

Table of Contents ix

Introduction

About This Manual.
Types of Users .
Software Dependenmes .
Assumptions About Your Locale.
Demonstration Database

New Features.

Documentation Conventions

Typographical Conventions
Icon Conventions .

Comment Icons .

Feature, Product, and Platform Icons
Command-Line Conventions .

How to Read a Command-Line Dlagram
Sample-Code Conventions .
Screen-lllustration Conventions .

Additional Documentation .
On-Line Manuals .
Printed Manuals
Error Message Files
Documentation Notes, Release Notes Machlne Notes
Related Reading

Compliance with Industry Standards

Informix Welcomes Your Comments .

O©oOoON~NO O O~ b oww

2 Performance Guide for Informix Dynamic Server

ead this introduction for an overview of the information

provided in this manual and for an understanding of the documentation
conventions used.

About This Manual

This manual provides information about how to configure and operate
Informix Dynamic Server to improve overall system throughput and how to
improve the performance of SQL queries.

Types of Users

This manual is for the following users:

Database users

Database administrators

Database server administrators
Database-application programmers
Performance engineers

This manual assumes that you have the following background:

A working knowledge of your computer, your operating system,
and the utilities that your operating system provides

Some experience working with relational databases or exposure to
database concepts

Some experience with database server administration, operating-
system administration, or network administration

Introduction 3

Software Dependencies

If you have limited experience with relational databases, SQL, or your
operating system, refer to your Getting Started manual for a list of supple-
mentary titles.

Software Dependencies

This manual assumes that your database server is one of the following
products;

= Informix Dynamic Server, Version 7.3
= Informix Dynamic Server, Developer Edition, Version 7.3.
= Informix Dynamic Server, Workgroup Edition, Version 7.3.

Assumptions About Your Locale

Informix products can support many languages, cultures, and code sets. All
culture-specific information is brought together in a single environment,
called a GLS (Global Language Support) locale.

This manual assumes that you are using the default locale, en_us.8859-1. This
locale supports U.S. English format conventions for dates, times, and
currency. In addition, this locale supports the 1SO 8859-1 code set, which
includes the ASCII code set plus many 8-bit characters such as §, &, and f.

If you plan to use nondefault characters in your data or your SQL identifiers,
or if you want to conform to the nondefault collation rules of character data,
you need to specify the appropriate nondefault locale.

For instructions on how to specify a nondefault locale, additional syntax, and
other considerations related to GLS locales, see the Informix Guide to GLS
Functionality.

4 Performance Guide for Informix Dynamic Server

Demonstration Database

Demonstration Database

The DB-Access utility, which is provided with your Informix database server
products, includes a demonstration database called stores7 that contains
information about a fictitious wholesale sporting-goods distributor. You can
use SQL scripts provided with DB-Access to derive a second database, called
sales_demo. This database illustrates a dimensional schema for data-
warehousing applications. Sample command files are also included for
creating and populating these databases.

Many examples in Informix manuals are based on the stores7 demonstration
database. The stores7 database is described in detail and its contents are
listed in the Informix Guide to SQL: Reference.

The scripts that you use to install the demonstration databases reside

in the SINFORMIXDIR/bin directory on UNIX platforms and the
%INFORMIXDIR%\bin directory on Windows NT platforms. For a complete
explanation of how to create and populate the stores7 demonstration
database, refer to the DB-Access User Manual. For an explanation of how to
create and populate the sales_demo database, refer to the Informix Guide to
Database Design and Implementation.

New Features

Most of the new features for Version 7.3 of Informix Dynamic Server fall into
five major areas:

= Reliability, availability, and serviceability

= Performance

= Windows NT-specific features

= Application migration

= Manageability
Several additional features affect connectivity, replication, and the optical

subsystem. For a comprehensive list of new features, see the release notes for
the database server.

Introduction 5

Documentation Conventions

O

O

This manual includes information about the following new features:

= Enhanced query performance with the following features:

Enhancements to the SELECT statement to allow selection of the
first n rows

Key-first index scans

Memory-resident tables

Optimizer directives

Enhancements to the optimization of correlated subqueries
Optimization goal

Enhancements to the SET OPTIMIZATION statement

New OPT_GOAL configuration parameter

New OPT_GOAL environment variable

Ordered merge for fragmented index scan

= Improved availability and concurrency with the following features:

Enhancements to the ALTER FRAGMENT statement with
ATTACH and DETACH clauses to minimize index rebuilds

Enhancements to the ALTER TABLE statement to allow more
situations to use the in-place alter algorithm

New oncheck options to increase concurrency and performance

manuals.

Documentation Conventions

This section describes the conventions that this manual uses. These conven-
tions make it easier to gather information from this and other Informix

The following conventions are covered:

= Typographical conventions
= Icon conventions

= Command-line conventions
= Sample-code conventions

6 Performance Guide for Informix Dynamic Server

Typographical Conventions

Typographical Conventions

This manual uses the following standard set of conventions to introduce new
terms, illustrate screen displays, describe command syntax, and so forth.

Convention Meaning

KEYWORD All keywords appear in uppercase letters in a serif font.

italics Within text, new terms and emphasized words appear in italics.
Within syntax diagrams, values that you are to specify appear
in italics.

boldface Identifiers (names of classes, objects, constants, events,

functions, program variables, forms, labels, and reports),
environment variables, database names, filenames, table
names, column names, icons, menu items, command names,
and other similar terms appear in boldface.

monospace Information that the product displays and information that you
enter appear in a monospace typeface.

KEYSTROKE Keys that you are to press appear in uppercase letters in a sans
serif font.

¢ This symbol indicates the end of feature-, product-, platform-,
or compliance-specific information.

O This symbol indicates a menu item. For example, “Choose
Tools Options” means choose the Options item from the
Tools menu.

Tip: When you are instructed to “enter” characters or to “execute” a command,
immediately press RETURN after you type the indicated information on your
keyboard. When you are instructed to “type” the text or to “press” other keys, you do
not need to press RETURN.

Icon Conventions

Throughout the documentation, you will find text that is identified by several
different types of icons. This section describes these icons.

Introduction 7

Icon Conventions

Comment Icons

Comment icons identify warnings, important notes, or tips. This information
is always displayed in italics.

Icon

Description

The warning icon identifies vital instructions, cautions, or
critical information.

The important icon identifies significant information about
the feature or operation that is being described.

The tip icon identifies additional details or shortcuts for the
functionality that is being described.

Feature, Product, and Platform Icons

Feature, product, and platform icons identify paragraphs that contain
feature-specific, product-specific, or platform-specific information.

Icon

Description

Identifies information that relates to the Informix GLS
feature.

IDS

Identifies information that is specific to Dynamic Server
and its editions. However, in some cases, the identified
section applies only to Informix Dynamic Server and not to
Informix Dynamic Server, Workgroup and Developer
Editions. Such information is clearly identified.

8 Performance Guide for Informix Dynamic Server

(1of2)

Commanad-Line Conventions

Icon Description

UNIX Identifies information that is specific to the UNIX platform.

Identifies information that is specific to Informix Dynamic

W/D .
Server, Workgroup and Developer Editions.
WIN NT Identifies information that is specific to the windows NT
environment.

(2 of2)

These icons can apply to arow in atable, one or more paragraphs, or an entire
section. If an icon appears next to a section heading, the information that
applies to the indicated feature, product, or platform ends at the next heading
at the same or higher level. A ¢ symbol indicates the end of the feature-,
product-, or platform-specific information that appears within a table or a set
of paragraphs within a section.

Command-Line Conventions

This section defines and illustrates the format of commands that are available
in Informix products. These commands have their own conventions, which
might include alternative forms of a command, required and optional parts
of the command, and so forth.

Each diagram displays the sequences of required and optional elements that
are valid in a command. A diagram begins at the upper-left corner with a
command. It ends at the upper-right corner with a vertical line. Between
these points, you can trace any path that does not stop or back up. Each path
describes a valid form of the command. You must supply a value for words
that are in italics.

Introduction 9

Commana-Line Conventions

line path.

You might encounter one or more of the following elements on a command-

Element

Description

command

This required element is usually the product name or
other short word that invokes the product or calls the
compiler or preprocessor script for a compiled Informix
product. It might appear alone or precede one or more
options. You must spell a command exactly as shown
and use lowercase letters.

variable

A word in italics represents a value that you must
supply, such as a database, file, or program name. A table
following the diagram explains the value.

-flag

A flag is usually an abbreviation for a function, menu, or
option name or for a compiler or preprocessor argument.
You must enter a flag exactly as shown, including the
preceding hyphen.

.ext

A filename extension, such as .sql or .cob, might follow
a variable that represents a filename. Type this extension
exactly as shown, immediately after the name of the file.
The extension might be optional in certain products.

(ci+*-7)

Punctuation and mathematical notations are literal
symbols that you must enter exactly as shown.

Single quotes are literal symbols that you must enter as
shown.

Privileges
p. 5-17

A reference in a box represents a subdiagram. Imagine
that the subdiagram is spliced into the main diagram at
this point. When a page number is not specified, the
subdiagram appears on the same page.

— ALL —

A shaded option is the default action.

—

Syntax within a pair of arrows indicates a subdiagram.

_|

The vertical line terminates the command.

10 Performance Guide for Informix Dynamic Server

(10of2)

Commanad-Line Conventions

Description

Element
OFF

T

A branch below the main path indicates an optional
path. (Any term on the main path is required, unless
a branch can circumvent it.)

A loop indicates a path that you can repeat. Punctuation
along the top of the loop indicates the separator symbol
for list items.

: ,@— ;izc :

A gate (/3\) on a path indicates that you can only use
that path the indicated number of times, even if it is part
of a larger loop. Here you can specify size no more than
three times within this statement segment.

(2 of 2)

How to Read a Command-Line Diagram

Figure 1 shows a command-line diagram that uses some of the elements that
are listed in the previous table.

Figure 1
Example of a Command-Line Diagram

setenv

INFORMIXC ﬁ compiler / }
pathname

To construct a command correctly, start at the top left with the command.
Then follow the diagram to the right, including the elements that you want.
The elements in the diagram are case sensitive.

Figure 1 diagrams the following steps:

1. Type the word setenv.
2. Type the word INFORMIXC.
3. Supply either a compiler name or pathname.

After you choose compiler or pathname, you come to the terminator.
Your command is complete.

4. Press RETURN to execute the command.

Introduction 11

Sample-Code Conventions

Sample-Code Conventions

Examples of SQL code occur throughout this manual. Except where noted,
the code is not specific to any single Informix application development tool.
If only SQL statements are listed in the example, they are not delimited by
semicolons. For instance, you might see the code in the following example:

CONNECT TO stores7/

DELETE FROM customer
WHERE customer_num = 121

COMMIT WORK
DISCONNECT CURRENT

To use this SQL code for a specific product, you must apply the syntax rules
for that product. For example, if you are using the Query-language option of
DB-Access, you must delimit multiple statements with semicolons. If you are
using an SQL API, you must use EXEC SQL at the start of each statement and
a semicolon (or other appropriate delimiter) at the end of the statement.

Tip: Ellipsis points in a code example indicate that more code would be added in a
full application, but it is not necessary to show it to describe the concept being
discussed.

For detailed directions on using SQL statements for a particular application
development tool or SQL API, see the manual for your product.

Screen-lllustration Conventions

The illustrations in this manual represent a generic rendition of various
windowing environments. The details of dialog boxes, controls, and
windows were deleted or redesigned to provide this generic look. Therefore,
the illustrations in this manual depict the onperf utility a little differently
than the way it appears on your screen.

12 Performance Guide for Informix Dynamic Server

Additional Documentation

Additional Documentation

For additional information, you might want to refer to the following types of
documentation:

= On-line manuals

= Printed manuals

s Error message files

= Documentation notes, release notes, and machine notes

= Related reading

On-Line Manuals

An Answers OnLine CD that contains Informix manuals in electronic format
is provided with your Informix products. You can install the documentation
or access it directly from the CD. For information about how to install, read,
and print on-line manuals, see the installation insert that accompanies
Answers OnLine.

Printed Manuals

To order printed manuals, call 1-800-331-1763 or send email to
moreinfo@informix.com. Please provide the following information when
you place your order:

= The documentation that you need

= The quantity that you need

= Your name, address, and telephone number

Error Message Files

Informix software products provide ASCII files that contain all of the
Informix error messages and their corrective actions. For a detailed
description of these error messages, refer to Informix Error Messages in
Answers OnLine.

Introduction 13

Documentation Notes, Release Notes, Machine Notes

UNIX

WIN NT

UNIX

To read the error messages on UNIX, you can use the following commands.

Command Description

finderr Displays error messages on line

rofferr Formats error messages for printing
L4

To read error messages and corrective actions on Windows NT, use the
Informix Find Error utility. To display this utility, choose
Startd ProgramsO Informix from the Task Bar. ¢

Documentation Notes, Release Notes, Machine Notes

In addition to printed documentation, the following sections describe the on-
line files that supplement the information in this manual. Please examine
these files before you begin using your database server. They contain vital
information about application and performance issues.

On UNIX platforms, the following on-line files appear in the
$INFORMIXDIR/release/en_us/0333 directory.

On-Line File Purpose

PERFDOC_7.3 The documentation-notes file describes features that are not
covered in this manual or that have been modified since
publication.

SERVERS 7.3 The release-notes file describes feature differences from earlier

versions of Informix products and how these differences might
affect current products. This file also contains information about
any known problems and their workarounds.

IDS_7.3 The machine-notes file describes any special actions that are
required to configure and use Informix products on your
computer. Machine notes are named for the product described.

14 Performance Guide for Informix Dynamic Server

WIN NT

Related Reading

The following items appear in the Informix folder. To display this folder,
choose Startd ProgramsO Informix from the Task Bar.

Item Description

Documentation Notes This item includes additions or corrections to manuals,
along with information about features that might not be
covered in the manuals or that have been modified since
publication.

Release Notes This item describes feature differences from earlier
versions of Informix products and how these differ-
ences might affect current products. This file also
contains information about any known problems and
their workarounds.

Machine notes do not apply to Windows NT platforms. ¢

Related Reading

The following publications provide additional information about the topics
that are discussed in this manual. For a list of publications that provide an
introduction to database servers and operating-system platforms, refer to
your Getting Started manual.

For additional technical information on database management, consult the
following books:

= An Introduction to Database Systems by C. J. Date (Addison-Wesley
Publishing Company, Inc., 1995)

= Transaction Processing: Concepts and Techniques by Jim Gray and
Andreas Reuter (Morgan Kaufmann Publishers, Inc., 1993)

Introduction 15

Compliance with Industry Standards

To learn more about the SQL language, consult the following texts:
= A Guide to the SQL Standard by C. J. Date with H. Darwen (Addison-
Wesley Publishing Company, Inc., 1993)

= Understanding the New SQL: A Complete Guide by J. Melton and
A. Simon (Morgan Kaufmann Publishers, Inc., 1993)

= Using SQL by J. Groff and P. Weinberg (Osborne McGraw-Hill, 1990)

To learn more about performance measurement and tuning, consult the
following texts:

= Measurement and Tuning of Computer Systems by Domenico Ferrari,
Giuseppe Serazzi, and Alessandro Zeigner (Prentice-Hall, Inc., 1983)

= High Performance Computing by Kevin Dowd (O’Reilly & Associates,
Inc., 1993)

Compliance with Industry Standards

The American National Standards Institute (ANSI) has established a set of
industry standards for SQL. Informix SQL-based products are fully compliant
with SQL-92 Entry Level (published as ANSI X3.135-1992), which is identical
to 1SO 9075:1992. In addition, many features of Informix database servers
comply with the SQL-92 Intermediate and Full Level and X/Open SQL CAE
(common applications environment) standards.

16 Performance Guide for Informix Dynamic Server

Informix Welcomes Your Comments

Informix Welcomes Your Comments

Please tell us what you like or dislike about our manuals. To help us with
future versions of our manuals, we want to know about corrections or clari-
fications that you would find useful. Include the following information:

= The name and version of the manual that you are using
= Any comments that you have about the manual
= Your name, address, and phone number

Write to us at the following address:

Informix Software, Inc.
SCT Technical Publications Department

4100 Bohannon Drive
Menlo Park, CA 94025

If you prefer to send email, our address is:

doc@informix.com

Or send a facsimile to the Informix Technical Publications Department at;

650-926-6571

We appreciate your feedback.

Introduction

17

Performance Basics

Informix Dynamic Server

Parallel-Process Architecture .
Scalability
Client/Server Archltecture

High Performance. .
Unbuffered Disk Management . .
Dynamic Shared-Memory Management .
Dynamic Thread Allocation .
Parallel Execution and Fragmentatlon
Connecting Clients and Database Servers

Client Application Types.
OLTP Applications
DSS Applications .

A Basic Approach to Performance Measurement and Tuning
Performance Goals .

Measurements of Performance .

Throughput . .
Throughput Measurement .
Standard Throughput Benchmarks.

Response Time . .
Response Time and Throughput
Response Time Measurement

Cost per Transaction .

14
14

1-5
1-5
1-6
1-6
1-7
1-7

1-8
1-8

1-9
1-10

1-11
1-11
1-12
1-12
1-14
1-15
1-16
1-17

Resource Utilization and Performance
Resource Utilization .
CPU Utilization.
Memory Utilization
Disk Utilization .

Factors That Affect Resource Utilization.
Maintenance of Good Performance

Topics Beyond the Scope of This Manual

1-2 Performance Guide for Informix Dynamic Server

1-18
1-19
1-21
1-22
1-24

1-26
1-28
1-30

his manual discusses performance measurement and tuning for

Informix Dynamic Server. Performance measurement and tuning encompass
a broad area of research and practice. This manual discusses only perfor-
mance tuning issues and methods that are relevant to daily database server
administration and query execution. For a general introduction to perfor-
mance tuning, refer to the texts listed in the “Related Reading” on page -15.

This manual can help you perform the following tasks:

Monitor system resources that are critical to performance
Identify database activities that affect these critical resources
Identify and monitor queries that are critical to performance

Use the database server utilities for performance monitoring and
tuning

Eliminate performance bottlenecks in the following ways:
o Balance the load on system resources

o Adjust the configuration of your database server

o Adjust the arrangement of your data

o Allocate resources for decision-support queries

o Create indexes to speed up retrieval of your data

The remainder of this chapter does the following:

Provides a brief description of Dynamic Server parallel processing
Describes the applications that use Dynamic Server

Describes a basic approach for performance measurement and
tuning

Describes roles in maintaining good performance
Lists topics that are not covered in this manual

Performance Basics 1-3

Informix Dynamic Server

Informix Dynamic Server

This section provides a brief description of the parallel-processing archi-
tecture and performance advantages of Dynamic Server.

Parallel-Process Architecture

Dynamic Server is a multithreaded relational database server that exploits
symmetric multiprocessor (SMP) and uniprocessor architectures.

Scalability

Informix dynamic scalable architecture (DSA) describes the capability of an
Informix database server to scale its resources to the demands that
applications place on it.

A key element of DSA is the virtual processors that manage central
processing, disk 170, networking, and optical functions in parallel. These
virtual processors take advantage of the underlying multiple processors on
an SMP computer to execute SQL operations and utilities in parallel. This
ability to execute tasks in parallel provides a high degree of scalability for
growing workloads.

For more information on virtual processors, refer to your Administrator’s
Guide.

Client/Server Architecture

Dynamic Server is a database server that processes requests for data from client
applications. The client is an application program that you run to request
information from a database.

The database server accesses the requested information from its databases
and sends back the results to the client applications. Accessing the database
includes activities such as coordinating concurrent requests from multiple
clients, performing read and write operations to the databases, and enforcing
physical and logical consistency on the data.

1-4 Performance Guide for Informix Dynamic Server

High Performance

Client applications use Structured Query Language (SQL) to send requests
for data to the database server. Client programs include the DB-Access utility
and programs that you write using an Informix API such as
INFORMIX-ESQL/C or INFORMIX-CLL.

High Performance

Dynamic Server achieves high performance through the following
mechanisms:

= Unbuffered disk management

= Dynamic shared-memory management

= Dynamic thread allocation

= Parallel Execution

= Multiple connections

The following paragraphs explain each of these mechanisms.

Unbuffered Disk Management

The database server uses unbuffered disk access to improve the speed of 170
operations.

UNIX platforms provide unbuffered access with character-special devices
(also known as raw disk devices). For more information about character-
special devices, refer to your UNIX operating-system documentation. ¢

Windows NT platforms provide unbuffered access through both unbuffered
files and raw disk devices. For more information about unbuffered files, refer
to your Windows NT operating-system documentation. ¢

WIN NT

When you store tables on raw disks or in unbuffered files, the database server
can manage the physical organization of data and minimize disk 1/0. When
you store tables in this manner, you can receive the following performance
advantages:

= The database server optimizes table access by guaranteeing that
rows are stored contiguously.

= The database server bypasses operating-system 1/0 overhead by
performing direct data transfers between disk and shared memory.

Performance Basics 1-5

High Performance

For more information about how the database server uses disk space, refer to
your Administrator’s Guide.

Dynamic Shared-Memory Management

All applications that use a single instance of a database server share data in
the memory space of the database server. After one application reads data
from a table, other applications can access whatever data is already in
memory. Through shared-memory management, the database server
minimizes disk access and the associated impact on performance.

Dynamic Server shared memory contains both data from the database and
control information. Because various applications need the data that is
located in a single, shared portion of memory, you can put all control
information needed to manage access to that data in the same place.

Dynamic Server adds memory dynamically as needed. As the administrator,
you specify the size of the segment to add. For information on how to
estimate the initial amount of shared memory and the amount for Dynamic
Server to add dynamically, refer to “How Configuration Affects Memory
Utilization” on page 3-23.

Dynamic Thread Allocation

To support multiple client applications, the database server uses a relatively
small number of processes called virtual processors. A virtual processor is a
multithreaded process that can serve multiple clients and, where necessary,
run multiple threads to work in parallel for a single query. In this way, the
database server provides a flexible architecture that provides dynamic load
balancing for both on-line transaction processing (OLTP) and for decision-
support applications. For complete details about dynamic scalable
architecture, refer to your Administrator’s Guide.

1-6 Performance Guide for Informix Dynamic Server

High Performance

Parallel Execution and Fragmentation

The database server can allocate multiple threads to work in parallel on a
single query. This feature is known as the parallel database query (PDQ)
feature.

The database server uses local table partitioning (also called fragmentation) to
distribute tables intelligently across disks to improve performance. If you
have very large databases (VLDBs), the ability to fragment data is important
if you want to efficiently manage the data.

The PDQ feature is most effective when you use it with the fragmentation
feature. For information on how to use the PDQ feature, refer to Chapter 9,
“Parallel Database Query.” For information on how to use the fragmentation
feature, refer to Chapter 6, “Fragmentation Guidelines.”

Connecting Clients and Database Servers

A client application communicates with the database server through the
connection facilities that the database server provides.

At the source-code level, a client connects to the database server through an
SQL statement. Beyond that, the client’s use of connection facilities is
transparent to the application.

As the database administrator, you specify the types of connections that the
database server supports in a connectivity-information file called sqlhosts.
For more information on the connections facilities and sqlhosts file, refer to
your Administrator’s Guide.

You can also specify values of configuration parameters that affect the
performance of these connections. For more information, refer to
“NETTYPE” on page 3-18 and “Multiplexed Connections” on page 3-22.

Performance Basics 1-7

Client Application Types

Client Application Types

Two major classes of applications operate on data that is in a relational
database:

= On-line transaction processing (OLTP) applications

= Decision-support system (DSS) applications

OLTP Applications

OLTP applications are often used to capture new data or update existing data.
These operations typically involve quick, indexed access to a small number
of rows. An order-entry system is a typical example of an OLTP application.
OLTP applications are often multiuser applications with acceptable response
times measures in fractions of seconds.

OLTP applications have the following characteristics:

= Simple transactions that involve small amounts of data
= Indexed access to data

= Many users

= Frequent requests

= Fast response times

DSS Applications

DSS applications are often used to report on or consolidate data that OLTP
operations have captured over time. These applications provide information
that is often used for accounting, strategic planning, and decision-making.
Data within the database is typically queried but not updated during DSS
operations. Typical DSS applications include payroll, inventory, and financial
reports.

1-8 Performance Guide for Informix Dynamic Server

A Basic Approach to Performance Measurement and Tuning

A Basic Approach to Performance Measurement
and Tuning

Early indications of a performance problem are often vague; users might
report that the system seems sluggish. Users might complain that they cannot
get all their work done, that transactions take too long to complete, that
gueries take too long to process, or that the application slows down at certain
times during the day. To determine the nature of the problem, you must
measure the actual use of system resources and evaluate the results.

Users typically report performance problems in the following situations:

= Response times for transactions or queries take longer than expected.

= Transaction throughput is insufficient to complete the required
workload.

= Transaction throughput decreases.
To maintain optimum performance for your database applications, develop
a plan for measuring system performance, making adjustments to maintain
good performance and taking corrective measures when performance
degrades. Regular, specific measurements can help you to anticipate and

correct performance problems. By recognizing problems early, you can
prevent them from affecting your users significantly.

Informix recommends an iterative approach to optimizing Dynamic Server
performance. If repeating the steps found in the following list does not
produce the desired improvement, insufficient hardware resources or ineffi-
cient code in one or more client applications might be causing the problem.

To optimize performance

1. Establish your performance objectives.

2. Take regular measurements of resource utilization and database
activity.

3. ldentify symptoms of performance problems: disproportionate
utilization of CPU, memory, or disks.

4. Tune your operating-system configuration.
5. Tune your Dynamic Server configuration.

Performance Basics 1-9

Performance Goals

10.
11.
12.

Optimize your chunk and dbspace configuration, including place-
ment of logs, sort space, and space for temporary tables and sort files.

Optimize your table placement, extent sizing, and fragmentation.
Improve your indexes.

Optimize your background 1/0 activities, including logging, check-
points, and page cleaning.

Schedule backup and batch operations for off-peak hours.
Optimize the implementation of your database application.
Repeat steps 2 through 11.

Performance Goals

Many considerations go into establishing performance goals for Dynamic
Server and the applications that it supports. Be clear and consistent about
articulating your performance goals and priorities, so that you can provide
realistic and consistent expectations about the performance objectives for
your application. Consider the following questions when you establish your
performance goals:

Is your top priority to maximize transaction throughput, minimize
response time for specific queries, or achieve the best overall mix?

What sort of mix between simple transactions, extended decision-
support queries, and other types of requests does the database server
typically handle?

At what point are you willing to trade transaction-processing speed
for availability or the risk of loss for a particular transaction?

Is this Dynamic Server instance used in a client/server configu-
ration? If so, what are the networking characteristics that affect its
performance?

What is the maximum number of users that you expect?

Is your configuration limited by memory, disk space, or CPU
resources?

The answers to these questions can help you set realistic performance goals
for your resources and your mix of applications.

1-10 Performance Guide for Informix Dynamic Server

Measurements of Performance

Measurements of Performance

The following measures describe the performance of a transaction-
processing system:

= Throughput

= Response time

= Cost per transaction
= Resource utilization

Throughput, response time, and cost per transaction are described in the
sections that follow. Resource utilization can have one of two meanings,
depending on the context. The term can refer to the amount of a resource that
a particular operation requires or uses, or it can refer to the current load on a
particular system component. The term is used in the former sense to
compare approaches for accomplishing a given task. For instance, if a given
sort operation requires 10 megabytes of disk space, its resource utilization is
greater than another sort operation that requires only 5 megabytes of disk
space. The term is used in the latter sense to refer, for instance, to the number
of CPU cycles that are devoted to a particular query during a specific time
interval.

For a discussion of the performance impacts of different load levels on
various system components, refer to “Resource Utilization and Performance”
on page 1-18.

Throughput

Throughput measures the overall performance of the system. For transaction
processing systems, throughput is typically measured in transactions per
second (TPS) or transactions per minute (TPM). Throughput depends on the
following factors:

= The specifications of the host computer

= The processing overhead in the software

= The layout of data on disk

= The degree of parallelism that both hardware and software support

= The types of transactions being processed

Performance Basics 1-11

Throughput

Throughput Measurement

The best way to measure throughput for an application is to include code in
the application that logs the time stamps of transactions as they commit. If
your application does not provide support for measuring throughput
directly, you can obtain an estimate by tracking the number of COMMIT
WORK statements that Dynamic Server logs during a given time interval. You
can use the onlog utility to obtain a listing of logical-log records that are
written to log files. You can use information from this command to track
insert, delete, and update operations as well as committed transactions.
However, you cannot obtain information stored in the logical-log buffer until
that information is written to a log file.

If you need more immediate feedback, you can use onstat -p to gather an
estimate. You can use the SET LOG statement to set the logging mode to
unbuffered for the databases that contain tables of interest. You can also use
the trusted auditing facility in Dynamic Server to record successful COMMIT
WORK events or other events of interest in an audit log file. Using the
auditing facility can increase the overhead involved in processing any
audited event, which can reduce overall throughput. For information about
the trusted auditing facility, refer to your Trusted Facility Manual.

Standard Throughput Benchmarks

Industry-wide organizations such as the Transaction Processing Performance
Council (TPC) provide standard benchmarks that allow reasonable
throughput comparisons across hardware configurations and database
servers. Informix is proud to be an active member in good standing of the
TPC.

1-12 Performance Guide for Informix Dynamic Server

Throughput

The TPC provides the following standardized benchmarks for measuring
throughput:

TPC-A

This benchmark is used for simple on-line transaction-processing
(OLTP) comparisons. It characterizes the performance of a simple
transaction-processing system, emphasizing update-intensive
services. TPC-A simulates a workload that consists of multiple user
sessions connected over a network with significant disk 1/0 activity.

TPC-B

This benchmark is used for stress-testing peak database throughput.
It uses the same transaction load as TPC-A but removes any
networking and interactive operations to provide a best-case
throughput measurement.

TPC-C

This benchmark is used for complex OLTP applications. It is derived
from TPC-A and uses a mix of updates, read-only transactions, batch
operations, transaction rollback requests, resource contentions, and
other types of operations on a complex database to provide a better
representation of typical workloads.

TPC-D

This benchmark measures query-processing power, which is
completion times for very large queries. TPC-D is a decision-support
benchmark built around a set of typical business questions phrased
as SQL queries against large databases (in the gigabyte or terabyte
range).

Because every database application has its own particular workload, you
cannot use TPC benchmarks to predict the throughput for your application.
The actual throughput that you achieve depends largely on your application.

Performance Basics 1-13

Response Time

1.
2.

Response Time

Response time measures the performance of an individual transaction or
query. Response time is typically treated as the elapsed time from the
moment that a user enters a command or activates a function until the time
that the application indicates the command or function has completed. The
response time for a typical Dynamic Server application includes the
following sequence of actions. Each action requires a certain amount of time.
The response time does not include the time that it takes for the user to think
of and enter a query or request:

The application forwards a query to Dynamic Server.

Dynamic Server performs query optimization and retrieves any
stored procedures.

Dynamic Server retrieves, adds, or updates the appropriate records
and performs disk 1/0 operations directly related to the query.

Dynamic Server performs any background 1/0 operations, such as
logging and page cleaning, that occur during the period in which the
query or transaction is still pending.

Dynamic Server returns a result to the application.

The application displays the information or issues a confirmation
and then issues a new prompt to the user.

1-14 Performance Guide for Informix Dynamic Server

Response Time

Figure 1-1 shows how these various intervals contribute to the overall
response time.

Figure 1-1
Components of the Response Time for a Single Transaction

DB-Access Database server

SELECT *in custno
'WHERE custid =
custname = X

custno custname
1234 XYZLTD

Database Background 1235 XSPORTS
\v/

User enters Application Database server ~ Database server — Database server Database server ~Client application
request (not forwards optimizes query retrieves or adds performs modifies data receives, processes,
included in requestto and retrieves selected records. background I/0 values and and displays results
response time). database stored (sometimes sends results to from database server.
server. procedures. affects response client.
time).

_—— = = | | | I >

Overall response time

Response Time and Throughput

Response time and throughput are related. The response time for an average
transaction tends to decrease as you increase overall throughput. However,
you can decrease the response time for a specific query, at the expense of
overall throughput, by allocating a disproportionate amount of resources to
that query. Conversely, you can maintain overall throughput by restricting
the resources that the database allocates to a large query.

The trade-off between throughput and response time becomes evident when
you try to balance the ongoing need for high transaction throughput with an
immediate need to perform a large decision-support query. The more
resources that you apply to the query, the fewer you have available to process
transactions, and the larger the impact your query can have on transaction
throughput. Conversely, the fewer resources you allow the query, the longer
the query takes.

Performance Basics 1-15

Response Time

UNIX

Response Time Measurement

You can use either of the following methods to measure response time for a
query or application:

= Operating-system timing commands
= Operating-system performance monitor
= Timing functions within your application

Operating-System Timing Commands

Your operating system typically has a utility that you can use to time a
command. You can often use this timing utility to measure the response times
to SQL statements that a DB-Access command file issues.

If you have a command file that performs a standard set of SQL statements,
you can use the time command on many systems to obtain an accurate
timing for those commands. For more information about command files,
refer to the DB-Access User Manual. The following example shows the output
of the UNIX time command:

time commands.dba

4.3 real 1.5 user 1.3 sys

The time output lists the amount of elapsed time (real), the amount of time
spent performing user-defined routines, and the amount of time spent
executing system calls. If you use the C shell, the first three columns of output
from the C shell time command show the user, system, and elapsed times,
respectively. In general, an application often performs poorly when the
proportion of time spent in system calls exceeds one-third of the total elapsed
time.

1-16 Performance Guide for Informix Dynamic Server

WIN NT

Response Time

The time command gathers timing information about your application. You
can use this command to invoke an instance of your application, perform a
database operation, and then exit to obtain timing figures, as the following

example illustrates:

time sqglapp
(enter SQL command through sglapp, then exit)
10.1 real 6.4 user 3.7 sys

You can use a script to run the same test repeatedly, which allows you to
obtain comparable results under different conditions. You can also obtain
estimates of your average response time by dividing the elapsed time for the
script by the number of database operations that the script performs. ¢

Operating-System Performance Monitor

Operating systems usually have a performance monitor that you can use to
measure response time for a query or process.

You can often use the Performance Monitor that you Windows NT operating
system supplies to measure the following times:

= Usertime
= Processor time
= Elapsedtime ¢

Timing Functions Within Your Application

Most programming languages have a library function for the time of day. If
you have access to the source code, you can insert pairs of calls to this
function to measure the elapsed time between specific actions. For example,
if the application is written in INFORMIX-ESQL/C, you can use the dtcurrent()
function to obtain the current time. To measure response time, you can call
dtcurrent() to report the time at the start of a transaction and again to report
the time when the transaction commits.

Elapsed time, in a multiprogramming system or network environment where
resources are shared among multiple processes, does not always correspond
to execution time. Most operating systems and C libraries contain functions
that return the CPU time of a program.

Performance Basics 1-17

Cost per Transaction

Cost per Transaction

The cost per transaction is a financial measure that is typically used to
compare overall operating costs among applications, database servers, or
hardware platforms.

To measure the cost per transaction

1. Calculate all the costs associated with operating an application.
These costs can include the installed price of the hardware and
software, operating costs including salaries, and other expenses.

2. Project the total number of transactions and queries for the effective
life of an application.

3. Divide the total cost over the total number of transactions.

Although this measure is useful for planning and evaluation, it is seldom
relevant to the daily issues of achieving optimum performance.

Resource Utilization and Performance

A typical transaction-processing application undergoes different demands
throughout its various operating cycles. Peak loads during the day, week,
month, and year, as well as the loads imposed by decision-support (DSS)
gueries or backup operations, can have significant impact on any system that
is running near capacity. You can use direct historical data derived from your
particular system to pinpoint this impact.

You must take regular measurements of the workload and performance of
your system to predict peak loads and compare performance measurements
at different points in your usage cycle. Regular measurements help you to
develop an overall performance profile for your Dynamic Server applica-
tions. This profile is critical in determining how to improve performance
reliably.

For the measurement tools that Dynamic Server provides, refer to
“Capturing Database Server Performance Data” on page 2-6. For the tools
that your operating system provides for measuring performance impacts on
system and hardware resources, refer to “Operating-System Tools” on

page 2-4.

1-18 Performance Guide for Informix Dynamic Server

Resource Utilization

Utilization is the percentage of time that a component is actually occupied, as
compared with the total time that the component is available for use. For
instance, if a CPU processes transactions for a total of 40 seconds during a
single minute, its utilization during that interval is 67 percent.

Measure and record utilization of the following system resources regularly:

= CPU
= Memory
n Disk

A resource is said to be critical to performance when it becomes overused or
when its utilization is disproportionate to that of other components. For
instance, you might consider a disk to be critical or overused when it has a
utilization of 70 percent and all other disks on the system have 30 percent.
Although 70 percent does not indicate that the disk is severely overused, you
could improve performance by rearranging data to balance 1/0 requests
across the entire set of disks.

How you measure resource utilization depends on the tools for reporting
system activity and resource utilization that your operating system provides.
Once you identify a resource that seems overused, you can use Dynamic
Server performance-monitoring utilities to gather data and make inferences
about the database activities that might account for the load on that
component. You can adjust your Dynamic Server configuration or your
operating system to reduce those database activities or spread them among
other components. In some cases, you might need to provide additional
hardware resources to resolve a performance bottleneck.

Resource Utilization

Whenever a system resource, such as a CPU or a particular disk, is occupied
by a transaction or query, it is unavailable for processing other requests.
Pending requests must wait for the resources to become available before they
can complete. When a component is too busy to keep up with all its requests,
the overused component becomes a bottleneck in the flow of activity. The
higher the percentage of time that the resource is occupied, the longer each
operation must wait for its turn.

Performance Basics 1-19

Resource Utilization

You can use the following formula to estimate the service time for a request
based on the overall utilization of the component that services the request.
The expected service time includes the time that is spent both waiting for and
using the resource in question. Think of service time as that portion of the
response time accounted for by a single component within your computer, as
the following formula shows:

S=P/(1-U)
S is the expected service time.
P is the processing time that the operation requires once it
obtains the resource.
U is the utilization for the resource (expressed as a decimal).

As Figure 1-2 shows, the service time for a single component increases
dramatically as the utilization increases beyond 70 percent. For instance, if a
transaction requires 1 second of processing by a given component, you can
expect it to take 2 seconds on a component at 50 percent utilization and

5 seconds on a component at 80 percent utilization. When utilization for the
resource reaches 90 percent, you can expect the transaction to take 10 seconds
to make its way through that component.

Elapsed 12
time (asa 10
multiple of g
processing 5
time) in
minutes

N

2
0

Figure 1-2

Service Time for a

Single Component

/ as a Function of

J Resource Utilization

0 20 3 40 50 60 70 80 90 100
Resource utilization (%)

If the average response time for a typical transaction soars from 2 or
3 seconds to 10 seconds or more, users are certain to notice and complain.

Important: Monitor any system resource that shows a utilization of over 70 percent
or any resource that exhibits symptoms of overuse as described in the following
sections.

1-20 Performance Guide for Informix Dynamic Server

CPU Utilization

CPU Utilization

You can use the resource-utilization formula from the previous section to
estimate the response time for a heavily loaded CPU. However, high utili-
zation for the CPU does not always indicate a performance problem. The CPU
performs all calculations that are needed to process transactions. The more
transaction-related calculations that it performs within a given period, the
higher the throughput will be for that period. As long as transaction
throughput is high and seems to remain proportional to CPU utilization, a
high CPU utilization indicates that the computer is being used to the fullest
advantage.

On the other hand, when CPU utilization is high but transaction throughput
does not keep pace, the CPU is either processing transactions inefficiently or
it is engaged in activity not directly related to transaction processing. CPU
cycles are being diverted to internal housekeeping tasks such as memory
management. You can easily eliminate the following activities:

= Large queries that might be better scheduled at an off-peak time

= Unrelated application programs that might be better performed on
another computer

If the response time for transactions increases to such an extent that delays
become unacceptable, the processor might be swamped; the transaction load
might be too high for the computer to manage. Slow response time can also
indicate that the CPU is processing transactions inefficiently or that CPU
cycles are being diverted.

When CPU utilization is high, a detailed analysis of the activities that
Dynamic Server performs can reveal any sources of inefficiency that might be
present due to improper configuration. For information about analyzing
Dynamic Server activity, refer to “Capturing Database Server Performance
Data” on page 2-6.

Performance Basics 1-21

Memory Utilization

Memory Utilization

Although the principle for estimating the service time for memory is the
same as that described in “Resource Utilization and Performance” on

page 1-18, you use a different formula to estimate the performance impact of
memory utilization than you do for other system components. Memory is not
managed as a single component such as a CPU or disk, but as a collection of
small components called pages. The size of a typical page in memory can
range from 1 to 8 kilobytes, depending on your operating system. A
computer with 64 megabytes of memory and a page size of 2 kilobytes
contains approximately 32,000 pages.

When the operating system needs to allocate memory for use by a process, it
scavenges any unused pages within memory that it can find. If no free pages
exist, the memory-management system has to choose pages that other
processes are still using and that seem least likely to be needed in the short
run. CPU cycles are required to select those pages. The process of locating
such pages is called a page scan. CPU utilization increases when a page scan is
required.

Memory-management systems typically use a least-recently used algorithm to
select pages that can be copied out to disk and then freed for use by other
processes. When the CPU has identified pages that it can appropriate, it pages
out the old page images by copying the old data from those pages to a
dedicated disk. The disk or disk partition that stores the page images is called
the swap disk, swap space, or swap area. This paging activity requires CPU cycles
as well as 1/0 operations.

Eventually, page images that have been copied to the swap disk must be
brought back in for use by the processes that require them. If there are still too
few free pages, more must be paged out to make room. As memory comes
under increasing demand and paging activity increases, this activity can
reach a point at which the CPU is almost fully occupied with paging activity.
A system in this condition is said to be thrashing. When a computer is
thrashing, all useful work comes to a halt.

1-22 Performance Guide for Informix Dynamic Server

Memory Utilization

To prevent thrashing, some operating systems use a coarser memory-
management algorithm after paging activity crosses a certain threshold. This
algorithm is called swapping. When the memory-management system resorts
to swapping, it appropriates all pages that constitute an entire process image
at once, rather than a page at a time. Swapping frees up more memory with
each operation. However, as swapping continues, every process that is
swapped out must be read in again, dramatically increasing disk 1/0 to the
swap device and the time required to switch between processes. Performance
is then limited to the speed at which data can be transferred from the swap
disk back into memory. Swapping is a symptom of a system that is severely
overloaded, and throughput is impaired.

Many systems provide information about paging activity that includes the
number of page scans performed, the number of pages sent out of memory
(paged out), and the number of pages brought in from memory (paged in):

= Paging out is the critical factor because the operating system pages
out only when it cannot find pages that are free already.

= A high rate of page scans provides an early indicator that memory
utilization is becoming a bottleneck.

= Pages for terminated processes are freed in place and simply reused,
S0 paging-in activity does not provide an accurate reflection of the
load on memory. A high rate of paging in can result from a high rate
of process turnover with no significant performance impact.

You can use the following formula to calculate the expected paging delay for
a given CPU utilization level and paging rate:

PD = (C/(1-U)) * R* T

PD is the paging delay.

C is the CPU service time for a transaction.

U is the CPU utilization (expressed as a decimal).
R is the paging-out rate.

T is the service time for the swap device.

Performance Basics 1-23

Disk Utilization

As paging increases, CPU utilization also increases, and these increases are
compounded. If a paging rate of 10 per second accounts for 5 percent of CPU
utilization, increasing the paging rate to 20 per second might increase CPU
utilization by an additional 5 percent. Further increases in paging lead to
even sharper increases in CPU utilization, until the expected service time for
CPU requests becomes unacceptable.

Disk Utilization

Because each disk acts as a single resource, you can use the following basic
formula to estimate the service time:

S = P/(1-U)

However, because transfer rates vary among disks, most operating systems
do not report disk utilization directly. Instead, they report the number of data
transfers per second (in operating-system memory-page-size units.) To
compare the load on disks with similar access times, simply compare the
average number of transfers per second.

If you know the access time for a given disk, you can use the number of
transfers per second that the operating system reports to calculate utilization
for the disk. To do so, multiply the average number of transfers per second
by the access time for the disk as listed by the disk manufacturer. Depending
on how your data is laid out on the disk, your access times can vary from the
rating of the manufacturer. To account for this variability, Informix recom-
mends that you add 20 percent to the access-time specification of the
manufacturer.

The following example shows how to calculate the utilization for a disk with
a 30-millisecond access time and an average of 10 transfer requests per
second:

U= (A*1.2) * X
= (.03 * 1.2) * 10
= .36
U is the resource utilization (this time of a disk).
A is the access time (in seconds) that the manufacturer lists.
X is the number of transfers per second that your operating

system reports.

1-24 Performance Guide for Informix Dynamic Server

Disk Utilization

You can use the utilization to estimate the processing time at the disk for a
transaction that requires a given number of disk transfers. To calculate the
processing time at the disk, multiply the number of disk transfers by the
average access time. Include an extra 20 percent to account for access-time
variability:

P=0DC(A*1.2)

P is the processing time at the disk.
D is the number of disk transfers.
A is the access time (in seconds) that the manufacturer lists.

For example, you can calculate the processing time for a transaction that
requires 20 disk transfers from a 30-millisecond disk as follows:

p= 20 (.03 *1.2)
20 * .036
.72

Use the processing time and utilization values that you calculated to estimate
the expected service time for 170 at the particular disk, as the following
example shows:

S= P/(1-U)
= .72/ (1 - .36)
.72/ .64
1.13

Performance Basics 1-25

Factors That Affect Resource Utilization

Factors That Affect Resource Utilization

The performance of your Dynamic Server application depends on the
following factors. You must consider these factors when you attempt to
identify performance problems or make adjustments to your system:

Hardware resources

As discussed earlier in this chapter, hardware resources include the
CPU, physical memory, and disk 1/0 subsystems.

Operating-system configuration

Dynamic Server depends on the operating system to provide low-
level access to devices, process scheduling, interprocess communi-
cation, and other vital services.

The configuration of your operating system has a direct impact on
how well Dynamic Server performs. The operating-system kernel
takes up a significant amount of physical memory that Dynamic
Server or other applications cannot use. However, you must reserve
adequate kernel resources for Dynamic Server to use.

Network configuration and traffic

Applications that depend on a network for communication with
Dynamic Server, and systems that rely on data replication to
maintain high availability, are subject to the performance constraints
of that network. Data transfers over a network are typically slower
than data transfers from a disk. Network delays can have a signif-
icant impact on the performance of Dynamic Server and other
application programs that run on the host computer.

Dynamic Server configuration

Characteristics of your Dynamic Server instance, such as the number
of CPU virtual processors (VPs), the size of your resident and virtual
shared-memory portions, and the number of users, play an
important role in determining the capacity and performance of your
applications.

1-26 Performance Guide for Informix Dynamic Server

Factors That Affect Resource Utilization

Dbspace, blobspace, and chunk configuration

The following factors can affect the time that it takes Dynamic Server
to perform disk I/0 and process transactions:

o The placement of the root dbspace, physical logs, logical logs,
and temporary-table dbspaces

o The presence or absence of mirroring

o The use of devices that are buffered or unbuffered by the
operation system

Database and table placement

The placement of tables and fragments within dbspaces, the isolation
of high-use fragments in separate dbspaces, and the spreading of
fragments across multiple dbspaces can affect the speed at which
Dynamic Server can locate data pages and transfer them to memory.

Tblspace organization and extent sizing

Fragmentation strategy and the size and placement of extents can

affect the ability of Dynamic Server to scan a table rapidly for data.
Avoid interleaved extents and allocate extents that are sufficient to
accommodate growth of a table to prevent performance problems.

Query efficiency

Proper query construction and cursor use can decrease the load that
any one application or user imposes. Remind users and application
developers that others require access to the database and that each
person’s activities affect the resources that are available to others.

Scheduling background 1/0 activities

Logging, checkpoints, page cleaning, and other operations, such as
making backups or running large decision-support queries, can
impose constant overhead and large temporary loads on the system.
Schedule backup and batch operations for off-peak times whenever
possible.

Performance Basics 1-27

Maintenance of Good Performance

= Remote client/server operations and distributed join operations

These operations have an important impact on performance,
especially on a host system that coordinates distributed joins.

= Application-code efficiency

Application programs introduce their own load on the operating
system, the network, and Dynamic Server. These programs can
introduce performance problems if they make poor use of system
resources, generate undue network traffic, or create unnecessary
contention in Dynamic Server. Application developers must make
proper use of cursors and locking levels to ensure good Dynamic
Server performance.

Maintenance of Good Performance

Performance is affected in some way by all system users: the database server
administrator, the database administrator, the application designers, and the
client application users.

The database server administrator usually coordinates the activities of all
users to ensure that system performance meets overall expectations. For
example, the operating-system administrator might need to reconfigure the
operating system to increase the amount of shared memory. Bringing down
the operating system to install the new configuration requires bringing the
database server down. The database server administrator must schedule this
downtime and notify all affected users when the system will be unavailable.

The database server administrator should:

= be aware of all performance-related activities that occur.

= educate users about the importance of performance, how perfor-
mance-related activities affect them, and how they can assist in
achieving and maintaining optimal performance.

1-28 Performance Guide for Informix Dynamic Server

Maintenance of Good Performance

The database administrator should pay attention to:

how tables and queries affect the overall performance of the database
server.

the placement of tables and fragments.
how the distribution of data across disks affects performance.

Application developers should:

carefully design applications to use the concurrency and sorting
facilities that the database server provides, rather than attempt to
implement similar facilities in the application.

keep the scope and duration of locks to the minimum to avoid
contention for database resources.

include routines within applications that, when temporarily enabled
at runtime, allow the database server administrator to monitor
response times and transaction throughput.

Database users should:

pay attention to performance and report problems to the database
server administrator promptly.

be courteous when they schedule large, decision-support queries
and request as few resources as possible to get the work done.

Performance Basics 1-29

Topics Beyond the Scope of This Manual

Topics Beyond the Scope of This Manual

data availability as well as improved response time and efficient use of system
resources, this manual discusses only response time and system resource use. For
discussions of improved database server reliability and data availability, see infor-
mation about failover, mirroring, high availability, and backup and restore in your
“Administrator’s Guide” and your “Backup and Restore Guide.”

E Important: Although broad performance considerations also include reliability and

Attempts to balance the workload often produce a succession of moderate
performance improvements. Sometimes the improvements are dramatic.
However, in some situations a load-balancing approach is not enough. The
following types of situations might require measures beyond the scope of this
manual:

= Application programs that require modification to make better use of
database server or operating-system resources

= Applications that interact in ways that impair performance

= A host computer that might be subject to conflicting uses

= A host computer with capacity that is inadequate for the evolving
workload

= Network performance problems that affect client/server or other
applications

No amount of database tuning can correct these situations. Nevertheless,
they are easier to identify and resolve when the database server is configured
properly.

1-30 Performance Guide for Informix Dynamic Server

Performance Monitoring

Creating a Performance History . . . e 2-3
The Importance of a Performance Hlstory C e e 2-3
Tools That Create a Performance History 2-4

Operating-System Tools 2-4

Capturing Database Server Performance Data 2-6
Theonstat Utility 2-7
Theonlog Utility 210

Theoncheck Utility 21

2-2 Performance Guide for Informix Dynamic Server

his chapter explains the performance monitoring tools that you can
use and how to interpret the results of performance monitoring. The descrip-
tions of the tools can help you decide which tools to use to create a
performance history, to monitor performance at scheduled times, or to
monitor ongoing system performance.

The kinds of data that you need to collect depend on the kinds of applications
you run on your system. The causes of performance problems on OLTP (on-
line transaction processing) systems are different from the causes of problems
on systems that are used primarily for DSS query applications. Systems with
mixed use provide a greater performance-tuning challenge and require a
sophisticated analysis of performance-problem causes.

Creating a Performance History

As soon as you set up your database server and begin to run applications on
it, you should begin scheduled monitoring of resource use. To accumulate
data for performance analysis, use the command-line utilities described in
“Capturing Database Server Performance Data” on page 2-6 and “Operating-
System Tools” on page 2-4 in operating scripts or batch files.

The Importance of a Performance History

To build up a performance history and profile of your system, take regular
snapshots of resource-utilization information. For example, if you chart the
CPU utilization, paging-out rate, and the 170 transfer rates for the various
disks on your system, you can begin to identify peak-use levels, peak-use
intervals, and heavily loaded resources. If you monitor fragment use, you can
determine whether your fragmentation scheme is correctly configured.
Monitor other resource use as appropriate for your database server configu-
ration and the applications that run on it.

Performance Monitoring 2-3

Tools That Create a Performance History

If you have this information on hand, you can begin to track down the cause
of problems as soon as users report slow response or inadequate throughput.
If history information is not available, you must start tracking performance
after a problem arises, and you cannot tell when and how the problem began.
Trying to identify problems after the fact significantly delays resolution of a
performance problem.

Choose tools from those described in the following sections, and create jobs
that build up a history of disk, memory, 170, and other database server
resource use. To help you decide which tools to use to create a performance
history, the output of each tool is described briefly.

Tools That Create a Performance History

When you monitor database server performance, you use tools from the host
operating system and command-line utilities that you can run at regular
intervals from scripts or batch files. You also use performance monitoring
tools with a graphical interface to keep an eye on critical aspects of perfor-
mance as queries and transactions are performed.

Operating-System Tools

The database server relies on the operating system of the host computer to
provide access to system resources such as the CPU, memory, and various
unbuffered disk 170 interfaces and files. Each operating system has its own
set of utilities for reporting how system resources are used. Different imple-
mentations of some operating systems have monitoring utilities with the
same name but different options and informational displays.

2-4 Performance Guide for Informix Dynamic Server

UNIX

WIN NT

Operating-System Tools

You might be able to use some of the following typical UNIX operating-
system resource-monitor utilities.

UNIX Utility Description

vmstat Displays virtual-memory statistics.
iostat Displays 170 utilization statistics.

sar Displays a variety of resource statistics.
ps Displays active process information.

For details on how to monitor your operating-system resources, consult the
reference manual or your system administration guide.

To capture the status of system resources at regular intervals, use scheduling
tools that are available with your host operating system (for example, cron)
as part of your performance monitoring system. ¢

Your Windows NT operating-system supplies a Performance Monitor
(perfmon.exe) that can monitor resources such as processor, memory, cache,
threads, and processes. The Performance Monitor also provides charts, alerts,
report capabilities, and the ability to save information to log files for later
analysis.

For more information on how to use the Performance Monitor, consult your
operating-system manuals. ¢

Performance Monitoring 2-5

Capturing Database Server Performance Data

Capturing Database Server Performance Data

The database server provides utilities to capture snapshot information about
your configuration and performance. It also provides the system-monitoring
interface (SMI) for monitoring performance from within your application.

You can use these utilities regularly to build a historical profile of database
activity, which you can compare with operating-system resource-utilization
data. These comparisons can help you discover which Dynamic Server activ-
ities have the greatest impact on system-resource utilization. You can use this
information to identify and manage your high-impact activities or adjust
your Dynamic Server or operating-system configuration.

Dynamic Server provides the following utilities:

= onstat
= onlog
= oncheck

= ON-Monitor

= DB-Access and the system-monitoring interface (SMI)
= onperf

= DB/Cockpit

You can use onstat, onlog, or oncheck commands invoked by the cron sched-
uling facility to capture performance-related information at regular intervals
and build a historical performance profile of your Dynamic Server appli-
cation. The following sections describe these utilities.

You can use ON-Monitor to check the current Dynamic Server configuration.
For information about ON-Monitor, refer to your Administrator’s Guide.

You can use cron and SQL scripts with DB-Access to query SMI tables at
regular intervals. For information about SQL scripts, refer to the DB-Access
User Manual. For information about SMI tables, refer to your Administrator’s
Guide.

You can use onperf to display Dynamic Server activity with the Motif
window manager. For information about onperf, refer to Chapter 11, “The
onperf Utility on UNIX.”

2-6 Performance Guide for Informix Dynamic Server

The onstat Utility

DB/ Cockpit is another graphical utility that you can use to view or adjust
Dynamic Server activity. For information about DB/ Cockpit, refer to the
DB/Cockpit User Manual.

The onstat Utility

You can use the onstat utility to check the current status of Dynamic Server
and monitor the activities of Dynamic Server. This utility displays a wide
variety of performance-related and status information. For a complete list of
all onstat options, use onstat - -. For a complete display of all the information
that onstat gathers, use onstat -a.

The following table lists onstat options that display performance-related
information.

Option Performance Information

onstat -p Performance profile

onstat -b Buffers currently in use

onstat -1 Logging information

onstat -x Transactions

onstat -u User threads

onstat -R Least-recently used (LRU) queues
onstat -F Page-cleaning statistics

onstat -g General information

The onstat -g option accepts a number of arguments to specify further the
information to be displayed. The following list includes only those
arguments that might typically serve as starting points when you track
performance problems. For a list and explanation of onstat -g arguments,
refer to your Administrator’s Guide.

Performance Monitoring 2-7

The onstat Utility

The following arguments to onstat -g pertain to CPU utilization.

Argument Description
act Displays active threads.
ath Displays all threads. The sqlexec threads represent portions of

client sessions; the rstcb value corresponds to the user field of
the onstat -u command.

glo Displays global multithreading information, including CPU-
use information about virtual processors, the total number of
sessions, and other multithreading global counters.

ntd Displays network statistics by service.

ntt Displays network user times.

ntu Displays network user statistics.

gst Displays queue statistics.

rea Displays ready threads.

sch Displays the number of semaphore operations, spins, and

busy waits for each VP.

ses session id Displays session information by session id. If you omit session
id, this option displays one-line summaries of all active
sessions.

sle Displays all sleeping threads.

spi Displays longspins, which are spin locks that virtual

processors have spun more than 10,000 times in order to
acquire. To reduce longspins, reduce the number of virtual
processors, reduce the load on the computer or, on some
platforms, use the no-age or processor affinity features.

sql session id Displays SQL information by session. If you omit session id,
this argument displays summaries of all sessions.

sts Displays maximum and current stack use per thread.

(1of2)

2-8 Performance Guide for Informix Dynamic Server

The onstat Utility

Argument Description

tpf tid Displays a thread profile for tid. If tid is 0, this argument
displays profiles for all threads.

wai Displays waiting threads, including all threads waiting on
mutex or condition, or yielding.

wst Displays wait statistics.

(2 0f 2)

The following arguments to onstat -g pertain to memory utilization.

Argument

Description

ffr pool name |
session id

dic table

iob

mem pool name |
session id

mgm

nsc client id

nsd

nss session id

seg

ufr pool name |
session id

Displays free fragments for a pool of shared memory or by
session.

Displays one line of information for each table cached in the
shared-memory dictionary. If you provide a specific table
name as a parameter, this argument displays internal SQL
information about that table.

Displays big-buffer use by 170 virtual processor class.

Displays memory statistics for the pools that are associated
with a session. If you omit pool_name | session id, this
argument displays pool information for all sessions.

Displays memory grant manager resource information.

Displays shared-memory status by client ID. If you omit client
id, this argument displays all client status areas.

Displays network shared-memory data for poll threads.

Displays network shared memory status by session id. If you
omit session id, this argument displays all session status areas.

Displays shared-memory-segment statistics. This argument
shows the number and size of all attached segments.

Displays allocated pool fragments by user or session.

Performance Monitoring 2-9

The onlog Utility

The following arguments to onstat -g pertain to disk utilization.

Argument Description

iof Displays asynchronous 1/0 statistics by chunk or file. This
argument is similar to the onstat -d, except that information
on nonchunk files also appears. This argument displays infor-
mation about temporary dbspaces and sort files.

iog Displays asynchronous 170 global information.
ioq Displays asynchronous 1/0 queuing statistics.
iov Displays asynchronous 1/0 statistics by virtual processor.

For a detailed case study that uses various onstat outputs, refer to “Case
Studies and Examples” on page A-1.

The onlog Utility

The onlog utility displays all or selected portions of the logical log. This
command can take input from selected log files, the entire logical log, or a
backup tape of previous log files. The onlog utility can help you to identify a
problematic transaction or to gauge transaction activity that corresponds to a
period of high utilization, as indicated by your periodic snapshots of
database activity and system-resource consumption.

Use onlog with caution when you read logical-log files still on disk because
attempting to read unreleased log files stops other database activity. For
greatest safety, Informix recommends that you wait to read the contents of
the logical-log files until after you have backed up the files and then read the
files from tape. With proper care, you can use the onlog -n option to restrict
onlog only to logical-log files that have been released. To check on the status
of logical-log files, use onstat -1. For more information about onlog, refer to
your Administrator’s Guide.

2-10 Performance Guide for Informix Dynamic Server

The oncheck Utility

The oncheck Utility

The oncheck utility displays information about storage structures on a disk,
including chunks, dbspaces, blobspaces, extents, data rows, system catalog
tables, and other options. You can also use oncheck to rebuild an index that
resides in the same dbspace as the table that it references.

The oncheck utility provides the following options and information.

Option Information

-pB Blobspace blob (TEXT or BYTE data)

-pc Database system catalog tables

-pd Data-row information (without TEXT
or BYTE data)

-pD Data-row information (with TEXT or
BYTE data)

-pe Chunks and extents

-pk Index key values

-pK Index keys and row IDs

-pl Index leaf key values

-pL Index leaf key values and row 1Ds

-pp Pages by table or fragment

-pP Pages by chunk

-pr Root reserved pages

-pt Space used by table or fragment

-pT Space used by table, including indexes

For more information about using oncheck to monitor space, refer
“Estimating Table and Index Size” on page 4-8. For more information on
concurrency during oncheck execution, refer “Checking Indexes” on

page 4-25. For more oncheck information, refer to your Administrator’s Guide.

Performance Monitoring 2-11

Configuration Impacts on
Performance

Your Current Configuration. 3-5

How Configuration Affects CPU Utilization 3-6

UNIX Parameters That Affect CPU Utilization 3-6

UNIX Semaphore Parameters 3-7

UNIX File-Descriptor Parameters 3-9

UNIX Memory Configuration Parameters 3-9
Configuration Parameters and Environment Variables

That Affect CPU Utilization . . . o e ... 310

NUMCPUVPS, MULTIPROCESSOR

and SINGLE_CPU_ VP 31

NOAGE . . . S

AFF_NPROCS and AFF SPROC S 313

NUMAIOVPS 314

OPTCOMPIND 315

MAX_PDQPRIORITY 315

DS MAX_QUERIES. 316

DS MAX_SCANS 317

NETTYPEo 318

Virtual Processors and CPU Utlllzatlon . A |

Multiplexed Connections 322

How Configuration Affects Memory Utilization. 3-23

Allocating Shared Memory. 324

The Resident Portion 324

The Virtual Portion 326

The Message Portion, 328

Configuring UNIX Shared Memory . A

Using onmode -F to Free Shared Memory. 3-30

Configuration Parameters That Affect Memory Utilization. . . . 3-31

SHMVIRTSIZE. 33
SHMADD 33
SHMTOTAL 333
BUFFERS 34
RESIDENT 33
STACKSIZE. 336
LOCKS 33
LOGBUFF 338
PHYSBUFF C e e oo 338
DS TOTAL_ MEMORY S 338
Algorithm for Determining DS _ TOTAL MEMORY oo oo 339
Derive a Minimum for Decision-Support Memory 3-40
Derive a Working Value for Decision-Support Memory. . . . 3-40
Check Derived Value for Decision-Support Memory. 341
Data-Replication Buffers and Memory Utilization 3-42
Memory-Resident Tables and the BufferPool 342
How Configuration Affects I/0 Activity 344
Chunk and Dbspace Configuration 344
Associate Disk Partitions with Chunks 345
Associate Dbspaces with Chunks 345
Place Database System Catalog Tables with Database Tables . . 3446
Placement of Critical Data 346
Consider Separate Disks for Crltlcal Data Components ... 347
Consider Mirroring for Critical Data Components 3-47
Configuration Parameters That Affect Critical Data 3-49
Dbspaces for Temporary Tables and SortFiles 3-50
Parameters and Variables That Affect Temporary Tables
and Sorting 351
The DBSPACETEMP Conflguratlon Parameter 351
The DBSPACETEMP and PSORT_NPROCS
Environment Variables N R Y
How Blobspace Configuration Affects Performance 354
How Optical Subsystem Affects Performance 3-56
Environment Variables and Configuration Parameters
Related to Optical Subsystem. 357
STAGEBLOB 357
OPCACHEMAX 358
INFORMIXOPCACHE 358

3-2 Performance Guide for Informix Dynamic Server

170 for Tables .
Sequential Scans.
Light Scans
Unavailable Data

Configuration Parameters That Affect I/O for Tables
RA_PAGES and RA_THRESHOLD .
DATASKIP

Background 1/0 Actlvmes

Configuration Parameters That Affect Background I/O
CKPINTVL . . .
LOGSIZE, LOGFILES, LOGSMAX and PHYSFILE
ONDBSPDOWN . . .
LOGBUFF and PHYSBUFF
LTXHWM and LTXEHWM .
LBU_PRESERVE
LRUS, LRU_MAX_DIRTY, and LRU MIN DIRTY
CLEANERS

TAPEBLK, TAPEDEYV, TAPESIZE LTAPEBLK LTAPEDEV

and LTAPESIZE . . .
OFF_RECVRY_THREADS and ON RECVRY THREADS
DRINTERVAL and DRTIMEOUT .

ADTERR and ADTMODE

Configuration Impacts on Performance

. 3-58
. 3-58
. 3-59
. 3-59
. 3-60
. 3-60
. 3-61
. 3-61
. 3-63
. 3-65
. 3-65
. 3-66
. 3-67
. 3-67
. 3-68
. 3-68
. 3-69

. 3-69
. 3-69
. 3-70
. 3-70

3-3

3-4 Performance Guide for Informix Dynamic Server

his chapter describes the performance impacts of various operating-
system and configuration parameters. This information can help you config-
ure Dynamic Server for improved CPU, memory, and disk utilization. This
chapter assumes that your database server is running and that you have
followed the configuration guidelines described in your Administrator’s
Guide.

Your Current Configuration

Before you begin to adjust the configuration of your database serve, evaluate
the performance of your current configuration. When you alter certain
Dynamic Server characteristics, you must bring down the database server,
which can affect your production system. Some configuration adjustments
can unintentionally decrease performance or cause other negative side
effects.

If your database applications perform well enough to satisfy user expecta-
tions, you should avoid frequent adjustments, even if those adjustments
might theoretically improve performance. As long as your users are reason-
ably satisfied, take a measured approach when you reconfigure Dynamic
Server. When possible, use a test instance of Dynamic Server to evaluate con-
figuration changes before you reconfigure your production system.

To examine your current Dynamic Server configuration, you can use the util-
ities described in Chapter 2, “Performance Monitoring.”

When performance problems relate to backup operations, you might also
examine the number or transfer rates for tape drives. You might need to alter
the layout or fragmentation of your tables to reduce the impact of backup
operations. For information about disk layout and table fragmentation, refer
to Chapter 4, “Table and Index Performance Considerations.”

Configuration Impacts on Performance 3-5

How Configuration Affects CPU Utilization

UNIX

For client/server configurations, consider network performance and avail-
ability. Evaluating network performance is beyond the scope of this manual.
For information on monitoring network activity and improving network
availability, see your network administrator or refer to the documentation for
your networking package.

How Configuration Affects CPU Utilization

This section discusses how the combination of operating-system and
Dynamic Server configuration parameters can affect CPU utilization. This
section discusses the parameters that most directly affect CPU utilization and
how to set them. When possible, this section also describes considerations
and recommends parameter settings that might apply to different types of
workloads.

Multiple Dynamic Server database servers that run on the same host com-
puter perform poorly when compared with a single Dynamic Server instance
that manages multiple databases. Multiple database servers cannot balance
their loads as effectively as a single database server. Avoid multiple resi-
dency for production environments in which performance is critical.

UNIX Parameters That Affect CPU Utilization

Your Dynamic Server distribution includes a computer-specific file called
SINFORMIXDIR/release/IDS_7.3, which contains recommended values for
UNIX configuration parameters. Compare the values in this file with your
current operating-system configuration.

The following UNIX parameters affect CPU utilization:

= Semaphore parameters
= Parameters that set the maximum number of open file descriptors
= Memory configuration parameters

3-6 Performance Guide for Informix Dynamic Server

UNIX Parameters That Affect CPU Utilization

UNIX Semaphore Parameters

Semaphores are kernel resources with a typical size of 1 byte each. Semaphores
for Dynamic Server are in addition to any that you allocate for other software
packages.

Each instance of Dynamic Server requires the following semaphore sets:

= One set for each group of up to 100 virtual processors (VPs) that are
initialized with Dynamic Server

= Onesetforeachadditional VP that you might add dynamically while
Dynamic Server is running

= One set for each group of 100 or fewer user sessions connected
through the shared-memory communication interface

Tip: For best performance, Informix recommends that you allocate enough
semaphores for double the number of 7 pcshmconnections that you expect. Informix
also recommends that you use the NETTYPE parameter to configure Dynamic Server
poll threads for this doubled number of connections. For a description of poll threads,
refer to your “Administrator’s Guide.” For information on configuring poll threads,
refer to “NETTYPE” on page 3-18.

Because utilities such as onmode use shared-memory connections, you must
configure a minimum of two semaphore sets for each instance of Dynamic
Server: one for the initial set of VPs and one for the shared-memory connec-
tions that Dynamic Server utilities use. The SEMMNI operating-system con-
figuration parameter typically specifies the number of semaphore sets to
allocate. For information on how to set semaphore-related parameters, refer
to the configuration instructions for your operating system.

The SEMMSL operating-system configuration parameter typically specifies
the maximum number of semaphores per set. Set this parameter to at least
100.

Configuration Impacts on Performance 3-7

UNIX Parameters That Affect CPU Utilization

Some operating systems require that you configure a maximum total number
of semaphores across all sets, typically given by the SEMMNS operating-sys-
tem configuration parameter. Use the following formula to calculate the total
number of semaphores that each instance of Dynamic Server requires:

SEMMNS = init_vps + added_vps + (2 * shmem_users) + concurrent_utils

init_vps is the number of VPs that are initialized with Dynamic
Server. This number includes CPU, PIO, LIO, AIO, SHM,
TLI, SOC, and ADM VPs. (For a description of these VPs,
see your Administrator’s Guide.) The minimum value for
this term is 15.

added_vps is the number of VPs that you intend to add dynamically.

shmem_users is the number of shared-memory connections that you
allow for this instance of Dynamic Server.

concurrent_utils is the number of concurrent Dynamic Server utilities that
can connect to this instance. Informix suggests that you
allow for a minimum of six utility connections: two for
ON-Archive and four for other utilities such as onstat,
ON-Monitor, and oncheck.

If you use software packages that require semaphores in addition to those
that Dynamic Server needs, the SEMMNI configuration parameter must
include the total number of semaphore sets that Dynamic Server and your
other software packages require. You must set the SEMMSL configuration
parameter to the largest number of semaphores per set that any of your soft-
ware packages require. For systems that require the SEMMNS configuration
parameter, multiply SEMMNI by the value of SEMMSL to calculate an accept-
able value.

3-8 Performance Guide for Informix Dynamic Server

UNIX Parameters That Affect CPU Utilization

UNIX File-Descriptor Parameters

Some operating systems require you to specify a limit on the number of file
descriptors that a process can have open at any one time. To specify this limit,
you can use an operating-system configuration parameter, typically NOFILE,
NOFILES, NFILE, or NFILES. The number of open-file descriptors that each
instance of Dynamic Server needs is determined by the number of chunks in
your database, the number of VPs that you run, and the number of network
connections that your Dynamic Server instance must support. Network con-
nections include all but those specified as the ipcshm connection type in
either the sqlhosts file or a NETTYPE Dynamic Server configuration entry.
Use the following formula to calculate the number of file descriptors that
your instance of Dynamic Server requires:

NFILES = (chunks * NUMAIOVPS) + NUMCPUVPS + net_connections

chunks is the number of chunks that are to be configured.

net_connections is the number of network connections (those other than
ipcshm) that your instance of Dynamic Server supports.

Each open file descriptor is about the same length as an integer within the
kernel. Allocating extra file descriptors is an inexpensive way to allow for
growth in the number of chunks or connections on your system.

UNIX Memory Configuration Parameters

The configuration of memory in the operating system can impact other
resources, including CPU and 1/0. Insufficient physical memory for the over-
all system load can lead to thrashing, as section “Memory Utilization” on
page 1-22 describes. Insufficient memory for Dynamic Server can result in
excessive buffer-management activity. For more information on configuring
memory, refer to “Configuring UNIX Shared Memory” on page 3-29.

Configuration Impacts on Performance 3-9

Configuration Parameters and Environment Variables That Affect CPU Utilization

Configuration Parameters and Environment Variables That
Affect CPU Utilization

The following parameters in the Dynamic Server configuration file have a
significant impact on CPU utilization:

= NUMCPUVPS

= SINGLE_CPU_VP

= MULTIPROCESSOR

= NOAGE

= AFF_NPROCS

= AFF_SPROC

= NUMAIOVPS

s OPTCOMPIND

= MAX_PDQPRIORITY

= DS _MAX_QUERIES

= DS _MAX_SCANS

= NETTYPE

The following sections describe the performance effects and considerations
that are associated with these configuration parameters. For more informa-
tion about Dynamic Server configuration parameters, refer to your Adminis-
trator’s Guide.

The following environment variables affect CPU utilization:

= PSORT_NPROCS
= PDQPRIORITY
= OPTCOMPIND

PSORT_NPROCS, when set in the environment of a client application,
indicates the number of parallel sort threads that the application can use.
Dynamic Server imposes an upper limit of 10 sort threads per query for any
application. For more information on parallel sorts and PSORT_NPROCS, see
“Parameters and Variables That Affect Temporary Tables and Sorting” on
page 3-51.

3-10 Performance Guide for Informix Dynamic Server

Configuration Parameters and Environment Variables That Affect CPU Utilization

The PDQPRIORITY environment variable, when set in the environment of a
client application, places a limit on the percentage of CPU VP utilization,
shared memory, and other resources that can be allocated to any query that
the client starts.

A client can also use the SET PDQPRIORITY statement in SQL to set a value for
PDQ priority. The actual percentage allocated to any query is subject to the
factor that the MAX_PDQPRIORITY configuration parameter sets. For more
information on how to limit resources that can be allocated to a query, see
“MAX_PDQPRIORITY” on page 3-15.

The OPTCOMPIND environment variable, when set in the environment of a
client application, indicates the preferred way to perform join operations.
This variable overrides the value that the OPTCOMPIND configuration
parameter sets. For details on how to select a preferred join method, refer to
“OPTCOMPIND” on page 3-15.

For more information about environment variables that affect Informix data-
base servers, refer to the Informix Guide to SQL: Reference.

NUMCPUVPS, MULTIPROCESSOR, and SINGLE_CPU_VP

The NUMCPUVPS parameter specifies the number of CPU VPs that Dynamic
Server brings up initially. Do not allocate more CPU VPs than there are CPUs
available to service them. For uniprocessor computers, Informix recom-
mends that you use one CPU VP. For multiprocessor systems with four or
more CPUSs that are primarily used as database servers, Informix recom-
mends that you set NUMCPUVPS to one less than the total number of proces-
sors. For multiprocessor systems that you do not use primarily to support
database servers, you can start with somewhat fewer CPU VPs to allow for
other activities on the system and then gradually add more if necessary.

For dual-processor systems, you might improve performance by running
with two CPU VPs. To test if performance improves, set NUMCPUVPS to 1 in
your ONCONFIG file and then add a CPU VP dynamically at runtime with
onmode -p.

Configuration Impacts on Performance 3-11

Configuration Parameters and Environment Variables That Affect CPU Utilization

If you are running multiple CPU VPs, set the MULTIPROCESSOR parameter to
1. When you set MULTIPROCESSOR to 1, Dynamic Server performs locking in
a manner that is appropriate for a multiprocessor. Otherwise, set this param-
eter to 0.

If you are running only one CPU VP, set the SINGLE_CPU_VP configuration
parameter to 1. Otherwise, set this parameter to 0.

S Important: If you set the SINGLE_CPU_VP parameter to I, the value of the
NUMCPUVPS parameter must also be 1. If the latter is greater than 1, Dynamic
Server fails to initialize and displays the following error message:

Cannot have 'SINGLE CPU_VP' non-zero and 'NUMCPUVPS' greater than 1

When the SINGLE_CPU_VP parameter is set to 1, you cannot add CPU VPs
while Dynamic Server is in on-line mode.

The number of CPU VPs is used as a factor in determining the number of scan
threads for a query. Queries perform best when the number of scan threads
is a multiple (or factor) of the number of CPU VPs. Adding or removing a CPU
VP can improve performance for a large query because it produces an equal
distribution of scan threads among CPU VPs. For instance, if you have 6 CPU
VPs and scan 10 table fragments, you might see a faster response time if you
reduce the number of CPU VPs to 5, which divides evenly into 10. You can use
onstat -g ath to monitor the number of scan threads per CPU VP or use onstat
-g ses to focus on a particular session.

NOAGE

The NOAGE parameter allows you to disable process priority aging for
Dynamic Server CPU VPs on operating systems that support this feature. (For
information on whether your version of Dynamic Server supports this fea-
ture, refer to the machine-notes file.) Set NOAGE to 1 if your operating system
supports this feature.

3-12 Performance Guide for Informix Dynamic Server

Configuration Parameters and Environment Variables That Affect CPU Utilization

AFF_NPROCS and AFF_SPROC

Dynamic Server supports automatic binding of CPU VPs to processors on
multiprocessor host computers that support processor affinity. You can use
processor affinity to distribute the computation impact of CPU VPs and other
processes. On computers that are dedicated to Dynamic Server, assigning
CPU VPs to all but one of the CPUs achieves maximum CPU utilization. On
computers that support both Dynamic Server and client applications, you
can bind applications to certain CPUs through the operating system. By doing
so, you effectively reserve the remaining CPUs for use by Dynamic Server
CPU VPs, which you bind to the remaining CPUs using the AFF_NPROCS and
AFF_SPROC configuration parameters.

On a system that runs Dynamic Server and client (or other) applications, you
can bind asynchronous 1/0 (AIO) VPs to the same CPUs to which you bind
other application processes through the operating system. In this way, you
isolate client applications and database 1/0 operations from the CPU VPs.
This isolation can be especially helpful when client processes are used for
data entry or other operations that require waiting for user input. Because
AIlO VP activity usually comes in quick bursts followed by idle periods wait-
ing for the disk, you can often interleave client and 1/0 operations without
their unduly impacting each other.

Binding a CPU VP to a processor does not prevent other processes from run-
ning on that processor. Application (or other) processes that you do not bind
to a CPU are free to run on any available processor. On a computer that is ded-
icated to Dynamic Server, you can leave AlO VPs free to run on any processor,
which reduces delays on database operations that are waiting for 1/0.
Increasing the priority of AlO VPs can further improve performance by ensur-
ing that data is processed quickly once it arrives from disk.

The AFF_NPROCS and AFF_SPROC parameters specify the number of CPU VPs
to bind using processor affinity and the processors to which those VPs are
bound. (For information on whether your version of Dynamic Server sup-
ports processor affinity, refer to the machine-notes file.) When you assign a
CPU VP to a specific CPU, the VP runs only on that CPU; other processes can
also run on that CPU.

Set the AFF_NPROCS parameter to the number of CPU VPs. (See “NUMCPU-
VVPS, MULTIPROCESSOR, and SINGLE_CPU_VP” on page 3-11). Do not set
AFF_NPROCS to a number that is greater than the number of CPU VPs.

Configuration Impacts on Performance 3-13

Configuration Parameters and Environment Variables That Affect CPU Utilization

You can set the AFF_SPROC parameter to the number of the first CPU on
which to bind a CPU VP. You typically alter the value of this parameter only
when you know that a certain CPU has a specialized hardware or operating-
system function (such as interrupt handling), and you want to avoid assign-
ing CPU VPs to that processor. Dynamic Server assigns CPU VPs to CPUS seri-
ally, starting with that CPU. To avoid a certain CPU, set AFF_SPROC to 1 plus
the number of that CPU.

NUMAIOVPS

The NUMAIOVPS parameter indicates the number of AIO VPs that Dynamic
Server brings up initially. If your operating system does not support kernel

asynchronous 1/0 (KAIO), Dynamic Server uses AlO VPs to manage all data-
base 1/0 requests.

The recommended number of AIO VPs depends on how many disks your
configuration supports. If KAIO is not implemented on your platform, Infor-
mix recommends that you allocate one AIO VP for each disk that contains
database tables. You can add an additional AIO VP for each chunk that
Dynamic Server accesses frequently.

The machine-notes file for your version of Dynamic Server indicates whether
the operating system supports KAIO. If KAIO is supported, the machine-notes
describe how to enable KAIO on your specific operating system.

If your operating system supports KAIO, the CPU VPs make 1/0 requests
directly to the file instead of the operating-system buffers. In this case, con-
figure only one AIO VP, plus two additional AIO VPs for every buffered file
chunk.

The goal in allocating AIO VPs is to allocate enough of them so that the
lengths of the 1/0 request queues are kept short (that is, the queues have as
few 1/0 requests in them as possible). When the 1/0 request queues remain
consistently short, /0 requests are processed as fast as they occur. The
onstat -g iog command allows you to monitor the length of the 1/0 queues
for the AIO VPs.

Allocate enough AIO VPs to accommodate the peak humber of 1/0 requests.
Generally, allocating a few extra AlO VPs is not detrimental. To start addi-
tional AlO VPs while Dynamic Server is in on-line mode, use onmode -p. You
cannot drop AIO VPs in on-line mode.

3-14 Performance Guide for Informix Dynamic Server

Configuration Parameters and Environment Variables That Affect CPU Utilization

OPTCOMPIND

The OPTCOMPIND parameter helps the optimizer choose an appropriate
access method for your application. When the optimizer examines join plans,
OPTCOMPIND indicates the preferred method for performing the join opera-
tion for an ordered pair of tables. If OPTCOMPIND is equal to 0, the optimizer
gives preference to an existing index (nested-loop join) even when a table
scan might be faster. If OPTCOMPIND is set to 1 and the isolation level for a
given query is set to Repeatable Read, the optimizer uses nested-loop joins.
When OPTCOMPIND is equal to 2 (its default value), the optimizer selects a
join method based on cost alone even though table scans can temporarily
lock an entire table. For more information on OPTCOMPIND and the different
join methods, see “How OPTCOMPIND Affects the Query Plan” on page 7-7.

To set the value for OPTCOMPIND for specific applications or user sessions,
set the OPTCOMPIND environment variable for those sessions. Values for
this environment variable have the same range and semantics as they have
for the configuration parameter.

MAX_PDQPRIORITY

The MAX_PDQPRIORITY parameter limits the percentage of parallel database
queries (PDQ) resources that a query can occupy. Use this parameter to limit
the impact of large CPU-intensive queries on transaction throughput.

You specify this parameter as an integer that represents a percentage of the
following PDQ resources that a query can request:

= Memory
= CPUVPs
= Disk1/0

= Scan threads

When a query requests a percentage of PDQ resources, Dynamic Server allo-
cates the MAX_PDQPRIORITY percentage of the amount requested, as the fol-
lowing formula shows:

Resources allocated = PDQPRIORITY/100 * MAX_PDQPRIORITY/100

Configuration Impacts on Performance 3-15

Configuration Parameters and Environment Variables That Affect CPU Utilization

For example, if a client uses the SET PDQPRIORITY 80 statement to request
80 percent of PDQ resources, but MAX_PDQPRIORITY is set to 50, the database
server allocates only 40 percent of the resources (50 percent of the request) to
the client.

Viewed from the perspective of decision support and on-line transaction pro-
cessing (OLTP), setting MAX_PDQPRIORITY allows the Dynamic Server
administrator to control the impact that individual decision-support queries
have on concurrent OLTP performance. Reduce the value of
MAX_PDQPRIORITY when you want to allocate more resources to OLTP pro-
cessing. Increase the value of MAX_PDQPRIORITY when you want to allocate
more resources to decision-support processing.

For more information on how to control the use of PDQ resources, refer to
“Allocating Resources for PDQ Queries” on page 9-7.

DS _MAX_QUERIES

The DS_MAX_QUERIES parameter specifies a maximum number of decision-
support queries that can run at any one time. In other words,
DS_MAX_QUERIES controls only queries whose PDQ priority is nonzero. Que-
ries with a low PDQ priority value consume proportionally fewer resources,
so a larger number of those queries can run simultaneously. You can use the
DS_MAX_QUERIES parameter to limit the performance impact of CPU-
intensive queries.

Dynamic Server uses the value of DS_MAX_QUERIES with

DS _TOTAL_MEMORY to calculate quantum units of memory to allocate to a
query. For more information on how Dynamic Server allocates memory to
queries, refer to “DS_TOTAL_MEMORY” on page 3-38.

3-16 Performance Guide for Informix Dynamic Server

Configuration Parameters and Environment Variables That Affect CPU Utilization

DS _MAX_SCANS

The DS_MAX_SCANS parameter limits the number of PDQ scan threads that
can run concurrently. This parameter prevents Dynamic Server from being
flooded with scan threads from multiple decision-support queries.

To calculate the number of scan threads allocated to a query, use the follow-
ing formula:

scan_threads = min (nfrags, (DS_MAX_SCANS * pdgpriority / 100
* MAX_PDQPRIORITY / 100))

nfrags is the number of fragments in the table with the largest
number of fragments.

pdgpriority is the PDQ priority value set by either the PDQPRIORITY
environment variable or the SQL statement SET
PDQPRIORITY.

Reducing the number of scan threads can reduce the time that a large query
waits in the ready queue, particularly when many large queries are submit-
ted concurrently. However, if the number of scan threads is less than nfrags,
the query takes longer once it is underway. For example, if a query needs to
scan 20 fragments in a table, but the scan_threads formula lets the query
begin when only 10 scan threads are available, each scan thread scans two
fragments serially, making query execution approximately twice as long as it
would be if 20 scan threads were used.

Configuration Impacts on Performance 3-17

Configuration Parameters and Environment Variables That Affect CPU Utilization

NETTYPE

The NETTYPE parameter configures poll threads for each connection type
that your instance of Dynamic Server supports. If your Dynamic Server
instance supports connections over more than one interface or protocol, you
must specify a separate NETTYPE parameter for each connection type.

You typically include a separate NETTYPE parameter for each connection
type that is associated with a dbservername. Dbservernames are listed in the
DBSERVERNAME and DBSERVERALIASES configuration parameters. Connec-
tion types are associated with dbservernames through entries in the sqlhosts
file. For information about connection types and the sqlhosts file, refer to
your Administrator’s Guide. The first NETTYPE entry for a given connection
type applies to all dbservernames associated with that type. Subsequent
NETTYPE entries for that connection type are ignored. NETTYPE entries are
required for connection types that are used for outgoing communication
only, even if those connection types are not listed in the sqlhosts file.

Specifying Virtual Processor Classes for Poll Threads

Each poll thread configured or added dynamically by a NETTYPE entry runs
in a separate VP. There are two VP classes in which a poll thread can run: NET
and CPU. For best performance, Informix recommends that you use a NET-
TYPE entry to assign only one poll thread to the CPU VP class and that you
assign all additional poll threads to NET VPs. The maximum number of poll
threads that you assign to any one connection type must not exceed
NUMCPUVPS.

Specifying Number of Connections and Number of Poll Threads

The optimum number of connections per poll thread is approximately 300 for
uniprocessor computers and 350 for multiprocessor computers. However, a
poll thread can support 1,024 or perhaps more connections.

3-18 Performance Guide for Informix Dynamic Server

Configuration Parameters and Environment Variables That Affect CPU Utilization

Each NETTYPE entry configures the number of poll threads for a specific con-
nection type, the number of connections per poll thread, and the virtual-

processor class in which those poll threads run, using the following comma-
separated fields. There can be no white space within or between these fields:

NETTYPE connection_type,poll_threads,c per _t,vp_class

connection_type identifies the protocol-interface combination to which the
poll threads are assigned. You typically set this field to
match the connection_type field of a dbservername entry
that is in the sqglhosts file.

poll_threads is the number of poll threads assigned to the connection
type. Set this value to no more than NUMCPUVPS for any
connection type.

c_per_t is the number of connections per poll thread. Use the fol-
lowing formula to calculate this number:

c_per_t = connections / poll_threads
connections is the maximum number of connec-
tions that you expect the indicated
connection type to support. For
shared-memory connections
(ipcshm), double the number of con-
nections for best performance.

vp_class is the class of virtual processor that can run the poll
threads. Specify CPU if you have a single poll thread that
runs on a CPU VP. For best performance, specify NET if
you require more than one poll thread. The default value
for this field depends on the following conditions:
= If the connection type is associated with the
dbservername that is listed in the
DBSERVERNAME parameter, and no previous
NETTYPE parameter specifies CPU explicitly, the
default VP class is CPU. If the CPU class is already
taken, the default is NET.
= If the connection type is associated with a
dbservername that is given in the
DBSERVERALIASES parameter, the default VP
class is NET.

Configuration Impacts on Performance 3-19

Configuration Parameters and Environment Variables That Affect CPU Utilization

If c_per_t exceeds 350 and the number of poll threads for the current connec-
tion type is less than NUMCPUVPS, you can improve performance by speci-
fying the NET CPU class, adding poll threads (do not exceed NUMCPUVPS),
and recalculating c¢_per_t. The default value for c¢_per_t is 50.

Important: Each 7pcshmconnection requires a semaphore. Some operating systems
require that you configure a maximum number of semaphores that can be requested
by all software packages that run on the computer. For best performance, double the
number of actual 7pcshm connections when you allocate semaphores for shared-
memory communications. Refer to “UNIX Semaphore Parameters” on page 3-7.

If your computer is a uniprocessor and your Dynamic Server instance is con-
figured for only one connection type, you can omit the NETTYPE parameter.

Dynamic Server uses the information provided in the sqlhosts file to estab-

lish client/server connections.

If your computer is a uniprocessor and your Dynamic Server instance is con-
figured for more than one connection type, include a separate NETTYPE entry
for each connection type. If the number of connections of any one type signif-
icantly exceeds 300, assign two or more poll threads, up to a maximum of

NUMCPUVPS, and specify the NET VP class, as the following example shows:

NETTYPE ipcshm,1,200,CPU
NETTYPE tlitcp,2,200,NET # supports 400 connections

If your computer is a multiprocessor, your Dynamic Server instance is con-
figured for only one connection type, and the number of connections does not
exceed 350, you can use NETTYPE to specify a single poll thread on either the
CPU or the NET VP class. If the number of connections exceeds 350, set the VP
class to NET, increase the number of poll threads, and recalculate c_per _t.

Threshold for Free Buffers in Network Buffer Pool

Dynamic Server implements a new threshold of free network buffers to
prevent frequent allocations and deallocations of shared memory for the
network bufferpool. This new threshold enables the database server to
correlate the number of free network buffers with the number of connections
that you specify in the NETTYPE configuration parameter.

The database server dynamically allocates network buffers for request
messages from clients. After the database server processes client requests, it
returns buffers to the network free bufferpool.

3-20 Performance Guide for Informix Dynamic Server

Virtual Processors and CPU Utilization

If the number of free buffers is greater than the threshold, the database server
returns the memory allocated to buffers over the threshold to the global pool.

The database server uses the following formula to calculate the threshold for
the free buffers in the network buffer pool:

free network buffers threshold =
100 + (0.7 * number_connections)

The value for number_connections is the total number of connections that you
specified in the third field of the NETTYPE entry for the different type of
network connections (SOCTCP, IPCSTR, or TLITCP). This formula does not use
the NETTYPE entry for shared memory (IPCSHM).

If you do not specify a value in the third field of the NETTYPE parameter, the
database server uses the default value of 50 connections.

Virtual Processors and CPU Utilization

While Dynamic Server is on-line, it allows you to start and stop VPs that
belong to certain classes. You can use onmode -p or ON-Monitor to start addi-
tional VPs for the following classes while Dynamic Server is on-line: CPU,
AIO, PIO, LIO, SHM, TLI, and SOC. You can drop VPs of the CPU class only
while Dynamic Server is on-line.

Whenever you add a network VP (SOC or TLI), you also add a poll thread.
Every poll thread runs in a separate VP, which can be either a CPU VP or a net-
work VP of the appropriate network type. Adding more VPs can increase the
load on CPU resources, so if the NETTYPE value indicates that an available
CPU VP can handle the poll thread, Dynamic Server assigns the poll thread to
that CPU VP. If all the CPU VPs have poll threads assigned to them, Dynamic
Server adds a second network VP to handle the poll thread.

Configuration Impacts on Performance 3-21

Multiplexed Connections

Multiplexed Connections

Many traditional nonthreaded SQL client applications use multiple database
connections to perform work for a single user. Each database connection
establishes a separate network connection to the database server.

The Dynamic Server multiplexed connection facility provides the ability for
one network connection in the database server to handle multiple database
connections from an ESQL/C application to this database server.

When a nonthreaded client uses a multiplexed connection, the database
server still creates the same number of user sessions and user threads as with
a nonmultiplexed connection. However, the number of network connections
decreases when a you use multiplexed connections. Instead, the database
server uses a multiplex listener thread to allow the multiple database connec-
tions to share the same network connection.

Nonthreaded clients can experience an improved response time when you
use multiplexed connections to execute SQL queries. The amount of perfor-
mance improvement depends on the following factors:

= The decrease in total number of network connections and the
resulting decrease in system CPU time

The usual cause for large system CPU time is the processing of
system calls for the network connection. Therefore, the maximum
decrease in system CPU time is proportional to the decrease in the
total number of network connections.

= The ratio of this decrease in system CPU time to the user CPU time

If the queries are simple and use little user CPU time, you might
experience a sizable reduction in response time when you use a
multiplexed connection. But if the queries are complex and use a
large amount of user CPU time, you might not experience a perfor-
mance improvement.

To get an idea of the amounts of system CPU time and user CPU times
per virtual processor, use the onstat -g glo option.

3-22 Performance Guide for Informix Dynamic Server

How Configuration Affects Memory Utilization

To use multiplexed connections for a nonthreaded client application, you
must take the following steps before you bring up the database server:

1. AddaNETTYPE entry to your ONCONFIG file with SQLMUX specified
in the connection_type field.

The NETTYPE SQLMUX configuration parameter tells the database
server to create the multiplex listener thread. When you specify
SQLMUX in the connection_type field of the NETTYPE configuration
parameter, the other NETTYPE fields are ignored.

2. Set the multiplexed option (m=1) in the client sqlhosts file for the
corresponding dbservername entry.

For more details on the ONCONFIG file NETTYPE entry and the
sqlhosts entry, refer to your Administrator’s Guide.

For more information on restrictions on the use of multiplexed
connections, refer to the INFORMIX-ESQL/C Programmer’s Manual
and your Administrator’s Guide.

How Configuration Affects Memory Utilization

This section discusses how the combination of operating system and
Dynamic Server configuration parameters can affect memory utilization.
This section discusses the parameters that most directly affect memory utili-
zation and explains how to set them. Where possible, this section also pro-
vides suggested settings or considerations that might apply to different
workloads.

You must consider the amount of physical memory that is available on your
host when you allocate shared memory for Dynamic Server. In general, if you
increase space for Dynamic Server shared memory, you can enhance the per-
formance of your database server. You must balance the amount of shared
memory dedicated to Dynamic Server against the memory requirements for
VPs and other processes.

Configuration Impacts on Performance 3-23

Allocating Shared Memory

Allocating Shared Memory

You must configure adequate shared-memory resources for Dynamic Server
in your operating system. Configuring insufficient shared memory can
adversely affect performance. When the operating system allocates a block of
shared memory, that block is called a segment. When Dynamic Server attaches
all or part of a shared-memory segment, it is called a portion.

Dynamic Server uses the following shared-memory portions. Each portion
makes a separate contribution to the total amount of shared memory that
Dynamic Server requires:

= The resident portion
= The virtual portion
= The message portion

The resident and message portions are static; you must allocate sufficient
memory for them before you bring Dynamic Server into on-line mode. (Typ-
ically, you must reboot the operating system to reconfigure shared memory.)
The Dynamic Server virtual portion of shared memory grows dynamically,
but you must still include an adequate initial amount for this portion in your
allocation of operating-system shared memory.

The following sections provide guidelines for estimating the size of each
Dynamic Server shared-memory portion so that you can allocate adequate
space in the operating system. The amount of space required is the total that
all three portions of Dynamic Server shared memory need.

The Resident Portion

The resident portion includes areas of Dynamic Server shared memory that
record the state of the database server, including buffers, locks, log files, and
the locations of dbspaces, chunks, and tbispaces. The settings that you use for
the following Dynamic Server configuration parameters help determine the
size of this portion:

s BUFFERS

s LOCKS

= LOGBUFF
= PHYSBUFF

3-24 Performance Guide for Informix Dynamic Server

Allocating Shared Memory

In addition to these parameters, which affect the size of the resident portion,
the RESIDENT parameter can affect memory utilization. When RESIDENT is
set to 1 in the ONCONFIG file of a computer that supports forced residency,
the resident portion is never paged out. The machine-notes file for your
version of Dynamic Server indicates whether your operating system sup-
ports forced residency.

To estimate the size of the resident portion (in kilobytes) when you allocate
operating-system shared memory, take the following steps. The result pro-
vides an estimate that slightly exceeds the actual memory used for the
resident portion.

To estimate the size of the resident portion

1. To estimate the size of the data buffer, use the following formula:
buffer_value = (BUFFERS * pagesfze) + (BUFFERS * 254)

pagesize is the shared-memory page size, as oncheck -pr
displays it.

2. Calculate the values in the following formulas:

locks_value = LOCKS * 44
Togbuff_value = LOGBUFF * 1024 * 3
physbuff_value = PHYSBUFF * 1024 * 2
3. To calculate the estimated size of the resident portion in kilobytes,
use the following formula:

rsegsize = (buffer_value + Jocks_value + Togbuff_value
+ physbuff_value + 51,200) / 1024

For information about the BUFFERS, LOCKS, LOGBUFF, and PHYSBUFF config-
uration parameters, see “Configuration Parameters That Affect Memory Uti-
lization” on page 3-31.

Tip: 1f you have migrated from Version 4.1 or 5.0 of the database server, you can base
your initial estimate of the size of the resident portion on the size of shared memory
that output of tomonitor displays under either of those versions. Because big buffers
are not part of the resident portion in Version 6.0 and later, you can deduct 8 pages
(8 * pagesize) for each 100 buffers in the BUFFERS parameter listed in the thconfig
file of your earlier version.

Configuration Impacts on Performance 3-25

Allocating Shared Memory

The Virtual Portion

The virtual portion of Dynamic Server shared memory includes the follow-
ing components:

= Big buffers, which are used for large read and write 1/0 operations
= Sort-space pools

= Active thread-control blocks, stacks, and heaps

= User session data

= Caches for data-dictionary information and stored procedures

= Aglobal pool for network-interface message buffers and other
information

The initial size of the virtual portion is given by the SHMVIRTSIZE configura-
tion parameter in the Dynamic Server configuration file. As the need for
additional space in the virtual portion arises, Dynamic Server adds shared
memory in increments that the SHMADD configuration parameter specifies,
up to alimit on the total shared memory allocated to Dynamic Server that the
SHMTOTAL parameter specifies.

The size of the virtual portion is affected primarily by the types of applica-
tions and queries that are being run. Depending on your application, an ini-
tial estimate for the virtual portion might be as low as 100 kilobytes per user
or as high as 500 kilobytes per user, plus an additional 4 megabytes if you
intend to use data distributions. For guidelines to create data distributions,
refer to the discussion of UPDATE STATISTICS in “Creating Data Distribu-
tions” on page 10-7.

The basic algorithm to estimate an initial size of the virtual portion of shared
memory is as follows:

shmvirtsize = fixed overhead + shared structures +
(mncs * private structures)

3-26 Performance Guide for Informix Dynamic Server

Allocating Shared Memory

To estimate SHMVIRTSIZE with the preceding formula

1.

Use the following formula to estimate the fixed overhead:
fixed overhead = global pool + thread pool after booting

The thread pool after booting is partially dependent on the number
of virtual processors.

Use the onstat -g mem command to obtain the pool sizes allocated to
sessions.

Use the following formula to estimate shared structures:

shared structures = AIQO vectors + sort memory +
dbspace backup buffers +
dictionary size +
size of stored procedure cache +
histogram pool +
other pools (see onstat display)
To see how much memory is allocated to the different pool, use the

onstat -g mem command.

Estimate mncs (which is the maximum number of concurrent
sessions) with the following formula:

mncs = number of poll threads *
number connections per poll thread

The value for number of poll threads is the value that you specify in the
second field of the NETTYPE configuration parameter.

The value for number of connections per poll thread is the value that you
specify in the third field of the NETTYPE configuration parameter.

Configuration Impacts on Performance ~ 3-27

Allocating Shared Memory

4. Estimate the private structures with the following formula:

private structures = stack + heap +
session control-block structures

stack is generally 32 kilobytes but dependent on recur-
sion in stored procedures.

heap is about 30 kilobytes.

session control- is the amount of memory that you display can

block structures when you use the onstat -g ses option.

5. Add the results of steps 1 through 4 to obtain an estimate for
SHMVIRTSIZE.

Tip: When the database server is running with a stable workload, you can use
onstat -g mem to obtain a precise value for the actual size of the virtual portion. You
can then use the value for shared memory that this command reports to reconfigure
SHMVIRTSIZE.

The Message Portion

The message portion contains the message buffers that the shared-memory
communication interface uses. The amount of space required for these buff-
ers depends on the number of user connections that you allow using a given
networking interface. If a particular interface is not used, you do not need to
include space for it when you allocate shared memory in the operating sys-
tem. You can use the following formula to estimate the size of the message
portion in kilobytes:

msegsize = (10,531 * ipcshm_conn +50,000)/1024

ipcshm_conn is the number of connections that can be made using
the shared-memory interface, as determined by the
NETTYPE parameter for the ipcshm protocol.

3-28 Performance Guide for Informix Dynamic Server

UNIX

Configuring UNIX Shared Memory

Configuring UNIX Shared Memory

Perform the following steps to configure the shared-memory segments that
your Dynamic Server configuration needs. For information on how to set
shared-memory-related parameters, refer to the configuration instructions
for your operating system.

To configure shared-memory segments for Dynamic Server

1.

If your operating system does not have a size limit for shared-
memory segments, take the following actions:

a.

Set the operating-system configuration parameter for maximum
segment size, typically SHMMAX or SHMSIZE, to the total size
that your Dynamic Server configuration requires. This size
includes the amount of memory that is required to initialize your
Dynamic Server instance and the amount of shared memory that
you allocate for dynamic growth of the virtual portion.

Set the operating-system configuration parameter for the maxi-
mum number of segments, typically SHMMNI, to at least 1 per
instance of Dynamic Server.

If your operating system has a segment-size limit, take the following
actions:

a.

Set the operating-system configuration parameter for the
maximum segment size, typically SHMMAX or SHMSIZE, to the
largest value that your system allows.

Use the following formula to calculate the number of segments
for your instance of Dynamic Server. If there is a remainder,
round up to the nearest integer.

SHMMNI = total_shmem_size / SHMMAX

total_shmem_size is the total amount of shared memory that
you allocate for Dynamic Server use.

Configuration Impacts on Performance 3-29

Using onmode -F to Free Shared Memory

3. Setthe operating-system configuration parameter for the maximum
number of segments, typically SHMMNI, to a value that yields the
total amount of shared-memory for Dynamic Server when multi-
plied by SHMMAX or SHMSIZE. If your computer is dedicated to a
single instance of Dynamic Server, that total can be up to 90 percent
of the size of virtual memory (physical memory plus swap space).

4. If your operating system uses the SHMSEG configuration parameter
to indicate the maximum number of shared-memory segments that
a process can attach, set this parameter to a value that is equal to or
greater than the largest number of segments that you allocate for any
instance of Dynamic Server.

For additional tips on configuring shared memory in the operating system,
refer to the machine-notes file for your version of Dynamic Server.

Using onmode -F to Free Shared Memory

Dynamic Server does not automatically free the shared-memory segments
that it adds during its operations. Once memory has been allocated to the
Dynamic Server virtual portion, the memory remains unavailable for use by
other processes running on the host computer. When Dynamic Server runs a
large decision-support query, it might acquire a large amount of shared mem-
ory. After the query completes, the database server no longer requires that
shared memory. However, the shared memory that the database server allo-
cated to service the query remains assigned to the virtual portion even
though it is no longer needed.

The onmode -F command locates and returns unused 8-kilobyte blocks of
shared memory that Dynamic Server still holds. Although this command
runs only briefly (1 or 2 seconds), onmode -F dramatically inhibits user activ-
ity while it runs. Systems with multiple CPUs and CPU VPs typically experi-
ence less degradation while this utility runs.

Informix recommends that you run onmode -F during slack periods with an
operating-system scheduling facility such as cron. In addition, consider run-
ning this utility after you perform any task that substantially increases the
size of Dynamic Server shared memory, such as large decision-support que-
ries, index builds, sorts, or backup operations. For additional information on
the onmode utility, refer to your Administrator’s Guide.

3-30 Performance Guide for Informix Dynamic Server

Configuration Parameters That Affect Memory Utilization

Configuration Parameters That Affect Memory Utilization

The following parameters in the Dynamic Server configuration file have a
significant effect on memory utilization:

= SHMVIRTSIZE

= SHMADD
= SHMTOTAL

= BUFFERS

= MAX_RES_BUFFPCT
= RESIDENT

= STACKSIZE

= LOCKS

= LOGBUFF

= PHYSBUFF

= DS _TOTAL_MEMORY
= SHMBASE

In addition, the sizes o f buffers for TCP/1P connections, as specified in the
sqlhosts file, affect memory and CPU utilization. Sizing these buffers to
accommodate a typical request can improve CPU utilization by eliminating
the need to break up requests into multiple messages. However, you must
use this capability with care; Dynamic Server dynamically allocates buffers
of the indicated sizes for active connections. Unless you carefully size buffers,
they can consume large amounts of memory.

The SHMBASE parameter indicates the starting address for Dynamic Server
shared memory. When set according to the instructions in the machine-notes
file for your version of Dynamic Server, this parameter has no appreciable
effect on performance.

The following sections describe the performance effects and considerations
associated with these parameters. For more information about Dynamic
Server configuration parameters, refer to your Administrator’s Guide.

Configuration Impacts on Performance 3-31

Configuration Parameters That Affect Memory Utilization

SHMVIRTSIZE

The SHMVIRTSIZE parameter specifies the size of the virtual portion of shared
memory to allocate when you initialize Dynamic Server. The virtual portion
of shared memory holds session- and request-specific data as well as other
information.

Although Dynamic Server adds increments of shared memory to the virtual
portion as needed to process large queries or peak loads, allocation of shared
memory increases time for transaction processing. Therefore, Informix rec-
ommends that you set SHMVIRTSIZE to provide a virtual portion large
enough to cover your normal daily operating requirements.

For an initial setting, Informix suggests that you use the larger of the follow-
ing values:

= 8,000
= connections x 350

The connections variable is the number of connections for all network types
that are specified in the sqlhosts file by one or more NETTYPE parameters.
(Dynamic Server uses connections = 200 by default.)

Once system utilization reaches a stable workload, you can reconfigure a new
value for SHMVIRTSIZE. As noted in “Using onmode -F to Free Shared Mem-
ory” on page 3-30, you can instruct Dynamic Server to release shared-mem-
ory segments that are no longer in use after a peak workload or large query.

SHMADD

The SHMADD parameter specifies the size of each increment of shared mem-
ory that Dynamic Server dynamically adds to the virtual portion. Trade-offs
are involved in determining the size of an increment. Adding shared memory
consumes CPU cycle. The larger each increment, the fewer increments are
required, but less memory is available for other processes. Adding large
increments is generally preferred, but when memory is heavily loaded (the
scan rate or paging-out rate is high), smaller increments allow better sharing
of memory resources among competing programs.

3-32 Performance Guide for Informix Dynamic Server

Configuration Parameters That Affect Memory Utilization

Informix suggests that you set SHMADD according to the size of physical
memory, as the following table indicates.

Memory Size SHMADD Value

256 megabytes or less 8,192 Kkilobytes (the default)
Between 257 and 512 megabytes 16,384 kilobytes

Larger than 512 megabytes 32,768 kilobytes

The size of segments that you add should match those segments allocated in
the operating system. For details on configuring shared-memory segments,
refer to “Configuring UNIX Shared Memory” on page 3-29. Some operating
systems place a lower limit on the size of a shared-memory segment; your
setting for SHMADD should be more than this minimum. Use the

onstat -g seg command to display the number of shared-memory segments
that Dynamic Server is currently using.

SHMTOTAL

The SHMTOTAL parameter places an absolute upper limit on the amount of
shared memory that an instance of Dynamic Server can use. If SHMTOTAL is
set to 0 or left unassigned, Dynamic Server continues to attach additional
shared memory as needed until no virtual memory is available on the sys-
tem.

You can usually leave SHMTOTAL set to 0 except in the following cases:

= You must limit the amount of virtual memory that is used by
Dynamic Server for other applications or other reasons.

= Your operating system runs out of swap space and performs
abnormally.

In the latter case, you can set SHMTOTAL to a value that is a few megabytes
less than the total swap space that is available on your computer.

Configuration Impacts on Performance 3-33

Configuration Parameters That Affect Memory Utilization

BUFFERS

BUFFERS is the number of data buffers available to Dynamic Server. These
buffers reside in the resident portion and are used to cache database data
pages in memory.

This parameter has a significant effect on database 1/0 and transaction
throughput. The more buffers that are available, the more likely it is that a
needed data page might already reside in memory as the result of a previous
request. However, allocating too many buffers can impact the memory-man-
agement system and lead to excess paging activity.

Dynamic Server uses the following formula to calculate the amount of mem-
ory to allocate for this data buffer pool:

bufferpoolsize = BUFFERS * page_size

page_size is the size of a page in memory for your operating sys-
tem. (Consult the machine-notes file for your version of
Dynamic Server for the exact page size.)

Informix suggests that you set BUFFERS between 20 and 25 percent of the
number of megabytes in physical memory. For example, if your system has a
page size of 2 kilobytes and 100 megabytes of physical memory, you can set
BUFFERS to between 10,000 and 12,500, which allocates between 20 mega-
bytes and 25 megabytes of memory.

You can then use onstat -p to monitor the read-cache rate. This rate represents
the percentage of database pages that are already present in a shared-mem-
ory buffer when a query requests a page. (If a page is not already present, the
database server must be copy it into memory from disk.) If the database
server finds the page in the buffer pool, it spends less time on disk 1/0. There-
fore, you want a high read-cache rate for good performance.

If the read-cache rate is low, you can repeatedly increase BUFFERS and restart
Dynamic Server. As you increase the value of BUFFERS, you reach a point at
which increasing the value no longer produces significant gains in the read-
cache rate, or you reach the upper limit of your operating-system shared-
memory allocation.

3-34 Performance Guide for Informix Dynamic Server

Configuration Parameters That Affect Memory Utilization

Use the memory-management monitor utility in your operating system, such
as vmestat or sar, to note the level of page scans and paging-out activity. If
these levels suddenly rise or rise to unacceptable levels during peak database
activity, reduce the value of BUFFERS.

RESIDENT

The RESIDENT parameter specifies whether shared-memory residency is
enforced for the resident portion of Dynamic Server shared memory; this
parameter works only on computers that support forced residency. The resi-
dent portion in Dynamic Server contains the least-recently-used (LRU)
gueues that are used for database read and write activity. Performance
improves when these buffers remain in physical memory. Informix recom-
mends that you set the RESIDENT parameter to 1. If forced residency is not an
option on your computer, Dynamic Server issues an error message and
ignores this parameter.

You can turn residency on or off for the resident portion of shared memory in
the following ways:

= Use the onmode utility to reverse temporarily the state of
shared-memory residency while Dynamic Server is on-line.

s Change the RESIDENT parameter to turn shared-memory residency
on or off the next time that you initialize Dynamic Server shared
memory.

Configuration Impacts on Performance 3-35

Configuration Parameters That Affect Memory Utilization

STACKSIZE

The STACKSIZE parameter indicates the initial stack size for each thread.
Dynamic Server assigns the amount of space that this parameter indicates to
each active thread. This space comes from the virtual portion of Dynamic
Server shared memory.

To reduce the amount of shared memory that the database server adds
dynamically, estimate the amount of the stack space required for the average
number of threads that your system runs and include that amount in the
value that you set for SHMVIRTSIZE. To estimate the amount of stack space
that you require, use the following formula:

stacktotal = STACKSIZE * avg _no_of_threads

avg_no_of threads is the average number of threads. You can monitor the
number of active threads at regular intervals to deter-
mine this amount. Use onstat -g sts to check the stack
use of threads. A general estimate is between 60 and 70
percent of the total number of connections (specified in
the sqglhosts file or in the NETTYPE parameters in your
ONCONFIG file), depending on your workload.

LOCKS

The LOCKS parameter sets the maximum number of locks that you can use at
any one time. The absolute maximum number of locks in Dynamic Server is
8 million. Each lock requires 44 bytes in the resident segment. You must pro-
vide for this amount of memory when you configure shared memory.

3-36 Performance Guide for Informix Dynamic Server

Configuration Parameters That Affect Memory Utilization

Set LOCKS to the maximum number of locks that a query needs, multiplied
by the number of concurrent users. To estimate the number of locks that a
guery needs, use the guidelines in the following table.

Locks per BYTE or
Statement Isolation Level Table Row Key TEXT Data
SELECT Dirty Read 0 0 0 0
Committed Read 1 0 0 0
Cursor Stability 1 1 0 0
Indexed Repeatable 1 Number Number 0
Read of rows of rows
thatsatisfy that satisfy
conditions conditions
Sequential Repeatable 1 0 0 0
Read
INSERT 1 1 Numberof Number of
indexes pages in
BYTE or
TEXT data
DELETE 1 1 Number of Number of
indexes pages in
BYTE or
TEXT data
UPDATE 1 1 2 per Number of
changed pages in
key value old plus
new BYTE
or TEXT
data

Important: During the execution of the SQL statement DROP DATABASE, Dynamic
Server acquires and holds a lock on each table in the database until the entire DROP
operation completes. Make sure that your value for LOCKS is large enough to accom-
modate the largest number of tables in a database.

Configuration Impacts on Performance 3-37

Configuration Parameters That Affect Memory Utilization

LOGBUFF

The LOGBUFF parameter determines the amount of shared memory that is
reserved for each of the three buffers that hold the logical-log records until
they are flushed to the logical-log file on disk. The size of a buffer determines
how often it fills and therefore how often it must be flushed to the logical-log
file on disk.

PHYSBUFF

The PHYSBUFF parameter determines the amount of shared memory that is
reserved for each of the two buffers that serve as temporary storage space for
data pages that are about to be modified. The size of a buffer determines how
often it fills and therefore how often it must be flushed to the physical log on
disk. Choose a value for PHYSBUFF that is an even increment of the system
page size.

DS_TOTAL_MEMORY

The DS_TOTAL_MEMORY parameter places a ceiling on the amount of shared
memory that a query can obtain. You can use this parameter to limit the per-
formance impact of large, memory-intensive queries. The higher you set this
parameter, the more memory a large query can use, and the less memory is
available for processing other queries and transactions.

For OLTP applications, set DS_TOTAL_MEMORY to between 20 and 50 percent
of the value of SHM_TOTAL, in kilobytes. For applications that involve large
decision-support (DSS) queries, increase the value of DS_TOTAL_MEMORY to
between 50 and 80 percent of SHM_TOTAL. If you use your Dynamic Server
instance exclusively for DSS queries, set this parameter to 90 percent of
SHM_TOTAL.

3-38 Performance Guide for Informix Dynamic Server

Algorithm for Determining DS_TOTAL_MEMORY

A quantum unit is the minimum increment of memory allocated to a query.
The Memory Grant Manager (MGM) allocates memory to queries in quantum
units. Dynamic Server uses the value of DS_MAX_QUERIES with the value of
DS_TOTAL_MEMORY to calculate a quantum of memory, according to the fol-
lowing formula:

quantum = DS_TOTAL_MEMORY / DS_MAX_QUERIES

To allow for more simultaneous queries with smaller quanta each, Informix
suggests that you increase DS_MAX_QUERIES. For more information on
DS_MAX_QUERIES, refer to “DS_MAX_QUERIES” on page 3-16. For more
information on MGM, refer to “The Memory Grant Manager” on page 9-5.

Algorithm for Determining DS_TOTAL_MEMORY

Dynamic Server derives a value for DS_TOTAL_MEMORY if you do not set
DS _TOTAL_MEMORY or if you set it to an inappropriate value. Whenever
Dynamic Server changes the value that you assigned to DS_ TOTAL_MEMORY,
it sends the following message to your console:

DS_TOTAL_MEMORY recalculated and changed from old_value Kb
to new_value Kb

The metavariable old_value represents the value that you assigned to
DS_TOTAL_MEMORY in your configuration file. The metavariable new_value
represents the value that Dynamic Server derived.

When you receive the preceding message, you can use the algorithm to inves-
tigate what values Dynamic Server considers inappropriate. You can then
take corrective action based on your investigation.

The following sections documents the algorithm that Dynamic Server uses to
derive the new value for DS_TOTAL_MEMORY.

Configuration Impacts on Performance 3-39

Algorithm for Determining DS_TOTAL_MEMORY

Derive a Minimum for Decision-Support Memory

In the first part of the algorithm, Dynamic Server establishes a minimum for
decision- support memory. When you assign a value to the configuration
parameter DS_MAX_QUERIES, Dynamic Server sets the minimum amount of
decision-support memory according to the following formula:

min_ds_total_memory = DS_MAX_QUERIES * 128Kb

When you do not assign a value to DS_ MAX_QUERIES, Dynamic Server
instead uses the following formula, which is based on the value of NUMCPU-
VPS:

min_ds_total_memory = NUMCPUVPS * 2 * 128Kb

Derive a Working Value for Decision-Support Memory

In the second part of the algorithm, Dynamic Server establishes a working
value for the amount of decision-support memory. Dynamic Server verifies
this amount in the third and final part of the algorithm.

When DS_TOTAL_MEMORY Is Set

Dynamic Server first checks if SHMTOTAL is set. When SHMTOTAL is set,
Dynamic Server uses the following formula to calculate the amount of deci-
sion-support memory:

IF DS_TOTAL_MEMORY <= SHMTOTAL - nondecision_support_memory
THEN
decision_support_memory = DS_TOTAL_MEMORY
ELSE
decision_support_memory = SHMTOTAL -
nondecision_support_memory

This algorithm effectively prevents you from setting DS_TOTAL_MEMORY to
values that Dynamic Server cannot possibly allocate to decision-support
memory.

When SHMTOTAL is not set, Dynamic Server sets decision-support memory
equal to the value that you specified in DS_TOTAL_MEMORY.

3-40 Performance Guide for Informix Dynamic Server

Algorithm for Determining DS_TOTAL_MEMORY

When DS_TOTAL_MEMORY Is Not Set

When you do not set DS_TOTAL_MEMORY, Dynamic Server proceeds as fol-
lows. First, Dynamic Server checks if you have set SHMTOTAL. When SHM-
TOTAL is set, Dynamic Server uses the following formula to calculate the
amount of decision-support memory:

decision_support_memory = SHMTOTAL -
nondecision_support_memory

When Dynamic Server finds that you did not set SHMTOTAL, it sets decision-
support memory as the following example shows:

decision_support_memory = min_ds_total_memory

For a description of the variable min_ds_total_memory, refer to “Derive a
Minimum for Decision-Support Memory” on page 3-40.

Check Derived Value for Decision-Support Memory

The final part of the algorithm verifies that the amount of shared memory is
greater than min_ds_total_memory and less than the maximum possible
memory space for your computer. When Dynamic Server finds that the
derived value for decision-support memory is less than
min_ds_total_memory, it sets decision-support memory equal to
min_ds_total_memory.

When Dynamic Server finds that the derived value for decision-support
memory is greater than the maximum possible memory space for your com-
puter, it sets decision-support memory equal to the maximum possible mem-
ory space.

Configuration Impacts on Performance 3-41

Data-Replication Buffers and Memory Utilization

Data-Replication Buffers and Memory Utilization

Data replication requires two instances of Dynamic Server, a primary one
and a secondary one, running on two computers. If you implement data rep-
lication for your Dynamic Server database server, Dynamic Server holds log-
ical-log records in the data-replication buffer before it sends them to the
secondary Dynamic Server. The data-replication buffer is always the same
size as the logical-log buffer.

Memory-Resident Tables and the Buffer Pool

If your database contains smaller tables that are used by applications for
which performance is important, you can instruct the database server to
leave data and index pages for these tables in the buffer cache. A table whose
pages should remain in memory is known as a memory-resident table.

Although the least recently used mechanism tends to keep pages that the
database server reads often in memory, it does not improve performance in
cases where smaller tables are not accessed often enough to be kept in mem-
ory. For more information on the least recently used mechanism, refer to your
Administrator’s Guide.

You specify which tables or fragments should be memory-resident with the
SET TABLE statement in SQL. You must execute this statement every time that
you bring up the database server. For more information about the SET TABLE
statement, refer to the Informix Guide to SQL: Syntax.

You can also specify that indexes be memory resident with the SET INDEX
statement in SQL.

Use caution when you determine which tables, fragments, or indexes should
be memory resident. If there are too many memory-resident tables, or if the
memory-resident tables are too large, the database server might swap out
pages that do not belong to memory-resident tables too often. An improper
use of memory-resident tables can decrease performance for applications
that use tables that are not set to memory resident.

3-42 Performance Guide for Informix Dynamic Server

Memory-Resident Tables and the Buffer Pool

You can monitor the effect of memory-resident tables with the following
onstat options:

= onstat-P
= onstat-b
= onstat-B
= onstat-p

You can list the number of buffer pages that have data or index pages from
memory-resident tables with onstat -P. The following excerpt from an onstat
-P output shows three tables, fragments, or indexes that have a total of four
memory-resident pages:

partnum total btree data other resident
0 99 17 21 61 0
1048578 3 1 1 1 0
1048579 6 4 2 0 0
1048828 2 1 0 1 2
1048829 1 0 0 1 1
1048830 1 0 0 1 1

Also, the onstat -b (or onstat -B) command shows the total number of
memory resident pages at any one time. The following onstat -b output
shows that there are four memory-resident pages out of a total of 200 pages
in the buffer pool:

Buffers
address userthread flgs pagenum memaddr nslots pgflgs xflgs
owner waitlist

0 modified, 4 resident, 200 total, 256 hash buckets, 2048
buffer size

As usual, you should monitor the buffer cache rate with onstat -p, as the
cache rate can decrease significantly when memory-resident tables are used
improperly.

Configuration Impacts on Performance 3-43

How Configuration Affects I/0 Activity

How Configuration Affects I/0 Activity

Your Dynamic Server configuration affects 1/0 activity in several ways. Your
assignment of chunks and dbspaces can create 1/0 hot spots, or disk partitions
with a disproportionate amount of 1/0 activity. Your allocation of critical
data, sort areas, and areas for temporary files and index builds can place
intermittent loads on various disks. How you configure read-ahead can
increase the effectiveness of individual 1/0 operations. How you configure
the background 170 tasks, such as logging and page cleaning, can affect 1/0
throughput. The following sections discuss each of these topics.

Chunk and Dbspace Configuration

All the data that resides in a Dynamic Server database is stored on disk. Opti-
cal Subsystem also uses a magnetic disk to access BYTE or TEXT data that is
retrieved from optical media. The speed at which Dynamic Server can copy
the appropriate data pages to and from disk determines how well your appli-
cation performs.

Disks are typically the slowest component in the 1/0 path for a transaction or
query that runs entirely on one host computer. Network communication can
also introduce delays in client/server applications, but these delays are
typically outside the control of the Dynamic Server administrator.

Disks can become overused or saturated when users request pages too often.
Saturation can occur in the following situations:

= You use a disk for multiple purposes, such as for both logging and
active database tables.

= Disparate data resides on the same disk.

= Table extents become interleaved.

3-44 Performance Guide for Informix Dynamic Server

Chunk and Dbspace Configuration

The various functions that your application requires, as well as the
consistency-control functions that Dynamic Server performs, determine the
optimal disk, chunk, and dbspace layout for your application. The more
disks that you make available to Dynamic Server, the easier it is to balance
1/0 across them. For more information on these factors, refer to Chapter 4.

This section outlines important issues for the initial configuration of your
chunks, dbspaces, and blobspaces. Consider the following issues when you
decide how to lay out chunks and dbspaces on disks:

= Placement and mirroring of critical data

= Load balancing

= Reduction of contention

= Ease of backup and restore

Associate Disk Partitions with Chunks

Informix recommends that you assign chunks to entire disk partitions. When
a chunk coincides with a disk partition (or device), it is easy to track
disk-space use, and you avoid errors caused by miscalculated offsets.

Associate Dbspaces with Chunks

In Version 5.0 and earlier of the database server, you can improve perfor-
mance when you combine several chunks within a dbspace. In versions later
than 5.0, this is no longer the case. Informix recommends that you associate
asingle chunk with a dbspace, especially when that dbspace is to be used for
a table fragment. For more information on table placement and layout, refer
to Chapter 4.

Configuration Impacts on Performance 3-45

Placement of Critical Data

Place Database System Catalog Tables with Database Tables

When a disk that contains the system catalog for a particular database fails,
the entire database remains inaccessible until the catalog is restored. Because
of this potential inaccessibility, Informix recommends that you do not cluster
the system catalog tables for all databases in a single dbspace but instead
place the system catalog tables with the database tables that they describe.

To create the database system catalog tables in the table dbspace

1. Create a database in the dbspace in which the table is to reside.

2. Use the SQL statements DATABASE or CONNECT to make that data-
base the current database.

3. Enter the CREATE TABLE statement to create the table.

Placement of Critical Data

The disk or disks that contain the system reserved pages, the physical log,
and the dbspaces that contain the logical-log files are critical to the operation
of Dynamic Server. Dynamic Server cannot operate if any of these elements
becomes unavailable. By default, Dynamic Server places all three critical ele-
ments in the root dbspace.

To arrive at an appropriate placement strategy for critical data, you must
make a trade-off between protecting the availability of data and allowing
maximum logging performance.

Dynamic Server also places temporary table and sort files in the root dbspace
by default. Informix recommends that you use the DBSPACETEMP configura-
tion parameter and the DBSPACETEMP environment variable to assign these
tables and files to other dbspaces. For details, see “Parameters and Variables
That Affect Temporary Tables and Sorting” on page 3-51.

3-46 Performance Guide for Informix Dynamic Server

Placement of Critical Data

Consider Separate Disks for Critical Data Components

If you place the root dbspace, logical log, and physical log in separate
dbspaces on separate disks, you can obtain some distinct performance
advantages. The disks that you use for each critical data component should
be on separate controllers. This approach has the following advantages:

= Isolates logging activity from database 1/0 and allows physical-log
1/0 requests to be serviced in parallel with logical-log 1/0 requests

= Reduces the time that you need to recover from a crash

However, unless the disks are mirrored, there is an increased risk
that a disk that contains critical data might be affected in the event of
a crash, which will bring Dynamic Server to a halt and require the
complete restoration of all data from a level-0 backup.

= Allows for arelatively small root dbspace that contains only reserved
pages, the database partition, and the sysmaster database

In many cases, 10,000 kilobytes is sufficient.

Dynamic Server uses different methods to configure various portions of crit-
ical data. To assign an appropriate dbspace for the root dbspace and physical
log, set the appropriate Dynamic Server configuration parameters. To assign
the logical-log files to an appropriate dbspace, use the onparams utility.

For more information on the configuration parameters that affect each por-
tion of critical data, refer to “Configuration Parameters That Affect Critical
Data” on page 3-49.

Consider Mirroring for Critical Data Components

Consider mirroring for the dbspaces that contain critical data. Mirroring
these dbspaces ensures that Dynamic Server can continue to operate even
when a single disk fails. However, depending on the mix of 1/0 requests for
a given dbspace, a trade-off exists between the fault tolerance of mirroring
and 1/0 performance. You obtain a marked performance advantage when
you mirror dbspaces that have a read-intensive usage pattern and a slight
performance disadvantage when you mirror write-intensive dbspaces.

Configuration Impacts on Performance 3-47

Placement of Critical Data

When mirroring is in effect, two disks are available to handle read requests,
and Dynamic Server can process a higher volume of those requests. How-
ever, each write request requires two physical write operations and does not
complete until both physical operations are performed. The write operations
are performed in parallel, but the request does not complete until the slower
of the two disks performs the update. Thus, you experience a slight perfor-
mance penalty when you mirror write-intensive dbspaces.

Mirroring the Root Dbspace

You can achieve a certain degree of fault tolerance with a minimum
performance penalty if you mirror the root dbspace and restrict its contents
to read-only or seldom-accessed tables. When you place tables that are more
update-intensive in other, nonmirrored dbspaces, you can use the Dynamic
Server archive-and-backup facilities to perform warm restores of those tables
in the event of a disk failure. When the root dbspace is mirrored, Dynamic
Server remains on-line to service other transactions while the failed disk is
being repaired.

When you mirror the root dbspace, always place the first chunk on a different
device than that of the mirror. The MIRRORPATH configuration parameter
should have a different value than ROOTPATH.

Mirroring the Logical Log

The logical log is write intensive. If the dbspace that contains the logical-log
files is mirrored, you encounter the slight doubled-write performance pen-
alty noted in “Consider Mirroring for Critical Data Components” on

page 3-47. However, you can adjust the rate at which logging generates I/0
requests to a certain extent by choosing an appropriate log buffer size and
logging mode.

With unbuffered and ANSI-compliant logging, Dynamic Server requests a
flush of the log buffer to disk for every committed transaction (two when the
dbspace is mirrored). Buffered logging generates far fewer 1/0 requests than
unbuffered or ANSI-compliant logging.

3-48 Performance Guide for Informix Dynamic Server

Configuration Parameters That Affect Critical Data

With buffered logging, the log buffer is written to disk only when it fills and
all the transactions that it contains are completed. You can reduce the fre-
guency of logical-log 1/0 even more if you increase the size of your logical-
log buffers. However, buffered logging leaves transactions in any partially
filled buffers vulnerable to loss in the event of a system failure.

Although database consistency is guaranteed under buffered logging, spe-
cific transactions are not guaranteed against a fault. The larger the logical-log
buffers, the more transactions that you might need to reenter when service is
restored after a fault.

Unlike the physical log, you cannot specify an alternative dbspace for logical-
log files in your initial Dynamic Server configuration. Instead, use the
onparams utility first to add logical-log files to an alternative dbspace and
then drop logical-log files from the root dbspace. For more information about
onparams, refer to your Administrator’s Guide.

Mirroring the Physical Log

The physical log is write intensive, with activity occurring at checkpoints and
when buffered data pages are flushed. 1/0 to the physical log also occurs
when a page-cleaner thread is activated. If the dbspace that contains the
physical log is mirrored, you encounter the slight doubled-write perfor-
mance penalty noted under “Consider Mirroring for Critical Data Compo-
nents” on page 3-47. You can adjust your checkpoint interval (see
“CKPINTVL” on page 3-65) and your LRU minimum and maximum thresh-
olds (see “LRUS, LRU_MAX_DIRTY, and LRU_MIN_DIRTY” on page 3-68)
to keep 1/0 to the physical log at a minimum.

Configuration Parameters That Affect Critical Data

You can use the following parameters to configure the root dbspace:

= ROOTNAME
s ROOTOFFSET
= ROOTPATH

s ROOTSIZE

Configuration Impacts on Performance 3-49

Dbspaces for Temporary Tables and Sort Files

= MIRROR
= MIRRORPATH
= MIRROROFFSET

These parameters determine the location and size of the initial chunk of the
root dbspace and configure mirroring, if any, for that chunk. (If the initial
chunk is mirrored, all other chunks in the root dbspace must also be
mirrored). Otherwise, these parameters have no major impact on
performance.

The following Dynamic Server configuration parameters affect the logical

logs:
= LOGSIZE
s LOGSMAX
= LOGBUFF

LOGSIZE and LOGSMAX determine the size and number of logical-log files.
LOGBUFF determines the size of the three logical-log buffers that are in
shared memory. For more information on LOGBUFF, refer to “LOGBUFF” on
page 3-38.

The following Dynamic Server configuration parameters determine the loca-
tion and size of the physical log:

= PHYSDBS
s PHYSFILE

Dbspaces for Temporary Tables and Sort Files

If your applications use temporary tables or large sort operations, you can
improve performance by using the DBSPACETEMP configuration parameter
to designate one or more dbspaces for temporary tables and sort files. When
you specify more than one dbspace for temporary tables, Dynamic Server
automatically applies its parallel insert capability to fragment the temporary
table across those dbspaces, using a round-robin distribution scheme. When
you assign two or more dbspaces on separate disks for temporary tables, you
can dramatically improve the speed with which Dynamic Server creates
those tables.

3-50 Performance Guide for Informix Dynamic Server

Parameters and Variables That Affect Temporary Tables and Sorting

Applications can designate dbspaces for temporary tables and sort files with
the DBSPACETEMP environment variable, as described in “Parameters and

Variables That Affect Temporary Tables and Sorting” on page 3-51. You can

also create special dbspaces, called temporary dbspaces, to be used exclusively
to store temporary tables and sort files.

To create a dbspace for the exclusive use of temporary tables and sort files,
use onspaces -t. If you create more than one temporary dbspace, each
dbspace should reside on a separate disk to balance the 1/0 impact. For best
performance, place no more than one temporary dbspace on a single disk.

Both logical and physical logging are suppressed for temporary dbspaces,
and these dbspaces are never backed up as part of a full-system backup. You
cannot mirror a temporary dbspace that you create with onspaces -t.

Parameters and Variables That Affect Temporary Tables
and Sorting

The DBSPACETEMP configuration parameter affects the placement of tempo-
rary tables and sort files, as does the DBSPACETEMP environment variable.

The DBSPACETEMP Configuration Parameter

The DBSPACETEMP configuration parameter specifies a list of dbspaces in
which Dynamic Server places temporary tables and sort files by default. If
you specify more than one dbspace in this list, Dynamic Server uses its par-
allel insert capability to fragment temporary tables across all the listed
dbspaces, using a round-robin distribution scheme. For more information,
refer to “Designing a Distribution Scheme” on page 6-12.

Important: For best performance, Informix recommends that you use
DBSPACETEMP to specify two or more dbspaces on separate disks for temporary
tables and sort files.

Some or all of the dbspaces that you list in this parameter can be temporary
dbspaces, which are reserved exclusively to store temporary tables and sort
files. For details, see “Dbspaces for Temporary Tables and Sort Files” on
page 3-50.

Configuration Impacts on Performance 3-51

Parameters and Variables That Affect Temporary Tables and Sorting

To override the DBSPACETEMP parameter, you can use the DBSPACETEMP
environment variable for both temporary tables and sort files. Although you
can use the PSORT_DBTEMP environment variable to specify one or more
operating-system directories in which to place sort files, you can obtain better
performance when they specify dbspaces in DBSPACETEMP. When dbspaces
reside on unbuffered devices, 1/0 is faster to those devices than to files buff-
ered through the operating system.

Important: Informix recommends that you use the DBSPACETEMP parameter or the
DBSPACETEMP environment variable for better performance of sort operations and
to prevent Dynamic Server from unexpectedly filling file systems.

When you do not specify dbspaces in the DBSPACETEMP configuration
parameter or the client DBSPACETEMP environment variable, Dynamic
Server places all temporary tables in the root dbspace. This action can
severely affect 1/0 to the root dbspace. If the root dbspace is mirrored, you
encounter a slight doubled-write performance penalty for 1/0 to the tempo-
rary tables and sort files. In addition, Dynamic Server places explicit tempo-
rary tables created with the TEMP TABLE clause of the CREATE TABLE
statement in the dbspace of the current database. This action can have severe
impacts on 170 to that dbspace.

The DBSPACETEMP and PSORT_NPROCS Environment Variables

The DBSPACETEMP environment variable is similar to the DBSPACETEMP
configuration parameter that the preceding section describes. When set in the
environment for a client application, this variable overrides the
DBSPACETEMP configuration parameter.

This environment variable specifies a list of one or more dbspaces in which
to place temporary tables for a particular session. To balance the load of tem-
porary tables, Dynamic Server cycles through this list to distribute temporary
tables among the specified dbspaces. For best performance, do not list more
than one dbspace on any given disk in DBSPACETEMP.

3-52 Performance Guide for Informix Dynamic Server

Parameters and Variables That Affect Temporary Tables and Sorting

For the following reasons, Informix recommends that you use
DBSPACETEMP rather than the PSORT_DBTEMP environment variable to
specify sort files:

= DBSPACETEMP typically yields better performance. When dbspaces
reside on unbuffered devices, I/0 is faster to those devices than to
buffered files.

= PSORT_DBTEMP specifies one or more operating-system directories
in which to place sort files. Therefore, Dynamic Server can
unexpectedly fill file systems on your computer.

The database server writes sort files to the /tmp directory of the operating
system when you do not specify a location with the DBSPACETEMP configu-
ration parameter, the client DBSPACETEMP environment variable, or the cli-
ent PSORT_DBTEMP environment variable. If the file system that contains
that directory has insufficient space to hold a sort file, the query performing
the sort returns an error. Meanwhile, the operating system might be severely
impacted until you remove the sort file.

The PSORT_NPROCS environment variable specifies the maximum number
of threads that the database server can use to sort a query. When the value of
PDQ priority is 0 and PSORT_NPROCS is greater than 1, Dynamic Server uses
parallel sorts. These sorts are not limited by the management of PDQ. In other
words, although the sort is executed in parallel, Dynamic Server does not
regard sorting as a PDQ activity. Dynamic Server does not control sorting by
any of the PDQ configuration parameters when PDQ priority is 0.

When PDQ priority is greater than 0 and PSORT_NPROCS is greater than 1,
the query benefits both from parallel sorts and from PDQ features such as par-
allel scans and additional memory. Users can use the PDQPRIORITY environ-
ment variable to request a specific proportion of PDQ resources for a query.
You can use the MAX_PDQPRIORITY parameter to limit the number of such
user requests. For more information on MAX_PDQPRIORITY, refer to
“MAX_PDQPRIORITY” on page 3-15.

Configuration Impacts on Performance 3-53

How Blobspace Configuration Affects Performance

Dynamic Server allocates a relatively small amount of memory for sorting,
and that memory is divided among the PSORT_NPROCS sort threads. For
more information on memory allocated for sorting, refer to “Estimating Sort
Memory” on page 4-28.

Important: For better performance for a sort operation, Informix recommends that

you set PSORT_NPROCS initially to 2 when your computer has multiple CPUs. If

the subsequent CPU activity is lower than 1/O activity, you can increase the value of
PSORT_NPROCS.

For more information about environment variables that users can set, refer to
the Informix Guide to SQL: Reference.

How Blobspace Configuration Affects Performance

A blobspace is a logical storage unit composed of one or more chunks that
store only BYTE and TEXT data. If you use a blobspace, you can store BYTE or
TEXT data on a separate disk from the table with which the data is associated.
You can store BYTE or TEXT data associated with different tables in the same
blobspace.

To create a blobspace, use ON-Monitor or the onspaces utility, as your Admin-
istrator’s Guide describes. You assign BYTE or TEXT data to a blobspace when
you create the tables with which the BYTE or TEXT data is associated. For
more information on the SQL statement CREATE TABLE, refer to the Informix
Guide to SQL: Syntax.

When you store BYTE or TEXT data in a blobspace on a separate disk from the
table with which it is associated, Dynamic Server provides the following per-
formance advantages:

= Parallel access to table and BYTE or TEXT data

= Unlike BYTE or TEXT data stored in a tblspace, blobspace data is
written directly to disk. This data is not logged, which reduces
logging 1/0 activity for logged databases. The BYTE or TEXT data
does not pass through resident shared memory, which leaves
memory pages free for other uses.

3-54 Performance Guide for Informix Dynamic Server

How Blobspace Configuration Affects Performance

Blobspaces are divided into units called blobpages. Dynamic Server retrieves
BYTE or TEXT data from a blobspace in blobpage-sized units.You specify the
size of a blobpage in multiples of a disk page when you create the blobspace.
The optimal blobpage size for your configuration depends on the following
factors:

= The size distribution among the BYTE or TEXT data

= The trade-off between retrieval speed for your largest data and the
amount of disk space that is wasted by storing small amounts of
BYTE or TEXT data in large blobpages

To retrieve BYTE or TEXT data as quickly as possible, use the size of your larg-
est BYTE or TEXT data rounded up to the nearest disk-page-sized increment.
This scheme guarantees that Dynamic Server can retrieve even the largest
BYTE or TEXT data in a single 170 request. Although this scheme guarantees
the fastest retrieval, it has the potential to waste disk space. Because BYTE or
TEXT data is stored in its own blobpage (or set of blobpages), Dynamic Server
reserves the same amount of disk space for every blobpage even if the BYTE
or TEXT data takes up a fraction of that page. Using a smaller blobpage allows
you to make better use of your disk, especially when you have large differ-
ences in the sizes of your BYTE or TEXT data.

To achieve the greatest theoretical utilization of space on your disk, you could
make your blobpage the same size as a standard disk page. Then, much , if
not most, BYTE or TEXT data would require several blobpages. Because
Dynamic Server acquires a lock and issues a separate 1/0 request for each
blobpage, this scheme performs poorly.

In practice, a balanced scheme for sizing uses the most frequently occurring
BYTE or TEXT data size as the size of a blobpage. For example, you have 160
TEXT or BYTE data values in a table, 120 values are 12 kilobytes each and

40 columns are 16 kilobytes each. Then a 12-kilobyte blobpage size provides
greater storage efficiency than a 16-kilobyte blobpage size. This configuration
allows the majority of TEXT or BYTE columns to require a single blobpage and
the other 40 columns to require two blobpages. In this configuration,

8 kilobytes are wasted in the second blobpage for each of the larger values.

Tip: If a table has more than one BYTE or TEXT data columns and the data values are
not close in size, store the data in different blobspaces, each with an appropriately
sized blobpage.

Configuration Impacts on Performance 3-55

How Optical Subsystem Affects Performance

How Optical Subsystem Affects Performance

Optical Subsystem extends the storage capabilities of Dynamic Server for
BYTE or TEXT data to write-once-read-many (WORM) optical subsystems.
Dynamic Server uses a cache in memory to buffer initial BYTE or TEXT data
pages requested from the optical subsystem. The memory cache isa common
storage area. Dynamic Server adds BYTE or TEXT data requested by any
application to the memory cache as long as the cache has space. To free space
in the memory cache, the application must release the BYTE or TEXT data that
it is using.

A significant performance advantage occurs when you retrieve BYTE or TEXT
data directly into memory instead of buffering that data on disk. Therefore,
proper cache sizing is important when you use Optical Subsystem. You spec-
ify the total amount of space available in the memory cache with the
OPCACHEMAX configuration parameter. Applications indicate that they
require access to a portion of the memory cache when they set the
INFORMIXOPCACHE environment variable. For details, refer to
“INFORMIXOPCACHE” on page 3-58.

BYTE or TEXT data that does not fit entirely into the space that remains in the
cache are stored in the blobspace that the STAGEBLOB configuration parame-
ter names. This staging area acts as a secondary cache on disk for blobpages
that are retrieved from the optical subsystem. BYTE or TEXT data that is
retrieved from the optical subsystem is held in the staging area until the
transactions that requested it are complete.

The Dynamic Server administrator creates the staging-area blobspace with
ON-Monitor or with the onspaces utility.

You can use onstat -O to monitor utilization of the memory cache and
STAGEBLOB blobspace. If contention develops for the memory cache,
increase the value listed in the configuration file for OPCACHEMAX. (The
new value takes effect the next time that Dynamic Server initializes shared
memory.) For a complete description of Optical Subsystem, refer to the Guide
to the Optical Subsystem.

3-56 Performance Guide for Informix Dynamic Server

Environment Variables and Configuration Parameters Related to Optical

Environment Variables and Configuration Parameters
Related to Optical Subsystem

The following configuration parameters affect the performance of Optical
Subsystem:;

= STAGEBLOB
s OPCACHEMAX

The following sections describe these parameters, along with the
INFORMIXOPCACHE environment variable.

STAGEBLOB

The STAGEBLOB configuration parameter identifies the blobspace that is to be
used as a staging area for BYTE or TEXT data that is retrieved from the optical
subsystem, and it activates Optical Subsystem. If the STAGEBLOB parameter
is not listed in the configuration file, Optical Subsystem does not recognize
the optical-storage subsystem.

The structure of the staging-area blobspace is the same as all other Dynamic
Server blobspaces. When the Dynamic Server administrator creates the stag-
ing area, it consists of only one chunk, but you can add more chunks as
desired. You cannot mirror the staging-area blobspace. The optimal size for
the staging-area blobspace depends on the following factors:

= The frequency of BYTE or TEXT data storage
= The frequency of BYTE or TEXT data retrieval
= The average size of the BYTE or TEXT data to be stored
To calculate the size of the staging-area blobspace, you must estimate the

number of blobs that you expect to reside there simultaneously and multiply
that number by the average BYTE or TEXT data size.

Configuration Impacts on Performance 3-57

I/0 for Tables

OPCACHEMAX

The OPCACHEMAX configuration parameter specifies the total amount of
space that is available for BYTE or TEXT data retrieval in the memory cache
that Optical Subsystem uses. Until the memory cache fills, it stores BYTE or
TEXT data that is requested by any application. BYTE or TEXT data that cannot
fit in the cache is stored on disk in the blobspace that the STAGEBLOB config-
uration parameter indicates. You can increase the size of the cache to reduce
contention among BYTE or TEXT data requests and to improve performance
for requests that involve Optical Subsystem.

INFORMIXOPCACHE

The INFORMIXOPCACHE environment variable sets the size of the memory
cache that a given application uses for BYTE or TEXT data retrieval. If the
value of this variable exceeds the maximum that the OPCACHEMAX configu-
ration parameter specifies, OPCACHEMAX is used instead. If INFORMIXOP-
CACHE is not set in the environment, the cache size is set to OPCACHEMAX
by default.

I/0 for Tables

One of the most frequent functions that Dynamic Server performs is to bring
data and index pages from disk into memory. Pages can be read individually
for brief transactions and sequentially for some queries. You can configure
the number of pages that Dynamic Server brings into memory and the timing
of 1/0 requests for sequential scans. You can also indicate how Dynamic
Server is to respond when a query requests data from a dbspace that is tem-
porarily unavailable.

Sequential Scans

When Dynamic Server performs a sequential scan of data or index pages,
most of the 1/0 wait time is caused by seeking the appropriate starting page.
You can dramatically improve performance for sequential scans by bringing
in a number of contiguous pages with each 1/0 operation. The action of
bringing additional pages along with the first page in a sequential scan is
called read-ahead.

3-58 Performance Guide for Informix Dynamic Server

I/0 for Tables

The timing of 1/0 operations that are needed for a sequential scan is also
important. If the scan thread must wait for the next set of pages to be brought
in after working its way through each batch, a delay results. Timing second
and subsequent read requests to bring in pages before they are needed pro-
vides the greatest efficiency for sequential scans. The number of pages to
bring in, and the frequency of read-ahead 1/0 requests, depends on the avail-
ability of space in the memory buffers. Read-ahead can increase page clean-
ing to unacceptable levels if too many pages are brought in with each batch,
or if batches are brought in too often. For information on how to configure
read-ahead, refer to “RA_PAGES and RA_THRESHOLD” on page 3-60.

Light Scans

Under the appropriate circumstances, Dynamic Server can bypass the LRU
gueues when it performs a sequential scan. A sequential scan that avoids the
LRU queues is termed a light scan. Light scans can be used only for sequential
scans of large data tables and are the fastest means for performing these
scans. System catalog tables and tables smaller than the size of the buffer pool
do not use light scans. Light scans are allowed under Dirty Read (including
nonlogging databases) and Repeatable Read isolation levels. Repeatable
Read full-table scans obtain a shared lock on the table. A light scan is used
only in Committed Read isolation if the table has a shared lock. Light scans
are never allowed under Cursor Stability isolation.

Unavailable Data

Another aspect of 170 for tables has to do with situations in which a query
requests access to a table or fragment in a dbspace that is temporarily
unavailable. When Dynamic Server determines that a dbspace is unavailable
as the result of a disk failure, queries directed to that dbspace fail by default.
Dynamic Server allows you to specify dbspaces that, when unavailable, can
be skipped by queries, as described in “DATASKIP” on page 3-61.

Warning: If a dbspace that contains data that a query requests is listed in DATASKIP
and is currently unavailable because of a disk failure, the data that Dynamic Server
returns to the query can be inconsistent with the actual contents of the database.

Configuration Impacts on Performance 3-59

Configuration Parameters That Affect I/O for Tables

Configuration Parameters That Affect 1/0 for Tables

The following configuration parameters affect read-ahead:

= RA_PAGES
» RA_THRESHOLD

In addition, the DATASKIP configuration parameter enables or disables data
skipping.

The following sections describes the performance effects and considerations
that are associated with these parameters. For more information about
Dynamic Server configuration parameters, refer to your Administrator’s
Guide.

RA_PAGES and RA_THRESHOLD

The RA_PAGES parameter indicates the number of pages that Dynamic Server
brings into memory in a single 1/0 operation during sequential scans of data
or index pages. The RA_THRESHOLD parameter indicates the point at which
Dynamic Server issues an 1/0 request to bring in the next set of pages from
disk. Because the greater portion of I/0 wait time is involved in seeking the
correct starting point on disk, you can increase efficiency of sequential scans
by increasing the number of contiguous pages brought in with each transfer.
However, setting RA_PAGES too large or RA_THRESHOLD too high with
respect to BUFFERS can trigger unnecessary page cleaning to make room for
pages that are not needed immediately.

Use the following formulas to calculate values for RA_PAGES and
RA_THRESHOLD:

RA_PAGES = (BUFFERS * bp_fract) / (2 * large_queries) + 2
RA_THRESHOLD = (BUFFERS * bp_fract) / (2 * large_queries) - 2

bp_fract is the portion of data buffers to use for large scans that require
read-ahead. If you want to allow large scans to take up to 75
percent of buffers, bp_fract would be 0.75.

large_queries is the number of concurrent queries that require read-ahead
that you intend to support.

3-60 Performance Guide for Informix Dynamic Server

Background 1/0 Activities

DATASKIP

The DATASKIP parameter allows you to specify which dbspaces, if any, que-
ries can skip when those dbspaces are unavailable as the result of a disk fail-
ure. You can list specific dbspaces and turn data skipping on or off for all
dbspaces. For details, refer to your Administrator’s Guide.

Dynamic Server sets the sixth character in the SQLWARN array to W when data
skipping is enabled. For more information about the SQLWARN array, refer to
the Informix Guide to SQL: Tutorial.

Warning: Dynamic Server cannot determine whether the results of a query are
consistent when a dbspace is skipped. If the dbspace contains a table fragment, the
user who executes the query must ensure that the rows within that fragment are not
needed for an accurate query result. Turning DATASKIP on allows queries with
incomplete data to return results that can be inconsistent with the actual state of the
database. Without proper care, that data can yield incorrect or misleading query
results.

Background 1/0 Activities

Background 1/0 activities do not service SQL requests directly. Many of these
activities are essential to maintain database consistency and other aspects of
Dynamic Server operation. However, they create overhead in the CPU and
take up 1/0 bandwidth. These overhead activities take time away from que-
ries and transactions. If you do not configure background 1/0 activities prop-
erly, too much overhead for these activities can limit the transaction
throughput of your application.

The following list shows some background 1/0 activities:

s Checkpoints

= Logging

= Page cleaning

= Backup and restore

= Rollback and recovery
= Data replication

= Auditing

Configuration Impacts on Performance 3-61

Background I/0 Activities

Checkpoints occur regardless of whether there is much database activity,
although they can occur with greater frequency as activity increases. Other
background activities, such as logging and page cleaning, occur more fre-
guently as database use increases. Activities such as backups, restores, or fast
recoveries occur only as scheduled or under exceptional circumstances.

Checkpoints, logging, and page cleaning are necessary to maintain database
consistency. A direct trade-off exists between the frequency of checkpoints or
the size of the logical logs and the time that it takes to recover the database in
the event of a failure. So a major consideration when you attempt to reduce
the overhead for these activities is the delay that you can accept during
recovery.

Another consideration is how page cleaning is performed. If pages are not
cleaned often enough, an sqglexec thread that performs a query might be
unable to find the available pages that it needs. It must then initiate a fore-
ground write and wait for pages to be freed. Foreground writes impair perfor-
mance, so you should avoid them. To reduce the frequency of foreground
writes, increase the number of page cleaners or decrease the threshold for
triggering a page cleaning. (See “LRUS, LRU_MAX DIRTY, and
LRU_MIN_DIRTY” on page 3-68.) Use onstat -F to monitor the frequency of
foreground writes.

For the most part, tuning your background 1/0 activities involves striking a
balance between appropriate checkpoint intervals, logging modes and log
sizes, and page-cleaning thresholds. The thresholds and intervals that trigger
background 170 activity often interact; adjustments to one threshold might
shift the performance bottleneck to another.

Data replication typically adds overhead to logical-log 1/0 that is propor-
tional to your logging activity. A configuration that optimizes logging activ-
ity without data replication is likely to optimize logging with data
replication.

3-62 Performance Guide for Informix Dynamic Server

Configuration Parameters That Affect Background I/0

The effect of auditing on performance is largely determined by the auditing
events that you choose to record. Depending on which users and events are
audited, the impact of this feature can vary widely. Infrequent events, such as
requests to connect to a database, have low performance impact. Frequent
events, such as requests to read any row, can generate a large amount of
auditing activity. The more users for whom such frequent events are audited,
the greater the impact on performance. For information about auditing, refer
to your Trusted Facility Manual.

Data replication and auditing are optional. You can obtain immediate
performance improvements by disabling these features, provided that the
operating requirements for your system allow you to do so.

Configuration Parameters That Affect Background 1/0

The following configuration parameters affect checkpoints:

s CKPTINTVL

= LOGSIZE

s LOGFILES
= LOGSMAX
s PHYSFILE

= ONDBSPDOWN

The following configuration parameters affect logging:

s LOGBUFF
= PHYSBUFF
s LTXHWM

s LTXEHWM
= LBU_PRESERVE

Configuration Impacts on Performance 3-63

Configuration Parameters That Affect Background I/0

The following configuration parameters affect page cleaning:

= CLEANERS

= LRUS

= LRU_MAX_DIRTY
= LRU_MIN_DIRTY
= RA_PAGES

» RA_THRESHOLD

“RA_PAGES and RA_THRESHOLD” on page 3-60 describes the RA_PAGES
and RA_THRESHOLD parameters.

The following configuration parameters affect backup and restore:

= TAPEBLK
= LTAPEBLK
= TAPEDEV
= LTAPEDEV
s TAPESIZE

= LTAPESIZE
The following configuration parameters affect fast recovery:

s OFF_RECVRY_THREADS
= ON_RECVRY_THREADS

The following configuration parameters affect data-replication performance:

= DRINTERVAL
= DRTIMEOUT

The following configuration parameters affect auditing performance:

= ADTERR
= ADTMODE

The following sections describe the performance effects and considerations
that are associated with these parameters. For more information about
Dynamic Server configuration parameters, refer to your Administrator’s
Guide.

3-64 Performance Guide for Informix Dynamic Server

Configuration Parameters That Affect Background I/0

CKPINTVL

The CKPTINTVL parameter specifies the maximum interval between
checkpoints. Dynamic Server can skip a checkpoint if all data is physically
consistent when the checkpoint interval expires. Dynamic Server writes a
message to the message log that notes the time that it completes a checkpoint.
To read these messages, use onstat -m. Checkpoints also occur whenever the
physical log becomes 75 percent full. If you set CKPTINTVL to a long interval,
you can use physical-log capacity to trigger checkpoints based on actual
database activity instead of an arbitrary time unit. However, a long check-
point interval can increase the time needed for recovery in the event of a fail-
ure. Depending on your throughput and data-availability requirements, you
can choose an initial checkpoint interval of 5, 10, or 15 minutes, with the
understanding that checkpoints might occur more often, depending on
physical-logging activity.

LOGSIZE, LOGFILES, LOGSMAX, and PHYSFILE

The LOGSIZE parameter indicates the size of the logical log. You can use the
following formula to obtain an initial estimate for LOGSIZE in kilobytes:

LOGSIZE = (connections * maxrows) * 512

connections is the number of connections for all network types speci-
fied in the sglhosts file by one or more NETTYPE
parameters.

maxrows is the largest number of rows to be updated in a single

transaction.

To obtain better overall performance for applications that perform frequent
updates of BYTE or TEXT data in blobspaces, reduce the size of the logical log.
Blobpages cannot be reused until the logical log to which they are allocated
is backed up. When BYTE or TEXT data activity is high, the performance
impact of more-frequent checkpoints is balanced by the higher availability of
free blobpages.

Configuration Impacts on Performance 3-65

Configuration Parameters That Affect Background I/0

LOGSIZE, LOGFILES, and LOGSMAX indirectly affect checkpoints because
they specify the size and number of logical-log files. A checkpoint can occur
when Dynamic Server detects that the next logical-log file to become current
contains the most-recent checkpoint record. The size of the log also affects the
thresholds for long transactions. (See “LTXHWM and LTXEHWM” on

page 3-67.) The log should be large enough to accommodate the longest
transaction you are likely to encounter that is not the result of an error.

When you use volatile blobpages in blobspaces, smaller logs can improve
access to BYTE or TEXT data that must be reused. BYTE or TEXT data cannot
be reused until the log in which it is allocated is flushed to disk. In this case,
you can justify the cost in performance because those smaller log files are
backed up more frequently.

The PHYSFILE parameter specifies the size of the physical log. This parameter
indirectly affects checkpoints because whenever the physical log becomes
75 percent full, a checkpoint occurs. If your workload is update intensive and
updates tend not to occur on the same pages, you can use the following
formula to calculate the size of the physical log:

PHYSFILE = (connections * 20 * pagesize) / 1024

This value represents a maximum. You can reduce the size of the physical log
when applications are less update intensive or when updates tend to cluster
within the same pages. If you increase the checkpoint interval (see
“CKPINTVL” on page 3-65) or anticipate increased activity, consider increas-
ing the size of the physical log. You can decrease the size of the physical log
if you intend to use physical-log fullness to trigger checkpoints.

ONDBSPDOWN

The ONDBSPDOWN parameter specifies the response that Dynamic Server
takes when an 1/0 error indicates that a dbspace is down. By default,
Dynamic Server marks any dbspace that contains no critical dataas down and
continues processing. Critical data include the root dbspace, the logical log,
or the physical log. To restore access to that database, you must back up all
logical logs and then perform a warm restore on the down dbspace.

Dynamic Server halts operation whenever a disabling 1/0 error occurs on a
nonmirrored dbspace that contains critical data, regardless of the setting for
ONDBSPDOWN. In such an event, you must perform a cold restore of the
database server to resume normal database operations.

3-66 Performance Guide for Informix Dynamic Server

Configuration Parameters That Affect Background I/0

When ONDBSPDOWN is set to 2, Dynamic Server continues processing to the
next checkpoint and then suspends processing of all update requests.
Dynamic Server repeatedly retries the 1/0 request that produced the error
until the dbspace has been repaired and the request completes or the
Dynamic Server administrator intervenes. The administrator can use
onmode -O to mark the dbspace down and continue processing while the
dbspace remains unavailable or use onmode -k to halt the database server.

Important: This 2 setting for ONDBSPDOWN can impact the performance for
update requests severely because they are suspended due to a down dbspace. When
you use this setting for ONDBSPDOWN, be sure to monitor the status of your
dbspaces.

When ONDBSPDOWN is set to 1, Dynamic Server treats all dbspaces as
though they were critical. Any nonmirrored dbspace that becomes disabled
halts normal processing and requires a cold restore. The performance impact
of halting and performing a cold restore when any dbspace goes down can
be severe.

Important: Consider mirroring all your dbspaces if you decide to set
ONDBSPDOWN to 1.

LOGBUFF and PHYSBUFF

The LOGBUFF and PHYSBUFF parameters affect logging 1/0 activity because
they specify the respective sizes of the logical-log and physical-log buffers
that are in shared memory. The size of these buffers determines how quickly
they fill and therefore how often they need to be flushed to disk.

LTXHWM and LTXEHWM

The LTXHWM and LTXEHWM parameters specify the maximum limits for
long transactions and long-transaction exclusive rollbacks. The LTXHWM
parameter indicates how full a logical log is when Dynamic Server starts to
check for a possible long transaction. The LTXEHWM parameter indicates the
point at which Dynamic Server suspends new transaction activity to locate
and roll back a long transaction. These events should be rare, but if they
occur, they can indicate a serious problem within an application. Informix
recommends a value of 50 for LTXHWM and 60 for LTXEHWM. If you decrease
these thresholds, consider increasing the size of your logical-log files. (See
“LOGSIZE, LOGFILES, LOGSMAX, and PHYSFILE” on page 3-65.)

Configuration Impacts on Performance 3-67

Configuration Parameters That Affect Background I/0

LBU_PRESERVE

The LBU_PRESERVE parameter, when set to a value of 1, suspends ordinary
transaction processing whenever the second-to-last logical-log file reaches its
maximum limit. This parameter is useful in preventing long transaction
errors when continuous backup is in effect. A long transaction can occur
when ON-Archive attempts to add log records while it backs up the logical
log. When LBU_PRESERVE is not in effect, and the transaction rate is high, the
last log can fill before the backup operation completes. Informix recommends
that you use LBU_PRESERVE and add an extra logical-log file whenever you
activate continuous backup with ON-Archive. For details, refer to your
Archive and Backup Guide.

LRUS, LRU_MAX_DIRTY, and LRU_MIN_DIRTY

The LRUS parameter indicates the number of least recently used (LRU)
gueues to set up within the shared-memory buffer pool. The buffer pool is
distributed among LRU queues. Configuring more LRU queues allows more
page cleaners to operate and reduces the size of each LRU queue. For a single-
processor system, Informix suggests that you set the LRUS parameter to a
minimum of 4. For multiprocessor systems, set the LRUS parameter to a min-
imum of 4 or NUMCPUVPS, whichever is greater.

You use LRUS with LRU_MAX_DIRTY and LRU_MIN_DIRTY to control how
often pages are flushed to disk between full checkpoints. In some cases, you
can achieve high throughput by setting these parameters so that few modi-
fied pages remain to be flushed when checkpoints occur. The main function
of the checkpoint is then to update the physical-log and logical-log files.

To monitor the percentage of dirty pages in LRU queues, use onstat -R. When
the number of dirty pages consistently exceeds the LRU_MAX_DIRTY limit,
you have too few LRU queues or too few page cleaners. First, use the LRUS
parameter to increase the number of LRU queues. If the percentage of dirty
pages still exceeds LRU_MAX_DIRTY, use the CLEANERS parameter to
increase the number of page cleaners.

3-68 Performance Guide for Informix Dynamic Server

Configuration Parameters That Affect Background I/0

CLEANERS

The CLEANERS parameter indicates the number of page-cleaner threads to
run. For installations that support fewer than 20 disks, Informix recommends
one page-cleaner thread for each disk that contains Dynamic Server data. For
installations that support between 20 and 100 disks, Informix recommends
one page-cleaner thread for every two disks. For larger installations,
Informix recommends one page-cleaner thread for every four disks. If you
increase the number of LRU queues as the previous section describes,
increase the number of page-cleaner threads proportionally.

TAPEBLK, TAPEDEV, TAPESIZE, LTAPEBLK, LTAPEDEV, and LTAPESIZE

The TAPEBLK parameter specifies the block size for database backups made
with ontape, onload, and onunload. TAPEDEYV specifies the tape device.
TAPESIZE specifies the tape size for these backups. The LTAPEBLK, LTAPEDEYV,
and LTAPESIZE parameters specify the block size, device, and tape size for
logical-log backups made with ontape. For information about these utilities,
the configuration procedures for ON-Archive, and specific recommendations
for backup-and-restore operations, refer to your Archive and Backup Guide.

OFF_RECVRY_THREADS and ON_RECVRY _THREADS

The OFF_RECVRY_THREADS and ON_RECVRY_THREADS parameters specify
the number of recovery threads, respectively, that operate when Dynamic
Server performs a cold restore or fast recovery. The number of threads should
typically match the number of tables or fragments that are frequently
updated to roll forward the transactions recorded in the logical log. Another
estimate is the number of tables or fragments that experience frequent
updates. On a single-CPU host, the number of threads should be no fewer
than 10 and no more than 30 or 40. At a certain point, the advantages of par-
allel threads are outweighed by the overhead that is associated with each
thread.

A warm restore takes place concurrently with other database operations. To
reduce the impact of the warm restore on other users, you can allocate fewer
threads to it than you would to a cold restore.

Configuration Impacts on Performance 3-69

Configuration Parameters That Affect Background I/0

DRINTERVAL and DRTIMEOUT

The DRINTERVAL parameter indicates whether the data-replication buffer is
flushed synchronously or asynchronously to the secondary database server.
If set to flush asynchronously, this parameter specifies the interval between
flushes. Each flush impacts the CPU and sends data across the network to the
secondary database server.

The DRTIMEOUT parameter specifies the interval for which either database
server waits for a transfer acknowledgment from the other. If the primary
database server does not receive the expected acknowledgment, it adds the
transaction information to the file named in the DRLOSTFOUND configura-
tion parameter. If the secondary database server receives no acknowledg-
ment, it changes data-replication mode as the DRAUTO configuration
parameter specifies. For more information on data replication, refer to your
Administrator’s Guide.

ADTERR and ADTMODE

The ADTERR parameter specifies whether Dynamic Server is to halt process-
ing for a user session for which an audit record encounters an error. When
ADTERR is set to halt such a session, the response time for that session
appears to degrade until one of the successive attempts to write the audit
record succeeds. The ADTMODE parameter enables or disables auditing
according to the audit records that are specified with the onaudit utility.
Records are written to files in the directory that the AUDITPATH parameter
specifies. The AUDITSIZE parameter specifies the size of each audit record
file.

3-70 Performance Guide for Informix Dynamic Server

Chapter

Table and Index Performance 4
Considerations

Placement of Tableson Disk. 4-3
Isolating High-Use Tables . . . o 4-4
Placing High-Use Tables on Middle Partltlons of DISkS o 4-5
Using Multiple Disks for a Dbspace. 4-6
Spreading Temporary Tables and Sort Files

Across Multiple Disks L. 4-7
Backup-and-Restore Considerations 4-7
Improving Performance for Nonfragmented Tables
and Table Fragments 4-8
Estimating Table and Index Size 4-8
Estimating DataPages 4-9
Estimating Index Pages. 4-13
Estimating Tblspace Pages Occupled by BYTE or TEXT Data . 4-16
Locating TEXT or BYTE Data in the Tblspace
or a Separate Blobspace 417
Managing Indexes. 419
Space Costsof Indexes 419
Time Costs of Indexes . . . e P)
Choosing Columns for Indexes e P
Dropping Indexes 424
Checking Indexes. . . . e 425
Improving Performance for Index Bwlds e 426
Estimating Sort Memory 428
Estimating Temporary Space for Index Bqus e e 429
Managing Extents. 429
Choosing Extent Sizes 430
Upper Limiton Extents 432
Checking for Extent Interleaving 433
Eliminating Interleaved Extents. . . . e 43

Reclaiming Unused Space Within an Extent 4-36

Changing Tables. . . Y Rt

Loading and Unloadmg Tables S 4-38
Dropping Indexes Before Loading or Updatlng Tables 4-38
Attaching or Detaching Fragments 439
Altering a Table Definition 440
SlowAlter 44
In-Place Alter 44
FastAlter 449
Denormalizing the Data Model to Improve Performance. 4-49
Shorter Rows for Faster Queries 449
Expelling Long Strings 450
Using VARCHAR Strings 450
Using TEXT Data. . . . e 0]
Moving Strings to a Companlon Table 451
Buildinga Symbol Table 451
Splitting Wide Tables 452
Division by Bulk e ey
Division by Frequency of Use - ey
Division by Frequency of Update 452
Costs of CompanionTables 453
Redundant Data . . . Coe 453
Adding Redundant Data Coe 453

4-2 Performance Guide for Informix Dynamic Server

his chapter describes performance considerations associated with
unfragmented tables, table fragments, and indexes. It discusses the following
issues:

= Table placement on disk to increase throughput and reduce
contention

= Layout of tables and indexes for more efficient access

= Changing tables to add or delete historical data

= Denormalization of the database to reduce overhead

Placement of Tables on Disk

Tables that Dynamic Server supports reside on one or more portions of a disk
or disks. You control the placement of a table on disk when you create it by
assigning it to a dbspace. A dbspace is composed of one or more chunks.
Each chunk corresponds to all or part of a disk partition. When you assign
chunks to dbspaces, you make the disk space in those chunks available for
storing tables or table fragments with Dynamic Server.

When you configure chunks and allocate them to dbspaces, you must relate
the size of your dbspaces to the tables or fragments that each dbspace is to
contain. To estimate the size of a table, follow the instructions in “Estimating
Table and Index Size” on page 4-8.

The database administrator (DBA) who is responsible for creating a table
assigns that table to a dbspace in one of the following ways:

= The DBA uses the IN DBSPACE clause of the CREATE TABLE
statement.

s The DBA uses the dbspace of the current database. The current
database is set by the most-recent DATABASE or CONNECT statement
that the DBA issued before issuing the CREATE TABLE statement.

Table and Index Performance Considerations 4-3

Isolating High-Use Tables

The DBA can fragment a table across multiple dbspaces, as described in
“Planning a Fragmentation Strategy” on page 6-4, or use the ALTER FRAG-
MENT statement to move a table to another dbspace. The ALTER FRAGMENT
statement provides the simplest method for altering the placement of a table.
However, the table is unavailable while Dynamic Server processes the alter-
ation. Schedule the movement of a table or fragment at a time that affects the
fewest users. For a description of the ALTER FRAGMENT statement, see the
Informix Guide to SQL: Syntax.

Other methods exist for moving tables between dbspaces. A DBA can unload
the data from a table and then move that data to another dbspace with the
LOAD and UNLOAD SQL statements, as the Informix Guide to SQL: Syntax
describes. The Dynamic Server administrator can perform the same actions
with the onload and onunload utilities, as your Administrator’s Guide
describes.

Moving tables between databases with LOAD and UNLOAD or onload and
onunload involves periods in which data from the table is copied to tape and
then reloaded onto the system. These periods present windows of vulnera-
bility during which a table can become inconsistent with the rest of the data-
base. To prevent the table from becoming inconsistent, you must restrict
access to the version that remains on disk while the data transfers occur.

Depending on the size, fragmentation strategy, and indexes that are associ-
ated with a table, it can be faster to unload a table and reload it than to alter
fragmentation. For other tables, it can be faster to alter fragmentation. You
might have to experiment to determine which method is faster for a table that
you want to move or repartition.

Isolating High-Use Tables

You can place a table with high 1/0 activity on a dedicated disk device and
thus reduce contention for the data that is stored in that table. When disk
drives have different performance levels, you can put the tables with the
highest use on the fastest drives. Placing two high-access tables on separate
disk devices reduces competition for disk access when the two tables experi-
ence frequent, simultaneous I/0 from multiple applications or when joins are
formed between them.

4-4 Performance Guide for Informix Dynamic Server

Placing High-Use Tables on Middle Partitions of Disks

To isolate a high-access table on its own disk device, assign the device to a
chunk and assign that chunk to a dbspace, and then place the table in the
dbspace that you created. Figure 4-1 shows three high-use tables placed on
three disks.

Figure 4-1

Isolating High-Use
/ w w Locate each high-use table
| | | | | |

in a separate dbspace, each
on its own partition or disk.

High-use High-use High-use
table 1 table 2 table 3 Database

[_Dbspace 1 | [_Dpbspace 2 | [_Dpbspace 3 |

Placing High-Use Tables on Middle Partitions of Disks

To minimize disk-head movement, place the most-frequently accessed data
on partitions close to the middle of the disk, as Figure 4-2 shows. This
approach minimizes disk-head movement to reach data in the high-demand

table.
Figure 4-2
Single chunk in a Create high-use Disk Platter with
dbspace table in dbspace. . High-Use Table
Locate high-use table on the Located on Middle
middle partitions of the disk. Partitions
Disk platter

Table and Index Performance Considerations 4-5

Using Multiple Disks for a Dbspace

To place high-use tables on the middle partition of the disk, create a raw
device composed of cylinders that reside midway between the spindle and
the outer edge of the disk. (For instructions on how to create a raw device, See
your operating-system administrator’s guide.) Allocate a chunk, associating
it with this raw device, as your Administrator’s Guide describes. Then create a
dbspace with this same chunk as the initial and only chunk. When you create
a high-use table, place the table in this dbspace.

Using Multiple Disks for a Dbspace

A dbspace can comprise multiple chunks, and each chunk can represent a

different disk. This arrangement allows you to distribute data in a dbspace
over multiple disks. Figure 4-3 shows a dbspace distributed over multiple

disks.

device 0x21

Figure 4-3

A Dbspace
Distributed over
Three Disks

device 0x27 device 0x22

dbspace three_arms

Using multiple disks for a dbspace helps to distribute 1/0 across dbspaces
that contain several small tables. Because you cannot use this type of distrib-
uted dbspace for PDQ, Informix recommends that you use the table-
fragmentation techniques described in “Designing a Distribution Scheme”
on page 6-12 to partition large, high-use tables across multiple dbspaces.

4-6 Performance Guide for Informix Dynamic Server

Spreading Temporary Tables and Sort Files Across Multiple Disks

Spreading Temporary Tables and Sort Files Across Multiple
Disks

To define several dbspaces for temporary tables and sort files, use

onspaces -t. By placing these dbspaces on different disks and listing them in
the DBSPACETEMP configuration parameter, you can spread the 1/0 associ-
ated with temporary tables and sort files across multiple disks, as Figure 4-4
illustrates. You can list dbspaces that contain regular tables in DBSPACETEMP.

Figure 4-4
device 0x21 device 0x27 device 0x22 Dbspaces for
Temporary Tables

C .@’> ” and Sort Files

dbspace tmpdbs1 dbspace tmpdbs2 dbspace tmpdbs3

DBSPACETEMP= tmpdbs1,tmpdbs2,tmpdbs3

Users can specify their own lists of dbspaces for temporary tables and sort
files with the DBSPACETEMP environment variable. For details, refer to
“Parameters and Variables That Affect Temporary Tables and Sorting” on
page 3-51.

Backup-and-Restore Considerations

When you decide where to place your tables or fragments, remember that if
a device that contains a dbspace fails, all tables or table fragments in that
dbspace are rendered inaccessible, even though tables and fragments in other
dbspaces are accessible. The need to limit data unavailability in the event of
adisk failure might influence which tables you group together in a particular
dbspace.

Table and Index Performance Considerations 4-7

Improving Performance for Nonfragmented Tables and Table Fragments

Although you must perform a cold restore if a dbspace that contains critical
data fails, you need to perform a warm restore only if a noncritical dbspace
fails. The desire to minimize the impact of cold restores might influence the
dbspace that you use to store critical data. For more information, see your
Archive and Backup Guide or your Backup and Restore Guide.

Improving Performance for Nonfragmented Tables
and Table Fragments

The following factors affect the performance of an individual table or table
fragment:
= The placement of the table or fragment, as previous sections describe
» The size of the table or fragment
s The indexing strategy used
= The size and placement of table extents with respect to one another
= The frequency access rate to the table

Estimating Table and Index Size

This section discusses methods for calculating the approximate sizes (in disk
pages) of tables and indexes.

The disk pages allocated to a table are collectively referred to as a thispace. The
tbispace includes data pages and index pages. If there is BYTE or TEXT data
associated with the table that is not stored in an alternative dbspace, pages
that hold BYTE or TEXT data are also included in the tblspace.

The tblspace does not correspond to any fixed region within a dbspace. The
data extents and indexes that make up atable can be scattered throughout the
dbspace.

4-8 Performance Guide for Informix Dynamic Server

Estimating Table and Index Size

The size of a table includes all the pages within the tblspace: data pages,
index pages, and pages that store BYTE or TEXT data. Blobpages that are
stored in a separate blobspace or on an optical subsystem are not included in
the tblspace and are not counted as part of the table size. The following sec-
tions describe how to estimate the page count for each type of page within
the tblspace.

Tip: If an appropriate sample table already exists, or if you can build a sample table
of realistic size with simulated data, you do not have to make estimates. You can run
oncheck -pt to obtain exact numbers.

Estimating Data Pages

How you estimate the data pages of a table depends on whether that table
contains fixed- or variable-length rows.

Estimating Tables with Fixed-Length Rows

Perform the following steps to estimate the size (in pages) of a table with
fixed-length rows. A table with fixed-length rows has no columns of type
VARCHAR or NVARCHAR.

To estimate the page size, row size, number of rows, and number of data pages

1. Use oncheck -pr to obtain the size of a page.

2. Subtract 28 from this aFmount to account for the header that appears
on each data page. The resulting amount is referred to as pageuse.

3. Tocalculate the size of a row, add the widths of all the columns in the
table definition. TEXT and BYTE columns each use 56 bytes. If you
have already created your table, you can using the following SQL
statement to obtain the size of a row:

SELECT rowsize FROM systables WHERE tabname = 'table-name';
4. Estimate the number of rows the table is expected to contain. This
number is referred to as rows.

The procedure for calculating the number of data pages that a table
requires differs depending on whether the row size is less than or
greater than pageuse.

Table and Index Performance Considerations 4-9

Estimating Table and Index Size

Important: Although the maximum size of a row that Dynamic Server accepts is
approximately 32 kilobytes, performance degrades when a row exceeds the size of a
page. For information on breaking up wide tables for improved performance, refer to
“Denormalizing the Data Model to Improve Performance” on page 4-49.

5. Ifthesize of the row is less than or equal to pageuse, use the following
formula to calculate the number of data pages. The trunc() function
notation indicates that you are to round down to the nearest integer.

data_pages = rows / trunc(pageuse/(rowsize + 4))

The maximum number of rows per page is 255, regardless of the size
of the row.

6. If the size of the row is greater than pageuse, Dynamic Server divides
the row between pages. The page that contains the initial portion of
arow is called the home page. Pages that contains subsequent portions
of a row are called remainder pages. If a row spans more than two
pages, some of the remainder pages are completely filled with data
from that row. When the trailing portion of a row uses less than a
page, it can be combined with the trailing portions of other rows to
fill out the partial remainder page. The number of data pages is the
sum of the home pages, the full remainder pages, and the partial
remainder pages.

a. Calculate the number of home pages. The number of home pages
is the same as the number of rows:

homepages = rows

b. Calculate the number of full remainder pages. First calculate the
size of the row remainder with the following formula:

remsize = rowsize - (pageuse + 8)

If remsize is less than pageuse - 4, you have no full remainder
pages. Otherwise, you can use remsize in the following formula
to obtain the number of full remainder pages:

fullrempages = rows * trunc(remsize/(pageuse - 8))

4-10 Performance Guide for Informix Dynamic Server

Estimating Table and Index Size

Calculate the number of partial remainder pages. First calculate
the size of a partial row remainder left after you have accounted
for the home and full remainder pages for an individual row. In
the following formula, the remainder() function notation indi-
cates that you are to take the remainder after division:

partremsize = remainder(rowsize/(pageuse - 8)) + 4

Dynamic Server uses certain size thresholds with respect to the
page size to determine how many partial remainder pages to
use. Use the following formula to calculate the ratio of the partial
remainder to the page:

partratio = partremsize/pageuse

Use the appropriate formula in the following table to calculate
the number of partial remainder pages.

partratio Value Formula to Calculate the Number of Partial Remainder Pages

Less than .1

partrempages = rows/(trunc((pageuse/10)/remsize) + 1)

Less than .33 partrempages = rows /(trunc((pageuse/3)/remsize) + 1)

.33 or larger

partrempages = rows

d.

Add up the total number of pages with the following formula:

tablesize = homepages + fullrempages + partrempages

Estimating Tables with Variable-Length Rows

When a table contains one or more VARCHAR or NVARCHAR columns, its
rows can have varying lengths. These varying lengths introduce uncertainty
into the calculations. You must form an estimate of the typical size of each
VARCHAR column, based on your understanding of the data, and use that

value when

you make your estimates.

Important: When Dynamic Server allocates space to rows of varying size, it
considers a page to be full when no room exists for an additional row of the maximum

size.

Table and Index Performance Considerations 4-11

Estimating Table and Index Size

1.

1.

To estimate the size of a table with variable-length rows, you must make the
following estimates and choose a value between them, based on your
understanding of the data:

The maximum size of the table, which you calculate based on the
maximum width allowed for all VARCHAR or NVARCHAR columns

The projected size of the table, which you calculate based on a typical
width for each VARCHAR or NVARCHAR column

To estimate the maximum number of data pages

To calculate rowsize, add together the maximum values for all
column widths.

Use this value for rowsize and perform the calculations described in
“Estimating Tables with Fixed-Length Rows” on page 4-9. The
resulting value is called maxsize.

To estimate the projected number of data pages

To calculate rowsize, add together typical values for each of your
variable-width columns. Informix suggests that you use the most-
frequently occurring width within a column as the typical width for
that column. If you do not have access to the data or do not want to
tabulate widths, you might choose to use some fractional portion of
the maximum width, such as 2/3 (.67).

Use this value for rowsize and perform the calculations described in
“Estimating Tables with Fixed-Length Rows” on page 4-9. The
resulting value is called projsize.

Selecting an Intermediate Value for the Size of the Table

The actual table size should fall somewhere between projsize and maxsize.
Based on your knowledge of the data, choose a value within that range that
seems most reasonable to you. The less familiar you are with the data, the
more conservative (higher) your estimate should be.

4-12 Performance Guide for Informix Dynamic Server

Estimating Table and Index Size

Estimating Index Pages

The index pages associated with a table can add significantly to the size of a
tbispace. As Figure 4-5 shows, an index is arranged as a hierarchy of pages
(technically, a B+ tree). The topmost level of the hierarchy contains a single
root page. Intermediate levels, when needed, contain branch pages. Each
branch page contains entries that refer to a subset of pages in the next level
of the index. The bottom level of the index contains a set of leaf pages. Each
leaf page contains a list of index entries that refer to rows in the table.

Leaf page

Figure 4-5
Root page B-Tree Structure of
an Index

B
Branch page l/ ¢ Branch page

\1 Leaf page

The number of levels needed to hold an index depends on the number of
unique keys in the index and the number of index entries that each page can
hold. The number of entries per page depends, in turn, on the size of the
columns being indexed.

If the index page for a given table can hold 100 keys, a table of up to 100 rows
requires asingle index level: the root page. When this table grows beyond 100
rows, to a size between 101 and 10,000 rows, it requires a two-level index: a
root page and between 2 and 100 leaf pages. When the table grows beyond
10,000 rows, to a size between 10,001 and 1,000,000 rows, it requires a three-
level index: the root page, a set of 100 branch pages, and a set of up to 10,000
leaf pages.

Table and Index Performance Considerations 4-13

Estimating Table and Index Size

Index entries contained within leaf pages are sorted in key-value order. An
index entry consists of a key, one or more row pointers, a delete flag, and, for
indexes on fragmented tables, a fragment ID. The key is a copy of the indexed
columns from one row of data. A row pointer provides an address used to
locate a row that contains the key. (A unique index contains one index entry
for every row in the table.) The delete flag indicates whether a row with that
particular key has been deleted. The fragment ID identifies the table fragment
(also referred to as a partition) in which the row resides.

To estimate the number of index pages

1. Add up the total widths of the indexed column or columns. This
value is referred to as colsize. Add 4 to colsize to obtain keysize, the
actual size of a key in the index.

2. Calculate the expected proportion of unique entries to the total num-
ber of rows. This value is referred to as propunique. If the index is
unique or there are very few duplicate values, use 1 for propunique. If
there is a significant proportion of duplicate entries, divide the num-
ber of unique index entries by the number of rows in the table to
obtain a fractional value for propunique. If the resulting value for
propunique is less than .01, use .01 in the calculations that follow.

3. Estimate the size of a typical index entry with one of the following
formulas, depending on whether the table is fragmented or not:

a. For nonfragmented tables, use the following formula:
entrysize = keysize * propunique + 5
b. For fragmented tables, use the following formula:
entrysize = keysize * propunique + 9
4. Estimate the number of entries per index page with the following
formula:
pagents = trunc(pagefree/entrysize)

pagefree is the pagesize minus the page header (2,020 for a
2-kilobyte pagesize).

The trunc() function notation indicates that you should round down
to the nearest integer value.

4-14 Performance Guide for Informix Dynamic Server

10.

11.

Estimating Table and Index Size

Estimate the number of leaf pages with the following formula:
leaves = ceiling(rows/pagents)
The ceiling() function notation indicates that you should round up

to the nearest integer value; rows is the number of rows that you
expect to be in the table.

Estimate the number of branch pages at the second level of the index
with the following formula:

branchesg = ceiling(leaves/pagents)
If the value of branches is greater than 1, more levels remain in the
index. To calculate the number of pages contained in the next level of
the index, use the following formula:

branches ;1 = ceiling(branches,/pagents)

branches,, is the number of branches for the last index level
that you calculated.
branchesy;1 is the number of branches in the next level.

Repeat the calculation in step 7 for each level of the index until the
value of branches,; equals 1.

Add up the total number of pages for all branch levels calculated in
steps 6 through 8. This sum is called the branchtotal.

Use the following formula to calculate the number of pages in the
compact index:

compactpages = (leaves + branchtotal)
If your Dynamic Server instance uses a fill factor for indexes, the size
of the index increases. The fill factor for indexes is set with
FILLFACTOR, a Dynamic Server configuration parameter. You can
also set the fill factor for an individual index with the FILLFACTOR
clause of the CREATE INDEX statement in SQL.

To incorporate the fill factor into your estimate for index pages, use
the following formula:

indexpages = 100 * compactpages / FILLFACTOR

As rows are deleted and new ones are inserted, the number of index entries
can vary within a page. This method for estimating index pages yields a con-
servative (high) estimate for most indexes. For a more precise value, build a
large test index with real data and check its size with the oncheck utility.

Table and Index Performance Considerations 4-15

Estimating Table and Index Size

Estimating Tblspace Pages Occupied by BYTE or TEXT Data

In your estimate of the space required for a table, you must include space for
BYTE or TEXT data that is to be stored in that tblspace.

To estimate the number of blobpages

1. Obtain the page size with onstat -c. Calculate the usable portion of
the blobpage with the following formula:
bpuse = pagesize - 32
2. For each byte of blobsize n, calculate the number of pages that the
byte occupies (bpages_n) with the following formula:

bpagesl
bpages?

ceiling(bytesizel/ bpuse)
ceiling(bytesize2/bpuse)

Bpages_n = ceiling(bytesize_n/bpuse)
The ceiling() function notation indicates that you should round up
to the nearest integer value.

3. Add up the total number of pages for all BYTE or TEXT data, as fol-
lows:

blobpages = bpagesl + bpages2 + ... + bpages_n
Alternatively, you can base your estimate on the median size of BYTE or TEXT

data; that is, the BYTE or TEXT data size that occurs most frequently. This
method is less precise, but it is easier to calculate.

To estimate the number of blobpages based on median BYTE or TEXT data size

1. Calculate the number of pages required for BYTE or TEXT data of
median size, as follows:

mpages = ceiling(mblobsize/bpuse)

2. Multiply this amount by the total number of BYTE or TEXT data, as
follows:

blobpages = blobcount * mpages

4-16 Performance Guide for Informix Dynamic Server

Estimating Table and Index Size

Locating TEXT or BYTE Data in the Tblspace or a Separate Blobspace

When you create a TEXT or BYTE column on magnetic disk, you have the
option of locating the column data in the tblspace or in a separate blobspace.
You can often improve performance by storing BYTE or TEXT data in a sepa-
rate blobspace. (You can also store BYTE or TEXT data on optical media, but
this discussion does not apply to BYTE or TEXT data that is stored in this way.)
In the following example, a TEXT value is located in the tblspace, and a BYTE
value is located in a blobspace named rasters:

CREATE TABLE examptab

(

pic_id SERIAL,

pic_desc TEXT IN TABLE,
pic_raster BYTE IN rasters
)

A TEXT or BYTE value is always stored apart from the rows of the table; only
a 56-byte descriptor is stored with the row. However, the BYTE or TEXT data
occupies at least one disk page. The BYTE or TEXT data to which the descrip-
tor points can reside in the same set of extents on disk as the table rows (in
the same tblspace) or in a separate blobspace.

When BYTE or TEXT data values are stored in the tblspace, the pages of their
data are interspersed among the pages that contain rows, which can greatly
increase the size of the table. When the database server reads only the rows
and not the BYTE or TEXT data, the disk arm must move farther than when
the blobpages are stored apart. The database server scans only the row pages
in the following situations:

= Any SELECT operation that does not retrieve a BYTE or TEXT column
= Whenever it tests rows using a filter expression

Table and Index Performance Considerations 4-17

Estimating Table and Index Size

Another consideration is that disk 1/0 to and from a dbspace is buffered in
shared memory of the database server. Pages are stored in case they are
needed again soon, and when pages are written, the requesting program can
continue before the actual disk write takes place. However, because blob-
space data is expected to be voluminous, disk I/0 to and from blobspaces is
not buffered, and the requesting program is not allowed to proceed until all
output has been written to the blobspace.

For best performance, locate a TEXT or BYTE column in a blobspace in either
of the following circumstances:
= When single data items are larger than one or two pages each
= When the number of pages of BYTE or TEXT data is more than half the
number of pages of row data.

For a table that is both relatively small and nonvolatile, you can achieve the
effect of a dedicated blobspace by separating row pages and blobpages, as the
following paragraphs explain.

To separate row pages from blobpages
1. Load the entire table with rows in which the BYTE or TEXT data
columns are null.
2. Create all indexes.
3. The row pages and the index pages are now contiguous.
4. Update all the rows to install the BYTE or TEXT data.

The blobpages now appear after the pages of row and index data
within the tblspace.

4-18 Performance Guide for Informix Dynamic Server

Managing Indexes

Managing Indexes

An index is necessary on any column or composition of columns that must
be unique. However, as discussed in Chapter 7, “Queries and the Query
Optimizer,” the presence of an index can also allow the query optimizer to
speed up a query. The optimizer can use an index in the following ways:

= To replace repeated sequential scans of a table with nonsequential
access

= To avoid reading row data when processing expressions that name
only indexed columns

= To avoid a sort (including building a temporary table) when
executing the GROUP BY and ORDER BY clauses

As a result, an index on the appropriate column can save thousands, tens of
thousands, or in extreme cases, even millions of disk operations during a
guery. However, indexes entail costs.

Space Costs of Indexes

The first cost of an index is disk space. An estimating method appears in
“Estimating Index Pages” on page 4-13. The presence of an index can add
many pages to a tblspace; it is easy to have as many index pages as row pages
in an indexed table.

Time Costs of Indexes

The second cost of an index is time whenever the table is modified. The fol-
lowing descriptions assume that approximately two pages must be read to
locate an index entry. That is the case when the index consists of a root page,
one level of branch pages, and a set of leaf pages; the root page is presumed
to be in a buffer already. The index for a very large table has at least two inter-
mediate levels, so about three pages are read when referencing such an index.

Presumably, one index is used to locate a row being altered. The pages for
that index might be found in page buffers in Dynamic Server shared mem-
ory; however, the pages for any other indexes that need altering must be read
from disk.

Table and Index Performance Considerations 4-19

Managing Indexes

Under these assumptions, index maintenance adds time to different kinds of
modifications, as the following list shows:

= When you delete a row from a table, its entries must be deleted from
all indexes.

The entry for the deleted row must be looked up (two or three pages
in), and the leaf page must be rewritten. The write operation to
update the index is performed in memory, and the leaf page is
flushed when the least-recently-used (LRU) buffer that contains the
modified page is cleaned. So this operation requires two or three
page accesses to read the index pages if needed and one deferred
page access to write the modified page.

= When you insert a row, its entries must be inserted in all indexes.

A place in which to enter the inserted row must be found within each
index (two or three pages in) and rewritten (one deferred page out),
for a total of three or four immediate page accesses per index.

= When you update a row, its entries must be looked up in each index
that applies to an altered column (two or three pages in).

The leaf page must be rewritten to eliminate the old entry (one
deferred page out), and then the new column value must be located
in the same index (two or three more pages in) and the row entered
(one more deferred page out).

Insertions and deletions change the number of entries on a leaf page.
Although virtually every pagents operation requires some additional work to
deal with a leaf page that has either filled up or been emptied, if pagents is
greater than 100, this additional work occurs less than 1 percent of the time,
and you can often disregard it when you estimate the 1/0 impact.

In short, when a row is inserted or deleted at random, allow three to four
added page 1/0 operations per index. When a row is updated, allow six to
eight page 1/0 operations for each index that applies to an altered column. If
a transaction is rolled back, all this work must be undone. For this reason,
rolling back a transaction can take a long time.

Because the alteration of the row itself requires only two page 1/0 operations,
it is clear that index maintenance is the most time-consuming part of data
modification. One way to reduce this cost is discussed in “Clustering” on
page 4-23.

4-20 Performance Guide for Informix Dynamic Server

Managing Indexes

Choosing Columns for Indexes

Indexes are required on columns that must be unique and are not specified
as primary keys. In addition, add an index on columns that:

= are used in joins that are not specified as foreign keys.

= are frequently used in filter expressions.

= are frequently used for ordering or grouping.

= do notinvolve duplicate keys.

= are amenable to clustered indexing.

Filtered Columns in Large Tables

If a column is often used to filter the rows of a large table, consider placing an
index on it. The optimizer can use the index to select the desired columns and
avoid a sequential scan of the entire table. One example is a table that con-
tains a large mailing list. If you find that a postal-code column is often used
to filter a subset of rows, consider putting an index on that column.

This strategy yields a net savings of time only when the selectivity of the
column is high; that is, when only a small fraction of rows holds any one
indexed value. Nonsequential access through an index takes several more
disk 1/0 operations than sequential access does, so if a filter expression on
the column passes more than a fourth of the rows, the database server might
as well read the table sequentially. As a rule, indexing a filter column saves
time in the following cases:

= The column is used in filter expressions in many queries or in slow
queries.
= The column contains at least 100 unique values.

= Most column values appear in fewer than 10 percent of the rows.

Table and Index Performance Considerations 4-21

Managing Indexes

Order-By and Group-By Columns

When a large quantity of rows must be ordered or grouped, the database
server must put the rows in order. One way that the database server performs
this task is to select all the rows into a temporary table and sort the table. But,
as discussed in Chapter 7, if the ordering columns are indexed, the optimizer
sometimes reads the rows in sorted order through the index, thus avoiding a
final sort.

Because the keys in an index are in sorted sequence, the index really
represents the result of sorting the table. By placing an index on the ordering
column or columns, you can replace many sorts during queries with a single
sort when the index is created.

Avoiding Columns with Duplicate Keys

When duplicate keys are permitted in an index, entries that match a given
key value are grouped in lists. The database server uses these lists to locate
rows that match a requested key value. When the selectivity of the index col-
umn is high, these lists are generally short. But when only a few unique val-
ues occur, the lists become quite long and, in fact, can cross multiple leaf

pages.

Placing an index on a column that has low selectivity (that is, a small number
of distinct values relative to the number of rows) can reduce performance. In
such cases, the database server must not only search the entire set of rows
that match the key value, but it must also lock all the affected data and index
pages. This process can impede the performance of other update requests as
well.

To correct this problem, replace the index on the low-selectivity column with
a composite index that has a higher selectivity. Use the low-selectivity col-
umn as the leading column and a high-selectivity column as your second col-
umn in the index. The composite index limits the number of rows that the
database server must search to locate and apply an update.

You can use any second column to disperse the key values as long as its value
does not change or changes at the same time as the real key. The shorter the
second column the better, because its values are copied into the index and
expand its size.

4-22 Performance Guide for Informix Dynamic Server

Managing Indexes

Clustering

Clustering is a method for arranging the rows of a table so that their physical
order on disk closely corresponds to the sequence of entries in the index. (Do
not confuse the clustered index with an optical cluster, which is a method for
storing logically related BYTE or TEXT data together on an optical volume.)

When you know that a table is ordered by a certain index, you can avoid sort-
ing. You can also be sure that when the table is searched on that column, it is
read effectively in sequential order instead of nonsequentially. These points
are covered in Chapter 7.

In the stores7 database, the orders table has an index, zip_ix, on the postal-
code column. The following statement causes the database server to put the
rows of the customer table into descending order by postal code:

ALTER INDEX zip_ix TO CLUSTER

To cluster a table on a nonindexed column, you must create an index. The
following statement reorders the orders table by order date:

CREATE CLUSTERED INDEX o_date_ix ON orders (order_date ASC)

To reorder a table, the database server must copy the table. In the preceding
example, the database server reads all the rows in the table and constructs an
index. Then it reads the index entries in sequence. For each entry, it reads the
matching row of the table and copies it to a new table. The rows of the new
table are in the desired sequence. This new table replaces the old table.

Clustering is not preserved when you alter a table. When you insert new
rows, they are stored physically at the end of the table regardless of their con-
tents. When you update rows and change the value of the clustering column,
the rows are written back into their original location in the table.

Clustering can be restored after the order of rows is disturbed by ongoing
updates. The following statement reorders the table to restore data rows to
the index sequence:

ALTER INDEX o_date_ix TO CLUSTER

Table and Index Performance Considerations 4-23

Managing Indexes

Reclustering is usually quicker than the original clustering because reading
out the rows of a nearly clustered table has an 1/0 impact that is similar to a
sequential scan.

Clustering and reclustering take a lot of space and time. You can avoid some
clustering by initially building the table in the desired order.

Dropping Indexes

In some applications, most table updates can be confined to a single time
period. You can set up your system so that all updates are applied overnight
or on specified dates.

When updates are performed as a batch, you can drop all nonunique indexes
while you make updates and then create new indexes afterward. This
strategy can have two good effects.

First, with fewer indexes to update, the updating program can run faster.
Often, the total time to drop the indexes, update without them, and re-create
them is less than the time to update with the indexes in place. (The time cost
of updating indexes is discussed in “Time Costs of Indexes” on page 4-19.)

Second, newly made indexes are the most efficient ones. Frequent updates
tend to dilute the index structure, causing it to contain many partly full leaf
pages. This dilution reduces the effectiveness of an index and wastes disk
space.

As another time-saving measure, make sure that a batch-updating program
calls for rows in the sequence that the primary-key index defines. That
sequence causes the pages of the primary-key index to be read in order and
only one time each.

The presence of indexes also slows down the population of tables when you
use the LOAD statement or the dbload utility. Loading a table that has no
indexes is a quick process (little more than a disk-to-disk sequential copy),
but updating indexes adds a great deal of overhead.

4-24 Performance Guide for Informix Dynamic Server

Managing Indexes

To load a table that has no indexes

Drop the table (if it exists).

Create the table without specifying any unique constraints.
Load all rows into the table.

Alter the table to apply the unique constraints.

o b~ e

Create the nonunique indexes.

If you cannot guarantee that the loaded data satisfies all unique constraints,
you must create unique indexes before you load the rows. It saves time if the
rows are presented in the correct sequence for at least one of the indexes (if
you have a choice, make it the row with the largest key). This strategy
minimizes the number of leaf pages that must be read and written.

Checking Indexes

You can improve concurrency on a table when you run the oncheck utility to
check the consistency of index pages or to print the index pages. When you
specify the -w option with the following options, the oncheck utility does not
place an exclusive lock on the table. The database server places a shared lock
on the table during the execution of the following oncheck options:

= -Ciw
s Clw
» -pkw
s -pKw
= -plw
= -pLw

When you use the -w option, the oncheck utility places an intent shared (IS)
lock on the table. An IS lock allows other users to read and update the table
during the execution of the oncheck utility on an index. The IS lock also
prevents DDL activity (such as a DROP INDEX or DROP TABLE statements)
during the execution of oncheck. For more information on lock types, refer
to “Monitoring and Administering Locks” on page 5-13.

If you do not use the -w option, the table can be unavailable to other users for
DML activity (UPDATE, INSERT, or DELETE statements) for a significant
amount of time when you execute the oncheck utility on a very large table.

Table and Index Performance Considerations 4-25

Improving Performance for Index Builds

To improve concurrency on a table when you run the oncheck utility on an index

1. Ensure that the table uses row locking.

If the table uses page locking, the database server returns the
following error message when you run oncheck utility with the -w
option:
WARNING: index check requires a s-lock on tables whose
lock level is page.
You can query the systables system catalog to see the current lock
level of the table, as the following sample SQL statement shows:
SELECT Tlocklevel FROM systables
WHERE tabname = "customer"
If you do not see a value of R (for row) in the locklevel column, you
can modify the lock level, as the following sample SQL statement
shows:

ALTER TABLE tabl LOCK MODE (ROW);

2. Run the oncheck utility with the -w option to place a shared lock on
the table.

The following sample oncheck commands show index options with
the -w option:

oncheck -ciw stores/:informix.customer
oncheck -plLw stores/:informix.customer

If a user updates, inserts, or deletes column values that are key values in the
index that oncheck is checking, the user’s changes still take effect. If oncheck
encounters an index page that the user updated, it ignores the updated page.
If you want 100-percent assurance that the index is good, do not use the -w
option of oncheck. When you do not use the -w option, oncheck places an
exclusive lock on the table.

Improving Performance for Index Builds

Whenever possible, the database server uses parallel processing to improve
the response time of index builds. The number of parallel processes is based
on the number of fragments in the index and the value of the
PSORT_NPROCS environment variable. The database server builds the index
with parallel processing even when the value of PDQ priority is 0.

4-26 Performance Guide for Informix Dynamic Server

Improving Performance for Index Builds

You can often improve the performance of an index build by taking the
following steps:

1.

Set PDQ priority to a value greater than 0 to obtain more memory
than the default 128 kilobytes.

When you set PDQ priority to greater than 0, the index build can take
advantage of the additional memory for parallel processing.

To set PDQ priority, use either the PDQPRIORITY environment
variable or the SET PDQPRIORITY statement in SQL.

Do not set the PSORT_NPROCS environment variable.

Informix recommends that you not set the PSORT_NPROCS
environment variable. If you have a computer with multiple CPUs,
the database server uses two threads per sort when it sorts index
keys and PSORT_NPROCS is not set. The number of sorts depends on
the number of fragments in the index, the number of keys, the key
size, and the values of the PDQ memory configuration parameters.

Allocate enough memory and temporary space to build the entire
index.

a. Estimate the amount of virtual shared memory that the database
server might need for sorting.

For more information, refer to “Estimating Sort Memory” on
page 4-28.

b. Specify more memory with the DS_TOTAL_MEMORY and
DS_MAX_QUERIES configuration parameters.

c. If not enough memory is available, estimate the amount of
temporary space needed for an entire index build.

For more information, refer to “Estimating Temporary Space for
Index Builds” on page 4-29.

d. Use the onspaces -t utility to create large temporary dbspaces
and specify them in the DBSPACETEMP configuration parameter
or the DBSPACETEMP environment variable.

For information on how to optimize temporary dbspaces, refer
to “Dbspaces for Temporary Tables and Sort Files” on page 3-50.

Table and Index Performance Considerations 4-27

Improving Performance for Index Builds

Estimating Sort Memory

To calculate the amount of virtual shared memory that the database server
might need for sorting, estimate the maximum number of sorts that might
occur concurrently and multiply that number by the average number of rows
and the average row size.

For example, if you estimate that 30 sorts could occur concurrently, the
average row size is 200 bytes, and the average number of rows in a table
is 400, you can estimate the amount of shared memory that the database
server needs for sorting as follows:

30 sorts * 200 bytes * 400 rows = 2,400,000 bytes

If PDQ priority is 0, the maximum amount of shared memory that the
database server allocates for a sort is about 128 kilobytes.

If PDQ priority is greater than 0, the maximum amount of shared memory
that the database server allocates for a sort is controlled by the memory grant
manager (MGM). The MGM uses the settings of PDQ priority and the
following configuration parameters to determine how much memory to
grant for the sort:

= DS _TOTAL_MEMORY
= DS _MAX_QUERIES
= MAX_PDQPRIORITY

For more information about allocating memory for parallel processing, refer
to “Allocating Resources for PDQ Queries” on page 9-7.

4-28 Performance Guide for Informix Dynamic Server

Managing Extents

Estimating Temporary Space for Index Builds

To estimate the amount of temporary space needed for an entire index build,
perform the following steps:

1.

Add up the total widths of the indexed columns or returned values
from user-defined functions. This value is referred to as keysize.

Estimate the size of a typical item to sort with one of the following
formulas, depending on whether the index is attached or not:

a. Foranonfragmented table and a fragmented table with an index
created without an explicit fragmentation strategy, use the
following formula

sizeof_sort_item = keysize + 4

b. For fragmented tables with the index explicitly fragmented, use

the following formula:
sizeof_sort_item = keysize + 8

Estimate the number of bytes needed to sort with the following

formula:

temp_bytes = 2 * (rows * sizeof_sort_item)
This formula uses the factor 2 because everything is stored twice
when intermediate sort runs use temporary space. Intermediate sort

runs occur when not enough memory exists to perform the entire
sort in memory.

The value for rows is the total number of rows that you expect to be
in the table.

Managing Extents

As you add rows to a table, Dynamic Server allocates disk space to it in units
called extents. Each extent is a block of physically contiguous pages from the
dbspace. Even when the dbspace includes more than one chunk, each extent
is allocated entirely within a single chunk so that it remains contiguous.

Table and Index Performance Considerations 4-29

Managing Extents

Contiguity is important to performance. When the pages of data are
contiguous, disk-arm motion is minimized when the database server reads
the rows sequentially. The mechanism of extents is a compromise between
the following competing requirements:

= Most dbspaces are shared among several tables.

= The size of some tables is not known in advance.

= Tables can grow at different times and different rates.

= All the pages of a table should be adjacent for best performance.

Because table sizes are not known, table space cannot be preallocated.
Therefore, Dynamic Server adds extents only as they are needed, but all the
pages in any one extent are contiguous for better performance. In addition,
when Dynamic Server creates a new extent that is adjacent to the previous
extent, it treats both extents as a single extent.

Choosing Extent Sizes

When you create a table, you can specify the size of the first extent as well as
the size of the extents to be added as the table grows. The following example
creates a table with a 512-kilobyte initial extent and 100-kilobyte added
extents:

CREATE TABLE big_one (..column specifications..)
IN big_space
EXTENT SIZE 512
NEXT SIZE 100

The default value for the extent size and the next-extent size is eight times the
disk page size on your system. For example, if you have a 2-kilobyte page,
the default length is 16 kilobytes.

You can change the size of extents to be added with the ALTER TABLE state-
ment. This change has no effect on extents that already exist. The following
example changes the next-extent size of the table to 50 kilobytes:

ALTER TABLE big_one MODIFY NEXT SIZE 50

4-30 Performance Guide for Informix Dynamic Server

Managing Extents

When you fragment an existing table, you might want to adjust the next-
extent size because each fragment requires less space than the original,
unfragmented table. If the unfragmented table was defined with a large next-
extent size, Dynamic Server uses that same size for the next-extent on each
fragment, which results in over-allocation of disk space. Each fragment
requires only a proportion of the space for the entire table.

For example, if you fragment the preceding big_one sample table across five
disks, you can alter the next-extent size to one-fifth the original size. For more
information on the ALTER FRAGMENT statement, see the Informix Guide to
SQL: Syntax. The following example changes the next-extent size to one-fifth
of the original size:

ALTER TABLE big_one MODIFY NEXT SIZE 20

The next-extent sizes of the following kinds of tables are not very important
to performance:

= Asmall table is defined as a table that has only one extent. If such a
table is heavily used, large parts of it remain buffered in memory.

= Aninfrequently used table is not important to performance no
matter what size it is.

= Atable that resides in a dedicated dbspace always receives new
extents that are adjacent to its old extents. The size of these extents is
not important because, being adjacent, they perform as one large
extent.

When you assign an extent size to these kinds of tables, the only consider-
ation is to avoid creating large numbers of extents. Having a large number of
extents causes the database server to spend extra time finding the data. In
addition, an upper limit exists on the number of extents allowed. (This topic
is covered in “Upper Limit on Extents” on page 4-32.)

No upper limit exists on extent sizes except the size of the chunk. When you
know the final size of a table (or can confidently predict it within 25 percent),
allocate all its space in the initial extent. When tables grow steadily to
unknown size, assign them next-extent sizes that let them share the dbspace
with a small number of extents each. The following steps outline one possible
approach.

Table and Index Performance Considerations 4-31

Managing Extents

To allocate space for table extents

1. Decide how to allocate space among the tables. For example, you
might divide the dbspace among three tables in the ratio 0.4:0.2: 0.3
(reserving 10 percent for small tables and overhead).

2. Give each table one-fourth of its share of the dbspace as its initial
extent.

3. Assign each table one-eighth of its share as its next-extent size.
4. Monitor the growth of the tables regularly with oncheck.

As the dbspace fills up, you might not have enough contiguous space to cre-
ate an extent of the specified size. In this case, Dynamic Server allocates the
largest contiguous extent that it can.

Upper Limit on Extents

Do not allow a table to acquire a large number of extents because an upper
limit exists on the number of extents allowed. Trying to add an extent after
the limit is reached causes error -136 (No more extents) to follow an INSERT
request.

The upper limit on extents depends on the page size and the table definition.
To learn the upper limit on extents for a particular table, use the following set
of formulas:

vcspace = 8 Ovcolumns + 136

tcspace = 4 QOtcolumns

ixspace = 12 QOindexes

ixparts = 4 QOicolumns

extspace = pagesize -(vcspace + tcspace + ixspace + ixparts + 84)
maxextents = extspace/8

vcolumns is the number of columns that contain BYTE or TEXT data and
VARCHAR data.

tcolumns is the number of columns in the table.

indexes is the number of indexes on the table.

icolumns is the number of columns named in those indexes.

pagesize is the size of a page reported by oncheck -pr.

The table can have no more than maxextents extents.

4-32 Performance Guide for Informix Dynamic Server

Managing Extents

To help ensure that the limit is not exceeded:

= Dynamic Server checks the number of extents each time that it
creates a new extent. If the number of the extent being created is a
multiple of 16, Dynamic Server automatically doubles the next-
extent size for the table. Therefore, at every sixteenth creation,
Dynamic Server doubles the next-extent size.

= When Dynamic Server creates a new extent adjacent to the previous
extent, it treats both extents as a single extent.

Checking for Extent Interleaving

When two or more growing tables share a dbspace, extents from one tblspace
can be placed between extents from another tblspace. When this situation
occurs, the extents are said to be interleaved. Interleaving creates gaps
between the extents of a table, as Figure 4-6 shows. Performance suffers
when disk seeks for a table must span more than one extent, particularly for
sequential scans. Try to optimize the table-extent sizes, which limits head
movement. Also consider placing the tables in separate dbspaces.

Figure 4-6
- Table 1 extents Interleaved Table
Extents

[]Table 3extents

Periodically check for extent interleaving by monitoring Dynamic Server
chunks. Execute oncheck -pe to obtain the physical layout of information in
the chunk. The following information appears:

= Dbspace name and owner

= Number of chunks in the dbspace

= Sequential layout of tables and free space in each chunk

= Number of pages dedicated to each table extent or free space
This output is useful for determining the degree of extent interleaving. If

Dynamic Server cannot allocate an extent in a chunk despite an adequate
number of free pages, the chunk might be badly interleaved.

Table and Index Performance Considerations 4-33

Managing Extents

Eliminating Interleaved Extents
You can eliminate interleaved extents with one of the following methods:

= Reorganize the tables with the UNLOAD and LOAD statements.
= Create or alter an index to cluster.
s Use the ALTER TABLE statement.

Reorganizing Dbspaces and Tables to Eliminate Extent Interleaving

You can rebuild a dbspace to eliminate interleaved extents, as Figure 4-7
illustrates. The order of the reorganized tables within the dbspace is not
important. All that matters is that the pages of each reorganized table are
together so that no lengthy seeks are required to read the table sequentially.
When reading a table nonsequentially, the disk arm ranges only over the
space occupied by that table.

Figure 4-7

- Table 1 extents A Dbspace
Reorganized to

- Table 2 extents Eliminate
Interleaved Extents

[] Table 3extents

To reorganize tables in a dbspace
1. Copy the tables in the dbspace to tape individually with the
UNLOAD statement in DB-Access.
2. Drop all the tables in the dbspace.
3. Re-create the tables with the LOAD statement or the dbload utility.

The LOAD statement re-creates the tables with the same properties as they
had before, including the same extent sizes.

You can also unload a table with the onunload utility and reload the table
with the companion onload utility. For further information about selecting
the correct utility or statement to use, refer to the Informix Migration Guide.

4-34 Performance Guide for Informix Dynamic Server

Managing Extents

Creating or Altering an Index to Cluster

Depending on the circumstances, you can eliminate extent interleaving if you
create a clustered index or alter an index to cluster. When you use the TO
CLUSTER clause of the CREATE INDEX or ALTER INDEX statement, Dynamic
Server sorts and reconstructs the table. The TO CLUSTER clause reorders rows
in the physical table to match the order in the index. For more information,
refer to “Clustering” on page 4-23.

The TO CLUSTER clause eliminates interleaved extents under the following
conditions:

The chunk must contain contiguous space that is large enough to
rebuild each table.

Dynamic Server must use this contiguous space to rebuild the table.

If blocks of free space exist before this larger contiguous space,
Dynamic Server might allocate the smaller blocks first. Dynamic
Server allocates space for the ALTER INDEX process from the
beginning of the chunk, looking for blocks of free space that are
greater than or equal to the size that is specified for the next extent.
When Dynamic Server rebuilds the table with the smaller blocks of
free space that are scattered throughout the chunk; it does not
eliminate extent interleaving.

To display the location and size of the blocks of free space, execute the
oncheck -pe command.

To use the TO CLUSTER clause of the ALTER INDEX statement

1.

For each table in the chunk, drop all fragmented or detached indexes
except the one that you want to cluster.

Cluster the remaining index with the TO CLUSTER clause of the
ALTER INDEX statement.

This step eliminates interleaving the extents when you rebuild the
table by rearranging the rows.

Re-create all the other indexes.

You compact the indexes in this step because Dynamic Server sorts
the index values before it adds them to the B-tree.

Table and Index Performance Considerations 4-35

Managing Extents

You do not need to drop an index before you cluster it. However, the ALTER
INDEX process is faster than CREATE INDEX because Dynamic Server reads
the data rows in cluster order using the index. In addition, the resulting
indexes are more compact.

To prevent the problem from recurring, consider increasing the size of the
tbispace extents. For more information, see the Informix Guide to SQL: Tutorial.

Using ALTER TABLE to Eliminate Extent Interleaving

If you use the ALTER TABLE statement to add or drop a column or to change
the data type of a column, Dynamic Server copies and reconstructs the table.
When Dynamic Server reconstructs the entire table, the table is rewritten onto
other areas of the dbspace. However, if other tables are in the dbspace, no
guarantee exists that the new extents will be adjacent to each other.

Important: For certain types of operations that you specify in the ADD, DROP, and
MODIFY clauses, Dynamic Server does not copy and reconstruct the table during the
ALTER TABLE operation. In these cases, Dynamic Server uses an in-place alter algo-
rithm to modify each row when it is updated (rather than during the ALTER TABLE
operation). For more information on the conditions for this in-place alter algorithm,
refer to “In-Place Alter” on page 4-41.

Reclaiming Unused Space Within an Extent

Once Dynamic Server allocates disk space to a tblspace as part of an extent,
that space remains dedicated to the tblspace. Even if all extent pages become
empty after deleting data, the disk space remains unavailable for use by other
tables.

Important: \When you delete rows in a table, Dynamic Server reuses that space to
insert new rows into the same table. This section describes procedures to reclaim
unused space for use by other tables.

You might want to resize a table that does not require the entire amount of
space that was originally allocated to it. You can reallocate a smaller dbspace
and release the unneeded space for other tables to use.

4-36 Performance Guide for Informix Dynamic Server

Managing Extents

As the Dynamic Server administrator, you can reclaim the disk space in
empty extents and make it available to other users by rebuilding the table. To
rebuild the table, use any of the following SQL statements:

s ALTER INDEX
= UNLOAD and LOAD
s ALTER FRAGMENT

Reclaiming Space in an Empty Extent with ALTER INDEX

If the table with the empty extents includes an index, you can execute the
ALTER INDEX statement with the TO CLUSTER clause. Clustering an index
rebuilds the table in a different location within the dbspace. All the extents
associated with the previous version of the table are released. Also, the newly
built version of the table has no empty extents.

For more information about the syntax of the ALTER INDEX statement, refer
to the Informix Guide to SQL: Syntax. For more information on clustering, refer
to “Clustering” on page 4-23.

Reclaiming Space in an Empty Extent with the UNLOAD and LOAD Statements
or the onunload and onload Utilities

If the table does not include an index, you can unload the table, re-create the
table (either in the same dbspace or in another one), and reload the data with
the UNLOAD and LOAD statements or the onunload and onload utilities. For
further information about selecting the correct utility or statement to use,
refer to the Informix Migration Guide.

For more information about the syntax of the UNLOAD and LOAD state-
ments, refer to the Informix Guide to SQL: Syntax.
Releasing Space in an Empty Extent with ALTER FRAGMENT

You can use the ALTER FRAGMENT statement to rebuild a table, which
releases space within the extents that were allocated to that table. For more
information about the syntax of the ALTER FRAGMENT statement, refer to the
Informix Guide to SQL: Syntax.

Table and Index Performance Considerations 4-37

Changing Tables

Changing Tables

You might want to change an existing table for various reasons:

= To periodically refresh large decision-support tables with data
= To add or drop historical data from a certain time period

= To add, drop, or modify columns in large decision-support tables
when the need arises for different data analysis

Loading and Unloading Tables

Databases for decision-support applications are often created by periodically
loading tables that have been unloaded from active OLTP databases.
Dynamic Server can quickly load large tables by using a series of SQL state-
ments and external tables.

For more information on how the database server performs high perfor-
mance loading, refer to your Administrator’s Guide.

Dropping Indexes Before Loading or Updating Tables

In some applications, most table updates can be confined to a single time
period. You might be able to set up your system so that all updates are
applied overnight or on specified dates.

When updates are performed as a batch, you can drop all nonunique indexes
while you make updates and then create new indexes afterward. This
strategy can have the following positive effects:

= The updating program can run faster with fewer indexes to update.
Often, the total time to drop the indexes, update without them, and
re-create them is less than the time to update with the indexes in
place. (The time cost of updating indexes is discussed in “Time Costs
of Indexes” on page 4-19.)

= Newly made indexes are more efficient. Frequent updates tend to
dilute the index structure so that it contains many partly full leaf
pages. This dilution reduces the effectiveness of an index and wastes
disk space.

4-38 Performance Guide for Informix Dynamic Server

Attaching or Detaching Fragments

As atime-saving measure, make sure that a batch-updating program calls for
rows in the sequence defined by the primary-key index. That sequence
causes the pages of the primary-key index to be read in order and only one
time each.

The presence of indexes also slows down the population of tables when you
use the LOAD statement or the dbload utility. Loading a table that has no
indexes is a quick process (little more than a disk-to-disk sequential copy),
but updating indexes adds a great deal of overhead.

To load a table that has no indexes

Drop the table (if it exists).

Create the table without specifying any unique constraints.
Load all rows into the table.

Alter the table to apply the unique constraints.

o b~ e

Create the nonunique indexes.

If you cannot guarantee that the loaded data satisfies all unique constraints,
you must create unique indexes before you load the rows. You save time if
the rows are presented in the correct sequence for at least one of the indexes.
If you have a choice, make it the row with the largest key. This strategy
minimizes the number of leaf pages that must be read and written.

Attaching or Detaching Fragments

Many customers use ALTER FRAGMENT ATTACH and DETACH statements to
perform data-warehouse-type operations. ALTER FRAGMENT DETACH
provides a way to delete a segment of the table data rapidly. Similarly, ALTER
FRAGMENT ATTACH provides a way to load large amounts of data into an
existing table incrementally by taking advantage of the fragmentation
technology.

For more information on how to take advantage of the performance enhance-
ments for the ATTACH and DETACH options of the ALTER FRAGMENT
statement, refer to “Improving the Performance of Attaching and Detaching
Fragments” on page 6-29.

Table and Index Performance Considerations 4-39

Altering a Table Definition

Altering a Table Definition

The database server uses one of several algorithms to process an ALTER
TABLE statement in SQL:

= Slow alter

= In-place alter

= Fast alter

Slow Alter

When the database server uses the slow alter algorithm to process an ALTER
TABLE statement, the table can be unavailable to other users for a long period
of time because the database server:

= locks the table in exclusive mode for the duration of the ALTER
TABLE operation.

= makes a copy of the table to convert the table to the new definition.

= converts the data rows during the ALTER TABLE operation.

= cantreat the ALTER TABLE statement as a long transaction and abort
it if the LTXHWM threshold is exceeded.

The database server uses the slow alter algorithm when the ALTER TABLE
statement makes column changes that cannot be performed in place, such as
the following changes:

= Add or drop a column created with the ROWIDS or CRCOLS keyword

= Drop a column of type TEXT or BYTE

= Modify the data type of a column in a way that some possible values
of the old type cannot be converted to the new type

For example, if you modify a column of type INTEGER to CHAR(N),
the database server uses the slow alter algorithm if the value of n is
less than 11. An INTEGER requires 10 characters plus one for the
minus sign for the lowest possible negative values.

= Modify the data type of a fragmentation column in a way that value
conversion might cause rows to move to another fragment

4-40 Performance Guide for Informix Dynamic Server

Altering a Table Definition

In-Place Alter

The in-place alter algorithm provides the following performance advantages
over the slow alter algorithm:

Increases table availability

Other users can access the table sooner when the ALTER TABLE
operation uses the in-place alter algorithm because the database
server locks the table for only the time that it takes to update the table
definition and rebuild indexes that contain altered columns.

This increase in table availability can increase system throughput for
application systems that require 24 by 7 operations.

When the database server uses the in-place alter algorithm, the
database server locks the table for a shorter time than the slow alter
algorithm because the database server:

o does not make a copy of the table to convert the table to the new
definition.

0 does not convert the data rows during the ALTER TABLE
operation.

o alters the physical columns in place with the latest definition
after the alter operation when you subsequently update or insert
rows. The database server converts the rows that reside on each
page that you updated.

Requires less space than the slow alter algorithm

When the ALTER TABLE operation uses the slow alter algorithm, the
database server makes a copy of the table to convert the table to the
new definition. The ALTER TABLE operation requires space at least
twice the size of the original table plus log space.

When the ALTER TABLE operation uses the in-place alter algorithm,
the space savings can be substantial for very large tables.

Improves system throughput during the ALTER TABLE operation

The database server does not need to log any changes to the table
data during the in-place alter operation. Not logging changes has the
following advantages:

0 Log space savings can be substantial for very large tables.
o The alter operation is not a long transaction.

Table and Index Performance Considerations 4-41

Altering a Table Definition

When the Database Server Uses the In-Place Alter Algorithm

The database server uses the in-place alter algorithm for certain types of
operations that you specify in the ADD, DROP, and MODIFY clauses of the
ALTER TABLE statement:

= Addacolumn or list of columns of any data type except columns that
you add with the ROWIDS or CRCOLS keywords

= Drop a column of any data type except type BYTE or TEXT and
columns created with the ROWIDS or CRCOLS keywords

= Modify a column for which the database server can convert all
possible values of the old data type to the new data type.

= Modify acolumn that is part of the fragmentation expression if value
changes do not require a row to move from one fragment to another
fragment after conversion.

Figure 4-8 shows the conditions under which the ALTER TABLE MODIFY
statement uses the in-place alter algorithm.

Operations and Conditions That Use the In-Place Alter Algorithm to Process the AL%%U;,?\;L?
MODIFY Statement
Operation on Column Condition
Convert a SMALLINT column to an INTEGER column All
Convert a SMALLINT column to a DEC(p2,s2) column p2-s2 >=5
Convert a SMALLINT column to a DEC(p2) column p2-s2 >=5 OR nf

Convert a SMALLINT column to an SMALLFLOAT column All

Notes:

= The column type DEC(p) refers to non-ANSI databases in which this type is
handled as floating point.

= In ANSI databases, DEC(p) defaults to DEC(p,0) and uses the same alter algorithm
as DEC(p,s).

= The condition “nf” is when the modified column is not part of the table fragmen-
tation expression.

= Thecondition indicates that the database server uses the in-place alter algorithm for
all cases of the specific column operation.

4-42 Performance Guide for Informix Dynamic Server

Altering a Table Definition

Operation on Column

Condition

Convert a SMALLINT column to an FLOAT column
Convert a SMALLINT column to a CHAR(n) column
Convert an INT column to a DEC(p2,s2) column
Convert an INT column to a DEC(p2) column
Convert a INT column to an SMALLFLOAT column
Convert a INT column to an FLOAT column
Convert a INT column to a CHAR(n) column

Convert a DEC(p1,s1) column to a SMALLINT column

Convert a DEC(p1,s1) column to an INTEGER column

Convert a DEC(p1,s1) column to a DEC(p2,s2) column

Convert a DEC(p1,s1) column to a DEC(p2) column

Convert a DEC(p1,s1) column to a SMALLFLOAT column

Convert a DEC(p1,s1) column to a FLOAT column
Convert a DEC(p1,s1) column to a CHAR(n) column
Convert a DEC(p1) column to a DEC(p2) column

Convert a DEC(p1) column to a SMALLFLOAT column

All

n >=6 AND nf

p2-s2 >=10

p2 >=10 OR nf
nf

All

n >=11 AND nf

pl-sl <5 AND
(s1==00Rnf)

pl-s1 <10 AND
(s1==0ORnf)

p2-s2 >= pl-s1 AND
(s2 >=s1 OR nf)

p2 >=pl OR nf
nf
nf
n >=8 AND nf
p2 >=pl OR nf
nf

Notes:

= The column type DEC(p) refers to non-ANSI databases in which this type is
handled as floating point.

= In ANSI databases, DEC(p) defaults to DEC(p,0) and uses the same alter algorithm
as DEC(p,s).

= The condition “nf” is when the modified column is not part of the table fragmen-
tation expression.

= Thecondition indicates that the database server uses the in-place alter algorithm for
all cases of the specific column operation.

Table and Index Performance Considerations 4-43

Altering a Table Definition

Operation on Column Condition

Convert a DEC(p1) column to a FLOAT column nf

Convert a DEC(p1) column to a CHAR(n) column n >=8 AND nf

Convert a SMALLFLOAT column to a DEC(p2) column nf

Convert a SMALLFLOAT column to a FLOAT column nf

Convert a SMALLFLOAT column to a CHAR(n) column n >=8 AND nf

Convert a FLOAT column to a DEC(p2) column nf

Convert a FLOAT column to a SMALLFLOAT column nf

Convert a FLOAT column to a CHAR(n) column n >=8 AND nf

Convert a CHAR(m) column to a CHAR(n) column n >=m OR (nf AND
not ANSI mode)

Increase the length of a CHARACTER column Not ANSI mode

Increase the length of a DECIMAL or MONEY column All

Notes:

= The column type DEC(p) refers to non-ANSI databases in which this type is
handled as floating point.

= In ANSI databases, DEC(p) defaults to DEC(p,0) and uses the same alter algorithm
as DEC(p,s).

= The condition “nf” is when the modified column is not part of the table fragmen-
tation expression.

= Thecondition indicates that the database server uses the in-place alter algorithm for
all cases of the specific column operation.

Performance Considerations for DML Statements

Each time you execute an ALTER TABLE statement that uses the in-place alter
algorithm, the database server creates a new version of the table structure.
The database server keeps track of all versions of table definitions. The
database server resets the version status, all of the version structures and
alter structures, until the entire table is converted to the final format or a slow
alter is performed.

4-44 Performance Guide for Informix Dynamic Server

Altering a Table Definition

If the database server detects any down-level version page during the
execution of DML statements (INSERT, UPDATE, DELETE, SELECT), it performs
the following actions:

For UPDATE statements, the database server converts the entire data
page or pages to the final format.

For INSERT statements, the database server converts the inserted row
to the final format and inserts it into the best fit page. The database
server converts the existing rows on the best-fit page to the final
format.

For DELETE statements, the database server does not convert the data
pages to the final format.

For SELECT statements, the database server does not convert the data
pages to the final format.

If your query accesses rows that are not yet converted to the new
table definition, you might notice a slight degradation in the perfor-
mance of your individual query because the database server
reformats each row before it is returned.

Performance Considerations for DDL Statements

The oncheck -pT tablename option displays data-page versions for
outstanding in-place alter operations. An in-place alter is outstanding when
data pages still exist with the old definition.

Figure 4-9 displays a portion of the output that the following oncheck
command produces after four in-place alter operations are executed on the
customer demonstration table:

oncheck -pT stores7:customer

Table and Index Performance Considerations 4-45

Altering a Table Definition

Figure 4-9
o Sample oncheck -pT
Home Data Page Version Summary OutpﬁtforCustom’;r
Version Count Table

0 (oldest) 2

1 0

2 0

3 0

4 (current) 0

The Count field in Figure 4-9 displays the number of pages that currently use
that version of the table definition. This oncheck output shows that four
versions are outstanding:

= A value of 2 in Count field for the oldest version indicates that two
pages use the oldest version.

= Avalue of 0 in the Count fields for the next four versions indicate
that no pages have been converted to the latest table definition.

Important: As you perform more in-place alters on a table, each subsequent ALTER
TABLE statement takes more time to execute than the previous statement. Therefore,
Informix recommends that you do not have more than approximately 50 to 60 out-
standing alters on a table. A large number of outstanding alters affects only the sub-
sequent ALTER TABLE statements. The performance of SELECT statements does not
degrade because of the large number of outstanding alters.

You can convert data pages to the latest definition with a dummy UPDATE
statement. For example, the following statement, which sets a column value
to the existing value, causes the database server to convert data pages to the
latest definition:

UPDATE tabl SET coll = coll;

After an update is executed on all pages of the table, the oncheck -pT
command displays the total number of data pages in the Count field for the
current version of the table.

4-46 Performance Guide for Informix Dynamic Server

Altering a Table Definition

Alter Operations That Do Not Use the In-Place Alter Algorithm

The database server does not use the in-place alter algorithm in the following
situations:

When more than one algorithm is in use

If the ALTER TABLE statement contains more than one change, the
database server uses the algorithm with the lowest performance in
the execution of the statement.

For example, assume that an ALTER TABLE MODIFY statement
converts a SMALLINT column to a DEC(8,2) column and converts an
INTEGER column to a CHAR(8) column. The conversion of the first
column is an in-place alter operation, but the conversion of the
second column is aslow alter operation. The database server uses the
slow alter algorithm to execute this statement.

When values have to move to another fragment
For example, suppose you have a table with two integer columns
and the following fragment expression:

coll < col2 in dbspacel, remainder in dbspace2
If you execute the following ALTER TABLE MODIFY statement, the
database server stores a row (4, 30) in dbspacel before the alter but

stores it in dbspace?2 after the alter operation because 4 < 30 but "30"
< II4II.

Altering a Column That Is Part of an Index

If the altered column is part of an index, the table is still altered in place,
although in this case the server rebuilds the index or indexes implicitly. If you
do not need to have the index rebuilt, you should drop or disable the index
before you perform the alter operation. Taking these steps improves
performance.

However, if the column that you modify is a primary key or foreign key and
you want to keep this constraint, you must respecify those keywords in the
ALTER TABLE statement, and the database server rebuilds the index.

Table and Index Performance Considerations 4-47

Altering a Table Definition

For example, suppose you create tables and alter the parent table with the
following SQL statements:

CREATE TABLE parent
(si smallint primary key constraint pkey);
CREATE TABLE child

(si smallint references parent on delete cascade
constraint ckey);

INSERT INTO parent (si) VALUES (1);
INSERT INTO parent (si) VALUES (2);
INSERT INTO child (si) VALUES (1);
INSERT INTO child (si) VALUES (2);
ALTER TABLE parent
MODIFY (si int PRIMARY KEY constraint PKEY);

This ALTER TABLE example converts a SMALLINT column to an INT
column.The database server retains the primary key because the ALTER
TABLE statement specifies the PRIMARY KEY keywords and the PKEY
constraint. However, the database server drops any referential constraints
that reference that primary key. Therefore, you must also specify the
following ALTER TABLE statement for the child table:

ALTER TABLE child

MODIFY (si int references parent on delete cascade
constraint ckey);

Even though the ALTER TABLE operation on a primary key or foreign key
column rebuilds the index, the database server still takes advantage of the in-
place alter algorithm. The in-place alter algorithm provides the following
performance benefits:

= Does not make a copy of the table to convert the table to the new
definition

= Does not convert the data rows during the alter operation

= Does not rebuild all indexes on the table

Warning: If you alter a table that is part of a view, you must re-create the view to
obtain the latest definition of the table.

W

4-48 Performance Guide for Informix Dynamic Server

Denormalizing the Data Model to Improve Performance

Fast Alter

The database server uses the fast alter algorithm when the ALTER TABLE
statement changes attributes of the table but does not affect the data. The
database server uses the fast alter algorithm when you use the ALTER TABLE
statement to:

= change the next-extent size.

= add or drop a constraint.

= change the lock mode of the table.

= change the unique index attribute without modifying the column
type.

When the database server uses the fast alter algorithm, the database server
holds the lock on the table for a very short time. In some cases, the database
server only locks the system catalog tables to change the attribute. In either
case, the table is unavailable for queries for only a very short period of time.

Denormalizing the Data Model to Improve
Performance

The entity-relationship data model that the Informix Guide to SQL: Tutorial
describes produces tables that contain no redundant or derived data. Accord-
ing to the tenets of relational theory, these tables are well structured.

Sometimes, to meet extraordinary demands for high performance, you might
have to modify the data model in ways that are undesirable from a theoretical
standpoint. This section describes some modifications and their associated
costs.

Shorter Rows for Faster Queries

Usually, tables with shorter rows yield better performance than ones with
longer rows because disk 1/0 is performed in pages, not in rows. The shorter
the rows of a table, the more rows occur on a page. The more rows per page,
the fewer 1/0 operations it takes to read the table sequentially, and the more
likely it is that a nonsequential access can be performed from a buffer.

Table and Index Performance Considerations 4-49

Expelling Long Strings

The entity-relationship data model puts all the attributes of one entity into a
single table for that entity. For some entities, this strategy can produce rows
of awkward lengths. You can shorten the rows by breaking out columns into
separate tables that are associated by duplicate key values in each table. As
the rows get shorter, query performance should improve.

Expelling Long Strings

The most bulky attributes are often character strings. Removing them from
the entity table makes the rows shorter. You can use the following methods
to expel long strings:

= Use VARCHAR columns.

s Use TEXT data.

= Move strings to a companion table.
= Build a symbol table.

Using VARCHAR Strings

GLS A database might contain CHAR columns that can be converted to VARCHAR
columns. You can use a VARCHAR column to shorten the average row length
when the average length of the text string in the CHAR column is at least

2 bytes shorter than the width of the column. For information about other
character data types, refer to the Informix Guide to GLS Functionality. ¢

VARCHAR data is immediately compatible with most existing programs,
forms, and reports. You might need to recompile any forms produced by
application development tools to recognize VARCHAR columns. Always test
forms and reports on a sample database after you modify the table schema.

Using TEXT Data

When a string fills half a disk page or more, consider converting it to a TEXT
column in a separate blobspace. The column within the row page is only

56 bytes long, which allows more rows on a page than when you include a
long string. However, the TEXT data type is not automatically compatible
with existing programs. The application needed to fetch a TEXT value is a bit
more complicated than the code for fetching a CHAR value into a program.

4-50 Performance Guide for Informix Dynamic Server

Expelling Long Strings

Moving Strings to a Companion Table

Strings that are less than half a page waste disk space if you treat them as
TEXT data, but you can remove them from the main table to a companion
table.

Building a Symbol Table

If a column contains strings that are not unique in each row, you can remove
those strings to a table in which only unique copies are stored.

For example, the customer.city column contains city names. Some city names
are repeated down the column, and most rows have some trailing blanks in
the field. Using the VARCHAR data type eliminates the blanks but not the
duplication.

You can create a table named cities, as shown in the following example:

CREATE TABLE cities (
city_num SERTAL PRIMARY KEY,
city_name VARCHAR(40) UNIQUE
)

You can change the definition of the customer table so that its city column
becomes a foreign key that references the city_num column in the cities table.

You must change any program that inserts a new row into customer to insert
the city of the new customer into cities. The database server return code in
the SQLCODE field of the SQL Communications Area (SQLCA) can indicate
that the insert failed because of a duplicate key. It is not a logical error; it sim-
ply means that an existing customer is located in that city. For information
about the SQLCA, refer to the Informix Guide to SQL: Tutorial.

Besides changing programs that insert data, you also must change all
programs and stored queries that retrieve the city name. The programs and
stored queries must use a join into the new cities table to obtain their data.
The extra complexity in programs that insert rows and the extra complexity
in some queries is the result of giving up theoretical correctness in the data
model. Before you make the change, be sure that it returns a reasonable sav-
ings in disk space or execution time.

Table and Index Performance Considerations 4-51

Splitting Wide Tables

Splitting Wide Tables

Consider all the attributes of an entity that has rows that are too wide for
good performance. Look for some theme or principle to divide them into two
groups. Split the table into two tables, a primary table and a companion table,
repeating the primary key in each one. The shorter rows allow each table to
be queried or updated quickly.

Division by Bulk

One principle on which you can divide an entity table is bulk. Move the
bulky attributes, which are usually character strings, to the companion table.
Keep the numeric and other small attributes in the primary table. In the dem-
onstration database, you can split the ship_instruct column from the orders
table. You can call the companion table orders_ship. It has two columns, a
primary key that is a copy of orders.order_num and the original
ship_instruct column.

Division by Frequency of Use

Another principle for division of an entity is frequency of use. If a few
attributes are rarely queried, they can be moved to a companion table. In the
demonstration database, it might be that the ship_instruct, ship_weight, and
ship_charge columns are queried only in one program. In that case, you can
move them to a companion table.

Division by Frequency of Update

Updates take longer than queries, and updating programs lock index pages
and rows of data during the update process, preventing querying programs
from accessing the tables. If you can separate one table into two companion
tables, one of which contains the most-updated entities and the other of
which contains the most-queried entities, you can often improve overall
response time.

4-52 Performance Guide for Informix Dynamic Server

Redundant Data

Costs of Companion Tables

Splitting a table consumes extra disk space and adds complexity. Two copies
of the primary key occur for each row, one copy in each table. Two primary-
key indexes also exist. You can use the methods described in earlier sections
to estimate the number of added pages.

You must modify existing programs, reports, and forms that use SELECT *
because fewer columns are returned. Programs, reports, and forms that use
attributes from both tables must perform a join to bring the tables together.

In this case, when you insert or delete a row, two tables are altered instead of
one. If you do not coordinate the alteration of the two tables (by making them
within a single transaction, for example), you lose semantic integrity.

Redundant Data

Normalized tables contain no redundant data. Every attribute appears in
only one table. Normalized tables also contain no derived data. Instead, data
that can be computed from existing attributes is selected as an expression
based on those attributes.

Normalizing tables minimizes the amount of disk space used and makes
updating the tables as easy as possible. However, normalized tables can force
you to use joins and aggregate functions often, and that can be time
consuming.

As an alternative, you can introduce new columns that contain redundant
data, provided you understand the trade-offs involved.

Adding Redundant Data

A correct data model avoids redundancy by keeping any attribute only in the
table for the entity that it describes. If the attribute data is needed in a differ-
ent context, you make the connection by joining tables. But joining takes time.
If a frequently used join affects performance, you can eliminate it by
duplicating the joined data in another table.

Table and Index Performance Considerations 4-53

Redundant Data

In the stores7 sample database, the manufact table contains the names of
manufacturers and their delivery times. An actual working database might
contain many other attributes of a supplier, such as address and sales repre-
sentative name.

The contents of manufact are primarily a supplement to the stock table.
Suppose that a time-critical application frequently refers to the delivery lead
time of a particular product but to no other column of manufact. For each
such reference, the database server must read two or three pages of data to
perform the lookup.

You can add a new column, lead_time, to the stock table and fill it with
copies of the lead_time column from the corresponding rows of manufact.
That eliminates the lookup, and so speeds up the application.

Like derived data, redundant data takes space and poses an integrity risk. In
the example described in the previous paragraph, many extra copies of each
manufacturer’s lead time can exist. (Each manufacturer can appear in stock
many times.) The programs that insert or update a row of manufact must
also update multiple rows of stock.

The integrity risk is simply that the redundant copies of the data might not
be accurate. If a lead time is changed in manufact, the stock column is out-
dated until it is also updated. As you do with derived data, define the condi-
tions under which redundant data might be wrong. For more information,
refer to the Informix Guide to SQL: Syntax and the Informix Guide to SQL:
Reference.

4-54 Performance Guide for Informix Dynamic Server

Locking

Lock Granularity .
Row and Key Locks .
Page Locks
Table Locks .
Table Locks That the Database Server Places
Database Locks.
Waiting for Locks .

Locks with the SELECT Statement
Isolation Level .
Dirty Read Isolation (ANSI Read Uncommltted)

Committed Read Isolation (ANSI Read Commltted).

Cursor Stability Isolation . . .
Repeatable Read Isolation (ANSI Serlallzable
ANSI Repeatable Read) .
Update Cursors.

Locks Placed with INSERT, UPDATE, and DELETE
Key-Value Locking

Monitoring and Administering Locks
Monitoring Locks . .
Configuring and Monitoring the Number of Locks
Monitoring Lock Waits and Lock Errors .
Monitoring Deadlocks

5-4
5-4

5-6
5-7

5-7
5-8

5-9
5-9

5-10
5-11

5-12
5-12

5-13
5-14
5-14
5-15
5-17

5-2 Performance Guide for Informix Dynamic Server

his chapter describes how the database server uses locks and how

locks can affect performance.

This chapter discusses the following topics:

Types of locks

Locking during query processing

Locking during updates, deletes, and inserts
Monitoring and configuring locks

Lock Granularity

A lock is a software mechanism that prevents others from using a resource.
This chapter discusses the locking mechanism placed on data. You can place
a lock on the following items:

An individual row

An index key

A page of data or index keys
A table

A database

The amount of data that the lock protects is called locking granularity. Locking
granularity affects performance. When a user cannot access a row or key, the
user can wait for another user to unlock the row or key. If a user locks an
entire page, a higher probability exists that more users will wait for a row in
the page. The ability of more than one user to access a set of rows is called
concurrency. The goal of the administrator is to increase concurrency to
increase total performance without sacrificing performance for an individual

USer.

Locking 5-3

Row and Key Locks

Row and Key Locks

Row and key locking are not the default behaviors. You must create the table
with row-level locking on, as in the following example:

CREATE TABLE customer(customer_num serial, Tname char(20)...)
LOCK MODE ROW;

The ALTER TABLE statement can also change the lock mode.

When you insert or update a row, the database server creates a row lock. In
some cases, you place a row lock by simply reading the row with a SELECT
statement.

When you insert, update, or delete a key (performed automatically when you
insert, update, or delete a row), the database server creates a lock on the key
in the index.

Row and key locks generally provide the best overall performance when you
are updating a relatively small number of rows because they increase concur-
rency. However, the database server incurs some overhead in obtaining a
lock. For an operation that requires changing a large number of rows,
obtaining one lock per row might not be cost effective. In this case, consider
using page locking.

Page Locks

Page locking is the default behavior when you create a table without the
LOCK MODE clause.

With page locking, instead of locking only the row, the database server locks
the entire page that contains the row. If you update several rows on the same
page, the database server uses only one lock for the page.

5-4 Performance Guide for Informix Dynamic Server

Table Locks

When you insert or update a row, the database server creates a page lock on
the data page. In some cases, the database server creates a page lock when
you simply read the row with a SELECT statement.

When you insert, update, or delete a key (performed automatically when you
insert, update, or delete a row), the database server creates a lock on the page
that contains the key in the index.

Important: A page lock on an index page can decrease concurrency more substan-
tially than a page lock on a data page. Index pages are dense and hold a large number
of keys. By locking an index page, you make a potentially large number of keys
unavailable to other users until you release the lock.

Page locks are useful for tables in which the normal user changes a large
number of rows at one time. For example, an orders table that holds orders
that are commonly inserted and queried individually is not a good candidate
for page locking. But a table that holds old orders and is updated nightly with
all of the orders placed during the day might be a good candidate. In this
case, the type of isolation level that you use to access the table is important.
For more information, refer to*Isolation Level” on page 5-8.

Table Locks

In a data warehouse environment, it might be more appropriate for queries
to acquire larger granularity locks. For example, if a query accesses most of
the rows in a table, its efficiency increases if it acquires a smaller number of
table locks instead of many page or row locks.

The database server can place two types of table locks:

= Shared lock
No users can write to the table.
= Exclusive lock
No other users can read or write from the table.

Locking 5-5

Table Locks

Another important distinction between these two types of table locks is in the
actual number of locks placed:

= Inshared mode, the database server places one shared lock on the
table, which informs other users that no updates can be performed.
In addition, the database server adds locks for every row updated,
deleted, or inserted.

= Inexclusive mode, the database server places only one exclusive lock
on the table, no matter how many rows it updates. If you update
most of the rows in the table, place an exclusive lock on the table.

Important: A table lock on a table can decrease update concurrency radically. Only
one update transaction can access that table at any given time, and that update trans-
action locks out all other transactions. However, multiple read-only transactions can
simultaneously access the table. This behavior is useful in a data warehouse
environment where the data is loaded and then queried by multiple users.

You can switch a table back and forth between table-level locking and the
other levels of locking. This ability to switch locking levels is useful when
you use a table in a data warehouse mode during certain time periods but not
in others.

A transaction tells the database server to use table-level locking for a table
with the LOCK TABLE statement. The following example places an exclusive
lock on the table:

LOCK TABLE tabl IN EXCLUSIVE MODE;
The following example places a shared lock on the table:

LOCK TABLE tabl IN SHARE MODE:

Table Locks That the Database Server Places

In some cases, the database server places its own table locks. For example, if
the isolation level is Repeatable Read, and the database server has to read a
large portion of the table, it places a table lock automatically instead of setting
row or page locks. The database server places a table lock on a table when it
creates or drops an index.

5-6 Performance Guide for Informix Dynamic Server

Database Locks

Database Locks

You can place a lock on the entire database when you open the database with
the DATABASE statement. A database lock prevents read or update access by
anyone but the current user.

The following statement opens and locks the sales database:

DATABASE sales EXCLUSIVE

Waiting for Locks

When a user encounters a lock, the default behavior of a database server is to
return an error to the application. You can execute the following SQL
statement to wait indefinitely for a lock:

SET LOCK MODE TO WAIT;

You can also wait for a specific number of seconds, as in the following
example:

SET LOCK MODE TO WAIT 20;

To return to the default behavior (no waiting for locks), execute the following
statement:

SET LOCK MODE TO NOT WAIT;

Locks with the SELECT Statement

The type and duration of locks that the database server places depend on the
isolation level set in the application and on whether the SELECT statement is
within an update cursor. The following sections explain isolation levels and
update cursors.

Locking 5-7

Isolation Level

Isolation Level

The number and duration of locks placed on data during a SELECT statement
depends on the level of isolation that the user set. The type of isolation can
impact overall performance because it affects concurrency.

You can set the isolation level with the SET ISOLATION or the ANSI SET
TRANSACTION statement before you execute the SELECT statement. The
main differences between the two statements are that SET ISOLATION has an
additional isolation level, Cursor Stability, and SET TRANSACTION cannot be
executed more than once in a transaction as SET ISOLATION can.

Dirty Read Isolation (ANSI Read Uncommitted)

Dirty Read isolation (or ANSI Read Uncommitted) places no locks on any
rows fetched during a SELECT statement. Dirty Read isolation is appropriate
for static tables that are used for queries.

Use Dirty Read with care if update activity occurs at the same time. With a
Dirty Read, the reader can read a row that has not been committed to the
database and might be eliminated or changed during a rollback. For example,
consider the following scenario:

User 1 starts a transacion.
User 1 inserts row A.

User 2 reads row A.

User 1 rolls back row A.

User 2 reads row A, which user 1 rolls back seconds later. In effect, user 2 read
a row that was never committed to the database. Sometimes known as a
phantom row, uncommitted data that is rolled back can pose a problem for
applications.

Because the database server does not check or place any locks for queries,
Dirty Read isolation offers the best performance of all isolation levels.
However, because of potential problems with phantom rows, use it with care.

Because phantom rows are an issue only with transactions, databases that do
not have logging on (and hence do not allow transactions) use Dirty Read as
a default isolation level. In fact, Dirty Read is the only isolation level allowed
for databases without logging on.

5-8 Performance Guide for Informix Dynamic Server

Isolation Level

Committed Read Isolation (ANSI Read Committed)

Committed Read isolation removes the problem of phantom reads. A reader
with this isolation level checks for locks before it returns a row. By checking
for locks, the reader cannot return any uncommitted rows.

The database server does not actually place any locks for rows read during
Committed Read. It simply checks for any existing rows in the internal lock
table.

Committed Read is the default isolation level for databases with logging, and
it is an appropriate isolation level for most activities.

Cursor Stability Isolation

A reader with Cursor Stability isolation acquires a shared lock on the row
that is currently fetched. This action assures that no other user can update the
row until the user fetches a new row.

The pseudocode in Figure 5-1 shows when the database server places and
releases locks with a cursor.

If you do not use a cursor to fetch data, Cursor Stability isolation behaves in
the same way as Committed Read. No locks are actually placed.

Figure 5-1
Locks Placed for

set isolation to cursor stability cursor Stabilit
u ility

declare cursor for SELECT * from customer
open the cursor

while there are more rows Rel he lock h .
fetch a row elease the lock on the previous

do stuff row and add a lock for this row.

end while
close the cursor -a—————— Release the lock on the last row.

Locking 5-9

Isolation Level

Repeatable Read Isolation (ANSI Serializable, ANSI Repeatable Read)

Repeatable Read isolation (ANSI Serializable and ANSI Repeatable Read) is
the most strict isolation level. With Repeatable Read, the database server
locks all rows examined (not just fetched) for the duration of the transaction.

The pseudocode in Figure 5-2 shows when the database server places and
releases locks with a cursor.

Figure 5-2
set isolation to repeatable read Locks Placed for
begin work Repeatable Read

declare cursor for SELECT * FROM customer
open the cursor
while there are more rows

fotch a row < Add a Iocl_< for this row and_every
do stuff row examined to retrieve this row.

end while
close the cursor
commit work -

Release all locks.

Repeatable Read is useful during any processing in which multiple rows are
examined and none must change during the transaction. For example,
suppose an application must check the account balance of three accounts that
belong to one person. The application gets the balance of the first account and
then the second. But, at the same time, another application begins a trans-
action that debits the third account and the credits the first account. By the
time that the original application obtains the account balance of the third
account, it has been debited. However, the original application did not record
the debit of the first account.

When you use Committed Read or Cursor Stability, the previous scenario can
occur. However, it cannot occur with Repeatable Read. The original appli-
cation holds a read lock on each account that it examines until the end of the
transaction, so the attempt by the second application to change the first
account fails (or waits, depending upon SET LOCK MODE).

5-10 Performance Guide for Informix Dynamic Server

Update Cursors

Because even examined rows are locked, if the database server reads the table
sequentially, a large number of rows unrelated to the query result can be
locked. For this reason, use Repeatable Read isolation for tables when the
database server can use an index to access a table. If an index exists and the
optimizer chooses a sequential scan instead, you can use directives to force
use of the index. However, forcing a change in the query path might
negatively affect query performance.

Update Cursors

An update cursor is a special kind of cursor that applications can use when
the row might potentially be updated. To use an update cursor, execute
SELECT FOR UPDATE in your application. Update cursors use promotable locks;
that is, the database server places an update lock (meaning other users can
still view the row) when the application fetches the row, but the lock is
changed to an exclusive lock when the application updates the row using an
update cursor and UPDATE... WHERE CURRENT OF.

The advantage of using an update cursor is that you can view the row with
the confidence that other users cannot change it or view it with an update
cursor while you are viewing it and before you update it.

In an ANSI-compliant database, update cursors are not needed because any
select cursor behaves the same as an update cursor.

The pseudocode in Figure 5-3 shows when the database server places and
releases locks with a cursor.

Figure 5-3
Locks Placed for

declare update cursor Update Cursors
begin work

open the cursor

fetch the row ~<¢—— Add an update lock for this row.
do stuff

update the row (use WHERE CURRENT OF) g— Promote lockto
commit work g— Release lock. exclusive.

Locking 5-11

Locks Placed with INSERT, UPDATE, and DELETE

Locks Placed with INSERT, UPDATE, and DELETE

When you execute an INSERT, UPDATE, or DELETE statement, the database
server uses exclusive locks. An exclusive lock means that no other users can
view the row unless they are using the Dirty Read isolation level. In addition,
no other users can update or delete the item until the database server
removes the lock.

When the database server removes the exclusive lock depends on the type of
logging set for the database. If the database has logging, the database server
removes all exclusive locks when the transaction completes (commits or rolls
back). If the database does not have logging, the database server removes all
exclusive locks immediately after the INSERT, UPDATE, or DELETE statement
completes.

Key-Value Locking

When a user deletes a row within a transaction, the row cannot be locked
because it does not exist. However, the database server must somehow
record that a row existed until the end of the transaction.

The database server uses a concept called key-value locking to lock the deleted
row. When the database server deletes a row, key values in the indexes for the
table are not removed immediately. Instead, each key value is marked as
deleted, and a lock is placed on the key value.

Other users might encounter key values that are marked as deleted. The
database server must determine whether a lock exists. If a lock exists, the
delete has not been committed, and the database server sends a lock error
back to the application (or it waits for the lock to be released if the user
executed SET LOCK MODE TO WAIT).

One of the most important uses for key-value locking is to assure that a
unique key remains unique through the end of the transaction that deleted it.
Without this protection mechanism, user A might delete a unique key within
a transaction and, before the transaction commits, user B might insert a row
with the same key. This scenario makes rollback by user A impossible. Key-
value locking prevents user B from inserting the row until the end of user A’s
transaction.

5-12 Performance Guide for Informix Dynamic Server

Monitoring and Administering Locks

Monitoring and Administering Locks

The database server stores locks in an internal lock table. When the database
server reads a row, it checks if the row or its associated page, table, or
database is listed in the lock table. If it is in the lock table, the database server
must also check the lock type. The following table shows the types of locks
that the lock table can contain.

Lock Type Description Statement Usually Placing the Lock

S Shared lock SELECT

X Exclusive lock INSERT, UPDATE, DELETE

U Update lock SELECT in an update cursor

B Byte lock Any statement updating VARCHAR
columns

In addition, the lock table might store intent locks, with the same lock type as
previously shown. In some cases, a user might need to register its possible
intent to lock an item, so that other users cannot place a lock on the item.

Depending on the type of operation and the isolation level, the database
server might continue to read the row and place its own lock on the row, or
it might wait for the lock to be released (if the user executed SET LOCK MODE
TO WAIT). The following table shows the locks that a user can place if another
user holds a certain type of lock. For example, if one user holds an exclusive
lock on an item, another user requesting any kind of lock (exclusive, update
or shared) receives an error.

Hold X lock Hold U lock Hold S lock

Request X lock No No Yes
Request U lock No No Yes
Request S lock No Yes Yes

Locking 5-13

Monitoring Locks

Monitoring Locks

You can view the lock table with onstat -k. Figure 5-4 shows sample output
for onstat -k.

Locks

address wtlist
300b77d0 0
300b7828 0
300b7854 0
300b78d8 0

4 active, 5000 total, 8192 hash buckets

Figure 5-4
owner Tklist type tblsnum rowid keyit/bsiz onstat -k Output
40074140 0 HDR+S 10002 106 0
40074140 300b77d0 HDR+S 10197 123 0
40074140 300b7828 HDR+IX 101e4 0 0
40074140 300b7854 HDR+X 101e4 102 0

In this example, a user is inserting one row in a table. The user holds the
following locks (described in the order shown):

= Ashared lock on the database

= Ashared lock on a row in the systables table

= Anintent-exclusive lock on the table

= Anexclusive lock on the row
To determine the table to which the lock applies, execute the following SQL

statement. For thlsnum, substitute the value shown in the tblsnum field in the
onstat -k output:

SELECT tabname
FROM systables
WHERE partnum = hex(tblsnum)

For a complete definition of fields, consult your Administrator’s Guide.

Configuring and Monitoring the Number of Locks

The LOCKS configuration parameter controls the size of the internal lock

table. If the number of locks placed exceeds the value set by LOCKS, the appli-
cation receives an error. For more information on how to determine an initial
value for the LOCKS configuration parameter, refer to “LOCKS” on page 3-36.

To monitor the number of times that applications receive the out-of-locks
error, view the ovlock field in the output of onstat -p.

5-14 Performance Guide for Informix Dynamic Server

Monitoring Lock Waits and Lock Errors

If the database server commonly receives the out-of-locks error, you can
increase the LOCKS parameter value. However, a very large lock table can
impede performance. Although the algorithm to read the lock table is
efficient, you incur some cost for reading a very large table each time that the
database server reads a row. If the database server is using an unusually large
number of locks, you might need to examine how individual applications are
using locks.

First, monitor sessions with onstat -u to see if a particular user is using an
especially high number of locks (a high value in the locks column). If a
particular user uses a large number of locks, examine the SQL statements in
the application to determine whether you should lock the table or use
individual row or page locks. A table lock is more efficient than individual
row locks, but it reduces concurrency.

In general, to reduce the number of locks placed on a table, alter a table to use
page locks instead of row locks. However, page locks reduce overall concur-
rency for the table, which can affect performance.

Monitoring Lock Waits and Lock Errors

If the application executes SET LOCK MODE TO WAIT, the database server
waits for a lock to be released instead of returning an error. An unusually
long wait for a lock can give users the impression that the application is
hanging.

In Figure 5-5 on page 5-16, the onstat -u output shows that session ID 84 is
waiting for a lock (L in the first column of the Flags field). To find out the
owner of the lock, use the onstat -k command.

Locking 5-15

Monitoring Lock Waits and Lock Errors

Figure 5-5
onstat -u onstat -u Output
That Shows Lock
Userthreads Usage
address flags sessid user tty wait tout Tocks nreads nwrites
40072010 ---P--D 7 informix - 0 0 0 35 75
400723c0 ---P--- 0 informix - 0 0 0 0 0
40072770 ---P--- 1 informix - 0 0 0 0 0
40072b20 ---P--- 2 informix - 0 0 0 0 0
40072ed0 ---P--F 0O informix - 0 0 0 0 0
40073280 ---P--B 8 informix - 0 0 0 0 0
40073630 ---P--- 9 informix - 0 0 0 0 0
400739e0 ---P--D O informix - 0 0 0 0 0
40073d90 ---P--- 0 informix - 0 0 0 0 0
y-Bp--{8] Tsuto 4 50205788 0 4 106 221
jsmit - 0 0 4 0 0
---P--- 86 worth - 0 0 2 0 0
300b78d8 -1 2 0 0

, 128 total, 16 maximum concurrent

onstat

Locks
address wtN owner Tklist type tblsnum rowid key#/bsiz
300b77d0 0 40074140 0 HDR+S 10002 106 0
30067828 0 40074140 300b77d0 HDR+S 10197 122 0
300b7854 0 40074140 300b7828 HDR+IX 101e4 0 0
40075760 40074140] 300b7854 HDR+X 10le4 100 0
30007904 0 40075760 0 S 10002 106 0
30067930 0 40075760 300b7904 N 10197 122 0

6 active, 5000 total, 8192 hash buckets

To find out the owner of the lock for which session ID 84 is waiting

1. Obtain the address of the lock in the wait field (300b78d8) of the
onstat -u output.

2. Findthis address (300b78d8) in the Locks address field of the onstat
-k output.
The owner field of this row in the onstat -k output contains the
address of the userthread (40074140).

3. Find this address (40074140) in the userthread field of the onstat -u
output.

The sessid field of this row in the onstat -u output contains the
session ID (81) that owns the lock.

5-16 Performance Guide for Informix Dynamic Server

Monitoring Deadlocks

To eliminate the contention problem, you can have the user exit the appli-
cation gracefully. If this solution is not possible, you can kill the application
process or remove the session with onmode -z.

Monitoring Deadlocks

A deadlock occurs when two users hold locks, and each user wants to acquire
a lock that the other user owns.

For example, user joe holds a lock on row 10. User jane holds a lock on row
20. Suppose that jane wants to place a lock on row 10, and joe wants to place
a lock on row 20. If both users execute SET LOCK MODE TO WAIT, they poten-
tially might wait for each other forever.

Informix uses the lock table to detect deadlocks automatically and stop them
before they occur. Before a lock is granted, the database server examines the
lock list for each user. If a user holds a lock on the resource that the requestor
wants to lock, the database server traverses the lock wait list for the user to
see if the user is waiting for any locks that the requestor holds. If so, the
requestor receives an deadlock error.

Deadlock errors can be unavoidable when applications update the same
rows frequently. However, certain applications might always be in
contention with each other. Examine applications that are producing a large
number of deadlocks and try to run them at different times. To monitor the
number of deadlocks, use the deadlks field in the output of onstat -p.

In a distributed transaction, the database server does not examine lock tables
from other OnL.ine systems, so deadlocks cannot be detected before they
occur. Instead, you can set the DEADLOCK_TIMEOUT parameter.
DEADLOCK_TIMEOUT specifies the number of seconds that the database
server waits for a remote database server response before it returns an error.
Although reasons other than a distributed deadlock might cause the delay,
this mechanism keeps a transaction from hanging indefinitely.

To monitor the number of distributed deadlock timeouts, use the dltouts
field in the onstat -p output.

Locking 5-17

Fragmentation Guidelines

Planning a Fragmentation Strategy .
Setting Fragmentation Goals .
Improving Performance for Ind|V|duaI Querles

Reducing Contention Between Queries and Transactions .

Increasing Data Availability .

Increasing Granularity for Backup and Restore
Examining Your Data and Queries .
Physical Fragmentation Factors .

Designing a Distribution Scheme .
Choosing a Distribution Scheme .
Designing an Expression-Based Dlstrlbutlon Scheme
Suggestions for Improving Fragmentation

Fragmenting Indexes .
Attached Indexes .
Detached Indexes .
Restrictions on Indexes for Fragmented Tables

Fragmenting a Temporary Table

Distribution Schemes for Fragment Elimination .

Query Expressions for Fragment Elimination
Range Expressions in Query .

Equality Expressions in Query .

Effectiveness of Fragment Elimination .
Nonoverlapping Fragments on a Single Column
Overlapping Fragments on a Single Column
Nonoverlapping Fragments, Multiple Columns .

Improving the Performance of Attaching and Detaching Fragments . . 6-29

Improving ALTER FRAGMENT ATTACH Performance. 6-30
Formulating Appropriate Distribution Schemes 6-30
Ensuring No Data Movement When You

AttachaFragment. 6-34
Updating Statistics on All Participating Tables. 6-35

Improving ALTER FRAGMENT DETACH Performance. 6-37
Fragmenting the Index in the Same Way asthe Table 6-38
Fragmenting the Index with the Same Distribution Scheme

astheTable 639

Monitoring FragmentUse 6440
Using the onstat Utility 640
UsingSETEXPLAIN 641

6-2 Performance Guide for Informix Dynamic Server

his chapter discusses the performance considerations that are

involved when you use table fragmentation.

One of the most frequent causes of poor performance in relational database
systems is contention for data that resides on a single 1/0 device. Informix
database servers support table fragmentation (also partitioning), which
allows you to store data from a single table on muiltiple disk devices. Proper
fragmentation of high-use tables can significantly reduce 1/0 contention.

This chapter discusses the following topics:

Planning a fragmentation strategy

Designing a distribution scheme

Distribution schemes for fragment elimination

Fragmenting indexes

Fragmenting temporary tables

Improving the performance of attaching and detaching fragments
Monitoring fragmentation

For information about fragmentation and parallel execution, refer to
Chapter 9, “Parallel Database Query.”

For an introduction to fragmentation concepts and methods, refer to the
Informix Guide to Database Design and Implementation. For information about
the SQL statements that manage fragments, refer to the Informix Guide to SQL.:

Syntax.

Fragmentation Guidelines 6-3

Planning a Fragmentation Strategy

1.

Planning a Fragmentation Strategy

A fragmentation strategy consists of two parts:

A distribution scheme that specifies how to group rows into
fragments

You specify the distribution scheme in the FRAGMENT BY clause of
the CREATE TABLE, CREATE INDEX, or ALTER FRAGMENT
statements.

The set of dbspaces (or dbslices) in which you locate the fragments

You specify the set of dbspaces or dbslices in the IN clause (storage
option) of these SQL statements.

Formulating a fragmentation strategy requires you to make the following
decisions:

Decide what your primary fragmentation goal is.

Your fragmentation goals will depend, to a large extent, on the types
of applications that access the table.

Decide how the table should be fragmented.
You must make the following decisions:
= Whether to fragment the table data, the table index, or both

This decision is usually based on your primary fragmentation
goal.

= What the ideal distribution of rows or index keys is for the table
This decision is also based on your primary fragmentation goal.

6-4 Performance Guide for Informix Dynamic Server

Setting Fragmentation Goals

Decide on a distribution scheme.
You must first choose between the following distribution schemes.

= If you choose an expression-based distribution scheme, you
must then design suitable fragment expressions.

= If you choose a round-robin distribution scheme, the database
server determines which rows to put into a specific fragment.

To complete the fragmentation strategy, you must decide on the
number and location of the fragments:

= The number of fragments depends on your primary fragmen-
tation goal.

= Where you locate fragments depends on the number of disks
available in your configuration.

The following sections describe these topics:

Fragmentation goals

Performance-related factors for fragmentation
Examination of your data and queries
Physical fragmentation factors

Setting Fragmentation Goals

Analyze your application and workload to determine the balance to strike
among the following fragmentation goals:

Improved performance for individual queries

To improve the performance of individual queries, fragment tables
appropriately and set resource-related parameters to specify system
resource use (memory, CPU VPs, and so forth).

Reduced contention between queries and transactions

If your database server is used primarily for OLTP transactions and
only incidentally for decision-support queries, you can often use
fragmentation to reduce contention when simultaneous queries
against a table perform index scans to return a few rows.

Fragmentation Guidelines 6-5

Setting Fragmentation Goals

= Increased data availability

Careful fragmentation of dbspaces can improve data availability if
devices fail. Table fragments on the failed device can be restored
quickly, and other fragments are still accessible.

= Improved data-load performance

When you use the High-Performance Loader (HPL) to load a table

that is fragmented across multiple disks, it allocates threads to light
append the data into the fragments in parallel. For more information
on this load method, refer to the Guide to the High-Performance Loader.

You can also use the ALTER FRAGMENT ON TABLE statement with
the ATTACH clause to add data quickly to a very large table. For
more information, refer to “Improving the Performance of Attaching
and Detaching Fragments” on page 6-29.

The performance of a fragmented table is primarily governed by the
following factors:

= The storage option that you use for allocating disk space to
fragments (discussed in “Physical Fragmentation Factors” on
page 6-10)

s Thedistribution scheme used to assign rows to individual fragments
(discussed in “Designing a Distribution Scheme” on page 6-12)

Improving Performance for Individual Queries

If the primary goal of fragmentation is improved performance for individual
queries, try to distribute all the rows of the table evenly over the different
disks. Overall query-completion time is reduced when the database server
does not have to wait for data retrieval from a table fragment that has more
rows than other fragments.

If queries access data by performing sequential scans against significant
portions of tables, fragment the table rows only. Do not fragment the index.
If an index is fragmented and a query has to cross a fragment boundary to
access the data, the performance of the query can be worse than if you do not
fragment.

6-6 Performance Guide for Informix Dynamic Server

Setting Fragmentation Goals

If queries access data by performing an index read, you can improve
performance by using the same distribution scheme for the index and the
table.

If you use round-robin fragmentation, do not fragment your index. Consider
placing that index in a separate dbspace from other table fragments.

For more information about improving performance for queries, see “Query
Expressions for Fragment Elimination” on page 6-22 and Chapter 10,
“Improving Individual Query Performance.”

Reducing Contention Between Queries and Transactions

Fragmentation can reduce contention for data in tables that multiple queries
and OLTP applications use. Fragmentation often reduces contention when
many simultaneous queries against a table perform index scans to return a
few rows. For tables subjected to this type of load, fragment both the index
keys and data rows with a distribution scheme that allows each query to
eliminate unneeded fragments from its scan. Use an expression-based distri-
bution scheme. For more information, refer to “Distribution Schemes for
Fragment Elimination” on page 6-22.

To fragment a table for reduced contention, start by investigating which
gueries access which parts of the table. Next, fragment your data so that some
of the queries are routed to one fragment while others access a different
fragment. The database server performs this routing when it evaluates the
fragmentation rule for the table. Finally, store the fragments on separate
disks.

Your success in reducing contention depends on how much you know about
the distribution of data in the table and the scheduling of queries against the
table. For example, if the distribution of queries against the table is set up so
that all rows are accessed at roughly the same rate, try to distribute rows
evenly across the fragments. However, if certain values are accessed at a
higher rate than others, you can compensate for this difference by distrib-
uting the rows over the fragments to balance the access rate. For more
information, refer to “Designing an Expression-Based Distribution Scheme”
on page 6-15.

Fragmentation Guidelines 6-7

Setting Fragmentation Goals

Increasing Data Availability

When you distribute table and index fragments across different disks or
devices, you improve the availability of data during disk or device failures.
The database server continues to allow access to fragments stored on disks or
devices that remain operational. This availability has important implications
for the following types of applications:

Applications that do not require access to unavailable fragments

A query that does not require the database server to access data in an
unavailable fragment can still successfully retrieve data from
fragments that are available. For example, if the distribution
expression uses a single column, the database server can determine
if arow is contained in a fragment without accessing the fragment. If
the query accesses only rows that are contained in available
fragments, a query can succeed even when some of the data in the
table is unavailable. For more information, refer to “Designing an
Expression-Based Distribution Scheme” on page 6-15.

Applications that accept the unavailability of data

Some applications might be designed in such a way that they can
accept the unavailability of data in a fragment and require the ability
to retrieve the data that is available. These applications can specify
which fragments can be skipped by executing the SET DATASKIP
statement before they execute a query. Alternatively, the database
server administrator can specify which fragments are unavailable
using the onspaces -f option.

If your fragmentation goal is increased availability of data, fragment both
table rows and index keys so that if a disk drive fails, some of the data is still
available.

If applications must always be able to access a subset of your data, keep those
rows together in the same mirrored dbspace.

6-8 Performance Guide for Informix Dynamic Server

Examining Your Data and Queries

Increasing Granularity for Backup and Restore

Consider the following two backup and restore factors when you are
deciding how to distribute dbspaces across disks:

Data availability. When you decide where to place your tables or
fragments, remember that if a device that contains a dbspace fails, all
tables or table fragments in that dbspace are inaccessible, even
though tables and fragments in other dbspaces are accessible. The
need to limit data unavailability in the event of a disk failure might
influence which tables you group together in a particular dbspace.

Cold versus warm restores. Although you must perform a cold
restore if a dbspace that contains critical data fails, you need to
perform only a warm restore if a noncritical dbspace fails. The desire
to minimize the impact of cold restores might influence the dbspace
that you use to store critical data.

For more information about backup and restore, see your Backup and Restore

Guide.

Examining Your Data and Queries

To determine a fragmentation strategy, you must know how the data in a
table is used. Take the following steps to gather information about a table that
you might fragment.

To gather information about your table

1.

Identify the queries that are critical to performance. Determine if the
queries are OLTP or DSS.

Use the SET EXPLAIN statement to determine how the data is being
accessed. For information on the output of the SET EXPLAIN
statement, refer to “How to Display the Query Plan” on page 7-14.
Sometimes you can determine how the data is accessed by simply
reviewing the SELECT statements along with the table schema.

Determine what portion of the data each query examines. For
example, if certain rows in the table are read most of the time, you
can isolate them into a small fragment, which reduces 1/0 contention
for other fragments.

Fragmentation Guidelines 6-9

Physical Fragmentation Factors

Determine what statements create temporary files. Decision-support
queries typically create and access large temporary files, and
placement of temporary dbspaces can be critical to performance.

If particular tables are always joined together in a decision-support
query, spread fragments for these tables across different disks.

Examine the columns in the table to determine which fragmentation
scheme would keep each scan thread equally busy for the decision-
support queries. To see how the column values are distributed, create
a distribution on the column with the UPDATE STATISTICS statement
and examine the distribution with dbschema.

dbschema -d database -hd table

Physical Fragmentation Factors

When you fragment a table, the physical placement issues pertaining to
tables that are described in Chapter 4, “Table and Index Performance Consid-
erations,” apply to individual table fragments. Because each fragment resides
in its own dbspace on a disk, these issues must be addressed separately for
the fragments on each disk.

Fragmented and nonfragmented tables differ in the following ways:

For fragmented tables, each fragment is placed in a separate, desig-
nated dbspace. For nonfragmented tables, the table can be placed in
the default dbspace of the current database. Regardless of whether
the table is fragmented or not, Informix recommends that you create
a single chunk on each disk for each dbspace.

Extent sizes for a fragmented table are usually smaller than the
extent sizes for an equivalent nonfragmented table because
fragments do not grow in as large increments as the entire table. For
more information on how to estimate the space to allocate, refer to
“Estimating Table and Index Size” on page 4-8.

6-10 Performance Guide for Informix Dynamic Server

Physical Fragmentation Factors

= Inafragmented table, the row ID is no longer a unique nonchanging
pointer to the row on a disk. The database serve now uses the combi-
nation of fragment ID and row ID internally, inside an index, to point
to the row. These two fields are unique but can change over the life
of the row. An application cannot access the fragment ID; therefore,
Informix recommends that you use primary keys to access a specific
row in a fragmented table. For more information, refer to the Informix
Guide to Database Design and Implementation.

= Anattached index or an index on a nonfragmented table uses 4 bytes
for the row ID. A detached index uses 8 bytes of disk space per key
value for the fragment ID and row ID combination. For more infor-
mation on how to estimate space for an index, refer to “Estimating
Index Pages” on page 4-13. For more information on attached
indexes and detached indexes, refer to “Fragmenting Indexes” on
page 6-18

Decision-support queries usually create and access large temporary files;
placement of temporary dbspaces is a critical factor for performance. For
more information about placement of temporary files, refer to “Spreading
Temporary Tables and Sort Files Across Multiple Disks” on page 4-7.

Fragmentation Guidelines 6-11

Designing a Distribution Scheme

Designing a Distribution Scheme

After you decide whether to fragment table rows, index keys, or both, and
you decide how the rows or keys should be distributed over fragments, you
decide on a scheme to implement this distribution.

The database server supports the following distribution schemes:

Round-robin. This type of fragmentation places rows one after
another in fragments, rotating through the series of fragments to
distribute the rows evenly.

For INSERT statements, the database server uses a hash function on a
random number to determine the fragment in which to place the
row. For INSERT cursors, the database server places the first row in a
random fragment, the second in the next fragment sequentially, and
so on. If one of the fragments is full, it is skipped.

Expression-based. This type of fragmentation puts rows that contain
specified values in the same fragment. You specify a fragmentation
expression that defines criteria for assigning a set of rows to each
fragment, either as a range rule or some arbitrary rule. You can
specify a remainder fragment that holds all rows that do not match the
criteria for any other fragment although a remainder fragment
reduces the efficiency of the expression-based distribution scheme.

6-12 Performance Guide for Informix Dynamic Server

Choosing a Distribution Scheme

Choosing a Distribution Scheme

Figure 6-1 compares round-robin and expression-based distribution schemes
for three important features.

Figure 6-1
Distribution-Scheme Comparisons

Distribution
Scheme

Ease of Data Balancing

Fragment Elimination

Data Skip

Round-robin

Expression-
based

Automatic. Data is
balanced over time.

Requires knowledge of
the data distribution.

The database server cannot
eliminate fragments.

If expressions on one or two
column are used, the database
server can eliminate fragments
for queries that have either
range or equality expressions.

You cannot determine if the
integrity of the transaction is
compromised when you use
the data-skip feature.
However, you can insert into
a table fragmented by round-
robin.

You can determine whether
the integrity of a transaction
has been compromised when
you use the data-skip feature.
You cannot insert rows if the
appropriate fragment for
those rows is down.

The distribution scheme that you choose depends on the following factors:

= The features that you want to take advantage of in Figure 6-1

= Whether or not your queries tend to scan the entire table

= Whether or not you know the distribution of data to be added

= Whether or not your applications tend to delete many rows

= Whether or not you cycle your data through the table
Basically, the round-robin scheme provides the easiest and surest way of
balancing data. However, with round-robin distribution, you have no infor-

mation about the fragment in which a row is located, and the database server
cannot eliminate fragments.

Fragmentation Guidelines 6-13

Choosing a Distribution Scheme

In general, round-robin is the correct choice only when all the following
conditions apply:

= Your queries tend to scan the entire table.
= You do not know the distribution of data to be added.

= Your applications tend not to delete many rows. (If they do, load
balancing could be degraded.)

An expression-based scheme might be the best choice to fragment the data if
any of the following conditions apply:

= Your application calls for numerous decision-support queries that
scan specific portions of the table.

= You know what the data distribution is.
= You plan to cycle data through a database.

If you plan to add and delete large amounts of data periodically based on the
value of a column such as date, you can use that column in the distribution
scheme. You can then use the ALTER FRAGMENT ATTACH and ALTER
FRAGMENT DETACH statements to cycle the data through the table.

The ALTER FRAGMENT ATTACH and DETACH statements provide the
following advantages over bulk loads and deletes:

= Therest of the table fragments are available for other users to access.
Only the fragment that you attach or detach is not available to other
users.

= With the performance enhancements, the execution of an ALTER
FRAGMENT ATTACH or DETACH statement is much faster than a
bulk load or mass delete.

For more information, refer to “Improving the Performance of Attaching and
Detaching Fragments” on page 6-29.

In some cases, an appropriate index scheme can circumvent the performance
problems of a particular distribution scheme. For more information, refer to
“Fragmenting Indexes” on page 6-18.

6-14 Performance Guide for Informix Dynamic Server

Designing an Expression-Based Distribution Scheme

Designing an Expression-Based Distribution Scheme

The first step in designing an expression-based distribution scheme is to
determine the distribution of data in the table, particularly the distribution of
values for the column on which you base the fragmentation expression. To
obtain this information, run the UPDATE STATISTICS statement for the table
and then use the dbschema utility to examine the distribution.

Once you know the data distribution, you can design a fragmentation rule
that distributes data across fragments as required to meet your fragmenta-
tion goal. If your primary goal is to improve performance, your fragment

expression should generate an even distribution of rows across fragments.

If your primary fragmentation goal is improved concurrency, analyze the
queries that access the table. If certain rows are accessed at a higher rate than
others, you can compensate for this by opting for an uneven distribution of
data over the fragments that you create.

Try not to use columns that are subject to frequent updates in the distribution
expression. Such updates can cause rows to move from one fragment to
another (that is, be deleted from one and added to another), and this activity
increases CPU and 1/0 overhead.

Try to create nonoverlapping regions based on a single column with no
REMAINDER fragment for the best fragment-elimination characteristics.
Dynamic Server eliminates fragments from query plans whenever the query
optimizer can determine that the values selected by the WHERE clause do not
reside on those fragments, based on the expression-based fragmentation rule
by which you assign rows to fragments. For more information, refer to “Dis-
tribution Schemes for Fragment Elimination” on page 6-22.

Fragmentation Guidelines 6-15

Suggestions for Improving Fragmentation

Suggestions for Improving Fragmentation
The following suggestions are guidelines for fragmenting tables and indexes:

= For optimal performance in decision-support queries, fragment the
table to increase parallelism, but do not fragment the indexes. Detach
the indexes, and place them in a separate dbspace.

= For best performance in OLTP, use fragmented indexes to reduce
contention between sessions. You can often fragment an index by its
key value, which means the OLTP query only has to look at one
fragment to find the location of the row.

If the key value does not reduce contention, as when every user looks
at the same set of key values (for instance, a date range), consider
fragmenting the index on another value used in the WHERE clause.
To cut down on fragment administration, consider not fragmenting
some indexes, especially if you cannot find a good fragmentation
expression to reduce contention.

= Use round-robin fragmentation on data when the table is read
sequentially by decision-support queries. Round-robin fragmen-
tation is a good method for spreading data evenly across disks when
no column in the table can be used for an expression-based fragmen-
tation scheme. However, in most DSS queries, all fragments are read.

= If you are using expressions, create them so that 1/0 requests, rather
than quantities of data, are balanced across disks. For example, if the
majority of your queries access only a portion of data in the table, set
up your fragmentation expression to spread active portions of the
table across disks even if this arrangement results in an uneven
distribution of rows.

s Keep fragmentation expressions simple. Fragmentation expressions
can be as complex as you want. However, complex expressions take
more time to evaluate and might prevent fragments from being
eliminated from queries.

6-16 Performance Guide for Informix Dynamic Server

Suggestions for Improving Fragmentation

Arrange fragmentation expressions so that the most-restrictive
condition for each dbspace is tested within the expression first. When
Dynamic Server tests a value against the criteria for a given
fragment, evaluation stops when a condition for that fragment tests
false. Thus, if the condition that is most likely to be false is placed
first, fewer conditions need to be evaluated before Dynamic Server
moves to the next fragment. For example, in the following
expression, Dynamic Server tests all six of the inequality conditions
when it attempts to insert a row with a value of 25:

x >= 1 and x <= 10 in dbspacel,

x > 10 and x <= 20 in dbspace?2,

x > 20 and x <= 30 in dbspace3
By comparison, only four conditions in the following expression
need to be tested: the first inequality for dbspacel (x <= 10), the first
for dbspace2 (x <= 20), and both conditions for dbspace3:

x <= 10 and x >= 1 in dbspacel,

x <= 20 and x > 10 in dbspace?2,

x <= 30 and x > 20 in dbspace3
Avoid any expression that requires a data-type conversion. Type
conversions increase the time to evaluate the expression. For
instance, a DATE data type is implicitly converted to INTEGER for
comparison purposes.

Do not fragment on columns that change frequently unless you are
willing to incur the administration costs. For example, if you
fragment on a date column and older rows are deleted, the fragment
with the oldest dates tends to empty, and the fragment with the
recent dates tends to fill up. Eventually you have to drop the old
fragment and add a new fragment for newer orders.

Do not fragment every table. Identify the critical tables that are
accessed most frequently. Put only one fragment for a table on a disk.

Do not fragment small tables. Fragmenting a small table across many
disks might not be worth the overhead of starting all the scan threads
to access the fragments. Also, balance the number of fragments with
the number of processors on your system.

When you define a fragmentation strategy on an unfragmented
table, check your next-extent size to ensure that you are not
allocating large amounts of disk space for each fragment.

Fragmentation Guidelines 6-17

Fragmenting Indexes

Fragmenting Indexes

When you fragment a table, the indexes that are associated with that table are
fragmented implicitly, according to the fragmentation scheme that you use.
You can also use the FRAGMENT BY EXPRESSION clause of the CREATE INDEX
statement to fragment the index for any table explicitly. Each index of a frag-
mented table occupies its own tblspace with its own extents.

You can fragment the index with either of the following strategies:

= Same fragmentation strategy as the table
» Different fragmentation strategy from the table

Attached Indexes

An attached index is an index that implicitly follows the table fragmentation
strategy (distribution scheme and set of dbspaces in which the fragments are
located).

The database server creates an attached index automatically when you first
fragment the table.

To create an attached index, do not specify a fragmentation strategy, as in the
following sample SQL statements:

CREATE TABLE tbl(a int)
FRAGMENT BY EXPRESSION
(a >=0 and a < 5) IN dbspacel,
(a >=5 and a < 10) IN dbspace?

CREATE INDEX idxl ON tbl(a);

6-18 Performance Guide for Informix Dynamic Server

Detached Indexes

The database server fragments the attached index according to the same
distribution scheme as the table by using the same rule for index keys as for
table data. As a result, attached indexes have the following physical
characteristics:

= The number of index fragments is the same as the number of data
fragments.

= Each attached index fragment resides in the same tblspace as the
corresponding table data. Therefore, the data and index pages can be
interleaved within the tbispace.

= Anattached index or an index on a nonfragmented table uses 4 bytes
for the row ID for each index entry. For more information on how to
estimate space for an index, refer to “Estimating Index Pages” on
page 4-13.

Detached Indexes

A detached index is an index with a separate fragmentation strategy that you
set up explicitly with the CREATE INDEX statement, as in the following
sample SQL statements:

CREATE TABLE tbl (a int)
FRAGMENT BY EXPRESSION
(a <= 10) IN tabdbspcl,
(a <= 20) IN tabdbspc2,
(a <= 30) IN tabdbspc3;

CREATE INDEX idx1 ON tbl (a)
FRAGMENT BY EXPRESSION
(a <= 10) IN idxdbspcl,
(a <= 20) IN idxdbspc2,
(a <= 30) IN idxdbspc3;

This example illustrates a common fragmentation strategy to fragment
indexes in the same way as the tables but to specify different dbspaces for the
index fragments. This fragmentation strategy of putting the index fragments
in different dbspaces from the table can improve the performance of opera-
tions such as backup, recovery, and so forth.

If you do not want to fragment the index, you can put the entire index in a
separate dbspace.

Fragmentation Guidelines 6-19

Detached Indexes

You can fragment the index for any table by expression. However, you cannot
explicitly create a round-robin fragmentation scheme for an index. Whenever
you fragment a table using a round-robin fragmentation scheme, Informix
recommends that you convert all indexes that accompany the table to
detached indexes for the best performance.

Detached indexes have the following physical characteristics:

» Each detached index fragment resides in a different tblspace from the
corresponding table data. Therefore, the data and index pages cannot
be interleaved within the tbispace.

= Attached index fragments have their own extents and tblspace IDs.
The tblspace ID is also known as the fragment ID and partition number.
A detached index uses 8 bytes of disk space per index entry for the
fragment ID and row ID combination. For more information on how
to estimate space for an index, refer to “Estimating Index Pages” on
page 4-13.

The database server stores the location of each table and index fragment,
along with other related information, in the system catalog table
sysfragments. You can use the sysfragments system catalog table to access
information such as the following about fragmented tables and indexes:

= Thevalue in the partn field is the partition number or fragment 1D of
the table or index fragment. The partition number for a detached
index is different from the partition number of the corresponding
table fragment.

= The value in the strategy field is the distribution scheme used in the
fragmentation strategy.

For a complete description of field values that this sysfragments system
catalog table contains, refer to the Informix Guide to SQL: Reference. For
information on how to use sysfragments to monitor your fragments, refer to
“Monitoring Fragment Use” on page 6-40.

6-20 Performance Guide for Informix Dynamic Server

Restrictions on Indexes for Fragmented Tables

Restrictions on Indexes for Fragmented Tables

If the database server scans a fragmented index, multiple index fragments
must be scanned and the results merged together. (The exception is if the
index is fragmented according to some index-key range rule, and the scan
does not cross a fragment boundary.) Because of this requirement, perfor-
mance on index scans might suffer if the index is fragmented.

Because of these performance considerations, the database server places the
following restrictions on indexes:

= You cannot fragment indexes by round-robin.

= You cannot fragment unique indexes by an expression that contains
columns that are not in the index key.

For example, the following statement is not valid:

CREATE UNIQUE INDEX ia on tabl(coll)
FRAGMENT BY EXPRESSION
col12<10 in dbspl,
col2>=10 AND co12<100 in dbsp2,
col2>100 in dbsp3;

Fragmenting a Temporary Table

You can fragment an explicit temporary table across dbspaces reside on
different disks. For more information on explicit and implicit temporary
tables, refer to your Administrator’s Guide.

You can create a temporary, fragmented table with the TEMP TABLE clause of
the CREATE TABLE statement. However, you cannot alter the fragmentation
strategy of fragmented temporary tables (as you can with permanent tables).

The database server deletes the fragments that are created for a temporary
table at the same time that it deletes the temporary table.

You can define your own fragmentation strategy for an explicit temporary
table, or you can let the database server dynamically determine the fragmen-
tation strategy.

Fragmentation Guidelines 6-21

Distribution Schemes for Fragment Elimination

Distribution Schemes for Fragment Elimination

Fragment elimination is a database server feature that reduces the number of
fragments involved in a database operation. This capability can improve
performance significantly and reduce contention for the disks on which
fragments reside.

Fragment elimination improves both response time for a given query and
concurrency between queries. Because the database server does not need to
read in unnecessary fragments, 1/0 for a query is reduced. Activity in the
LRU queues is also reduced.

If you use an appropriate distribution scheme, the database server can
eliminate fragments from the following database operations:

m The fetch portion of the SELECT, INSERT, DELETE or UPDATE state-
ments in SQL

The database server can eliminate fragments when these SQL state-
ments are optimized, before the actual search.

= Nested-loop joins
When the database server obtains the key value from the outer table,
it can eliminate fragments to search on the inner table.

Whether the database server can eliminate fragments from a search depends
on two factors:

= The form of the query expression (the expression in the WHERE
clause of a SELECT, INSERT, DELETE or UPDATE statement)

= The distribution scheme of the table that is being searched

Query Expressions for Fragment Elimination

A query expression (the expression in the WHERE clause) can consist of any
of the following expressions:

= Simple expression

= Notsimple expression

= Multiple expressions

6-22 Performance Guide for Informix Dynamic Server

Query Expressions for Fragment Elimination

The database server considers only simple expressions or multiple simple
expressions combined with certain operators for fragment elimination.

A simple expression consists of the following parts:

column operator value

Simple Expression Part Description

column Is a single column name.

Dynamic Server supports fragment elimination on all
column types except columns that are defined with the
NCHAR, NVARCHAR, BYTE, and TEXT data types.

operator Must be an equality or range operator.

value Must be a literal or a host variable.

The following examples show simple expressions:

name = "Fred"
date < "01/25/1994"
value >= :my_val

The following examples are not simple expressions:
unitcost * count > 4500
price <= avg(price)

result + 3 > :Timit

The database server considers two types of simple expressions for fragment
elimination, based on the operator:

= Range expressions
= Equality expressions

Range Expressions in Query
Range expressions use the following relational operators:
<, >, K=, >=, 1=

Dynamic Server can handle one or two column fragment elimination on
queries with any combination of these relational operators in the WHERE
clause.

Fragmentation Guidelines 6-23

Effectiveness of Fragment Elimination

Dynamic Server can also eliminate fragments when these range expressions
are combined with the following operators:

AND, OR, NOT
IS NULL, IS NOT NULL
MATCH, LIKE

If the range expression contains MATCH or LIKE, Dynamic Server can also
eliminate fragments if the string ends with a wildcard character. The
following examples show query expressions that can take advantage of
fragment elimination:

columna MATCH "ab*"
columna LIKE "ab%" OR columnb LIKE "ab*"

Equality Expressions in Query
Equality expressions use the following equality operators:
=, IN

Dynamic Server can handle one or multiple column fragment elimination on
gueries with a combination of these equality operators in the WHERE clause.
Dynamic Server can also eliminate fragments when these equality expres-
sions are combined with the following operators:

AND, OR

Effectiveness of Fragment Elimination

Dynamic Server cannot eliminate fragments when you fragment a table with
a round-robin distribution scheme. Furthermore, not all expression-based
distribution schemes give you the same fragment-elimination behavior.

6-24 Performance Guide for Informix Dynamic Server

Effectiveness of Fragment Elimination

Figure 6-2 summarizes the fragment-elimination behavior for different com-
binations of expression-based distribution schemes and query expressions.

Figure 6-2

Fragment Elimination for Different Categories of Expression-Based
Distribution Schemes and Query Expressions

Type of Query
(WHERE clause)
Expression

Type of Expression-Based Distribution Scheme

Nonoverlapping
Fragments on a
Single Column

Overlapping or Non-
contiguous Fragments
on a Single Column

Nonoverlapping
Fragments on
Multiple Columns

Range expression

Fragments can

Fragments cannot be

Fragments cannot

be eliminated. eliminated. be eliminated.
Equality Fragments can Fragments can be Fragments can be
expression be eliminated. eliminated. eliminated.

Figure 6-2 indicates that the distribution schemes enable fragment elimi-
nation, but the effectiveness of fragment elimination is determined by the
WHERE clause of the query in question.

For example, consider a table fragmented with the following expression:

FRAGMENT BY EXPRESSION
100 < column_a AND column_b < O IN dbspl,
100 >= column_a AND column_b < 0 IN dbsp2,
column_b >= 0 IN dbsp3

Dynamic Server cannot eliminate any fragments from the search if the
WHERE clause has the following expression;

column_a =

5 OR column_b

-50

On the other hand, Dynamic Server can eliminate the fragment in dbspace

dbsp3 if the WHERE clause has the following expression:

column_b =

-50

Fragmentation Guidelines 6-25

Effectiveness of Fragment Elimination

Furthermore, Dynamic Server can eliminate the two fragments in dbspaces
dbsp?2 and dbsp3 if the WHERE clause has the following expression:

column_a = 5 AND column_b = -50

The following sections discuss distribution schemes to fragment data to
improve fragment elimination behavior.

Nonoverlapping Fragments on a Single Column

A fragmentation rule that creates nonoverlapping fragments on a single
column is the preferred fragmentation rule from a fragment-elimination
standpoint. The advantage of this type of distribution scheme is that
Dynamic Server can eliminate fragments for queries with range expressions
as well as queries with equality expressions. Informix recommends that you
meet these conditions when you design your fragmentation rule. Figure 6-3
gives an example of this type of fragmentation rule.

Figure 6-3
Schematic Example
of Nonoverlapping
Fragments on a
Single Column
FRAGMENT BY EXPRESSION
a <=8 OR a IN (9,10) IN dbspl,
10 < a <= 20 IN dbsp2,
a IN (21,22, 23) IN dbsp3,
a > 23 IN dbsp4;

a<=80RalN(9,10) 10<a<=20 alIN(21,22,23) a>23

D — . DA >
- | | | -

column a

You can create nonoverlapping fragments using a range rule or an arbitrary
rule based on a single column. You can use relational operators, as well as
AND, IN, OR, or BETWEEN. Be careful when you use the BETWEEN operator.
When Dynamic Server parses the BETWEEN keyword, it includes the
endpoints that you specify in the range of values. Avoid using a REMAINDER
clause in your expression. If you use a REMAINDER clause, Dynamic Server
cannot always eliminate the remainder fragment.

6-26 Performance Guide for Informix Dynamic Server

Effectiveness of Fragment Elimination

Overlapping Fragments on a Single Column

The only restriction for this category of fragmentation rule is that you base
the fragmentation rule on a single column. The fragments can be overlapping
and noncontiguous. You can use any range, MOD function, or arbitrary rule
that is based on a single column. Figure 6-4 gives an example of this type of
fragmentation rule.

Figure 6-4
Schematic Example
of Overlapping
Fragments on a

Single Column
FRAGMENT BY EXPRESSION
a <= 8 OR a IN (9,10,21,22,23) IN dbspl,
a > 10 IN dbsp2;

a<=80RalN (9,10, 21, 22, 23)

| | -

10 20 23 column a

v

The fragment for a > 10.

If you use this type of distribution scheme, Dynamic Server can eliminate
fragments on an equality search but not a range search. This distribution
scheme can still be very useful because all INSERT and many UPDATE opera-
tions perform equality searches.

This alternative is acceptable if you cannot use an expression that creates
nonoverlapping fragments with contiguous values. For example, in cases
where a table is growing over time, you might want to use a MOD function
rule to keep the fragments of similar size. Expression-based distribution
schemes that use MOD function rules fall into this category because the
values in each fragment are not contiguous.

Fragmentation Guidelines 6-27

Effectiveness of Fragment Elimination

Nonoverlapping Fragments, Multiple Columns

This category of expression-based distribution scheme uses an arbitrary rule
to define nonoverlapping fragments based on multiple columns. Figure 6-5

gives an example of this type of fragmentation rule.

FRAGMENT BY EXPRESSION

0 < a <= 10 AND b IN ('E", "F",'G")
0 <a<=10 AND b IN ('H", "I',"Jd")
10 < a <= 20 AND b IN ('E", "F",'G")
10 < a <= 20 AND b IN ('H', "I','d")
20 < a <= 30 AND b IN ("E", "F",'G")
20 < a <= 30 AND b IN ('H"', 'I",'Jd")

columnb

bIN (H, 'T'JY)

bIN (E, 'F','G)

6-28 Performance Guide for Informix Dynamic Server

0<a<=10 10<a<=20 20<a<=30

Figure 6-5
Schematic Example
of Nonoverlapping
Fragments on Two
Columns

Improving the Performance of Attaching and Detaching Fragments

If you use this type of distribution scheme, Dynamic Server can eliminate
fragments on an equality search but not a range search. Again, this capability
can still be very useful because all INSERT operations and many UPDATE
operations perform equality searches. Avoid using a REMAINDER clause in
the expression. If you use a REMAINDER clause, Dynamic Server cannot
always eliminate the remainder fragment.

This alternative is acceptable if you cannot obtain sufficient granularity using
an expression based on a single column.

Improving the Performance of Attaching and
Detaching Fragments

Many users use ALTER FRAGMENT ATTACH and DETACH statements to add
or remove a large amount of data in a very large table. ALTER FRAGMENT
DETACH provides a way to delete a segment of the table data rapidly.
Similarly, ALTER FRAGMENT ATTACH provides a way to load large amounts
of data incrementally into an existing table by taking advantage of the
fragmentation technology. However, the ALTER FRAGMENT ATTACH and
DETACH statements can take a long time to execute when the database server
rebuilds indexes on the surviving table.

Dynamic Server provides performance optimizations for the ALTER
FRAGMENT ATTACH and DETACH statements that cause the database server
to reuse the indexes on the surviving tables. Therefore, the database server
can eliminate the index build during the attach or detach operation, which:

= reduces the time that it takes for the ALTER FRAGMENT ATTACH and
ALTER FRAGMENT DETACH statements to execute.

= improves the table availability.

Fragmentation Guidelines 6-29

Improving ALTER FRAGMENT ATTACH Performance

Improving ALTER FRAGMENT ATTACH Performance

To take advantage of these performance optimizations for the ALTER
FRAGMENT ATTACH statement, you must meet all of the following
requirements:

s Formulate appropriate distribution schemes for your table and index
fragments.

= Ensure that there is no data movement between the resultant parti-
tions due to fragment expressions.

» Update statistics for all the participating tables.

= Make the indexes on the attached tables unique if the index on the
surviving table is unique.

Important: Only logging databases can benefit from the performance improvements
for the ALTER FRAGMENT ATTACH statement. Without logging, the database server
works with multiple copies of the same table to ensure recoverability of the data when
a failure happens. This requirement prevents reuse of the existing index fragments.

Formulating Appropriate Distribution Schemes

This section describes three distribution schemes that allow the attach
operation of the ALTER FRAGMENT statement to reuse existing indexes:
= Fragment the index in the same way as the table.

= Fragment the index with the identical set of fragment expressions as
the table.

= Attach unfragmented tables to form a fragmented table.

Fragmenting the Index in the Same Way as the Table

You fragment an index in the same way as the table when you create an index
without specifying a fragmentation strategy. As “Planning a Fragmentation
Strategy” on page 6-4 describes, a fragmentation strategy is the distribution
scheme and set of dbspaces in which the fragments are located.

6-30 Performance Guide for Informix Dynamic Server

Improving ALTER FRAGMENT ATTACH Performance

For example, suppose you create a fragmented table and index with the
following SQL statements:

CREATE TABLE tbl(a int)
FRAGMENT BY EXPRESSION
(a >=0 and a < 5) IN dbl,
(a >=5 and a <10) IN db2;

CREATE INDEX 1idxl ON tbl(a);

Now, suppose you create another table that is not fragmented and you subse-
quently decide to attach it to the fragmented table:

CREATE TABLE tb2 (a int, CHECK (a >=10 AND a<15))
IN db3;

CREATE INDEX idx2 ON tb2(a)
IN db3;

ALTER FRAGMENT ON TABLE tbl
ATTACH
tb2 AS (a >= 10 and a<1lb) AFTER db2;

This attach operation can take advantage of the existing index idx2 if no data
movement occurs between the existing and the new table fragments. If no
data movement occurs:

s The database server reuses index idx2 and converts it to a fragment
of index idx1.

= Theindex idx1 remains as an index with the same fragmentation
strategy as the table tb1.

If the database server discovers that one or more rows in the table tb2 belong
to preexisting fragments of the table tb1, the database server:

= drops and rebuilds the index idx1 to include the rows that were origi-
nally in tables tbl and tb2.
= drops the index idx2.
For more information on how to ensure no data movement between the

existing and the new table fragments, refer to “Ensuring No Data Movement
When You Attach a Fragment” on page 6-34.

Fragmentation Guidelines 6-31

Improving ALTER FRAGMENT ATTACH Performance

Fragmenting the Index with the Identical Distribution Scheme as the Table

You fragment an index with the same distribution scheme as the table when
you create the index using the identical fragment expressions as the table.

The database server determines if the fragment expressions are identical
based on the equivalency of the expression tree instead of the algebraic
equivalence. For example, consider the following two expressions:

(coll >=5)
(coll =5 0R coll > 5)

Although these two expressions are algebraically equivalent, they are not
identical expressions.

Suppose you create two fragmented tables and indexes with the following
SQL statements:

CREATE TABLE tbl (a INT)
FRAGMENT BY EXPRESSION
(a <= 10) IN tabdbspcl,
(a <= 20) IN tabdbspc?,
(a <= 30) IN tabdbspc3;
CREATE INDEX idx1 ON tbl (a)
FRAGMENT BY EXPRESSION
(a <= 10) IN idxdbspcl,
(a <= 20) IN idxdbspc?Z,
(a <= 30) IN idxdbspc3;

CREATE TABLE tb2 (a INT CHECK a> 30 AND a<= 40)
IN tabdbspc4d;

CREATE INDEX idx2 ON tb2(a)
IN idxdbspc4d;

Now, suppose you attach table tb2 to table tb1 with the following sample SQL
statement:

ALTER FRAGMENT ON TABLE tbl
ATTACH tb2 AS (a <= 40);

6-32 Performance Guide for Informix Dynamic Server

Improving ALTER FRAGMENT ATTACH Performance

The database server can eliminate the rebuild of index idx1 for this attach
operation for the following reasons:

= The fragmentation expression for index idx1 is identical to the
fragmentation expression for table tb1. The database server:

o expands the fragmentation of the index idx1 to the dbspace
idxdbspc4

o converts index idx2 to a fragment of index idx1.

= No rows move from one fragment to another because the CHECK
constraint is identical to the resulting fragmentation expression of
the attached table.

For more information on how to ensure no data movement between
the existing and the new table fragments, refer to “Ensuring No Data
Movement When You Attach a Fragment” on page 6-34.

Attaching Unfragmented Tables Together

You also take advantage of the performance improvements for the ALTER
FRAGMENT ATTACH operation when you combine two unfragmented tables
into one fragmented table.

For example, suppose you create two unfragmented tables and indexes with
the following SQL statements:

create table tbl(a int) in dbl;

create index idxl on tbl(a) in dbl;
create table tb2(a int) in db2;

create index idx2 on th2(a) in db2;

You might want to combine these two unfragmented tables with the
following sample distribution scheme:

ALTER FRAGMENT ON TABLE tbl
ATTACH
tbl AS (a <= 100),
tb2 AS (a > 100);

Fragmentation Guidelines 6-33

Improving ALTER FRAGMENT ATTACH Performance

If there is no data migration between the fragments of tb1 and tb2, the
database server redefines index idx1 with the following fragmentation
strategy:

CREATE INDEX idx1 ON tbl(a) F
FRAGMENT BY EXPRESSION
a <= 100 IN dbl,
a > 100 IN db2;

Important: This behavior results in a different fragmentation strategy for the index
than in earlier versions of the database server. In previous versions of the database
server, the ALTER FRAGMENT ATTACH statement creates an unfragmented

detached index in the dbspace db1.

Ensuring No Data Movement When You Attach a Fragment
You can ensure that no data movement occurs by taking the following steps:

1. Establish a check constraint on the attached table that is identical to
the fragment expression that it will assume after the ALTER
FRAGMENT ATTACH operation.

2. Define the fragments with nonoverlapping expressions.

For example, you might create a fragmented table and index with the
following SQL statements:

CREATE TABLE tbl(a int)
FRAGMENT BY EXPRESSION
(a >=0 and a < 5) IN dbl,
(a >=5 and a <10) IN db2;

CREATE INDEX idxl ON tbl(a);:

Suppose you create another table that is not fragmented, and you subse-
quently decide to attach it to the fragmented table.

CREATE TABLE th2 (a int, check (a >=10 and a<15))
IN db3;

CREATE INDEX idx2 ON tb2(a)
IN db3;

ALTER FRAGMENT ON TABLE tbl
ATTACH
tb2 AS (a >= 10 and a<l5) AFTER db2;

6-34 Performance Guide for Informix Dynamic Server

Improving ALTER FRAGMENT ATTACH Performance

This ALTER FRAGMENT ATTACH operation takes advantage of the existing
index idx2 because the following steps were performed in the example to
prevent data movement between the existing and the new table fragment:

= The check constraint expression in the CREATE TABLE tb2 statement
is identical to the fragment expression for table tb2 in the ALTER
FRAGMENT ATTACH statement.

= Thefragment expressions specified in the CREATE TABLE tb1 and the
ALTER FRAGMENT ATTACH statements are not overlapping.

Therefore, the database server preserves index idx2 in dbspace db3 and
converts it into a fragment of index idx1. The index idx1 remains as an index
with the same fragmentation strategy as the table tb1.

Updating Statistics on All Participating Tables

The database server tries to reuse the indexes on the attached tables as
fragments of the resultant index. However, the corresponding index on the
attached table might not exist, or it is not usable due to disk-format
mismatches. In these cases, it might be faster to build an index on the
attached tables rather than to build the entire index on the resultant table.

The database server estimates the cost to create the whole index on the
resultant table. The database server then compares this cost to the cost of
building the individual index fragments for the attached tables and chooses
the index build with the least cost.

To ensure the correctness of the cost estimates, Informix recommends that
you execute the UPDATE STATISTICS statement on all of the participating
tables before you attach the tables. The LOW mode of the UPDATE STATISTICS
statement is sufficient to derive the appropriate statistics for the optimizer to
determine costs estimates for rebuilding indexes.

Corresponding Index Does Not Exist

Suppose you create a fragmented table and index with the following SQL
statements:

CREATE TABLE tbl(a int, b int)
FRAGMENT BY EXPRESSION
(a >=0 and a < 5) IN dbl,
(a >=5 and a <10) IN db2;
CREATE INDEX idx1 ON tbl(a);

Fragmentation Guidelines 6-35

Improving ALTER FRAGMENT ATTACH Performance

6-36 Performance Guide for Informix Dynamic Server

Now, suppose you create two more tables that are not fragmented, and you
subsequently decide to attach them to the fragmented table.

CREATE TABLE tb2 (a int, b int, check (a >=10 and a<15))
IN db3;
CREATE INDEX idx2 ON th2(a)
IN db3;
CREATE TABLE tb3 (a int, b int, check (a >= 15 and a<20))
IN db4;
CREATE INDEX idx3 ON tb3(b)
IN db4;
UPDATE STATISTICS FOR TABLE thbhl;
UPDATE STATISTICS FOR TABLE tb2;
UPDATE STATISTICS FOR TABLE tb3;
ALTER FRAGMENT ON TABLE tbl
ATTACH
th2 AS (a >= 10 and a<15)
th3 AS (a >= 15 and a<20);

In the preceding example, table th3 does not have an index on column a that
can serve as the fragment of the resultant index idx1. The database server
estimates the cost of building the index fragment for column a on the
consumed table tb3 and compares this cost to rebuilding the entire index for
all fragments on the resultant table. The database server chooses the index
build with the least cost.

Improving ALTER FRAGMENT DETACH Performance

Index on Table Is Not Usable

Suppose you create tables and indexes as in the previous section, but the
index on the third table specifies a dbspace that is also used by the first table.
The following SQL statements show this scenario:

CREATE TABLE tbhl(a int, b int)
FRAGMENT BY EXPRESSION
(a >=0 and a < 5) IN dbl,
(a >=5 and a <10) IN db2;
CREATE INDEX idx1 ON tbl(a);
CREATE TABLE tb2 (a int, b int, check (a >=10 and a<15))
IN db3;
CREATE INDEX idx2 ON tb2(a)
IN db3;

CREATE TABLE th3 (a int, b int, check (a >= 15 and a<20))
IN db4;

CREATE INDEX idx3 ON tb3(a)
IN db2

This example creates the index idx3 on table tb3 in the dbspace db2. As a
result, index idx3 is not usable because index idx1 already has a fragment in
the dbspace db2, and the fragmentation strategy does not allow more than
one fragment to be specified in a given dbspace.

Again, the database server estimates the cost of building the index fragment
for column a on the consumed table tb3 and compares this cost to rebuilding
the entire index idx1 for all fragments on the resultant table. Then, the
database server chooses the index build with the least cost.

Improving ALTER FRAGMENT DETACH Performance

You can take advantage of the performance improvements for the ALTER
FRAGMENT DETACH statement by formulating appropriate distribution
schemes for your table and index fragments.

Fragmentation Guidelines 6-37

Improving ALTER FRAGMENT DETACH Performance

You can eliminate the index build during execution of the ALTER FRAGMENT
DETACH statement if you use one of the following fragmentation strategies:

= Fragment the index the same as the table.

= Fragment the index with the identical distribution scheme as the
table.

Important: Only logging databases can benefit from the performance improvements
for the ALTER FRAGMENT DETACH statement. Without logging, the database server
works with multiple copies of the same table to ensure recoverability of the data when
a failure happens. This requirement prevents reuse of the existing index fragments.

Fragmenting the Index in the Same Way as the Table

You fragment an index in the same way as the table when you create a
fragmented table and subsequently create an index without specifying a
fragmentation strategy.

For example, suppose you create a fragmented table and index with the
following SQL statements:

CREATE TABLE tbl(a int)
FRAGMENT BY EXPRESSION
(a >=0 and a < 5) IN dbl,
(a >=5 and a <10) IN db2,
(a >=10 and a <15) IN db3;
CREATE INDEX idx1 ON tbl(a);

The database server fragments the index keys into dbspaces db1, db2, and
db3 with the same column a value ranges as the table because the CREATE
INDEX statement does not specify a fragmentation strategy.

Now, suppose you decide to detach the data in the third fragment with the
following SQL statement:

ALTER FRAGMENT ON TABLE tbl
DETACH db3 th3;

Because the fragmentation strategy of the index is the same as the table, the
ALTER FRAGMENT DETACH statement does not rebuild the index after the
detach operation. The database server drops the fragment of the index in
dbspace db3, updates the system catalogs, and eliminates the index build.

6-38 Performance Guide for Informix Dynamic Server

Improving ALTER FRAGMENT DETACH Performance

Fragmenting the Index with the Same Distribution Scheme as the
Table

You fragment an index with the same distribution scheme as the table when
you create the index using the same fragment expressions as the table.

A common fragmentation strategy is to fragment indexes in the same way as
the tables but to specify different dbspaces for the index fragments. This
fragmentation strategy of putting the index fragments into different
dbspaces from the table can improve the performance of operations such as
backup, recovery, and so forth.

For example, suppose you create a fragmented table and index with the
following SQL statements:

CREATE TABLE tbhl(a int, b int)
FRAGMENT BY EXPRESSION
(a >=0 and a < 5) IN dbl,
(a >=5 and a <10) IN db2,
(a >=10 and a <15) IN dbh3;

CREATE INDEX idx1 on thl(a)
FRAGMENT BY EXPRESSION

(a >=0 and a< 5) IN db4,

(a >=5 and a< 10) IN db5,

(a >=10 and a<15) IN db6;

Now, suppose you decide to detach the data in the third fragment with the
following SQL statement:

ALTER FRAGMENT ON TABLE tbl
DETACH db3 th3;

Because the distribution scheme of the index is the same as the table, the
ALTER FRAGMENT DETACH statement does not rebuild of the index after the
detach operation. The database server drops the fragment of the index in
dbspace db3, updates the system catalogs, and eliminates the index build.

Fragmentation Guidelines 6-39

Monitoring Fragment Use

Monitoring Fragment Use

Once you determine a fragmentation strategy, you can monitor fragmenta-
tion in the following ways:

= Run individual onstat utility commands to capture information
about specific aspects of a running query.

= Execute a SET EXPLAIN statement before you run a query to write the
query plan to an output file.

Using the onstat Utility

You can monitor 1/0 activity to verify your strategy and determine whether
1/0 is balanced across fragments.

The onstat -g ppf command displays the number of read-and-write requests
sent to each fragment that is currently open. Although these requests do not
indicate how many individual disk 1/0 operations occur (a request can trig-
ger multiple 1/0 operations), you can get a good idea of the I1/0 activity from
these columns.

However, the output by itself does not show in which table a fragment is
located. You can determine the table for the fragment by joining the partnum
column in the output to the partnum column in the sysfragments system cat-
alog table. The sysfragments table displays the associated table id. You can
determine the table name for the fragment by joining the table id column in
sysfragments to the table id column in systables.

To determine the table name

1. Obtain the value in the partnum field of the onstat -g ppf output.

2. Join the tabid column in the sysfragments system catalog table with
the tabid column in the systables system catalog table to obtain the
table name from systables. Use the partnum field value that you
obtain in step 1 in the SELECT statement.

SELECT a.tabname FROM systables a, sysfragments b

WHERE a.tabid = b.tabid
AND partn = partnum_value;

6-40 Performance Guide for Informix Dynamic Server

Using SET EXPLAIN

Using SET EXPLAIN

When the table is fragmented, the output of the SET EXPLAIN ON statement
shows which table or index the database server scans to execute the query.
The SET EXPLAIN output identifies the fragments with a fragment number.
The fragment numbers are the same as those contained in the partn column
in the sysfragments system catalog table.

The following example of SET EXPLAIN output shows a query that takes
advantage of fragment elimination and scans two fragments in table t1:

select * from tl where cl > 12

Estimated Cost: 3
Estimated # of Rows Returned: 2

1) informix.tl: SEQUENTIAL SCAN (Serial, fragments: 1, 2)
Filters: informix.tl.cl > 12

If the optimizer must scan all fragments (that is, if it is unable to eliminate any
fragment from consideration), the SET EXPLAIN output displays fragments:
ALL. In addition, if the optimizer eliminates all the fragments from consider-
ation (that is, none of the fragments contain the queried information), the SET
EXPLAIN output displays fragments: NONE.For information on how the
database server eliminates a fragment from consideration, refer to “Distri-
bution Schemes for Fragment Elimination” on page 6-22.

For more information on the SET EXPLAIN ON statement, refer to “How to
Display the Query Plan” on page 7-14.

Fragmentation Guidelines 6-41

Queries and the Query
Optimizer

The QueryPlan 7-3
AccessPlano L 0L L 7-4
JoinPlan . . . C e e 7-4

Nested-Loop Jom C e e 7-5
HashJoin 7-6
Join Order . . . C e e 7-7
How OPTCOMPIND Affects the Query Plan Ce e 7-7
How Available Memory Affects the QueryPlan 7-8
Query Plans for Subqueries . . . C e 7-9
An Example of How Query Plans Are Executed 7110
A Join with Column Filters 71
AJoin Using Indexes . . . Y A
How the Optimizer Evaluates Query Plans Y e
How to Display the QueryPlan 714

Factors That Affect the Query Pan 1718
Using Statistics. . . . P 1]
Assessing Filters 712
Assessing Indexes. 122

Time CostsofaQuery. 123
Memory ActivityCosts 123
Sort-TimeCosts. 7124
Row-ReadingCosts 1-26
Sequential AccessCosts. 7127
Nonsequential AccessCosts 17127
Index Look-UpCosts. 128
In-Place ALTER TABLECosts. 17-28

ViewCosts 129

Small-Table Costs .
Data-Mismatch Costs.
GLS Functionality Costs .
Network-Access Costs

SQL Within Stored Procedures .
When SQL Is Optimized.
Automatic Optimization
Optimization Levels for SQL in Stored Procedures
How a Stored Procedure Is Executed

7-2 Performance Guide for Informix Dynamic Server

7-30
7-30
7-31
7-31

7-33
7-33
7-34
7-34
7-35

his chapter explains how the database server manages query optimi-
zation. It discusses the following topics:

= The query plan
= Factors that affect the query plan

= Operations that take the most time when the database server
processes a query

= Optimization of stored procedures

The parallel database query (PDQ) features in the database server provide the
largest potential performance improvements for a query. PDQ provides the
most substantial performance gains if you fragment your tables as described
in Chapter 6, “Fragmentation Guidelines.”

Chapter 9, “Parallel Database Query,” describes the Memory Grant Manager
(MGM) and explains how to control resource use by queries. Chapter 10,
“Improving Individual Query Performance,” explains how to improve the
performance of specific queries.

The Query Plan

The query optimizer formulates a query plan to fetch the data rows that are
required to process a query.

The optimizer must evaluate the different ways in which a query might be
performed. For example, the optimizer must determine whether indexes
should be used. If the query includes a join, the optimizer must determine the
join plan (hash, sort-merge, or nested loop), and the order in which tables are
evaluated or joined. The components of a query plan are explained in detail
in the following section.

Queries and the Query Optimizer 7-3

Access Plan

Access Plan

The way that the optimizer chooses to read a table is called an access plan. The
simplest method to access a table is to read it sequentially, called a table scan.
The optimizer chooses a table scan when most of the table must be read, or

the table does not have an index that is useful for the query.

The optimizer can also choose to access the table by an index. If the column
in the index is the same as a column in a filter of the query, the optimizer can
use the index to retrieve only the rows required by the query. The optimizer
can use a key-only index scan if the columns requested are within one index on
the table. The database server retrieves the needed data from the index and
does not access the associated table.

The optimizer compares the cost of each plan to determine the best one. The
database server derives cost from estimates of the number of 1/0 operations
required, calculations to produce the results, rows accessed, sorting, and so
forth.

Join Plan

When a query contains more than one table, they are usually joined together
by filters in the query. For example, in the following query, the customer and
orders table are joined by the customer.customer_num =
orders.customer_num filter:

SELECT * from customer, orders
WHERE customer.customer_num = orders.customer_num
AND customer.lname = "SMITH";

The way that the optimizer chooses to join the tables is the join plan. The join
method can be a nested-loop join or a hash join.

Because of the nature of hash joins, an application with isolation level set to
Repeatable Read might temporarily lock all the records in tables that are
involved in the join, including records that fail to qualify the join. This
situation leads to decreased concurrency among connections. Conversely,
nested-loop joins lock fewer records but provide reduced performance when
a large number of rows is accessed. Thus, each join method has advantages
and disadvantages.

7-4 Performance Guide for Informix Dynamic Server

Join Plan

Nested-Loop Join

In a nested-loop join, the database server scans the first, or outer table, then
joins each of the rows that pass table filters to the rows found in the second,
or inner table (refer to Figure 7-1). The outer table can be accessed by an index
or by a table scan. The database server applies any table filters first. For each
row that satisfies the filters on the outer table, the database server reads the
inner table to find a match.

The database server reads the inner table once for every row in the outer table
that fulfills the table filters. Because of the potentially large number of times
that the inner table can be read, the database server usually accesses the inner
table by an index.

Figure 7-1
SELECT * FROM customer, orders Nested-Loop Join
WHERE customer.customer_num = orders.customer_num

AND order_date > "01/01/97"

customer orders

custno custname ordernum custno

1234 XYZLTD —t - 6692 1234

1235 XSPORTS —| L 6o03 1234
\> 6695 1235

1. Scan outer table. 2. Read inner table once for each row
found in outer table.

If the inner table does not have an index, the database server might construct
an autoindex at the time of query execution. The optimizer might determine
that the cost to construct an autoindex at the time of query execution is less
than the cost to scan the inner table for each qualifying row in the outer table.

If the optimizer changes a subquery to a nested-loop join, it might use a
variation of the nested-loop join, called a semi join. In a semi join, the database
server reads the inner table only until it finds a match. In other words, for
each row in the outer table, the inner table contributes at most one row. For
more information on how the optimizer handles subqueries, refer to “Query
Plans for Subqueries” on page 7-9.

Queries and the Query Optimizer 7-5

Join Plan

Hash Join

The optimizer usually uses a hash join when at least one of the two join tables
does not have an index on the join column or when the database server must
read a large number of rows from both tables. No index and no sorting is
required when the database server performs a hash join.

A hash join consists of two activities: building the hash table (build phase)
and probing the hash table (probe phase). Figure 7-2 shows the hash join in
more detail.

In the build phase, the database server reads one table and, after it applies
any filters, creates a hash table. You can think of a hash table conceptually as
a series of buckets, each with an address that is derived from the key value by
applying a hash function. The database server does not sort keys in a
particular hash bucket.

Smaller hash tables can fit in the virtual portion of Dynamic Server shared
memory. The database server stores larger hash files on disk in the dbspace
specified by the DBSPACETEMP configuration parameter or the
DBSPACETEMP environment variable.

In the probe phase, the database server reads the other table in the join and
applies any filters. For each row that satisfies the filters on the table, the
database server applies the hash function on the key and probes the hash
table to find a match.

7-6

Figure 7-2
orders How a Hash Join Is
ordernum custno amount CUStomer ExeCUted
6692 1234 $27.50 custno custname
6693 1235 $38.90S 1234 XYZLOD
1235 XSPORTS
1. Create hash table (apply filters first). 2. Probe hash table.
Hash table
bucket rows
oo -

Performance Guide for Informix Dynamic Server

Join Order

Join Order

The order that tables are joined in a query is extremely important. A poor join
order can cause query performance to decline noticeably.

The following SELECT statement calls for a three-way join:

SELECT C.customer_num, O.order_num
FROM customer C, orders 0, items I
WHERE C.customer_num = O.customer_num
AND O.order_num = I.order_num

The optimizer can choose one of the following join orders:

= Join customer to orders. Join the result to items.
= Join orders to customer. Join the result to items.
= Join customer to items. Join the result to orders.
= Join items to customer. Join the result to orders.
= Join orders to items. Join the result to customer.
= Join items to orders. Join the result to customer.
For an example of how the database server executes a plan according to a

specific join order, refer to “An Example of How Query Plans Are Executed”
on page 7-10.

How OPTCOMPIND Affects the Query Plan

The OPTCOMPIND setting influences the access plan that the optimizer
chooses for single and multitable queries, as the following sections describe.

Single Table Query

For single-table scans, when OPTCOMPIND is set to 0, or when OPTCOMPIND
is set to 1 and the current transaction isolation level is Repeatable Read, the
optimizer considers the following access plans:

= Ifanindex is available, the optimizer uses it to access the table.

= Ifnoindexisavailable, the optimizer considers scanning the table in
physical order.

Queries and the Query Optimizer 7-7

How Available Memory Affects the Query Plan

When OPTCOMPIND is not set in the database server configuration, its value
defaults to 2. When OPTCOMPIND is set to 2 or 1 and the current isolation
level is not Repeatable Read, the optimizer chooses the least-expensive plan
to access the table.

Multitable Query

For join plans, the OPTCOMPIND setting influences the access plan for a
specific ordered pair of tables.

If OPTCOMPIND is set to 0, or if it is set to 1 and the current transaction
isolation level is Repeatable Read, the optimizer gives preference to the
nested-loop join.

If OPTCOMPIND is set to 2, or set to 1 and the transaction isolation level is not
Repeatable Read, the optimizer chooses the least-expensive query plan from
among those previously listed and gives no preference to the nested-loop
join.

How Available Memory Affects the Query Plan

The database server constrains the amount of memory that a parallel query
can use based on the values of the DS_TOTAL_MEMORY and
DS_MAX_QUERIES parameters. If the amount of memory available for the
query is too low to execute a hash join, the database server uses a nested-loop
join instead.

For more information on parallel queries and the DS_TOTAL_MEMORY and
DS_MAX_QUERIES parameters, refer to Chapter 9, “Parallel Database Query.”

7-8 Performance Guide for Informix Dynamic Server

Query Plans for Subqueries

Query Plans for Subqueries

The optimizer can change a subquery into a join automatically if the join
provides a lower cost. For example, the following sample output of the SET
EXPLAIN ON statement shows that the optimizer changes the table in the
subquery to be the inner table in a join:

select coll from tabl where exists(
select coll from tab2 where tabl.coll = tab2.coll)
Estimated Cost: 144
Estimated # of Rows Returned: 510
1) Tsuto.tabl: SEQUENTIAL SCAN
2) lsuto.tab2: INDEX PATH

(First Row)

(1) Lower Index Filter: Tsuto.tab2.coll = Tsuto.tabl.coll

NESTED LOOP JOIN (Semi Join)

For more information on the SET EXPLAIN ON statement, refer to “How to
Display the Query Plan” on page 7-14.

When the optimizer changes a subquery to a join, it can employ several varia-
tions of the access plan and the join plan:
= First-row scan

A first-row scan is a variation of a table scan. As soon as the database
server finds one match, the table scan halts.

» Skip-duplicate-index scan

The skip-duplicate-index scan is a variation of an index scan. The
database server does not scan duplicates.

= Semijoin
The semi join is a variation of a nested-loop join. The database server

halts the inner-table scan when the first match is found. For more
information on a semi join, refer to “Nested-Loop Join” on page 7-5.

Queries and the Query Optimizer 7-9

An Example of How Query Plans Are Executed

An Example of How Query Plans Are Executed

The following SELECT statement calls for a three-way join:

SELECT C.customer_num, O.order_num
FROM customer C, orders 0, items I
WHERE C.customer_num = O.customer_num
AND O.order_num = I.order_num

Assume also that no indexes are on any of the three tables. Suppose that the
optimizer chooses the customer-orders-items path and the nested-loop join
for both joins (in reality, the optimizer usually chooses a hash join for two
tables without indexes on the join columns). Figure 7-3 shows the query plan,
expressed in pseudocode. For information about interpreting query plan
information, see “How to Display the Query Plan” on page 7-14.

if 0

end for
end for

for each row in the customer table do: ngme%?

read the row into C A Query Plan in

for each row in the orders table do: Pseudocode
read the row into O

.customer_num = C.customer_num then
for each row in the items table do:

read the row into I

if I.order_num = 0.order_num then
accept the row and send to user

end if

end for
end if

This procedure reads the following rows:

= All rows of the customer table once
= All rows of the orders table once for each row of the customer table

= All rows of the items table once for each row of the customer-orders
pair

7-10 Performance Guide for Informix Dynamic Server

An Example of How Query Plans Are Executed

This example does not describe the only possible query plan. Another plan
merely reverses the roles of customer and orders: for each row of orders, it
reads all rows of customer, looking for a matching customer_num. It reads
the same number of rows in a different order and produces the same set of
rows in a different order. In this example, no difference exists in the amount
of work that the two possible query plans need to do.

A Join with Column Filters

The presence of a column filter changes things. A column filter is a WHERE
expression that reduces the number of rows that a table contributes to a join.
The following example shows the preceding query with a filter added:

SELECT C.customer_num, O.order_num
FROM customer C, orders 0, items I
WHERE C.customer_num = 0.customer_num
AND O.order_num = I.order_num
AND O.paid_date IS NULL

The expression 0.paid_date IS NULL filters out some rows, reducing the
number of rows that are used from the orders table. Consider a plan that
starts by reading from orders. Figure 7-4 displays this sample plan in
pseudocode.

each row in the orders table do: Figure 7-4
read the row into 0O CWEOfHNOQUﬁy
if 0.paid_date is null then Plans in

each row in the customer table do: Pseudocode

read the row into C
if O.customer_num = C.customer_num then
for each row in the items table do:
read the row into I
if I.order_num = 0.order_num then
accept row and return to user
end if
end for
end if
for

Queries and the Query Optimizer 7-11

An Example of How Query Plans Are Executed

Let pdnull represent the number of rows in orders that pass the filter. It is the
value of count (*) that results from the following query:

SELECT COUNT(*) FROM orders WHERE paid_date IS NULL

If one customer exists for every order, the plan in Figure 7-4 reads the
following rows:

= All rows of the orders table once
= All rows of the customer table, pdnull times
= All rows of the items table, pdnull times

Figure 7-5 shows an alternative execution plan that reads from the customer

table first.
for each row in the customer table do: Hg““9?5
read the row into C The Alternative
for each row in the orders table do: Query Plan in
read the row into 0 Pseudocode

if O.paid_date is null and
O.customer_num = C.customer_num then
for each row in the items table do:
read the row into I
if I.order_num = 0.order_num then
accept row and return to user
end if
end for
end if
end for

Because the filter is not applied in the first step that Figure 7-5 shows, this
plan reads the following rows:

= All rows of the customer table once

= All rows of the orders table, once for every row of customer

= All rows of the items table, pdnull times
The query plans in Figure 7-4 and Figure 7-5 produce the same output in a
different sequence. They differ in that one reads a table pdnull times, and the
otherreadsatable SELECT COUNT (%) FROM customer times. By choosing the

appropriate plan, the optimizer can save thousands of disk accesses in a real
application.

7-12 Performance Guide for Informix Dynamic Server

An Example of How Query Plans Are Executed

A Join Using Indexes

The preceding examples do not use indexes or constraints. The presence of
indexes and constraints provides the optimizer with options that can greatly
improve query-execution time. Figure 7-6 shows the outline of a query plan
for the previous query as it might be constructed using indexes.

for each row in the customer table do: ”9““?26
read the row into C A Query Plan Using
look up C.customer_num in index on orders.customer_num Indexes in
for each matching row in the orders index do: Pseudocode

read the table row for 0
if O.paid_date is null then
look up O.order_num in index on items.order_num
for each matching row in the items index do:
read the row for I
construct output row and return to user
end for
end if
end for
end for

The keys in an index are sorted so that when the first matching entry is found,
any other rows with identical keys can be read without further searching
because they are located in physically adjacent positions. This query plan
reads only the following rows:

= All rows of the customer table once

= All rows of the orders table once (because each order is associated
with only one customer)

= Only rows in the items table that match pdnull rows from the
customer-orders pairs

This query plan achieves a great reduction in effort compared with plans that
do not use indexes. An inverse plan, reading orders first and looking up rows
in the customer table by its index, is also feasible by the same reasoning.

Using an index incurs an additional cost over reading the table sequentially.
Each entry, or set of entries with the same value, must be located in the index.
Then for each entry in the index, a random access must be made to the table
to read the associated row.

Queries and the Query Optimizer 7-13

How the Optimizer Evaluates Query Plans

GLS

The physical order of rows in a table also affects the cost of index use. To the
degree that a table is ordered relative to an index, the overhead of accessing
multiple table rows in index order is reduced. For example, if the orders table
rows are physically ordered according to the customer number, multiple
retrievals of orders for a given customer would proceed more rapidly than if
the table were ordered randomly.

When GLS is enabled, indexes that are built on NCHAR or NVARCHAR
columns are sorted using a country-specific comparison value. For example,
the Spanish double-I character (II) might be treated as a single unique
character instead of a pair of I's. ¢

How the Optimizer Evaluates Query Plans

The optimizer considers all query plans by analyzing factors such as disk 170
and CPU costs. It constructs all feasible plans simultaneously using a bottom-
up, breadth-first search strategy. That is, the optimizer first constructs all
possible join pairs. It eliminates the more expensive of any redundant pair,
which are join pairs that contain the same tables and produce the same set of
rows as another join pair. For example, if neither join specifies an ordered set
of rows by using the ORDER BY or GROUP BY clauses of the SELECT statement,
the join pair (A x B) is redundant with respect to (B x A).

If the query uses additional tables, the optimizer joins each remaining pair to
a new table to form all possible join triplets, eliminating the more expensive
of redundant triplets and so on for each additional table to be joined. When
a nonredundant set of possible join combinations has been generated, the
optimizer selects the plan that appears to have the lowest execution cost.

How to Display the Query Plan

Any user who runs a query can use the SET EXPLAIN ON statement to display
the query plan that the optimizer chooses. The user enters the SET EXPLAIN
ON statement before the SELECT statement for the query. After the database
server executes the SET EXPLAIN ON statement, it writes an explanation of
each query plan to a file for subsequent queries that the user enters.

7-14 Performance Guide for Informix Dynamic Server

UNIX

WIN NT

How to Display the Query Plan

On UNIX, the database server writes the output of the SET EXPLAIN ON
statement to the sqexplain.out file.

If the client application and the database server are on the same computer, the
sgexplain.out file is stored in your current directory. If you are using a
Version 5.x or earlier client application and the sgexplain.out file does not
appear in the current directory, check your home directory for the file.

When the current database is on another computer, the sqexplain.out file is
stored in your home directory on the remote host. ¢

On Windows NT, the database server writes the output of the SET EXPLAIN
ON statement to the file %INFORMIXDIR%\sgexpln\username.out. ¢

The SET EXPLAIN output contains the following information:

s The SELECT statement for the query

= An estimate of the query cost in units used by the optimizer to
compare plans

These units represent a relative time for query execution, where each
unit is assumed to be roughly equivalent to a typical disk access. The
optimizer chose this query plan because the estimated cost for its
execution was the lowest among all the evaluated plans.

= An estimate for the number of rows that the query is expected to
produce

= The order to access the tables during execution
= The access plan by which the database server reads each table
The following table shows the possible access plans.

Access Plan Effect

SEQUENTIAL SCAN Reads rows in sequence

INDEX PATH Scans one or more indexes
AUTOINDEX PATH Creates a temporary index

REMOTE PATH Accesses another distributed database

Queries and the Query Optimizer 7-15

How to Display the Query Plan

s Thetable column or columns that serve as afilter, if any, and whether
the filtering occurs through an index

= The join plan for each pair of tables

The DYNAMIC HASH JOIN section indicates that a hash join is to be
used on the preceding join/table pair. It includes a list of the filters

used to join the tables together. If DYNAMIC HASH JOIN is followed
by the (Build Outer) in the output, the build phase occurs on the first
table. Otherwise, the build occurs on the second table, preceding the
DYNAMIC HASH JOIN.

The following example shows the SET EXPLAIN output for a simple query
and a complex query from the customer table:

SELECT fname, Iname, company FROM customer

Estimated Cost: 3
Estimated # of Rows Returned: 28

1) joe.customer: SEQUENTIAL SCAN

SELECT fname, Tname, company FROM customer

WHERE company MATCHES 'Sport*' AND customer_num BETWEEN 110 AND 115
ORDER BY Tname;

Estimated Cost: 4

Estimated # of Rows Returned: 1

Temporary Files Required For: Order By

1) joe.customer: INDEX PATH

Filters: joe.customer.company MATCHES 'Sport*'
(1) Index Keys: customer_num

Lower Index Filter: joe.customer.customer_num >= 110
Upper Index Filter: joe.customer.customer_num <= 115

7-16 Performance Guide for Informix Dynamic Server

How to Display the Query Plan

Figure 7-7 shows the SET EXPLAIN output for a multiple-table query.

Figure 7-7
Output Produced by the SET EXPLAIN ON Statement

SELECT C.customer_num, O.order_num, SUM (I.total_price)
FROM customer C, orders 0, items I
WHERE C.customer_num = O.customer_num
AND O.order_num = I.order_num
GROUP BY C.customer_num, O.order_num;

Estimated Cost: 102

Estimated # of Rows Returned: 12
Temporary Files Required For: GROUP BY
1) pubs.o: SEQUENTIAL SCAN

2) pubs.c: INDEX PATH

(1) Index Keys: customer_num (Key-0Only)
Lower Index Filter: pubs.c.customer_num = pubs.o.customer_num

3) pubs.i: INDEX PATH

(1) Index Keys: order_num
Lower Index Filter: pubs.i.order_num = pubs.o.order_num

The SET EXPLAIN output lists the order that the database server accesses the
tables and the access plan to read each table. The plan in Figure 7-7 indicates
that Dynamic Server is to perform the following actions:

1. Dynamic Server is to read the orders table first. Because no filter
exists on the orders table, Dynamic Server must read all rows.
Reading the table in physical order is the least expensive approach.

2. For each row of orders, Dynamic Server is to search for matching
rows in the customer table. The search uses the index on
customer_num. The notation Key-0n1y means that only the index
need be read for the customer table because only the
c.customer_num column is used in the join and the output, and that
column is an index key.

3. Foreach row of orders that has a matching customer_num, Dynamic
Server is to search for a match in the items table using the index on
order_num.

Queries and the Query Optimizer 7-17

Factors That Affect the Query Plan

A key-first scan is an index scan that uses keys other than those listed as lower
and upper index filters. Figure 7-8 shows a sample query using a key-first
scan.

Figure 7-8
SET EXPLAIN Output for a Key-First Scan

create index idxl on tabl(cl, c2);
select * from tabl where (cl > 0) and ((c2 = 1) or (c2 = 2))
Estimated Cost: 4
Estimated # of Rows Returned: 1
1) UsErNaMe.tabl: INDEX PATH
Filters: (UsErNaMe.tabl.c2 = 1 OR UsErNaMe.tabl.c2 = 2)

(1) Index Keys: cl c2 (Key-First) (Serial, fragments: ALL)
Lower Index Filter: UsErNaMe.tabl.cl > O

Even though in this example the database server must eventually read the
row data to return the query results, it attempts to reduce the number of
possible rows by applying additional key filters first. The database server
uses the index to apply the additional filter,c2 = 1 OR c2 = 2, before it reads
the row data.

Factors That Affect the Query Plan

When determining the query plan, the optimizer assigns a cost to each
possible plan and then chooses the plan with the lowest cost. Some of the
factors that the optimizer uses to determine the cost of each query plan are as
follows:

= The number of 1/0 requests that are associated with each file-system
access

= The CPU work that is required to determine which rows meet the
query predicate

= The resources that are required to sort or group the data

= The amount of memory available for the query (specified by the
DS TOTAL_MEMORY and DS_MAX_QUERIES parameters)

7-18 Performance Guide for Informix Dynamic Server

Using Statistics

To calculate the cost of each possible query plan, the optimizer:

= Uses a set of statistics that describe the nature and physical character-
istics of the table data and indexes.

= examines the query filters.
= examines the indexes that could be used in the plan.

Using Statistics

The accuracy with which the optimizer can assess the execution cost of a
query plan depends on the information available to the optimizer. Use the
UPDATE STATISTICS statement to maintain simple statistics about a table and
its associated indexes. Updated statistics provide the query optimizer with
information that can minimize the amount of time required to perform
gueries on that table.

The database server initializes a statistical profile of a table when the table is
created, and the profile is refreshed when you issue the UPDATE STATISTICS
statement. The query optimizer does not recalculate the profile for tables
automatically. In some cases, gathering the statistics might take longer than
executing the query.

To ensure that the optimizer selects a query plan that best reflects the current
state of your tables, run UPDATE STATISTICS at regular intervals. For guide-
lines on running UPDATE STATISTICS, refer to “Updating Statistics” on

page 10-6.

The optimizer uses the following system catalog information as it creates a
query plan:

= The number of rows in a table, as of the most recent UPDATE
STATISTICS statement
= Whether a column is constrained to be unique

= The distribution of column values, when requested with the
MEDIUM or HIGH keyword in the UPDATE STATISTICS statement

For more information on data distributions, refer to “Creating Data
Distributions” on page 10-7.

= The number of disk pages that contain row data

Queries and the Query Optimizer 7-19

Assessing Filters

The optimizer also uses the following system catalog information about
indexes:

= The indexes that exist on a table, including the columns they index,
whether they are ascending or descending, and whether they are
clustered

= The depth of the index structure (a measure of the amount of work
that is needed to perform an index lookup)

= The number of disk pages that index entries occupy

= The number of unique entries in an index, which can be used to
estimate the number of rows that an equality filter returns

s Second-largest and second-smallest key values in an indexed
column

Only the second-largest and second-smallest key values are noted because
the extreme values might have a special meaning that is not related to the rest
of the data in the column. The database server assumes that key values are
distributed evenly between the second largest and second smallest. Only the
initial 4 bytes of these keys are stored. If you create a distribution for a
column associated with an index, the optimizer uses that distribution when
it estimates the number of rows that match a query.

For more information on system catalog tables, refer to the Informix Guide to
SQL.: Reference.

Assessing Filters

The optimizer bases query-cost estimates on the number of rows to be

retrieved from each table. In turn, the estimated number of rows is based on
the selectivity of each conditional expression that is used within the WHERE
clause. A conditional expression that is used to select rows is termed a filter.

The selectivity is a value between 0 and 1 that indicates the proportion of
rows within the table that the filter can pass. A very selective filter, one that
passes few rows, has a selectivity near 0, and a filter that passes almost all
rows has a selectivity near 1. For guidelines on filters, see “Improving Filter
Selectivity” on page 10-5.

7-20 Performance Guide for Informix Dynamic Server

Assessing Filters

The optimizer can use data distributions to calculate selectivities for the
filters in a query. However, in the absence of data distributions, the database
server calculates selectivities for filters of different types based on table
indexes. The following table lists some of the selectivities that the optimizer
assigns to filters of different types. Selectivities calculated using data distri-
butions are even more accurate than the ones that this table shows.

Filter Expression Selectivity (F)

indexed-col = literal-value F = 1/(number of distinct keys in index)
indexed-col = host-variable
indexed-col IS NULL

tabl.indexed-col = tab2.indexed-col F = 1/(number of distinct keys in the larger

index)
indexed-col > literal-value F = (2nd-max - literal-value)/(2nd-max - 2nd-min)
indexed-col < literal-value F = (literal-value - 2nd-min)/(2nd-max - 2nd-min)
any-col 1IS NULL F=1/10
any-col = any-expression
any-col > any-expression F=1/3

any-col < any-expression

any-col MATCHES any-expression F=1/5
any-col LIKE any-expression

EXISTS subquery F =1 if subguery estimated to return >0 rows, else
0
NOT expression F =1 - F(expression)
exprl AND expr2 F = F(exprl) x F(expr2)
exprl OR expr2 F = F(exprl) + F(expr2) - (F(exprl) x F(expr2))
(1of2)

Queries and the Query Optimizer 7-21

Assessing Indexes

Filter Expression Selectivity (F)
any-col IN list Treated as any-col = item; OR...OR any-col = item,
any-col relop ANY subquery Treated as any-col relop value; OR ... OR any-col

relop value, for estimated size of subquery n

Key:
indexed-col: first or only column in an index
2nd-max, 2nd-min: second-largest and second-smallest key values in indexed

column
any-col: any column not covered by a preceding formula

(2 of 2)

Assessing Indexes

The optimizer notes whether an index can be used to evaluate a filter. For this
purpose, an indexed column is any single column with an index or the first
column named in a composite index. If the values contained in the index are
all that is required, the rows are not read. It is faster to omit the page lookups
for data pages whenever values can be read directly from the index.

The optimizer can use an index in the following cases:

= When the column is indexed and a value to be compared is a literal,
a host variable, or an uncorrelated subquery

The database server can locate relevant rows in the table by first
finding the row in an appropriate index. If an appropriate index is
not available, the database server must scan each table in its entirety.

= When the column is indexed and the value to be compared is a
column in another table (a join expression)
The database server can use the index to find matching values. The
following join expression shows such an example;
WHERE customer.customer_num = orders.customer_num

If rows of customer are read first, values of customer_num can be
applied to an index on orders.customer_num.

7-22 Performance Guide for Informix Dynamic Server

Time Costs of a Query

= When processing an ORDER BY clause

If all the columns in the clause appear in the required sequence
within a single index, the database server can use the index to read
the rows in their ordered sequence, thus avoiding a sort.

= When processing a GROUP BY clause

If all the columns in the clause appear in one index, the database
server can read groups with equal keys from the index without
requiring additional processing after the rows are retrieved from
their tables.

Time Costs of a Query

This section explains the response-time effects of actions that the database
server performs as it processes a query.

Many of the costs described cannot be reduced by adjusting the construction
of the query. A few can be, however. The following costs can be reduced by
optimal query construction and appropriate indexes:

= Sorttime

= Data mismatches

= In-place ALTER TABLE

= Index lookups

For information about how to optimize specific queries, see Chapter 10,
“Improving Individual Query Performance.”

Memory Activity Costs

The database server can process only data in memory. It must read rows into
memory to evaluate those rows against the filters of a query. Once rows that
satisfy those filters are found, the database server prepares an output row in
memory by assembling the selected columns.

Queries and the Query Optimizer 7-23

Sort-Time Costs

Most of these activities are performed very quickly. Depending on the
computer and its work load, the database server can perform hundreds or
even thousands of comparisons each second. As a result, the time spent on
in-memory work is usually a small part of the execution time.

Although some in-memory activities, such as sorting, take a significant
amount of time, it takes much longer to read a row from disk than to examine
a row that is already in memory.

Sort-Time Costs

A sort requires in-memory work as well as disk work. The in-memory work
depends on the number of columns that are sorted, the width of the
combined sort key, and the number of row combinations that pass the query
filter. You can use the following formula to calculate the in-memory work
that a sort operation requires:

Win = (¢* Niy + (W* Niloga(Ng))

Wi, is the in-memory work.

c is the number of columns to order and represents the costs
to extract column values from the row and concatenate
them into a sort key.

w is proportional to the width of the combined sort key in
bytes and stands for the work to copy or compare one sort
key. A numeric value for w depends strongly on the
computer hardware in use.

Ni is the number of rows that pass the query filter.

Sorting can involve writing information temporarily to disk if there is a large
amount of data to sort. You can direct the disk writes to occur in the
operating-system file space or in a dbspace that the database server manages.
For details, refer to “Dbspaces for Temporary Tables and Sort Files” on
page 3-50.

7-24 Performance Guide for Informix Dynamic Server

Sort-Time Costs

The disk work depends on the number of disk pages where rows appear, the
number of rows that meet the conditions of the query predicate, the number
of rows that can be placed on a sorted page, and the number of merge opera-
tions that must be performed. You can use the following formula to calculate
the disk work that a sort operation requires:

Wg=p+ (Nep/Npop) * 2% (m-1))

Wy is the disk work.

p is the number of disk pages.

N¢, is the number of rows that pass the filters.

Nrp is the number of rows that can be placed onto a page.

m represents the number of levels of merge that the sort must
use.

The factor m depends on the number of sort keys that can be held in memory.
If there are no filters, then Ng/N, is equivalent to p.

When all the keys can be held in memory, m=1 and the disk work is equiv-
alent to p. In other words, the rows are read and sorted in memory.

For moderate- to large-sized tables, rows are sorted in batches that fit in
memory, and then the batches are merged. When m=2, the rows are read,
sorted, and written in batches. Then the batches are read again and merged,
resulting in disk work proportional to the following value:

Wy = +p (2 * (fo//\/rp))

The more specific the filters, the fewer the rows that are sorted. As the
number of rows increases, and the amount of memory decreases, the amount
of disk work increases.

To reduce the cost of sorting, use the following methods:

= Make your filters as specific (selective) as possible.

= Limit the projection list to the columns that are relevant to your
problem.

Queries and the Query Optimizer 7-25

Row-Reading Costs

Row-Reading Costs

When the database server needs to examine a row that is not already in
memory, it must read that row from disk. The database server does not read
only one row; it reads the entire page that contains the row. If the row spans
more than one page, it reads all of the pages.

The actual cost of reading a page is variable and hard to predict. It is a
combination of the following factors.

Factor Effect of Factor

Buffering If the needed page is in a page buffer already, the cost to read is
nearly zero.

Contention If two or more applications require access to the disk hardware, 1/0
requests can be delayed.

Seek time The slowest thing that a disk does is to seek; that is, to move the
access arm to the track that holds the data. Seek time depends on the
speed of the disk and the location of the disk arm when the
operation starts. Seek time varies from zero to nearly a second.

Latency The transfer cannot start until the beginning of the page rotates
under the access arm. This latency, or rotational delay, depends on
the speed of the disk and on the position of the disk when the
operation starts. Latency can vary from zero to a few milliseconds.

The time cost of reading a page can vary from microseconds for a page that
is already in a buffer, to a few milliseconds when contention is zero and the
disk arm is already in position, to hundreds of milliseconds when the page is
in contention and the disk arm is over a distant cylinder of the disk.

7-26 Performance Guide for Informix Dynamic Server

Sequential Access Costs

Sequential Access Costs

Disk costs are lowest when the database server reads the rows of a table in
physical order. When the first row on a page is requested, the disk page is
read into a buffer page. Once the page is read in, it need not be read again;
requests for subsequent rows on that page are filled from the buffer until all
the rows on that page are processed. When one page is exhausted, the page
for the next set of rows must be read in. To make sure that the next page is
ready in memory, use the read-ahead configuration parameters described in
“RA_PAGES and RA_THRESHOLD” on page 3-60.

When you use unbuffered devices for dbspaces, and the table is organized
properly, the disk pages of consecutive rows are placed in consecutive
locations on the disk. This arrangement allows the access arm to move very
little when reading sequentially. In addition, latency costs are usually lower
when pages are read sequentially.

Nonsequential Access Costs

Whenever a table is read in random order, additional disk accesses are
required to read the rows in the required order. Disk costs are higher when
the rows of a table are read in a sequence unrelated to physical order on disk.
Because the pages are not read sequentially from the disk, both seek and
rotational delays occur before each page can be read. As a result, the disk-
access time is much higher when reading a table nonsequentially than when
reading that same table sequentially.

Nonsequential access often occurs when you use an index to locate rows.
Although index entries are sequential, there is no guarantee that rows with
adjacent index entries must reside on the same (or adjacent) data pages. In
many cases, a separate disk access must be made to fetch the page for each
row located through an index. If a table is larger than the page buffers, a page
that contained a row previously read might be cleaned (removed from the
buffer and written back to the disk) before a subsequent request for another
row on that page can be processed. That page might have to be read in again.

Queries and the Query Optimizer 7-27

Index Look-Up Costs

Depending on the relative ordering of the table with respect to the index, you
can sometimes retrieve pages that contain several needed rows. The degree
to which the physical ordering of rows on disk corresponds to the order of
entries in the index is called clustering. A highly clustered table is one in
which the physical ordering on disk corresponds closely to the index.

Index Look-Up Costs

The database server incurs additional costs when it finds a row through an
index. The index is stored on disk, and its pages must be read into memory
along with the data pages that contain the desired rows.

An index look-up works down from the root page to a leaf page. The root
page, because it is used so often, is almost always found in a page buffer. The
odds of finding a leaf page in a buffer depend on the size of the index, the
form of the query, and the frequency of column-value duplication. If each
value occurs only once in the index and the query is a join, each row to be
joined requires a nonsequential lookup into the index, followed by a nonse-
guential access to the associated row in the table. However, if there are many
duplicate rows per distinct index value, and the associated table is highly
clustered, the added cost of joining through the index can be slight.

In-Place ALTER TABLE Costs

For certain conditions, the database server uses an in-place alter algorithm to
modify each row when you execute an ALTER TABLE statement (rather than
during the alter table operation). After the alter table operation, the database
server inserts rows using the latest definition.

If your query accesses rows that are not yet converted to the new table
definition, you might notice a slight degradation in the performance of your
individual query because the database server reformats each row before it is
returned.

For more information on the conditions and performance advantages when
an in-place alter table occurs, refer to “Altering a Table Definition” on
page 4-40.

7-28 Performance Guide for Informix Dynamic Server

View Costs

View Costs
You can create views of tables for a number of reasons:

= To limit the data that a user can access
= To reduce the time that it takes to write a complex query
= To hide the complexity of the query that a user needs to write

However, a query against a view might execute more slowly than expected
when the complexity of the view definition causes a temporary table to be
materialized to process the query. For example, you can create a view with a
union to combine results from several SELECT statements.

The following sample SQL statement creates a view that includes unions:

CREATE VIEW viewl (coll, col2, col3, col4d)
AS
SELECT a, b, ¢, d
FROM tabl WHERE ...
UNION
SELECT a2, b2, c2, d2
FROM tab2 WHERE ...

UNION
SELECT an, bn, cn, dn
FROM tabn WHERE ...

When you create a view that contains complex SELECT statements, the end
user does not need to handle the complexity. The end user can just write a
simple query, as the following example shows:

SELECT a, b, c, d
FROM viewl
WHERE a < 10;

However, this query against view1, might execute more slowly than
expected because the database server creates a fragmented temporary table
for the view before it executes the query.

To determine if you have a query that must build a temporary table to materi-
alize the view, execute the SET EXPLAIN statement. If you see Temp Table
For View inthe SET EXPLAIN output file, your query requires a temporary
table to materialize the view.

Queries and the Query Optimizer 7-29

Small-Table Costs

Small-Table Costs

A table is small if it occupies so few pages that it can be retained entirely in
the page buffers. Operations on small tables are generally faster than opera-
tions on large tables.

As an example, in the stores7 database, the state table that relates abbrevia-
tions to names of states has a total size less than 1,000 bytes; it fits in no more
than two pages. This table can be included in any query at little cost. No
matter how this table is used, it costs no more than two disk accesses to
retrieve this table from disk the first time that it is required.

Data-Mismatch Costs

An SQL statement can encounter additional costs when the data type of a
column that is used in a condition differs from the definition of the column
in the CREATE TABLE statement.

For example, the following query contains a condition that compares a
column to a data type value that differs from the table definition:

CREATE TABLE tablel (a integer, ...);
SELECT * FROM tablel
WHERE a = '123";

The database server rewrites this query before execution to convert 123 to an
integer. The SET EXPLAIN output shows the query in its adjusted format. This
data conversion has no noticeable overhead.

The additional costs of a data mismatch are most severe when the query
compares a character column with a noncharacter value and the length of the
number is not equal to the length of the character column. For example, the
following query contains a condition in the WHERE clause that equates a
character column to an integer value because of missing quotes:

CREATE TABLE table2 (char_col char(3), ...);
SELECT * FROM table?
WHERE char_col = 1;

7-30 Performance Guide for Informix Dynamic Server

GLS

GLS Functionality Costs

This query finds all of the following values that are valid for char_col:
K

'001"

E

These values are not necessarily clustered together in the index keys.

Therefore, the index does not provide a fast and correct way to obtain the
data. The SET EXPLAIN output shows a sequential scan for this situation.

Warning: The database server does not use an index when the SQL statement com-
pares a character column with a noncharacter value that is not equal in length to the
character column.

GLS Functionality Costs

Sorting and indexing certain data sets cause significant performance degra-
dation. If you do not need a non-ASCII collation sequence, Informix recom-
mends that you use the CHAR and VARCHAR data types for character
columns whenever possible. Because CHAR and VARCHAR data require
simple value-based comparison, sorting and indexing these columns is less
expensive than for non-ASCII data types (NCHAR or NVARCHAR, for
example). For more information on other character data types, see the
Informix Guide to GLS Functionality.

Network-Access Costs

Moving data over a network imposes delays in addition to those you
encounter with direct disk access. Network delays can occur when the appli-
cation sends a query or update request across the network to a database
server on another computer. Although the database server performs the
guery on the remote host computer, that database server returns the output
to the application over the network.

Data sent over a network consists of command messages and buffer-sized
blocks of row data. Although the details can differ depending on the network
and the computers, the database server network activity follows a simple
model in which one computer, the client, sends a request to another
computer, the server. The server replies with a block of data from a table.

Queries and the Query Optimizer 7-31

Network-Access Costs

Whenever data is exchanged over a network, delays are inevitable in the
following situations:

= When the network is busy, the client must wait its turn to transmit.
Such delays are usually less than a millisecond. However, on a
heavily loaded network, these delays can increase exponentially to
tenths of seconds and more.

= When the server is handling requests from more than one client,
requests might be queued for a time that can range from milliseconds
to seconds.

= When the server acts on the request, it incurs the time costs of disk
access and in-memory operations that the preceding sections
describe.

Transmission of the response is also subject to network delays.

Network access time is extremely variable. In the best case, when neither the
network nor the server is busy, transmission and queueing delays are insig-
nificant, and the server sends a row almost as quickly as a local database
server might. Furthermore, when the client asks for a second row, the page is
likely to be in the page buffers of the server.

Unfortunately, as network load increases, all these factors tend to worsen at
the same time. Transmission delays rise in both directions, which increases
the queue at the server. The delay between requests decreases the likelihood
of a page remaining in the page buffer of the responder. Thus, network-access
costs can change suddenly and quite dramatically.

The optimizer that the database server uses assumes that access to a row over
the network takes longer than access to a row in a local database. This
estimate includes the cost of retrieving the row from disk and transmitting it
across the network.

7-32 Performance Guide for Informix Dynamic Server

SQL Within Stored Procedures

SQL Within Stored Procedures

The following sections contain information about how and when the
database server optimizes and executes SQL within a stored procedure.

When SQL Is Optimized

If a stored procedure contains SQL statements, at some point the query
optimizer evaluates the possible query plans for SQL in the stored procedure
and selects the query plan with the lowest cost. The database server puts the
selected query plan for each SQL statement into an execution plan for the
stored procedure.

When you create a stored procedure with the CREATE PROCEDURE
statement, the database server attempts to optimize the SQL statements
within the stored procedure at that time. If the tables cannot be examined at
compile time (they might not exist or might not be available), the creation
does not fail. In this case, the database server optimizes the SQL statements
the first time that the stored procedure executes. The database server stores
the optimized execution plan in the sysprocplan system catalog table for use
by other processes. In addition, the database server stores information about
the stored procedure (such as procedure name and owner) in the
sysprocedures system catalog table and an ASCII version of the stored
procedure in the sysprocbody system catalog table.

Figure 7-9 summarizes the information that the database server stores in
system catalog tables during the compilation process.

procedure

sysprochody

code ,
Query tree, dependency list gygprocplan
PCOde procid data

Figure 7-9

o sysprocedures SPL Information

Procedure characteristics Stored in System

Stored __——— — | Sam Catalog Tables

getavg 2

T NydyMKMX
2 Ny4yMKMx.

procid data

T Create dba get_sum(order_a.
2 create dba get_avg(order_a

Queries and the Query Optimizer 7-33

When SQL Is Optimized

Automatic Optimization

The database server uses the dependency list to keep track of changes that
would cause reoptimization the next time that a Stored Procedure Language
(SPL) routine executes. The database server reoptimizes an SQL statement the
next time that an SPL routine executes after one of the following situations:

= Execution of any data definition language (DDL) statement (such as
ALTER TABLE, DROP INDEX, CREATE INDEX) that might alter the
query plan

= Alteration of a table that is linked to another table with a referential
constraint (in either direction)

= Execution of UPDATE STATISTICS FOR TABLE for any table involved
in the query

The UPDATE STATISTICS FOR TABLE statement changes the version
number of the specified table in systables.

The database server updates the sysprocplan system catalog table with the
reoptimized execution plan.

Optimization Levels for SQL in Stored Procedures

The current optimization level set in an SPL routine affects how the SPL
routine is optimized.

The algorithm that a SET OPTIMIZATION HIGH statement invokes is a
sophisticated, cost-based strategy that examines all reasonable query plans
and selects the best overall alternative. For large joins, this algorithm can
incur more overhead than desired. In extreme cases, you can run out of
memory.

The alternative algorithm that a SET OPTIMIZATION LOW statement invokes
eliminates unlikely join strategies during the early stages, which reduces the
time and resources spent during optimization. However, when you specify a
low level of optimization, the optimal strategy might not be selected because
it was eliminated from consideration during early stages of the algorithm.

7-34 Performance Guide for Informix Dynamic Server

How a Stored Procedure Is Executed

For stored procedures that remain unchanged or change only slightly and
that contain complex SELECT statements, you might want to set the SET
OPTIMIZATION statement to HI GH when you create the stored procedure.
This optimization level stores the best query plans for the stored procedure.
Then set optimization to LOW before you execute the stored procedure. The
stored procedure then uses the optimal query plans and runs at the more
cost-effective rate if reoptimization occurs.

How a Stored Procedure Is Executed

When the database server executes a stored procedure with the EXECUTE
PROCEDURE statement, the SPL CALL statement, or within an SQL statement,
the following activities occur:

= The database server reads the interpreter code from the system
catalog tables and converts it from a compressed format to an
executable format.

= The database server executes any SPL statements that it encounters.

= When the database server encounters an SQL statement, it retrieves
the query plan from the database and executes the statement. If the
query plan has not been created, the database server optimizes the
SQL statement before executing it.

= When the database server reaches the end of the stored procedure or
when it encounters a RETURN statement, it returns any results to the
clientapplication. Unless the RETURN statement has a WITH RESUME
clause, the stored procedure execute is complete.

Queries and the Query Optimizer 7-35

Optimizer Directives

Optimizer Directives . .
Why Use Optimizer Dlrectlves’7 .
Before You Use Directives .
Types of Directives
Access Plan Directives .
Join Order Directives
Join Plan Directives .
Optimization Goal Dlrectlves
An Example with Directives . .
Directives Configuration Parameters
and Environment Variables
Directives and Stored Procedures
Guidelines for Using Directives .

8-3
8-5

8-6
8-7

8-10
8-11

8-15
8-15
8-16

8-2 Performance Guide for Informix Dynamic Server

his chapter describes how to use directives to improve query
performance.

This chapter discusses the following topics:

= Purpose of directives
= How you use directives

= Configuration parameters and environment variables that affect
directives

= Directives and stored procedures
= Guidelines for using directives

Optimizer Directives

Optimizer directives are comments in a SELECT statement that instruct the
query optimizer how to execute a query. You can also place directives in
UPDATE and DELETE statements, instructing the optimizer how to access the
data. Optimizer directives can either be explicit directions (for example, “use
this index,” or “access this table first”), or they can eliminate possible query
plans (for example, “do not read this table sequentially,” or “do not perform
a nested-loop join™).

Why Use Optimizer Directives?

You can use optimizer directives when the optimizer does not choose the best
query plan to perform a query. The result of a poor query plan can be reduced
performance.

Before you decide when to use optimizer directives, you should understand
what makes a good query plan.

Optimizer Directives 8-3

Why Use Optimizer Directives?

Although the optimizer creates a query plan based on costs of using different
table access paths, join orders, and join plans, it generally chooses a query
plan that follows these guidelines:

Do not use an index when the database server must read a large
portion of the table. For example, the following query might read
most of the customer table:

SELECT * FROM customer WHERE STATE <> "ALASKA";

Assuming the customers are evenly spread among all 50 states, you
might estimate that the database server must read 98 percent of the
table. It is more efficient to read the table sequentially than it is to
traverse an index (and subsequently the data pages) when the
database server must read most of the rows.

When you choose between indexes to access a table, use an index
that can rule out the most rows. For example, consider the following
query:
SELECT * FROM customer
WHERE state = "NEW YORK" AND order_date = "01/20/97"
Assuming that 200,000 customers live in New York and only 1000
customers ordered on any one day, the optimizer most likely chooses
an index on order_date rather than an index on state to perform the
query.
Place small tables or tables with restrictive filters early in the query
plan. For example, consider the following query:
SELECT * FROM customer, orders
WHERE customer.customer_num = orders.customer_num
AND
customer.state = "NEVADA";
In this example, by reading the customer table first, you can rule out
most of the rows by applying the filter that chooses all rows in which
state = "NEVADA".

By ruling out rows in the customer table, the database server does
not read as many rows in the orders table (which might be signifi-
cantly larger than the customer table).

8-4 Performance Guide for Informix Dynamic Server

Before You Use Directives

Choose a hash join when neither column in the join filter has an
index.

In the previous example, if customer.customer_num and
orders.customer_num are not indexed, a hash join is probably the
best join plan.

Choose nested-loop joins if:

0 the number of rows retrieved from the outer table after the
database server applies any table filters is small, and the inner
table has an index that can be used to perform the join.

o the index on the outermost table can be used to return rows in
the order of the ORDER BY clause, eliminating the need for a sort.

Before You Use Directives

In most cases, the optimizer chooses the fastest query plan. To assist the
optimizer, make sure that you perform the following tasks:

Run UPDATE STATISTICS.

Without accurate statistics, the optimizer cannot choose the appro-
priate query plan. Run UPDATE STATISTICS any time that the data in
the tables changes significantly (many new rows are added, updated,
or deleted).

Create distributions.

One of the first things that you should try when you attempt to
improve a slow query is to create distributions on columns involved
in a query. Distributions provide the most accurate information to
the optimizer about the nature of the data in the table. Run UPDATE
STATISTICS HIGH on columns involved in the query filters to see if
performance improves.

In some cases, the query optimizer does not choose the best query plan
because of the complexity of the query or because (even with distributions)
it does not have enough information about the nature of the data. In these
cases, you can attempt to improve performance for a particular query by
using directives.

Optimizer Directives 8-5

Types of Directives

Types of Directives

Include directives in the SQL statement as a comment that occurs immedi-
ately after the SELECT keyword. The first character in a directive is always a
plus (+) sign. In the following query, the ORDERED directive specifies that the
tables should be joined in the same order as they are specified in the FROM
clause. The AVOID_FULL directive specifies that the optimizer should discard
any plans that include a full table scan on the listed table (employee).

SELECT --+ORDERED, AVOID_FULL(e)
* FROM employee e, department d
WHERE e.dept_no = d. dept_no AND e.salary > 50000;

For a complete syntax description for directives, refer to the Informix Guide to
SQL: Syntax.

To influence the query plan choice the optimizer makes, you can alter four
aspects of a query: the access plan, the join order, the join plan, and the
optimization goal. The following pages explain these plans in detail.

Access Plan Directives

The access plan is the method that the database server uses to access a table.
The database server can either read the table sequentially (full table scan) or
use any one of the indexes on the table. The following directives influence the
access plan:

= [INDEX

Use the index specified o access the table. If the directive lists more
than one index, the optimizer chooses the index that yields the least
cost.

= AVOID_INDEX

Do not use any of the indexes listed. You can use this directive with
the AVOID_FULL directive.

8-6 Performance Guide for Informix Dynamic Server

Types of Directives

n FULL
Perform a full table scan.
= AVOID_FULL

Do not perform a full table scan on the listed table. You can use this
directive with the AVOID_INDEX directive.

In some cases, forcing an access method can change the join method that the
optimizer chooses. For example, if you exclude the use of an index with the
AVOID_INDEX directive, the optimizer might choose a hash join instead of a
nested-loop join.

Join Order Directives

The join order directive ORDERED forces the optimizer to join tables in the
order that the SELECT statement lists them.

By specifying the join order, you might affect more than just how tables are
joined. For example, consider the following query:

SELECT --+ORDERED, AVOID_FULLC(e)
* FROM employee e, department d
WHERE e.dept_no = d.dept_no AND e.salary > 5000

In this example, the optimizer chooses to join the tables with a hash join.
However, if you arrange the order so that the second table is employee (and
must be accessed by an index), the hash join is not feasible.

SELECT --+ORDERED, AVOID_FULL(e)
* FROM department d, employee e
WHERE e.dept_no = d.dept_no AND e.salary > 5000;

The optimizer chooses a nested-loop join in this case.

Optimizer Directives 8-7

Types of Directives

Join Order When You Use Views

FROM emp,

SELECT * from dept,

o emp,job,dept,project
o emp,job,project,dept
o project,emp,job,dept
o dept,emp,job,project
o0 dept,project,emp,job
o project,dept,emp,job

8-8 Performance Guide for Informix Dynamic Server

Two cases can affect join order when you use views:

= The ORDERED directive is inside the view.

The ORDERED directive inside a view affects the join order of only
the tables inside the view. The tables in the view must be joined
contiguously. Consider the following view and query:

CREATE VIEW emp_job_view as

SELECT {+ORDERED}

emp.job_num, job.job_name

WHERE emp.job_num job.job_num;
emp_Jjob_view,
WHERE dept.dept_no
AND emp_job_view.job_num

project.dept_num
project.job_num;
The ORDERED directive specifies that the emp table come before the
job table. The directive does not affect the order of the dept and
project table. Therefore, all possible join orders are as follows:

Types of Directives

= The ORDERED directives in a query that contains a view.

If an ORDERED directive appears in a query that contains a view, the
join order of the tables in the query are the same as they are listed in
the SELECT statement. The tables within the view are joined as they
are listed within the view.

In the following query, the join order is dept, project, emp, job:

CREATE VIEW emp_job_view AS
SELECT
emp.job_num, job.job_name
FROM emp, Jjob
WHERE emp.job_num = job.job_num;
SELECT {+ORDERED}
* FROM dept, project, emp_job_view
WHERE dept.dept_no = project.dept_num
AND emp_job_view.job_num = project.job_num;
An exception to this rule is when the view is one that cannot be
folded into the query, as in the following example:
CREATE VIEW emp_job_view2 AS
SELECT DISTINCT
emp.job_num, job.job_name
FROM emp, job
WHERE emp.job_num = job.job_num;
In this example, the database server executes the query and puts the
result into a temporary table. The order of tables in the previous
query is then dept, project, temp_table.

Join Plan Directives

The join plan directives influence how the database server joins two tables in
a query.

The following directives influence the join plan between two tables:

= USE_NL
Use the listed tables as the inner table in a nested-loop join.
= USE HASH

Access the listed tables with a hash join. You can also choose whether
the table will be used to create the hash table or to probe the hash
table.

Optimizer Directives 8-9

Types of Directives

= AVOID_NL

Do not use the listed tables as the inner table in a nested-loop join. A
table listed with this directive can still participate in a nested-loop
join as an outer table.

= AVOID_HASH

Do not access the listed tables with a hash join. Optionally, you can
allow a hash join but restrict the table from being the one that is
probed or the table from which the hash table is built.

Optimization Goal Directives

In some queries, you might want to find only the first few rows in the result
of aquery (for example, an ESQL/C program opens a cursor for the query and
performs a FETCH to find only the first row). Or you might know that all rows
must be accessed and returned from the query. You can use the optimization
goal directives to optimize the query for either one of these cases:

= FIRST_ROWS

Choose a plan that optimizes the process of finding only the first row
that satisfies the query.

= ALL ROWS

Choose a plan the optimizes the process of finding all rows (the
default behavior) that satisfy the query.

If you use the FIRST_ROWS directive, the optimizer might abandon a query
plan that contains activities that are time-consuming upfront. For example, a
hash join might take too much time to create the hash table. If only a few rows
must be returned, the optimizer might choose a nested-loop join instead.

In the following example, assume that the database has an index on
employee.dept_no but not on department.dept_no. Without directives, the
optimizer chooses a hash join.

SELECT *
FROM employee, department
WHERE employee.dept_no = department.dept_no

8-10 Performance Guide for Informix Dynamic Server

Types of Directives

However, with the FIRST_ROWS directive, the optimizer chooses a nested-
loop join because of the high initial overhead required to create the hash
table.

SELECT {+first_rows(l)} *

FROM employee, department
WHERE employee.dept_no = department.dept_no

An Example with Directives
The following example shows how directives can alter the query plan.

Suppose you have the following query:

SELECT * FROM emp,job,dept

WHERE emp.location = 10
AND emp.jobno = job.jobno
AND emp.deptno = dept.deptno
AND dept.location = "DENVER";

Assume that the following indexes exist:
ixl: emp(empno,jobno,deptno,location)

ix2: job(jobno)
ix3: dept(location)

Optimizer Directives 8-11

Types of Directives

You run the query with SET EXPLAIN ON to display the query path that the
optimizer uses.

SELECT * FROM emp, job,dept

WHERE emp.location = "DENVER"
AND emp.jobno = job.jobno
AND emp.deptno = dept.deptno
AND dept.location = "DENVER"

Estimated Cost: 5
Estimated # of Rows Returned: 1

1) informix.emp: INDEX PATH

Filters: informix.emp.location = 'DENVER'

(1) Index Keys: empno jobno deptno Tocation (Key-0nly)
2) informix.dept: INDEX PATH

Filters: informix.dept.deptno = informix.emp.deptno

(1) Index Keys: Tlocation

Lower Index Filter: informix.dept.location = 'DENVER'

NESTED LOOP JOIN
3) informix.Jjob: INDEX PATH

(1) Index Keys: jobno (Key-0nly)

Lower Index Filter: informix.job.jobno = informix.emp.jobno
NESTED LOOP JOIN

8-12 Performance Guide for Informix Dynamic Server

Types of Directives

The diagram in Figure 8-1 shows a possible query plan for this query.

Figure 8-1
Possible Query Plan

Nested-loop join > ery -
Without Directives

Index scan
m) with ix2
Index scan

with ix3

Perhaps you are concerned that using a nested-loop join might not be the
fastest method to execute this query. You also think that the join order is not
optimal. You can force the optimizer to choose a hash join and order the
tables in the query plan according to their order in the query, so the optimizer
uses the query plan shown in Figure 8-2.

Index scan
with ix1 emp

Figure 8-2
. . Possible Query Plan
Hash join (build on dept) WithQD/ » e}étive s

Hash join (build pfi job)

Index scan
with ix2
} Full table scan

Index scan
with ix1 emp

Optimizer Directives 8-13

Types of Directives

To force the optimizer to choose the query plan that uses hash joins and the
order of tables shown in the query, you use the directives that the following
SET EXPLAIN output shows:

SELECT {+ORDERED,
INDEX(emp ix1),
FULL(job),
USE_HASH(job /BUILD),
USE_HASH(dept /BUILD),
INDEX(dept ix3)}
* FROM emp, job,dept
WHERE emp.location =1
AND emp.jobno = job.jobno
AND emp.deptno = dept.deptno
AND dept.location = "DENVER"

DIRECTIVES FOLLOWED:
ORDERED

INDEX (emp ix1)

FULL (job)

USE_HASH (job/BUILD)
USE_HASH (dept/BUILD)
INDEX (dept ix3)
DIRECTIVES NOT FOLLOWED:

Estimated Cost: 7
Estimated # of Rows Returned: 1

1) informix.emp: INDEX PATH
Filters: informix.emp.location = 'DENVER'
(1) Index Keys: empno jobno deptno location (Key-0nly)
2) informix.job: SEQUENTIAL SCAN
DYNAMIC HASH JOIN
Dynamic Hash Filters: informix.emp.jobno = informix.job.jobno
3) informix.dept: INDEX PATH

(1) Index Keys: Tocation
Lower Index Filter: informix.dept.location = "DENVER'

DYNAMIC HASH JOIN
Dynamic Hash Filters: informix.emp.deptno = informix.dept.deptno

8-14 Performance Guide for Informix Dynamic Server

Directives and Stored Procedures

Directives Configuration Parameters and Environment Variables

You can use the DIRECTIVES configuration parameter to turn on or off all
directives that the database server encounters. If DIRECTIVES is 1 (the
default), the optimizer follows all directives. If DIRECTIVES is 0, the optimizer
ignores all directives.

You can override the setting of DIRECTIVES with the IFX_DIRECTIVES
environment variable. If IFX_DIRECTIVES is set to 1 or ON, the optimizer
follows directives for any SQL executed by the client session. If
IFX_DIRECTIVES is 0 or OFF, the optimizer ignores directives for any SQL in
the client session.

Any directives in an SQL statement take precedence over the join plan forced
by the OPTCOMPIND configuration parameter. For example, if a query
includes the USE_HASH directive and OPTCOMPIND is set to 0 (nested-loop
joins preferred over hash joins), the optimizer uses a hash join.

Directives and Stored Procedures

Directives operate differently for a query in a stored procedure because a
SELECT statement in a stored procedure does not necessarily get optimized
immediately before the database server executes it. The optimizer creates a
query plan for a SELECT statement in a stored procedure when the database
server creates a stored procedure or during the execution of some versions of
the UPDATE STATISTICS statement.

The optimizer reads and applies directives at the time that it creates the query
plan. Because it stores the query plan in a system catalog table, the SELECT
statement is not reoptimized when it is executed. Therefore, settings of
IFX_DIRECTIVES and DIRECTIVES affect SELECT statements inside a stored
procedure when they are set before the CREATE PROCEDURE statement,
before the UPDATE STATISTICS statements that cause stored procedure SQL to
be optimized, or during certain circumstances when SELECT statements have
variables supplied at runtime.

Optimizer Directives 8-15

Guidelines for Using Directives

Guidelines for Using Directives

Consider the following guidelines when you use directives:

= Examine the effectiveness of a particular directive frequently.
Imagine a query in a production program with several directives that
force an optimal query plan. Some days later, users add, update, or
delete a large number of rows, which changes the nature of the data
so much that the once optimal query plan is no longer effective. This
is but one example of how you must use directives with care.

= Use negative directives (AVOID_NL, AVOID_FULL, and so on)
whenever possible. When you exclude a behavior that degrades
performance, you rely on the optimizer to use the next best choice,
rather than attempt to force a path that might not be optimal.

8-16 Performance Guide for Informix Dynamic Server

Parallel Database Query

How the Optimizer Structures a PDQ Query .
The Memory Grant Manager

Allocating Resources for PDQ Queries .
Limiting the Priority of DSS Queries
Limiting the Value of PDQ Priority
Maximizing OLTP Throughput .
Conserving Resources . .
Allowing Maximum Use of Parallellsm .
Determining the Level of Parallelism .
Limits on Parallelism Associated with PDQPRIORITY
Using Stored Procedures . o
Adjusting the Amount of Memory .
Limiting the Number of Concurrent Scans
Limiting the Maximum Number of Queries .

Managing Applications .

Using SET EXPLAIN .

Using OPTCOMPIND

Using SET PDQPRIORITY .

User Control of Resources . .

Dynamic Server Administrator Control of Resources .
Controlling Resources Allocated to PDQ.
Controlling Resources Allocated

to Decision-Support Queries .

Monitoring PDQ Resources .
Using the onstat Utility .
Monitoring MGM Resources .
Monitoring PDQ Threads .
Monitoring Resources Allocated for a Sessmns
Using SET EXPLAIN .

9-5

9-7
9-7

9-9
9-10
9-10
9-10
9-10
9-11
9-12
9-13
9-13

9-14
9-14
9-14
9-15
9-15
9-15
9-16

9-16

9-17
9-17
9-17
9-20
9-22
9-22

9-2 Performance Guide for Informix Dynamic Server

arallel database query (PDQ) is an Informix database server feature that
can improve performance dramatically when the database server processes
queries initiated by decision-support applications. PDQ features allow the
database server to distribute the work for 3eone aspect of a query among
several processors. For example, if a query requires an aggregation, the
database server can distribute the work for the aggregation among several
processors. PDQ also includes tools for resource management.

Another database server feature, table fragmentation, allows you to store the
parts of a table on different disks. PDQ delivers maximum performance
benefits when the data that is being queried is in fragmented tables.
“Planning a Fragmentation Strategy” on page 6-4 describes how to use
fragmentation for maximum performance.

This chapter discusses the parameters and strategies that you use to manage
resources for PDQ. This chapter covers the following topics:

= How the optimizer structures a PDQ query

= The Memory Grant Manager

= Allocating Dynamic Server resources for PDQ

= Balancing resource requirements for on-line transaction processing
(OLTP) and decision-support applications

= Monitoring PDQ resources

Parallel Database Query 9-3

How the Optimizer Structures a PDQ Query

How the Optimizer Structures a PDQ Query

Each decision-support query has a primary thread. The database server can
start additional threads to perform tasks for the query (for example, scans
and sorts). Depending on the number of tables or fragments that a query
must search and the resources that are available for a decision-support query,
the database server assigns different components of a query to different
threads. The database server initiates these PDQ threads, which are listed as
secondary threads in the SET EXPLAIN output.

Secondary threads are further classified as either producers or consumers,
depending on their function. A producer thread supplies data to another
thread. For example, a scan thread might read data from shared memory that
corresponds to a given table and pass italong to a join thread. In this case, the
scan thread is considered a producer, and the join thread is considered a
consumer. The join thread, in turn, might pass data along to a sort thread.
When doing so, the join thread is considered a producer, and the sort thread
is considered a consumer.

Several producers can supply data to a single consumer. When this occurs,
Dynamic Server sets up an internal mechanism, called an exchange, that
synchronizes the transfer of data from those producers to the consumer. For
instance, if a fragmented table is to be sorted, the optimizer typically calls for
a separate scan thread for each fragment. Because of different 1/0 character-
istics, the scan threads can be expected to complete at different times. An
exchange is used to funnel the data produced by the various scan threads into
one or more sort threads with a minimum amount of buffering. Depending
on the complexity of the query, the optimizer might call for a multi-layered
hierarchy of producers, exchanges, and consumers. Generally speaking,
consumer threads work in parallel with producer threads so that the amount
of intermediate buffering performed by the exchanges remains negligible.

These threads and exchanges are created automatically and transparently.
They terminate automatically as they complete processing for a given query.
Dynamic Server creates new threads and exchanges as needed for subse-
guent queries.

9-4 Performance Guide for Informix Dynamic Server

The Memory Grant Manager

The Memory Grant Manager

The Memory Grant Manager (MGM) is an Dynamic Server component that
coordinates the use of memory, CPU virtual processors (VPs), disk 1/0, and
scan threads among decision-support queries. MGM uses the
DS_MAX_QUERIES, DS_TOTAL_MEMORY, DS_MAX_SCANS, and
MAX_PDQPRIORITY configuration parameters to determine the quantity of
these PDQ resources that can be granted to a decision-support query. For
more information about these configuration parameters, refer to Chapter 3,
“Configuration Impacts on Performance.”

The MGM dynamically allocates the following resources for decision-support
queries:

= The number of scan threads started for each decision-support query
= The number of threads that can be started for each query

= The amount of memory in the virtual portion of Dynamic Server
shared memory that the query can reserve

When your Dynamic Server system has heavy OLTP use and you find perfor-
mance is degrading, you can use the MGM facilities to limit the resources
committed to decision-support queries. During off-peak hours, you can
designate a larger proportion of the resources to parallel processing, which
achieves higher throughput for decision-support queries.

Memory is granted to a query by the MGM for such activities as sorts, hash
joins and processing of GROUP BY clauses. The amount of memory used by
decision-support queries cannot exceed DS_TOTAL_MEMORY.

The MGM grants memory to queries in quantum increments. A quantum is
calculated using the following formula:

quantum = DS_TOTAL_MEMORY / DS_MAX_QUERIES

For example, if DS_TOTAL_MEMORY is 12 megabytes and DS_MAX_QUERIES
is 4, then the quantum is 12/4 = 3 megabytes. Thus, with these values in
effect, a quantum of memory equals 3 megabytes. In general, memory is
allocated more efficiently when quanta are smaller. You can often improve
performance of concurrent queries by increasing DS_MAX_QUERIES to
reduce the size of a quantum of memory.

Parallel Database Query 9-5

The Memory Grant Manager

You can monitor resources allocated by the MGM by running the onstat -g
mgm command. This command displays only the amount of memory that is
currently used; it does not display the amount of memory that has been
granted. For more information about this command, refer to your
Administrator’s Guide.

The MGM also grants a maximum number of scan threads per query based
on the values of the DS_MAX_SCANS and the DS_MAX_QUERIES parameters.

The maximum number of scan threads per query is given by the following
formula:

scan_threads = min (nfrags, DS_MAX_SCANS * (pdgpriority / 100)
* (MAX_PDQPRIORITY / 100))

nfrags is the number of fragments in the table with the largest
number of fragments.
pdgpriority is the PDQ priority value that is set by either the

PDQPRIORITY environment variable or the SQL
statement SET PDQPRIORITY.

For more information about any of these Dynamic Server configuration
parameters, refer to Chapter 3, “Configuration Impacts on Performance.”

The PDQPRIORITY environment variable and the SQL statement SET PDQPRI-
ORITY request a percentage of PDQ resources for a query.

You can use the MAX_PDQPRIORITY configuration parameter to limit the
percentage of the requested resources that a query can obtain and to limit the
impact of decision-support queries on OLTP processing. For more infor-
mation, refer to “Limiting the Priority of DSS Queries” on page 9-7.

9-6 Performance Guide for Informix Dynamic Server

Allocating Resources for PDQ Queries

Allocating Resources for PDQ Queries

When Dynamic Server uses PDQ to perform a query in parallel, it puts a
heavy load on the operating system. In particular, PDQ exploits the following
resources:

= Memory

= CPUVPs

= Disk I/0 (to fragmented tables, temporary table space)

= Scan threads
When you configure Dynamic Server, consider how the use of PDQ affects

OLTP users, users of decision-support applications, and users of other appli-
cations.

You can control how Dynamic Server uses resources in the following ways:

= Limit the priority of PDQ queries.

= Adjust the amount of memory.

= Limit the number of scan threads.

= Limit the number of concurrent queries.

Limiting the Priority of DSS Queries

The default value for the PDQ priority of individual applications is 0, which
means that PDQ processing is not used. Dynamic Server uses this value
unless it is overridden by one of the following actions:

= The user sets the PDQPRIORITY environment variable.

= The application uses the SET PDQPRIORITY statement.
The PDQPRIORITY environment variable and the MAX_PDQPRIORITY
configuration parameter work together to control the amount of resources to

allocate for parallel processing. Setting these configuration parameters
correctly is critical for the effective operation of PDQ.

Parallel Database Query 9-7

Limiting the Priority of DSS Queries

The MAX_PDQPRIORITY configuration parameter allows the Dynamic Server
administrator to limit the parallel processing resources consumed by DSS
queries. Thus, the PDQPRIORITY environment variable sets a reasonable or
recommended priority value, and MAX_PDQPRIORITY limits the resources that
an application can claim.

The MAX_PDQPRIORITY configuration parameter specifies the maximum
percentage of the requested resources that a query can obtain. For instance, if
PDQPRIORITY is 80 and MAX_PDQPRIORITY is 50, each active query receives
an amount of memory equal to 40 percent of DS_TOTAL_MEMORY, rounded
down to the nearest quantum. In this example, MAX_PDQPRIORITY effec-
tively limits the number of concurrent decision-support queries to two.
Subsequent queries must wait for earlier queries to finish before they acquire
the resources that they need to run.

An application or user can use the DEFAULT tag of the SET PDQPRIORITY
statement to use the value for PDQ priority if the value has been set by the
PDQPRIORITY environment variable. DEFAULT is the symbolic equivalent of
a -1 value for PDQ priority.

You can use the onmode command-line utility to change the values of the
following configuration parameters temporarily:

= Use onmode -M to change the value of DS_TOTAL_MEMORY.
= Use onmode -Q to change the value of DS_MAX_QUERIES.
= Use onmode -D to change the value of MAX_PDQPRIORITY.
= Use onmode -S to change the value of DS_MAX_SCANS.
These changes remain in effect only as long as Dynamic Server remains up

and running. When Dynamic Server is initialized, it uses the values listed in
the ONCONFIG file.

For more information about the preceding parameters, refer to Chapter 3. For
more information about onmode, refer to your Administrator’s Guide.

If you must change the values of the decision-support parameters on a
regular basis (for example, to set MAX_PDQPRIORITY to 100 each night for
processing reports), you can set the values using a scheduled operating-
system job. For information about creating scheduled jobs, refer to your
operating-system manuals.

9-8 Performance Guide for Informix Dynamic Server

Limiting the Priority of DSS Queries

To obtain the best performance from Dynamic Server, choose values for the
PDQPRIORITY environment variable and MAX_PDQPRIORITY parameter,
observe the resulting behavior, and then adjust the values for these param-
eters. No well-defined rules exist for choosing these environment variable
and parameter values. The following sections discuss strategies for setting
PDQPRIORITY and MAX_PDQPRIORITY for specific needs.

Limiting the Value of PDQ Priority

The MAX_PDQPRIORITY configuration parameter limits the PDQ priority that
Dynamic Server grants when users either set the PDQPRIORITY environment
variable or issue the SET PDQPRIORITY statement before they issue a query.
When an application or an end user attempts to set a PDQ priority, the
priority that is granted is multiplied by the value specified in
MAX_PDQPRIORITY.

Set the value of MAX_PDQPRIORITY lower when you want to allocate more
resources to OLTP processing. Set the value higher when you want to allocate
more resources to decision-support processing. The possible range of values
is 0 to 100. This range represents the percent of resources that you can
allocate to decision-support processing.

Maximizing OLTP Throughput

At times, you might want to allocate resources to maximize the throughput
for individual OLTP queries rather than for decision-support queries. In this
case, set MAX_ PDQPRIORITY to 0, which limits the value of PDQ priority to

0FF. A PDQ priority value of 0FF does not prevent decision-support queries
from running. Instead, it causes the queries to run without parallelization. In
this configuration, response times for decision-support queries might be very
slow.

Parallel Database Query 9-9

Limiting the Priority of DSS Queries

Conserving Resources

If applications make little use of queries that require parallel sorts and
parallel joins, consider using the LOW setting for PDQ priority.

If Dynamic Server is operating in a multiuser environment, you might set
MAX_PDQPRIORITY to 1 to increase interquery performance at the cost of
some intraquery parallelism. A trade-off exists between these two different
types of parallelism because they compete for the same resources. As a
compromise, you might set MAX_PDQPRIORITY to some intermediate value
(perhaps 20 or 30) and set PDQPRIORITY to LOW. The environment variable
sets the default behavior to LOW, but the MAX_PDQPRIORITY configuration
parameter allows individual applications to request more resources with the
SET PDQPRIORITY statement.

Allowing Maximum Use of Parallelism

Set PDQPRIORITY and MAX_PDQPRIORITY to 100 if you want Dynamic
Server to assign as many resources as possible to parallel processing. This
setting is appropriate for times when parallel processing does not interfere
with OLTP processing.

Determining the Level of Parallelism

You can use different numeric settings for PDQPRIORITY to experiment with
the effects of parallelism on a single application. For information on how to
monitor parallel execution, refer to “Monitoring PDQ Resources” on

page 9-17.

Limits on Parallelism Associated with PDQPRIORITY

Dynamic Server reduces the PDQ priority of queries that contain outer joins
to LOW (if set to a higher value) for the duration of the query. If a subquery or
a view contains outer joins, Dynamic Server lowers the PDQ priority only of
that subquery or view, not of the parent query or of any other subquery.

Dynamic Server lowers the PDQ priority of queries that require access to a

remote database (same or different Dynamic Server instance) to LOW if you
set it to a higher value. In that case, all local scans are parallel, but all local

joins and remote accesses are nonparallel.

9-10 Performance Guide for Informix Dynamic Server

Limiting the Priority of DSS Queries

Using Stored Procedures

Dynamic Server freezes the PDQ priority that is used to optimize SQL state-
ments within procedures at the time of procedure creation or the last manual
recompilation with the UPDATE STATISTICS statement. You can change the
client value of PDQPRIORITY by embedding the SET PDQPRIORITY statement
within the body of your procedure.

The PDQ priority value that Dynamic Server uses to optimize or reoptimize
an SQL statement is the value that was set by a SET PDQPRIORITY statement,
which must have been executed within the same procedure. If no such
statement has been executed, the value that was in effect when the procedure
was last compiled or created is used.

The PDQ priority value currently in effect outside a procedure is ignored
within a procedure when it is executing.

Informix suggests that you turn PDQ priority off when you enter a procedure
and then turn it on again for specific statements. You can avoid tying up large
amounts of memory for the procedure, and you can make sure that the
crucial parts of the procedure use the appropriate PDQ priority, as the
following example illustrates:

CREATE PROCEDURE my_proc (a INT, b INT, c INT)
Returning INT, INT, INT;
SET PDQPRIORITY O0;

SET PDQPRIORITY 85;

SELECT (big complicated SELECT statement)
SET PDQPRIORITY 0;

Parallel Database Query 9-11

Adjusting the Amount of Memory

Adjusting the Amount of Memory

Use the following formula as a starting point for estimating the amount of
shared memory to allocate to decision-support queries:

DS_TOTAL_MEMORY = p_mem - os_mem - rsdnt_mem - (128K * users)

other_mem

p_mem represents the total physical memory that is available on
the host computer.

0S_mem represents the size of the operating system, including the
buffer cache.

resdnt_mem represents the size of Informix resident shared memory.

users is the number of expected users (connections) specified in
the NETTYPE configuration parameter.

other_mem is the size of memory used for other (non-Informix)
applications.

The value for DS_TOTAL_MEMORY that is derived from this formula serves
only as a starting point. To arrive at a value that makes sense for your config-
uration, you must monitor paging and swapping. (Use the tools provided
with your operating system to monitor paging and swapping.) When paging
increases, decrease the value of DS_TOTAL_MEMORY so that processing the
OLTP workload can proceed.

The amount of memory that is granted to a single PDQ query is influenced by
many system factors but, in general, the amount of memory granted to a
single PDQ query is proportional to the following formula:

memory_grant_basis = (DS_TOTAL_MEMORY/DS_MAX_QUERIES) =*
(PDQPRIORITY / 100) *
(MAX_PDQPRIORITY / 100)

9-12 Performance Guide for Informix Dynamic Server

Limiting the Number of Concurrent Scans

Limiting the Number of Concurrent Scans

Dynamic Server apportions some number of scans to a query according to its
PDQ priority (among other factors). DS_MAX_SCANS and
MAX_PDQPRIORITY allow you to limit the resources that users can assign to
a query, according to the following formula:

scan_threads = min (nfrags, (DS_MAX_SCANS * (pdgpriority / 100)
* (MAX_PDQPRIORITY / 100))

nfrags is the number of fragments in the table with the largest
number of fragments.
pdgpriority is the PDQ priority value set by either the PDQPRIORITY

environment variable or the SET PDQPRIORITY statement.

For example, suppose a large table contains 100 fragments. With no limit on
the number of concurrent scans allowed, Dynamic Server would concur-
rently execute 100 scan threads to read this table. In addition, as many users
as wanted to could initiate this query.

As the Dynamic Server administrator, you set DS_MAX_SCANS to a value
lower than the number of fragments in this table to prevent Dynamic Server
from being flooded with scan threads by multiple decision-support queries.
You can set DS_MAX_SCANS to 20 to ensure that Dynamic Server concur-
rently executes a maximum of 20 scan threads for parallel scans.
Furthermore, if multiple users initiate PDQ queries, each query receives only
a percentage of the 20 scan threads, according to the PDQ priority assigned to
the query and the MAX_PDQPRIORITY that the Dynamic Server administrator
sets.

Limiting the Maximum Number of Queries

The DS_MAX_QUERIES configuration parameter limits the number of
concurrent decision-support queries that can run. To estimate the number of
decision-support queries that Dynamic Server can run concurrently, count
each query that runs with PDQ priority set to 1 or greater as one full query.

Dynamic Server allocates less memory to queries that run with a lower
priority, so you can assign lower-priority queries a PDQ priority value that is
between 1 and 30, depending on the resource impact of the query. The total
number of queries with PDQ priority values greater than 0 cannot exceed
DS_MAX_QUERIES.

Parallel Database Query 9-13

Managing Applications

Managing Applications

The Dynamic Server administrator, the writer of an application, and the users
all have a certain amount of control over the amount of resources that
Dynamic Server allocates to processing a query. The Dynamic Server admin-
istrator exerts control through the use of configuration parameters. The
application developer or the user can exert control through an environment
variable or SQL statement.

Using SET EXPLAIN

The output of the SET EXPLAIN statement shows decisions that are made by
the query optimizer. It shows whether parallel scans are used, the maximum
number of threads required to answer the query, and the type of join used for
the query. You can use SET EXPLAIN to study the query plans of an appli-
cation. You can restructure a query or use OPTCOMPIND to change how the
optimizer treats the query.

Using OPTCOMPIND

The OPTCOMPIND environment variable and the OPTCOMPIND configu-
ration parameter indicate the preferred join plan, thus assisting the optimizer
in selecting the appropriate join method for parallel database queries.

You can influence the optimizer in its choice of a join plan by setting the
OPTCOMPIND configuration parameter. The value that you assign to this
configuration parameter is referenced only when applications do not set the
OPTCOMPIND environment variable.

You can set OPTCOMPIND to 0 if you want Dynamic Server to select a join
plan exactly as it did in versions of the database server prior to 6.0. This
option ensures compatibility with previous versions of the database server.

When you set this parameter, remember that an application with an isolation
mode of Repeatable Read can lock all records in a table when it performs a
hash join. For this reason, Informix recommends that you set OPTCOMPIND
tol.

9-14 Performance Guide for Informix Dynamic Server

Using SET PDQPRIORITY

If you want the optimizer to make the determination for you based on costs,
regardless of the isolation-level setting of applications, set OPTCOMPIND
to 2.

For more information on OPTCOMPIND and the different join plans, refer to
“The Query Plan” on page 7-3.

Using SET PDQPRIORITY

The SET PDQPRIORITY statement allows you to set PDQ priority dynamically
within an application. The PDQ priority value can be any integer from -1
through 100.

The PDQ priority set with the SET PDQPRIORITY statement supersedes the
PDQPRIORITY environment variable.

The DEFAULT tag for the SET PDQPRIORITY statement allows an application
to revert to the value for PDQ priority as set by the environment variable, if
any. For more information about the SET PDQPRIORITY statement, refer to the
Informix Guide to SQL: Syntax.

User Control of Resources

To indicate the PDQ priority of a query, a user sets the PDQPRIORITY
environment variable or executes the SET PDQPRIORITY statement prior to
issuing a query. In effect, this allows users to request a certain amount of
parallel-processing resources for the query.

The resources that a user requests and the amount that Dynamic Server
allocates for the query can differ. This difference occurs when the Dynamic
Server administrator uses the MAX_PDQPRIORITY configuration parameter
to put a ceiling on user-requested resources, as explained in the following
section.

Dynamic Server Administrator Control of Resources

To manage the total amount of resources that Dynamic Server allocates to
PDQ queries, the Dynamic Server administrator sets the environment
variable and configuration parameters that are discussed in the following
sections.

Parallel Database Query 9-15

Dynamic Server Administrator Control of Resources

UNIX

Controlling Resources Allocated to PDQ

First, you can set the PDQPRIORITY environment variable. The queries that
do not set the PDQPRIORITY environment variable before they issue a query
do not use PDQ. In addition, you can place a ceiling on user-specified PDQ
priority levels by setting the MAX_PDQPRIORITY configuration parameter.

When you set the PDQPRIORITY environment variable and
MAX_PDQPRIORITY parameter, you exert control over the resources that
Dynamic Server allocates between OLTP and DSS applications. For example,
if OLTP processing is particularly heavy during a certain period of the day,
you might want to set MAX_PDQPRIORITY to 0. This configuration parameter
puts a ceiling on the resources requested by users who use the PDQPRIORITY
environment variable, so PDQ is turned off until you reset
MAX_PDQPRIORITY to a nonzero value.

Controlling Resources Allocated to Decision-Support Queries

You control the resources that Dynamic Server allocates to decision-support
queries by setting the DS_TOTAL_MEMORY, DS_MAX_SCANS, and
DS_MAX_QUERIES configuration parameters. In addition to setting limits for
decision-support memory and the number of decision-support queries that
can run concurrently, Dynamic Server uses these parameters to determine the
amount of memory to allocate to individual decision-support queries as they
are submitted by users. To do this, Dynamic Server first calculates a unit of
memory called a quantum by dividing DS_TOTAL_MEMORY by
DS_MAX_QUERIES. When a user issues a query, Dynamic Server allocates a
percent of the available quanta equal to the PDQ priority of the query.

You can also limit the number of concurrent decision-support scans that
Dynamic Server allows by setting the DS_MAX_SCANS configuration
parameter.

Previous versions of the database server allowed you to set a PDQ priority
configuration parameter in the ONCONFIG file. If your applications depend
on a global setting for PDQ priority, you can define PDQPRIORITY as a shared
environment variable in the informix.rc file. For more information on the
informix.rc file, see the Informix Guide to SQL: Reference. ¢

9-16 Performance Guide for Informix Dynamic Server

Monitoring PDQ Resources

Monitoring PDQ Resources

Monitor the resources (shared memory and threads) that the MGM has
allocated for PDQ queries, and the resources that those queries currently use.

You monitor PDQ resource use in the following ways:

= Run individual onstat utility commands to capture information
about specific aspects of a running query.

= Execute a SET EXPLAIN statement before you run a query to write the
query plan to an output file.

Using the onstat Utility

You can use various onstat utility commands to determine how many
threads are active and the shared-memory resources that those threads use.

Monitoring MGM Resources

You can use the onstat -g mgm option to monitor how MGM coordinates
memory use and scan threads. The onstat utility reads shared-memory struc-
tures and provides statistics that are accurate at the instant that the command
executes. Figure 9-1 on page 9-18 shows sample output.

The onstat -g mgm display uses a unit of memory called a quantum. The
memory quantum represents a unit of memory;, as follows:

memory quantum = DS_TOTAL_MEMORY / DS_MAX_QUERIES

Parallel Database Query 9-17

Using the onstat Utility

The scan thread quantum is always equal to 1.

Figure 9-1
Memory Grant Manager (MGM) onstat -g mgm
-------------------------- Output
MAX_PDQPRIORITY: 100
DS_MAX_QUERIES: 5
DS_MAX_SCANS: 10
DS_TOTAL_MEMORY: 4000 KB
Queries: Active Ready Maximum
3 0 5
Memory : Total Free Quantum
(KB) 4000 3872 800
Scans: Total Free Quantum
10 8
Load Control: (Memory) (Scans) (Priority) (Max Queries) (Reinit)
Gate 1 Gate 2 Gate 3 Gate 4 Gate 5
(Queue Length) 0 0 0 0 0

Active Queries:

Session Query Priority Thread Memory Scans Gate
7 a3d0c0 1 a8adcc 0/0 1/1 -
7 ab6eb0 1 ae6800 0/0 1/1 -
9 a7b1d4 0 96b1b8 16/16 0/0 -

Ready Queries: None

Free Resource Average Minimum 4

Memory 489.2 +- 28.7 400

Scans 8.5 +- 0.5 8

Queries Average # Maximum # Total #
Active 1.7 +- 0.7 3 23
Ready 0.0 +- 0.0 0 0

Resource/Lock Cycle Prevention count: 0

The first portion of the display shows the values of the PDQ configuration
parameters.

The second portion of the display describes MGM internal control
information. It includes four groups of information.

9-18 Performance Guide for Informix Dynamic Server

Using the onstat Utility

The first group is indicated by Queries.

Active Number of PDQ queries that are currently executing

Ready Number of user queries ready to run, but whose execution
Dynamic Server deferred for load-control reasons

Maximum Maximum number of queries that Dynamic Server permits to be

active. Reflects current value of the DS_MAX_QUERIES configu-
ration parameter

The next group is indicated by Memory.

Total Kilobytes of memory available for use by PDQ queries
(DS_TOTAL_MEMORY specifies this value.)

Free Kilobytes of memory for PDQ queries not currently in use

Quantum Kilobytes of memory in a memory quantum

The next group is indicated by Scans.

Total The total number of scan threads as specified by the
DS_MAX_SCANS configuration parameter

Free Number of scan threads currently available for decision-support
queries

Quantum The number of scan threads in a scan-thread quantum

The last group in this portion of the display describes MGM Load Control.

Memory Number of queries that are waiting for memory

Scans Number of queries that are waiting for scans

Priority Number of queries that are waiting for queries with higher PDQ
priority to run

Max Number of queries that are waiting for a query slot

Queries

Reinit Number of queries that are waiting for running queries to

complete after an onmode -M or -Q

The next portion of the display (Active Queries) describes the MGM active
and ready queues. This portion of the display shows the number of queries
waiting at each gate.

Session The session ID for the session that initiated the query

Query Address of the internal control block associated with the query
Priority PDQ priority assigned to the query

Thread Thread that registered the query with MGM

(10f2)

Parallel Database Query 9-19

Using the onstat Utility

Memory Memory currently granted to the query / memory reserved for the
query (Unit is MGM pages, which is 8 kilobytes.)
Scans Number of scan threads currently used by the query / number of
scan threads allocated to the query
Gate Gate number at which query is waiting
(20f2)

The next portion of the display (Free Resource) provides statistics
concerning MGM free resources. The numbers in this portion and in the final
portion reflect statistics since system initialization or the last onmode -Q, -M,

or -S.
Average Average of memory / scans
Minimum Available memory / scans

The last portion of the display (Queries) provides statistics concerning MGM

queries.
Average Average active / ready queue length
Minimum Minimum active / ready queue length
Total Total active / ready queue length

Monitoring PDQ Threads

To obtain information on all of the threads that are running for a
decision-support query, use the onstat -u and onstat -g ath options.

The onstat -u option lists all the threads for a session. If a session is running
a decision-support query, the primary thread and any additional threads are
listed. For example, session 10 in Figure 9-2 on page 9-21 has a total of five
threads running.

9-20 Performance Guide for Informix Dynamic Server

Using the onstat Utility

Figure 9-2
Userthreads onstat -u Output
address flags sessid user tty wait tout Tocks nreads nwrites
80eb8c ---P--D O informix - 0 0 0 19
80efl8 ---P--F O informix - 0 0 0 0 0
80f2a4 ---P--B 3 informix - 0 0 0 0 0
80f630 ---P--D 0O informix - 0 0 0 0 0
80fd48 ---P--- 45 chrisw ttyp3 0 0 1 573 237
810460 ------- 10 chrisw ttyp2 0 0 1 1 0
810b78 ---PR-- 42 chrisw ttyp3 0 0 1 595 243
810f04 Y------ 10 chrisw ttyp? beacf8 0 1 1 0
811290 ---P--- 47 chrisw ttyp3 0 0 2 585 235
81161c ---PR-- 46 chrisw ttyp3 0 0 1 571 239
8119a8 Y------ 10 chrisw ttyp? aB8ag%44 0 1 1 0
81244c ---P--- 43 chrisw ttyp3 0 0 2 588 230
8127d8 ----R-- 10 chrisw ttyp2 0 0 1 1 0
812b64 ---P--- 10 chrisw ttyp2 0 0 1 20 0
812ef0 ---PR-- 44 chrisw ttyp3 0 0 1 587 227
15 active, 20 total, 17 maximum concurrent

The onstat -g ath option display also lists these threads and includes a name
column that indicates the role of the thread. Threads that have been started
by a primary decision-support thread have a name that indicates their role in
the decision-support query. For example, Figure 9-3 lists four scan threads,
started by a primary (sqlexec) thread.

Figure 9-3
Threads: onstat -g ath Output
tid tch rstch prty status vp-class name
11 994060 0O 4 sleeping(Forever) lcpu kaio
12 994394 80f2ad 2 sleeping(secs: 51) lcpu btclean
26 99bllc 80f630 4 ready lcpu onmode_mon
32 a%9a294 812b64 2 ready lcpu sqlexec
113 b72a7c 810b78 2 ready lcpu sqlexec
114 b86c8c 81244c 2 cond wait(netnorm) lcpu sqlexec
115 b98a7c 812ef0 2 cond wait(netnorm) lcpu sqlexec
116 bb4a24 80fd48 2 cond wait(netnorm) lcpu sqlexec
117 bc6a24 8116lc 2 cond wait(netnorm) lcpu sqlexec
118 bd8a24 811290 2 ready lcpu sqlexec
119 beae88 810f04 2 cond wait(await_MC1) lcpu scan_1.0
120 aB8ab48 8127d8 2 ready lcpu scan_2.0
121 296850 810460 2 ready lcpu scan_2.1
122 ab6f30 8119a8 2 running lcpu scan_2.2

Parallel Database Query 9-21

Using SET EXPLAIN

Monitoring Resources Allocated for a Sessions

Use the onstat -g ses option to monitor the resources allocated for, and used
by, a session that is running a decision-support query. The onstat -g ses
option displays the following information:

= The shared memory allocated for a session that is running a
decision-support query

= The shared memory used by a session that is running a decision-
support query

= The number of threads that the database server started for a session

For example, in Figure 9-4, session number 49 is running five threads for a
decision-support query.

Figure 9-4
session #FRSAM total used onstat -g ses Output
id user tty pid hostname threads memory memory
57 informix - 0 - 0 8192 5908
56 user_3 ttyp3 2318 host_10 1 65536 62404
55 user_3 ttyp3 2316 host_10 1 65536 62416
54 user_3 ttyp3 2320 host_10 1 65536 62416
53 user_3 ttyp3 2317 host_ 10 1 65536 62416
52 user_3 ttyp3 2319 host 10 1 65536 62416
51 user_3 ttyp3 2321 host_10 1 65536 62416
49 user_1 ttyp2 2308 host_10 5 188416 178936
2 informix - 0 - 0 8192 6780
1 informix - 0 0 8192 4796

Using SET EXPLAIN

When PDQ is turned on, the SET EXPLAIN output shows whether the
optimizer chose parallel scans. If the optimizer chose parallel scans, the
output shows PARALLEL. If PDQ is turned off, the output shows SERTAL.

If PDQ is turned on, the optimizer indicates the maximum number of threads
that are required to answer the query. The output shows # of Secondary
Threads. This field indicates the number of threads that are required in
addition to your user session thread. The total number of threads necessary
is the number of secondary threads plus 1.

9-22 Performance Guide for Informix Dynamic Server

Using SET EXPLAIN

The following example shows the SET EXPLAIN output for a table with
fragmentation and PDQ priority set to LOW:

select * from tl where cl > 20

Estimated Cost: 2
Estimated # of Rows Returned: 2

1) informix.tl: SEQUENTIAL SCAN (Parallel, fragments: 2)
Filters: informix.tl.cl > 20
of Secondary Threads =1

The following example of SET EXPLAIN output shows a query with a hash
join between two fragmented tables and PDQ priority set to ON. The query is
marked with DYNAMIC HASH JOIN, and the table on which the hash is built
is marked with Build Outer.

select hl.cl, h2.cl from hl, h2 where hl.cl = h2.cl

Estimated Cost: 2
Estimated # of Rows Returned: 5

1) informix.hl: SEQUENTIAL SCAN (Parallel, fragments: ALL)
2) informix.h2: SEQUENTIAL SCAN (Parallel, fragments: ALL)
DYNAMIC HASH JOIN (Build Outer)

Dynamic Hash Filters: informix.hl.cl = informix.h2.cl
of Secondary Threads = 6

The following example of SET EXPLAIN output shows a table with
fragmentation, with PDQ priority set to LOW, and an index that was selected
as the access plan:

select * from tl where cl < 13

Estimated Cost: 2
Estimated # of Rows Returned: 1

1) informix.tl: INDEX PATH

(1) Index Keys: cl (Parallel, fragments: ALL)
Upper Index Filter: dinformix.tl.cl < 13

of Secondary Threads = 3

Parallel Database Query 9-23

Chapter

Improving Individual Query 10
Performance

Using a Dedicated Test System. 104
Improving Filter Selectivity 105
Avoiding Difficult Regular Expressmns 105
Avoiding Noninitial Substrings. 10-6
Updating Statistics . . . 1 0 F6)
Creating Data Dlstrlbutlons .o 107
UPDATE STATISTICS Performance Con5|derat|0ns 10-10
How to Improve Performance with Indexes . . . 0 S
Replacing Autoindexes with Permanent Indexes 0 S

Using Composite Indexes . . . 0 S

Using Indexes for Data Warehousmg Appllcatlons 1012
Dropping and Rebuilding Indexes After Updates 10-14
Improving Sequential Scans. 10-14
Reducing the Impact of Join and Sort Operations 10-15
Avoiding or Simplifying Sort Operations 10-15

Using Parallel Sorts 10-16

Using Temporary Tables to Reduce Sortlng Scope 1l0-16
Reviewing the OptimizationLevel 10-18
Optimizing User-Response Time for Queries. 10-18
How to Specify the Query Performance Goal 10-19
Preferred Query Plans for User-Response-Time Optlmlzatlon. .. 10-20
Nested-Loop Joins Versus Hash Join 10-21

Table Scans Versus IndexScans 10-22

Ordering with Fragmented Indexes 10-22

10-2 Performance Guide for Informix Dynamic Server

his chapter suggests ways to apply the general and conceptual infor-
mation in addition to the monitoring information that is provided in this
manual.

Topics discussed include:

» Eliminating table fragments (see “Query Expressions for Fragment

Elimination” on page 6-22)

= Improving the selectivity of filters

= Creating data distributions to improve optimizer performance

= Improving index performance

= Improving sequential scans

= Reducing the impact of join and sort operations

= Reviewing the optimization level
Before you change a query, study its SET EXPLAIN output to determine the
kind and amount of resources that it requires. The SET EXPLAIN output
shows what parallel scans are used, the maximum number of threads

required, the indexes used, and so on. Then examine your data model and see
if changes that are suggested in this chapter will improve it.

“How to Display the Query Plan” on page 7-14 provides an example of using
SET EXPLAIN.

Improving Individual Query Performance 10-3

Using a Dedicated Test System

Using a Dedicated Test System

If possible, you might decide to test a query on a system that does not
interfere with production database servers. Even if your database server is
used as a data warehouse, you might sometimes test queries on a separate
system until you understand the tuning issues that are relevant to the query.
However, testing queries on a separate system might distort your tuning
decisions in several ways.

If you are trying to improve performance of a large query, one that might take
several minutes or hours to complete, you can prepare a scaled-down
database in which your tests can complete more quickly. However, be aware
of these potential problems:

= The optimizer can make different choices in a small database than in
alarge one, even when the relative sizes of tables are the same. Verify
that the query plan is the same in the real and the model databases.

= Execution time is rarely a linear function of table size. For example,
sorting time increases faster than table size, as does the cost of
indexed access when an index goes from two to three levels. What
appears to be a big improvement in the scaled-down environment
can be insignificant when applied to the full database.

Therefore, any conclusion that you reach as a result of tests in the model
database must be tentative until you verify them in the production database.

You can often improve performance by adjusting your query or data model
with the following goals in mind:

= Ifyouare using a multiuser system or a network, where system load
varies widely from hour to hour, you might need to perform your
experiments at the same time each day to obtain repeatable results.
Initiate tests when the system load is consistently light so that you
are truly measuring the impact of your query only.

= If the query is embedded in a complicated program, you can extract
the SELECT statement and embed it in a DB-Access script.

10-4 Performance Guide for Informix Dynamic Server

Improving Filter Selectivity

Improving Filter Selectivity

The greater the precision with which you specify the desired rows, the
greater the likelihood that your queries will complete quickly. You control the
amount of information that the query evaluates using the WHERE clause of
the SELECT statement. The conditional expression given in the WHERE clause
is commonly called a filter.

“Assessing Filters” on page 7-20 describes how filter selectivity affects the
query plan that the optimizer chooses.

Avoid the following types of filters for best performance:

= Certain difficult regular expressions
= Noninitial substrings

The following sections describe these types of filters and the reasons for
avoiding them.

Avoiding Difficult Regular Expressions

The MATCHES and LIKE keywords support wildcard matches, which are

technically known as regular expressions. Some regular expressions are more
difficult than others for Dynamic Server to process. A wildcard in the initial
position, as in the following example (find customers whose first names do
not end in y), forces Dynamic Server to examine every value in the column:

SELECT * FROM customer WHERE fname NOT LIKE '%y'

An index cannot be used with such a filter, so the table in this example must
be accessed sequentially.

If a difficult test for a regular expression is essential, avoid combining it with
a join. If necessary, process the single table, applying the test for a regular
expression to select the desired rows. Save the result in a temporary table,
and join that table to the others.

Regular-expression tests with wildcards in the middle or at the end of the
operand do not prevent the use of an index when one exists.

Improving Individual Query Performance 10-5

Updating Statistics

Avoiding Noninitial Substrings

A filter based on a noninitial substring of a column also requires every value
in the column to be tested, as the following example shows:

SELECT * FROM customer
WHERE zipcodel[4,5] > '50'

An index cannot be used to evaluate such a filter.

The optimizer uses an index to process a filter that tests an initial substring of
an indexed column. However, the presence of the substring test can interfere
with the use of a composite index to test both the substring column and
another column.

Updating Statistics

The UPDATE STATISTICS statement updates the statistics in the system
catalogs that the optimizer uses to determine the lowest-cost query plan. To
ensure that the optimizer selects a query plan that best reflects the current
state of your tables, run UPDATE STATISTICS at regular intervals.

Run UPDATE STATISTICS LOW as often as necessary to ensure that the
statistic for the number of rows is as up-to-date as possible. Therefore, if the
cardinality of a table changes often, run the statement more often for that
table. Run UPDATE STATISTICS LOW, which is the default mode, on the table.

UPDATE STATISTICS FOR TABLE tabl;

10-6 Performance Guide for Informix Dynamic Server

Creating Data Distributions

Creating Data Distributions

You can use the MEDIUM or HIGH keywords with the UPDATE STATISTICS
statement to specify the mode for data distributions on specific columns.
These keywords indicate that Dynamic Server is to generate statistics about
the distribution of data values for each specified column and place that infor-
mation in a system catalog table called sysdistrib. If a distribution has been
generated for a column, the optimizer uses that information to estimate the
number of rows that match a query against a column. Data distributions in
sysdistrib supercede values in the colmin and colmax column of the
syscolumns system catalog table when the optimizer estimates the number
of rows returned.

When you use data-distribution statistics for the first time, try to update
statistics in MEDIUM mode for all your tables, and then update statistics in
HIGH mode for all columns that head indexes. This strategy produces statis-
tical query estimates for the columns that you specify. These estimates, on the
average, have a margin of error less than percent of the total number of rows
in the table, where percent is the value that you specify in the RESOLUTION
clause in the MEDIUM mode. The default percent value for MEDIUM mode is
2.5 percent. (For columns with HIGH mode distributions, the default
resolution is 0.1 percent.)

Unless column values change considerably, you do not need to regenerate the
data distributions. You can verify the accuracy of the distribution by
comparing dbschema -hd output with the results of appropriately
constructed SELECT statements. The following dbschema command
produces a list of values for each column of table tab2 in database virg and
the number of rows with each specific value:

DBSCHEMA -hd tab2 -d virg

Improving Individual Query Performance 10-7

Creating Data Distributions

For each table that your query accesses, build data distributions according to
the following guidelines:

1. Run UPDATE STATISTICS MEDIUM for all columns in a table that do
not head an index. This step is a single UPDATE STATISTICS
statement. The default parameters are sufficient unless the table is
very large, in which case you should use a resolution of 1.0, 0.99.

With the DISTRIBUTIONS ONLY option, you can execute UPDATE
STATISTICS MEDIUM at the table level or for the entire system
because the overhead of the extra columns is not large.

2. Run UPDATE STATISTICS HIGH for all columns that head an index.
For the fastest execution time of the UPDATE STATISTICS statement,
you must execute one UPDATE STATISTICS HIGH statement for each
column.

In addition, when you have indexes that begin with the same subset
of columns, run UPDATE STATISTICS HIGH for the first column in
each index that differs.

For example, if index ix_1 is defined on columns a, b, ¢, and d, and
index ix_2 is defined on columns a, b, e, and f, run UPDATE
STATISTICS HIGH on column a by itself. Then run UPDATE
STATISTICS HIGH on columns ¢ and e. In addition, you can run
UPDATE STATISTICS HIGH on column b, but this step is usually not
necessary.

3. For each multicolumn index, execute UPDATE STATISTICS LOW for
all of its columns. For the single-column indexes in the preceding
step, UPDATE STATISTICS LOW is implicitly executed when you
execute UPDATE STATISTICS HIGH.

4. For small tables, run UPDATE STATISTICS HIGH.

Because the statement constructs the index information statistics only once
for each index, these steps ensure that UPDATE STATISTICS executes rapidly.

For additional information about data distributions and the UPDATE
STATISTICS statement, see the Informix Guide to SQL: Syntax.

10-8 Performance Guide for Informix Dynamic Server

Creating Data Distributions

Updating Statistics for Join Columns

Because of improvements and adjusted cost estimates to establish better
query plans, the optimizer depends greatly on an accurate understanding of
the underlying data distributions in certain cases. You might still feel that a
complex query does not execute quickly enough, even though you followed
the guidelines in “Creating Data Distributions” on page 10-7. If your query
involves equality predicates, take one of the following actions:

= Run UPDATE STATISTICS statement with the HIGH keyword for
specific join columns that appear in the WHERE clause of the query.
If you followed the guidelines in “Creating Data Distributions” on
page 10-7, columns that head indexes already have HIGH mode
distributions.

= To determine whether HIGH mode distribution information on
columns that do not head indexes can provide a better execution
path, take the following steps:

1. Issue the SET EXPLAIN ON statement and rerun the query.

2. Note the estimated number of rows in the SET EXPLAIN output
and the actual number of rows that the query returns.

3. If these two numbers are significantly different, run UPDATE
STATISTICS HIGH on the columns that participate in joins, unless
you have already done so.

Important: If your table is very large, UPDATE STATISTICS with the HIGH mode can
take a long time to execute.

The following example shows a query that involves join columns:

SELECT employee.name, address.city
FROM employee, address
WHERE employee.ssn = address.ssn
AND employee.name = 'James'

In this example, the join columns are the ssn fields in the employee and
address tables. The data distributions for both of these columns must
accurately reflect the actual data so that the optimizer can correctly
determine the best join plan and execution order.

Improving Individual Query Performance 10-9

UPDATE STATISTICS Performance Considerations

You cannot use the UPDATE STATISTICS statement to create data distribu-
tions for a table that is external to the current database. For additional
information about data distributions and the UPDATE STATISTICS statement,
see the Informix Guide to SQL: Syntax.

UPDATE STATISTICS Performance Considerations

When you execute the UPDATE STATISTICS statement, the database server
uses memory and disk to sort and construct data distributions. You can affect
the amount of memory and disk available for UPDATE STATISTICS with the
following methods:

= PDQ priority
Although the UPDATE STATISTICS statement is not processed in
parallel, you can obtain more memory for sorting when you set PDQ
priority greater than 0. The default value for PDQ priority is 0. You
set PDQ priority with either the PDQPRIORITY environment variable
or the SQL statement SET PDQPRIORITY.

For more information on PDQ priority, refer to “Allocating Resources
for PDQ Queries” on page 9-7.

= DBUPSPACE environment variable
You can use the DBUPSPACE environment variable to constrain the

amount of system disk space that the UPDATE STATISTICS statement
can use to construct multiple column distributions simultaneously.

For more information on this environment variable, refer to the
Informix Guide to SQL: Reference.

10-10 Performance Guide for Informix Dynamic Server

How to Improve Performance with Indexes

How to Improve Performance with Indexes

You can often improve the performance of a query by adding, or in some
cases removing, indexes. Consider using some of the methods that are
described in the following sections to improve the performance of a query.

Replacing Autoindexes with Permanent Indexes

If the query plan includes an autoindex path to a large table, take it as a
recommendation from the optimizer that you can improve performance by
adding an index on that column. It is reasonable to let Dynamic Server build
and discard an index if you perform the query occasionally, but if you
perform a query regularly, you can save time by creating a permanent index.

Using Composite Indexes

The optimizer can use a composite index (one that covers more than one
column) in several ways. An index on the columns a, b, and ¢ (in that order)
can be used in the following ways:

= To locate a particular row

An index locates a row by specifying the first columns with equality
filters and subsequent columns with range (<, <=, >, >=) expressions.
The following examples of filters use the columns in a composite
index:

where a=1

where a>=12 and a<1lb

where a=1 and b < 5
where a=1 and b = 17 and ¢ >= 40

The following examples of filters cannot use that composite index:

where b=10
where c¢c=221
where a>=12 and b=15

= Toreplace atable scan when all of the desired columns are contained
within the index

A scan that uses the index but does not reference the table is termed
a key-only search.

Improving Individual Query Performance 10-11

How to Improve Performance with Indexes

= Tojoin column a, columns ab, or columns abc to another table

= To implement ORDER BY or GROUP BY on columns a, ab, or abc, but
not on b, ¢, ac, or bc

Execution is most efficient when you create a composite index with the

columns in order from most to least distinct. In other words, the column that
returns the highest count of distinct rows when queried using the DISTINCT
keyword of the SELECT statement should come first in the composite index.

If your application performs several long queries, each of which contains
ORDERBY or GROUP BY clauses, you can sometimes improve performance by
adding indexes that produce these orderings without requiring a sort. For
example, the following query sorts each column in the ORDER BY clause in a
different direction:

SELECT * FROM t1 ORDER BY a, b DESC;

To avoid using temporary tables to sort column a in ascending order and
column b in descending order, you must create a composite index on (a, b
DESC) or on (a DESC, b). You need to create only one of these indexes because
of the bidirectional traversal capability of the database server. For more infor-
mation on the bidirectional traversal capability, refer to the Informix Guide to
SQL: Syntax.

On the other hand, it can be less expensive to do a table scan and sort the
results instead of using the composite index when the following criteria are
met:

= Your table is well ordered relative to your index.

= The number of rows retrieved by the query represents a large
percentage of the available data.

Using Indexes for Data Warehousing Applications

Many data warehouse databases use a star schema. A star schema consists of
afact table and a number of dimensional tables. The fact table is generally very
large and contains the quantitative or factual information about the subject.
A dimensional table describes an attribute in the fact table.

10-12 Performance Guide for Informix Dynamic Server

How to Improve Performance with Indexes

When a dimension needs lower level information, the dimension is modeled
by a hierarchy of tables, called a snowflake schema.

For more information on star schemas and snowflake schemas, refer to the
Informix Guide to Database Design and Implementation.

Queries that use tables in a star schema or snowflake schema can benefit from
the proper index on the fact table.

Consider the example of a star schema with one fact table named orders and
four dimensional tables named customers, suppliers, products, and clerks.
The orders table describes the details of each sale order, which includes the
customer ID, supplier ID, product ID, and sales clerk ID. Each dimensional
table describes an ID in detail. The orders table is very large and the four
dimensional tables are small.

The following query finds the total direct sales revenue in the Menlo Park
region (postal code 94025) for hard drives supplied by the Johnson supplier:

SELECT sum(orders.price)
FROM orders, customers, suppliers,product,clerks
WHERE orders.custid = customers.custid

AND customers.zipcode = 94025

AND orders.suppid = suppliers.suppid

AND suppliers.name = 'Johnson'

AND orders.prodid = product.prodid

AND product.type = 'hard drive'

AND orders.clerkid = clerks.clerkid

AND clerks.dept = 'Direct Sales'

This query uses a typical star join, in which the fact table joins with all dimen-
sional tables on a foreign key. Each dimensional table has a very selective
table filter.

An optimal plan for the star join is to perform a cartesian product on the four
dimensional tables and then join the result with the fact table. The following
index on the fact table allows the optimizer to choose the optimal query plan:

CREATE INDEX ON orders(custid,suppid,prodid,clerkid)

Without this index, the optimizer might choose to first join the fact table with
one dimensional table and then join the result with the remaining dimen-
sional tables. The optimal plan provides better performance.

Improving Individual Query Performance 10-13

Improving Sequential Scans

Dropping and Rebuilding Indexes After Updates

When an update transaction commits, the Dynamic Server btree cleaner
removes deleted index entries and, if necessary, rebalances the index nodes.
However, depending on your application (in particular, the order in which it
adds and deletes keys from the index), the structure of an index can become
inefficient.

Use the oncheck -pT command to determine the amount of free space in each
index page. If your table has relatively low update activity and a large
amount of free space exists, you might want to drop and recreate the index
with a larger value for FILLFACTOR to make the unused disk space available.

For more information on how Dynamic Server maintains an index tree, refer
to the information on disk structure and storage in your Administrator’s
Guide.

Improving Sequential Scans

You can improve performance of sequential read operations on large tables
by eliminating repeated sequential scans.

Sequential access to a table other than the very first table in the plan is
ominous because it threatens to read every row of the table once for every
row selected from the preceding tables. You should be able to judge how
many times that is: perhaps a few, but perhaps hundreds or even thousands.

If the table is small, it is harmless to read it repeatedly because the table
resides completely in memory. Sequential search of an in-memory table can
be faster than searching the same table through an index, especially if
maintaining those index pages in memory pushes other useful pages out of
the buffers.

When the table is larger than a few pages, however, repeated sequential
access is deadly to performance. One way to prevent this problem is to
provide an index to the column that is used to join the table.

10-14 Performance Guide for Informix Dynamic Server

Reducing the Impact of Join and Sort Operations

Any user with the Resource privilege can build additional indexes. Use the
CREATE INDEX statement to make an index.

An index consumes disk space proportional to the width of the key values
and the number of rows. (See “Estimating Table and Index Size”” on page 4-8.)
Also, Dynamic Server must update the index whenever rows are inserted,
deleted, or updated; this step slows these operations. If necessary, you can
use the DROP INDEX statement to release the index after a series of queries,
which frees space and makes table updates easier.

Reducing the Impact of Join and Sort Operations

After you understand what the query is doing, look for ways to obtain the
same output with less effort. The following suggestions can help you rewrite
your query more efficiently:

= Avoid or simplify sort operations.

= Use parallel sorts.

= Use temporary tables to reduce sorting scope.

Avoiding or Simplifying Sort Operations

Sorting is not necessarily a liability. The sort algorithm is highly tuned and
extremely efficient. It is as fast as any external sort program that you might
apply to the same data. You need not avoid infrequent sorts or sorts of
relatively small numbers of output rows.

Try to avoid or reduce the scope of repeated sorts of large tables. The
optimizer avoids a sort step whenever it can produce the output in its proper
order automatically by using an index. The following factors prevent the
optimizer from using an index:

= One or more of the ordered columns is not included in the index.

= The columns are named in a different sequence in the index and the
ORDER BY or GROUP BY clause.

= The ordered columns are taken from different tables.

Improving Individual Query Performance 10-15

Reducing the Impact of Join and Sort Operations

Another way to avoid sorts is discussed in a following section, “Using
Temporary Tables to Reduce Sorting Scope.”

If a sort is necessary, look for ways to simplify it. As discussed in “Sort-Time
Costs” on page 7-24, the sort is quicker if you can sort on fewer or narrower
columns.

Using Parallel Sorts

When you cannot avoid sorting, Dynamic Server takes advantage of multiple
CPU resources to perform the required sort-and-merge operations in parallel.
Dynamic Server can use parallel sorts for any query; parallel sorts are not
limited to PDQ queries. The PSORT_NPROCS environment variable specifies
the maximum number of threads that can be used to sort a query.

When PDQ priority is greater than 0 and PSORT_NPROCS is greater than 1,
the query benefits both from parallel sorts and from PDQ features such as
parallel scans and additional memory. Users can use the PDQPRIORITY
environment variable to request a specific proportion of PDQ resources for a
guery. You can use the MAX_PDQPRIORITY parameter to limit the number of
such user requests. For more information on MAX_PDQPRIORITY, refer to
“MAX_PDQPRIORITY” on page 3-15.

In some cases, the amount of data being sorted can overflow the memory
resources allocated to the query, resulting in 1/0 to a dbspace or sort file. For
more information, refer to “Dbspaces for Temporary Tables and Sort Files” on
page 3-50.

Using Temporary Tables to Reduce Sorting Scope

Building a temporary, ordered subset of a table can speed up a query. It can
help to avoid multiple-sort operations and can simplify the work of the
optimizer in other ways.

10-16 Performance Guide for Informix Dynamic Server

Reducing the Impact of Join and Sort Operations

For example, suppose your application produces a series of reports on
customers who have outstanding balances, one report for each major postal
area, ordered by customer name. In other words, a series of queries occurs,
each of the following form (using hypothetical table and column names):

SELECT cust.name, rcvbles.balance, ...other columns...
FROM cust, rcvbles
WHERE cust.customer_id = rcvbles.customer_id

AND rcvbls.balance > 0
AND cust.postcode LIKE '98_ '
ORDER BY cust.name

This query reads the entire cust table. For every row with the specified postal
code, Dynamic Server searches the index on rcvbles.customer_id and
performs a nonsequential disk access for every match. The rows are written
to atemporary file and sorted. For more information on temporary files, refer
to “Dbspaces for Temporary Tables and Sort Files” on page 3-50.

This procedure is acceptable if the query is performed only once, but this
example includes a series of queries, each incurring the same amount of
work.

An alternative is to select all customers with outstanding balances into a
temporary table, ordered by customer name, as the following example
shows:

SELECT cust.name, rcvbles.balance, ...other columns...
FROM cust, rcvbles
WHERE cust.customer_id = rcvbles.customer_id

AND cvbls.balance > 0
INTO TEMP cust_with_balance

Now you can direct queries against the temporary table in this form, as the
following example shows:

SELECT *
FROM cust_with_balance
WHERE postcode LIKE '98_ _ _'
ORDER BY cust.name

Each query reads the temporary table sequentially, but the table has fewer
rows than the primary table.

Improving Individual Query Performance 10-17

Reviewing the Optimization Level

Reviewing the Optimization Level

You normally obtain optimum overall performance with the default
optimization level, high. The time that it takes to optimize the statement is
usually unimportant. However, if experimentation with your application
reveals that your query is still taking too long, you can set your optimization
level to low and then check the SET EXPLAIN output to see if the optimizer
chose the same query plan as before.

You can specify a high or low level of database server optimization with the
SET OPTIMIZATION statement. This statement is described in detail in the
Informix Guide to SQL: Syntax.

Optimizing User-Response Time for Queries

The two types of optimization goals for query performance are as follows:

= Optimizing total query time
s Optimizing user-response time

Total query time is the time it takes to return all rows to the application. Total
query time is most important for batch processing or for queries that require
all rows be processed before returning a result to the user, as in the following

query:

SELECT count(*) FROM orders
WHERE order_amount > 2000;

User-response time is the time that it takes for the database server to return a
screen-full of rows back to an interactive application. In interactive applica-

tions, only a screenful of data can be requested at one time. For example, the
user application can only display 10 rows at one time for the following query:

SELECT * FROM orders
WHERE order_amount > 2000;

10-18 Performance Guide for Informix Dynamic Server

UNIX

How to Specify the Query Performance Goal

Which optimization goal is more important can have an effect on the query
path that the optimizer chooses. For example, the optimizer might choose a
nested-loop join instead of a hash join to execute a query if user-response
time is most important, even though a hash join might result in a reduction
in total query time.

How to Specify the Query Performance Goal

The default behavior is for the optimizer to choose query plans that optimize
the total query time. You can specify user-response-time optimization at
several different levels:

For the Dynamic Server system

Set the OPT_GOAL configuration parameter to 0 for user-response-
time optimization, as in the following example:

OPT_GOAL 0
Set OPT_GOAL to -1 for total-query-time optimization.
For the user environment

The OPT_GOAL environment variable can be set before the user
application starts.

Setthe OPT_GOAL environment variable to 0 for user-response-time
optimization, as in the following sample commands:

Bourne shell OPT_GOAL = 0
export OPT_GOAL
C shell setenv OPT_GOAL 0 ¢

Set the OPT_GOAL environment variable to -1 for total-query-time
optimization.

Improving Individual Query Performance 10-19

Preferred Query Plans for User-Response-Time Optimization

= Within the session

You can control the optimization goal with the SET OPTIMIZATION
statement in SQL. The optimization goal set with this statement stays
in effect until the session ends or until another SET OPTIMIZATION
statement changes the goal.

The following statement causes the optimizer to choose query plans
that favor total-query-time optimization:

SET OPTIMIZATION ALL_ROWS

The following statement causes the optimizer to choose query plans
that favor user-response-time optimization:

SET OPTIMIZATION FIRST_ROWS
= Forindividual queries

You can use FIRST_ROWS and ALL_ROWS optimizer directives to
instruct the optimizer which query goal to use. For more information
about these directives, refer to “Optimization Goal Directives” on
page 8-10.

The precedence for these levels is as follows:

= Optimizer directives

= SET OPTIMIZATION statement

= OPT_GOAL environment variable

= OPT_GOAL configuration parameter

For example, optimizer directives take precedence over the goal specified by
the SET OPTIMIZATION statement.

Preferred Query Plans for User-Response-Time
Optimization

When the optimizer chooses query plans to optimize user-response time, it
computes the cost to retrieve the first row in the query for each plan and
chooses the plan with the lowest cost. In some cases, the query plan that costs
the least to retrieve the first row might not be the optimal path to retrieve all
rows in the query.

Some of the possible differences in query plans are explained in the following
sections.

10-20 Performance Guide for Informix Dynamic Server

Preferred Query Plans for User-Response-Time Optimization

Nested-Loop Joins Versus Hash Join

Hash joins generally have a higher cost to retrieve the first row than nested-
loop joins do. The database server must build the hash table before it
retrieves any rows. However, in some cases, total query time is faster if the
database server uses a hash join.

In the following example, tab2 has an index on col1, but tabl does not have
an index on coll. When you execute SET OPTIMIZATION ALL_ROWS before
you run the query, the database server uses a hash join and ignores the
existing index as the following SET EXPLAIN output shows:

select * from tabl,tab?
where tabl.coll = tab2.coll
Estimated Cost: 125
Estimated # of Rows Returned: 510
1) Tsuto.tab2: SEQUENTIAL SCAN
2) lsuto.tabl: SEQUENTIAL SCAN
DYNAMIC HASH JOIN
Dynamic Hash Filters: lsuto.tab2.coll = lsuto.tabl.coll

However, when you execute SET OPTIMIZATION FIRST_ROWS before you run
the query, the database server uses a nested-loop join. The clause
(FIRST_ROWS OPTIMIZATION) in the following SET EXPLAIN output shows
that the optimizer used user-response-time optimization for the query:

QUERY: (FIRST_ROWS OPTIMIZATION)
select * from tabl,tab?
where tabl.coll = tab2.coll
Estimated Cost: 145
Estimated # of Rows Returned: 510
1) Tsuto.tabl: SEQUENTIAL SCAN
2) lsuto.tab2: INDEX PATH

(1) Index Keys: coll

Lower Index Filter: lsuto.tab2.coll = lsuto.tabl.coll

NESTED LOOP JOIN

Improving Individual Query Performance 10-21

Preferred Query Plans for User-Response-Time Optimization

Table Scans Versus Index Scans

In cases where the database server returns a large number of rows from a
table, the lower cost option for the total-query-time goal might be to scan the
table instead of using an index. However, to retrieve the first row, the lower
cost option for the user response time goal might be to use the index to access
the table.

Ordering with Fragmented Indexes

When an index is not fragmented, the database server can use the index to
avoid a sort. For more information on avoiding sorts, refer to “Avoiding or
Simplifying Sort Operations” on page 10-15. However, when an index is
fragmented, the ordering can only be guaranteed within the fragment, not
between fragments.

Usually, the least expensive option for the total-query-time goal is to scan the
fragments in parallel and then use the parallel sort to produce the proper
ordering. However, this option does not favor the user-response-time goal.

Instead, if the user-response time is more important, the database server
reads the index fragments in parallel and merges the data from all of the
fragments. No additional sort is generally needed.

10-22 Performance Guide for Informix Dynamic Server

The onperf Utility on UNIX

Overview of the onperf Utility .
Basic onperf Functions .
Displaying Metric Values .
Saving Metric Values to a File .
Reviewing Metric Measurements .
The onperf Tools

Requirements for Running onperf.
Starting and Exiting onperf .

The onperf User Interface

Graph Tool
Title Bar . . .
Graph Tool Graph Menu .
Graph Tool Metrics Menu .
Graph Tool View Menu.
Graph Tool Configure Menu and the Conflguratlon

Dialog Box e

Graph Tool Tools Menu . .
Changing the Scale of Metrics
Displaying Recent- Hlstory Values .

Query-Tree Tool . .o

Status Tool
Status Tool File Menu
Status Tool Tools Menu.

Activity Tools
Activity Tool Graph Menu
Activity Tool Tools Menu .

11-3
11-3
11-4
11-4
11-5
11-6

11-7
11-8

11-9
11-9
11-10
11-11
11-12
11-13

11-14
11-16
11-17
11-17
11-19
11-20
11-20
11-21
11-21
11-21
11-21

Ways to Use onperf . .
Routine Monitoring . . .

Diagnosing Sudden Performance Loss .
Diagnosing Performance Degradation .

The onperf Metrics . .
Database Server Metrics .
Disk-Chunk Metrics .
Disk-Spindle Metrics .
Physical-Processor Metrics .
Virtual-Processor Metrics
Session Metrics .

Tblspace Metrics
Fragment Metrics .

11-2 Performance Guide for Informix Dynamic Server

11-22
11-22
11-22
11-22

11-23
11-23
11-26
11-26
11-27
11-27
11-28
11-29
11-30

his chapter describes the onperf utility, a windowing environment
that you can use to monitor Dynamic Server performance. The onperf utility
monitors Dynamic Server running on the UNIX operating system.

The onperf utility allows you to monitor most of the same Dynamic Server
metrics that the onstat utility reports. The onperf utility provides these main
advantages over onstat:

= Displays metric values graphically in real time

= Allows you to choose which metrics to monitor

= Allows you to scroll back to previous metric values to analyze a
trend

= Can save performance data to a file for review at a later time

Overview of the onperf Utility

This section provides an overview of onperf functionality and the different
onperf tools.

Basic onperf Functions
The onperf utility performs the following basic functions:

= Displays the values of Dynamic Server metrics in a tool window
= Saves Dynamic Server metric values to a file
= Allows review of Dynamic Server metric values from a file

The onperf Utility on UNIX 11-3

Basic onperf Functions

Displaying Metric Values
When onperf starts, it activates the following processes:

s The onperf process. This process controls the display of onperf
tools.

= The data-collector process. This process attaches to shared memory
and passes performance information to the onperf process for
display in an onperf tool.

An onperf tool is a Motif window that is managed by an onperf process, as
Figure 11-1 shows.

Figure 11-1
onperf tool Data Flow from
Shared memory Data-collector process — onperf process Shared Memory to

an onperf Tool
onperf] —[onperf > M\M Window

Saving Metric Values to a File

The onperf utility allows designated metrics to be continually buffered. The
data collector writes these metrics to a circular buffer called the data-collector
buffer. When the buffer becomes full, the oldest values are overwritten as the
data collector continues to add data. The current contents of the data-
collector buffer are saved to a history file, as Figure 11-2 illustrates.

Figure 11-2
Shared memory Data-collector process Data-collector buffer How onperf Saves
Performance Data

° ——— o J—

Data-collector buffer Data-collector process History file

® —Cow

11-4 Performance Guide for Informix Dynamic Server

Basic onperf Functions

The onperf utility uses either a binary format or an ASCII representation for
data in the history file. The binary format is host dependent and allows data
to be written quickly. The ASCII format is portable across platforms.

You have control over the set of metrics stored in the data-collector buffer and
the number of samples. You could buffer all metrics; however, this action
might consume more memory than is feasible. A single metric measurement
requires 8 bytes of memory. For example, if the sampling frequency is one
sample per second, then to buffer 200 metrics for 3,600 samples requires
approximately 5.5 megabytes of memory. If this process represents too much
memory, you must reduce the depth of the data-collector buffer, the sampling
frequency, or the number of buffered metrics.

You can use the Configuration dialog box to configure the buffer depth or the
sampling frequency. For more information on the Configuration dialog box,
refer to “Graph Tool Configure Menu and the Configuration Dialog Box™ on
page 11-14.

Reviewing Metric Measurements

You can review the contents of a history file in a tool window. When you
request a tool to display a history file, the onperf process starts a playback
process that reads the data from disk and sends the data to the tool for
display. The playback process is similar to the data-collector process
mentioned under “Saving Metric Values to a File” on page 11-4. However,
instead of reading data from shared memory, the playback process reads
measurements from a history file. The playback process is shown in
Figure 11-3.

History file

]

Figure 11-3

Flow of Data from a
History File to an
onperf Tool Window

onperf tool

Playback process onperf process

ER) S

The onperf Utility on UNIX 11-5

The onperf Tools

The onperf Tools

The onperf utility provides the following Motif windows, called tools, to
display metric values:

= Graph tool

This tool allows you to monitor general performance activity. You
can use this tool to display any combination of metrics that onperf
supports and to display the contents of a history file. For more infor-
mation, see “Graph Tool” on page 11-9.

= Query-tree tool

This tool displays the progress of individual queries. For more infor-
mation, see “Query-Tree Tool” on page 11-19.

= Status tool

This tool displays status information about Dynamic Server and
allows you to save the data that is currently held in the data-collector
buffer to a file. For more information, see “Status Tool” on

page 11-20.

= Activity tools

These tools display specific Dynamic Server activities. Activity tools
include disk, session, disk-capacity, physical-processor, and virtual-
processor tools. The physical-processor and virtual-processor tools,
respectively, display information about all CPUs and VPs. The other
activity tools each display the top 10 instances of a resource ranked
by a suitable activity measurement. For more information, see
“Activity Tools” on page 11-21.

11-6 Performance Guide for Informix Dynamic Server

Requirements for Running onperf

Requirements for Running onperf

When you install Dynamic Server, the following executable files are written
to the SINFORMIXDIR/bin directory:

= onperf
= onedcu
= onedpu
= Xxtree

In addition, the on-line help file, onperf.hlp, is placed in the
$INFORMIXDIR/hhelp directory.

When Dynamic Server is installed and running in on-line mode, you can
bring up onperf tools either on the computer that is running Dynamic Server
or on a remote computer or terminal that can communicate with your
Dynamic Server instance. Both possibilities are illustrated in Figure 11-4. In
either case, the computer that is running the onperf tools must support the X
terminal and the mwm window manager.

Figure 11-4

UNIX platform running Dynamic Server and X display server with mwm window manager Two Options for
Running onperf

onperf tool

onperf process

Dynamic Server M\M

i

UNIX platform running Dynamic Server Client platform running X and mwm

onperf tool

onperf process

Dynamic Server

The onperf Utility on UNIX ~ 11-7

Starting and Exiting onperf

Starting and Exiting onperf

Before you start onperf, set the following environment variables to the
appropriate values:

= DISPLAY
= LD_LIBRARY_PATH

Set the DISPLAY environment variable as follows:

C shell setenv DISPLAY displayname0:0 #
Bourne shell DISPLAY=displayname0:0 #

In these commands, displayname is the name of the computer or X terminal
where the onperf window should appear.

Setthe LD_LIBRARY_PATH environment variable to the appropriate value for
the Motif libraries on the computer that is running onperf.

With the environment properly set up, you can enter onperf to bring up a
graph tool window, as described in “The onperf User Interface” on page 11-9.

To exit onperf, use the Close option to close each tool window, use the Exit
option of a tool, or choose Window ManagerC Close.

You can monitor multiple Dynamic Server database servers from the same
Motif client by invoking onperf for each database server, as the following
example shows:

INFORMIXSERVER=instancel ; export INFORMIXSERVER; onperf
INFORMIXSERVER=instance?2 ; export INFORMIXSERVER; onperf

11-8 Performance Guide for Informix Dynamic Server

The onperf User Interface

The onperf User Interface

When you invoke onperf, the utility displays an initial graph-tool window.
From this graph-tool window, you can display additional graph-tool
windows as well as the query-tree, data-collector, and activity tools. The
graph-tool windows have no hierarchy; you can create and close these
windows in any order.

Graph Tool

The graph tool is the principal onperf interface. This tool allows you to
display any set of Dynamic Server metrics that the onperf data collector
obtains from shared memory. A diagram of a graph tool is shown in

Figure 11-5.
Figure 11-5
Graph Tool #1 — server2 Graph Tool Window
Graph Metrics View Configure Tools Help
VN
100
80
60
40
. [/\/\/v\/
0. f f T f
09:55:30 09:56:00 09:56:30 09:57:00
—— ISAM Calls (Reduced x10) -
J

You cannot bring up a graph tool window from a query-tree tool, a status
tool, or one of the activity tools.

The onperf Utility on UNIX 11-9

Graph Tool

Title Bar

All graph tool windows contain information in the title bar. Figure 11-6
shows the format.

Figure 11-6

Graph Tool #N — DataSource Tit/E-Bar
Information

Graph Metrics View Configure Tools Help

When you invoke onperf, the initial graph tool window displays a title bar
such as the one shown in Figure 11-7. In this case, serverName is the database
server named by the INFORMIXSERVER environment variable.

Figure 11-7
Graph Tool #1 — Server serverName Title Bar for Initial
Graph Tool Window

Graph Metrics View Configure Tools Help

Because the configuration of this initial graph tool has not yet been saved or
loaded from disk, onperf does not display the name of a configuration file in
the title bar.

The data source displayed in Figure 11-7 is the database server that the
INFORMIXSERVER environment variable specifies, meaning that the data
comes from the shared memory of the indicated Dynamic Server instance.

Suppose you open a historical data file named caselog.23April.2PM in this
graph tool window. The title bar now displays the information shown in

Figure 11-8.
Figure 11-8
Graph Tool #N — caselog.23.April.2PM Title Bar for a
Graph Tool Window
Graph ~ Metrics View Configure Tools Help That Displays Data

from a History File

11-10 Performance Guide for Informix Dynamic Server

Graph Tool

Graph Tool Graph Menu

The Graph menu provides the following options.

Option

Use

New

Open History File

Save History File

Save History File As

Annotate

Print

Close

Exit

This option creates a new graph tool. All graph tools that
you create using this option share the same data-collector
and onperf processes. Create new graph tools using this
option rather than by invoking onperf multiple times.

This option loads a previously saved file of historical data
into the graph tool for viewing. When you select a file,
onperf starts a playback process to view the file.

This option saves the contents of the data-collector buffer
to either an ASCII or a binary file, as specified in the Config-
uration dialog box.

This option specifies the file name in which to save the
contents of the data-collector buffer.

This option brings up a dialog box in which you can enter
a header label and a footer label. Each label is optional. The
labels are displayed on the graph. When you save the
graph configuration, onperf includes these labels in the
saved configuration file.

This option brings up a dialog box that allows you to select
adestination file. You cannot send the contents of the graph
tool directly to a printer; you must use this option to
specify a file and subsequently send the PostScript file to a
printer.

This option closes the tool. When a tool is the last
remaining tool of the onperf session, this menu item
behaves like the Exit option.

This option exits onperf.

Important: To save your current configuration before you load a new configuration
from a file, you must choose Configure Save Configuration or Configure Save

Configuration As.

The onperf Utility on UNIX 11-11

Graph Tool

Graph Tool Metrics Menu

Use the Metrics menu to choose the class of metrics to display in the graph
tool.

Metrics are organized by class and scope. When you select a metric for the
graph tool to display, you must specify the metric class, the metric scope, and
the name of the metric.

The metric class is the generic Dynamic Server component or activity that the
metric monitors. The metric scope depends on the metric class. In some cases,
the metric scope indicates a particular component or activity. In other cases,
the scope indicates all activities of a given type across an instance of Dynamic
Server.

The Metrics menu has a separate option for each class of metrics. For more
information on metrics, see “Ways to Use onperf” on page 11-22.

When you choose a class, such as Server, you see a dialog box like the one
shown in Figure 11-9.

Figure 11-9
The Select Metrics Dialog Box

Select Metrics for Graph Tool #1

Server w Metrics Available Selected Metrics

CPU System Time - "
CPU User Time [/Server/dbservernamel/CPU System Time
Percent cached (Read)

Percent cached (Write)
Disk Reads Add >
Disk Writes

Page Reads
Page Writes

Buffer Reads

Buffer Writes
Isam Calls

OK | | Filter | | Cancel

11-12 Performance Guide for Informix Dynamic Server

Graph Tool

The Select Metrics dialog box contains three list boxes. The list box on the left
displays the valid scope levels for the selected metrics class. For example,
when the scope is setto Server, the list box displays the dbservername of the
Dynamic Server database server that is being monitored. When you select a
scope from this list, onperf displays the individual metrics that are available
within that scope in the middle list box. You can select one or more individual
metrics from this list and add them to the display.

Tip: You can display metrics from more than one class in a single graph-tool window.
For example, you might first select ISAM Calls, Opens, and Starts from the Server
class. When you choose the Option menu in the same dialog box, you can select
another metric class without exiting the dialog box. For example, you might select the
Chunks metric class and add the Operations, Reads, and Writes metrics to the
display.

The Filter button in the dialog box brings up an additional dialog box in
which you can filter long text strings shown in the Metrics dialog box. The
Filter dialog box also lets you select tables or fragments for which metrics are
not currently displayed.

Graph Tool View Menu

The View menu provides the following options.

Option Use

Line This option changes the graph tool to the line format. Line
format includes horizontal and vertical scroll bars. The
vertical scroll bar adjusts the scale of the horizontal time
axis. When you raise this bar, onperf reduces the scale and
vice versa. The horizontal scroll bar allows you to adjust
your view along the horizontal time axis.

You can change the color and width of the lines in the line
format by clicking on the legend in the graph tool. When
you do, onperf generates a Customize Metric dialog box
that gives you a choice of line color and width.

Horizontal Bar This option changes the graph tool to the horizontal bar
Graph format.

Vertical Bar Graph This option changes the graph tool to the vertical bar
format.

(Lof2)

The onperf Utility on UNIX 11-13

Graph Tool

Option

Use

Pie

Quick Rescale Axis

Configure Axis

This option changes the graph tool to the pie-chart format.
You must select at least two metrics before you can display
a pie chart.

This option rescales the axis to the largest point that is
currently visible on the graph. This button turns off
automatic rescaling.

This option displays the Axis Configuration dialog box.
Use this dialog box to select a fixed value for the y-axis on
the graph or select automatic axis scaling.

(2 0f 2)

Graph Tool Configure Menu and the Configuration Dialog Box

The Configure menu provides the following options.

Option

Use

Edit Configuration

Open Configuration

Save Configuration

Save Configuration
As

This option brings up the Configuration dialog box, which
allows you to change the settings for the current data-
collector buffer, graph-tool display options, and data-
collector options. The Configuration dialog box is shown in
Figure 11-9 on page 11-12.

This option reinitializes onperf using the settings that are
stored in the configuration file. Unsaved data in the data-
collector buffer is lost.

This option saves the current configuration to a file. If no
configuration file is currently specified, onperf prompts for
one.

This option saves a configuration file; it always prompts for
a file name.

11-14 Performance Guide for Informix Dynamic Server

Graph Tool

You can use the Configuration dialog box (brought up by the Edit
Configuration option) to configure data-collector options, graph-display
options, and metrics about which to collect data.

Figure 11-10
The Configuration Dialog Box

Configuration

History Buffer Configuration Selected Metric Groups
dbservername
Add —P»

Graph Display Options Data Collector Options

Graph Scroll: Sample Interval:
Tool Interval: | 3 Sample Intervals v| History Depth: 3600
Graph Width: Save Mode:

OK | | Filter | | Cancel |

The onperf Utility on UNIX 11-15

Graph Tool

The Configuration dialog box provides the following areas for configuring
display options.

Option Use
History Buffer This area allows you to select a metric class and metric
Configuration scope to include in the data-collector buffer. The data

collector gathers information about all metrics that belong
to the indicated class and scope.

Graph Display The options listed in this area allow you to adjust the size

Options of the graph portion that scrolls off to the left when the
display reaches the right edge, the initial time interval that
the graph is to span, and the frequency with which the
display is updated.

Data Collector The options listed in this area control the collection of data.

Options The sample interval indicates the amount of time to wait
between recorded samples. The history depth indicates the
number of samples to retain in the data-collector buffer.
The save mode indicates the format in which the data-
collector data is to be saved, either in binary or ASCII
format.

Graph Tool Tools Menu

Use the Tools menu to bring up other tools. This menu provides the
following options.

Option Use

Query Tree This option starts a query-tree tool. For more information,
see “Query-Tree Tool” on page 11-19.

Status This option starts a status tool. For more information, see
“Status Tool” on page 11-20.

Disk Activity This option starts a disk-activity tool. For more infor-
mation, see “Activity Tools” on page 11-21.

Session Activity This option starts a session-activity tool. For more infor-
mation, see “Activity Tools” on page 11-21.

(1 of2)

11-16 Performance Guide for Informix Dynamic Server

Graph Tool

Option Use

Disk Capacity This option starts a disk-capacity tool. For more infor-
mation, see “Activity Tools” on page 11-21.

Physical Processor This option starts a physical-processor tool. For more infor-

Activity mation, see “Activity Tools” on page 11-21.
Virtual Processor This option starts a virtual-processor tool. For more infor-
Activity mation, see “Activity Tools” on page 11-21.

(2 of 2)

Changing the Scale of Metrics

When onperf displays metrics, it automatically adjusts the scale of the y-axis
to accommodate the largest value. You can use the Customize Metric dialog
box (see “Graph Tool View Menu” on page 11-13) to establish one for the
current display.

Displaying Recent-History Values

The onperf utility allows you to scroll back over previous metric values that
are displayed in a line graph. This feature allows you to analyze a recent
trend. The time interval to which you can scroll back is the lesser of the
following intervals:

= The time interval over which the metric has been displayed

= The history interval specified in the graph-tool Configuration dialog
box

For more information, see “Graph Tool Configure Menu and the
Configuration Dialog Box” on page 11-14.

The onperf Utility on UNIX 11-17

Graph Tool

Figure 11-11 illustrates the maximum scrollable intervals for metrics that
span different time periods.

Figure 11-11
Maximum
Scrollable Intervals
for Metrics That

Data-collector buffer

Scrollable interval for metric 1
¢ —p

Buffer depth Span Different Time

Periods
[[
\ |
| |
Metric 1 \
[
\
|

\
{
\
\

Metric 2

|3

Scrollable interval for metric 2

\
\
\
\
\
\
|

“«—»

| | |

| | | -
Time that metric 1 Time that metric 2 Current time
is first displayed is first displayed

11-18 Performance Guide for Informix Dynamic Server

Query-Tree Tool

Query-Tree Tool

The query-tree tool allows you to monitor the performance of individual
queries. It is a separate executable tool that does not use the data-collector
process. You cannot save query-tree tool data to a file. Figure 11-12 shows a
diagram of the query-tree tool.

e Figure 11-12
Query Tree Tool

Select Session

Window

Status:

Waiting for Query

This tool has a Select Session button and a Quit button. When you select a
session that is running a query, the large detail window displays the SQL
operators that constitute the execution plan for the query. The query-tree tool
represents each SQL operator with a box. Each box includes a dial that
indicates rows per second and a number that indicates input rows. In some
cases, not all the SQL operators can be represented in the detail window. The
smaller window shows the SQL operators as small icons.

The Quit button allows you to exit from the query-tree tool.

The onperf Utility on UNIX 11-19

Status Tool

Status Tool

The status tool allows you to select metrics to store in the data-collector
buffer. In addition, you can use this tool to save the data currently held in the
data-collector buffer to a file. Figure 11-13 shows a status tool.

The status tool displays:

= the length of time that the data collector has been running.

= the size of the data-collector process area, called the collector virtual
memory size.

When you select different metrics to store in the data-collector buffer,
you see different values for the collector virtual memory size.

Figure 11-13

Eile Tools Help
Server: Dynamic Server, Running 0:52:25
Shared memory size: 1.45 MB
Data Collector: Running 0:03:38
Collector virtual memory size: 0.63 MB

Status Tool File Menu

The status tool File menu provides the following options.

Option Use

Close This option closes the tool. When it is the last remaining
tool of the onperf session, Close behaves exactly like Exit.

Exit This option exits onperf.

11-20 Performance Guide for Informix Dynamic Server

Activity Tools

Status Tool Tools Menu

The Tools menu in the status tool is similar to the Tools menu in the graph
tool, which is described in “Graph Tool Tools Menu” on page 11-16.

Activity Tools

Activity tools are specialized forms of the graph tool that display instances of
the specific activity, based on a ranking of the activity by some suitable
metric. You can choose from among the following activity tools:

» The disk-activity tool, which displays the top 10 activities ranked by
total operations

= The session-activity tool, which displays the top 10 activities ranked
by ISAM calls plus PDQ calls per second

= Thedisk-capacity tool, which displays the top 10 activities ranked by
free space in megabytes

= The physical-processor-activity tool, which displays all processors
ranked by nonidle CPU time

= The virtual-processor-activity tool, which displays all VPs ranked by
VP user time plus VP system time

The activity tools use the bar-graph format. You cannot change the scale of an
activity tool manually; onperf always sets this value automatically.
Activity Tool Graph Menu

The Graph menu provides you with options for closing, printing, and exiting
the activity tool.

Activity Tool Tools Menu

The Tools menu is identical to the one that appears when you choose
Graph0O Tools. (For more information, see “Graph Tool Tools Menu™ on
page 11-16.)

The onperf Utility on UNIX 11-21

Ways to Use onperf

Ways to Use onperf

The following sections describe different ways to use the onperf utility.

Routine Monitoring

You can use the onperf utility to facilitate routine monitoring. For example,
you can display several metrics in a graph-tool window and run this tool
throughout the day. Displaying these metrics allows you to monitor Dynamic
Server performance visually at any time.

Diagnosing Sudden Performance Loss

When you detect a sudden performance dip, it is useful to examine the recent
history of the Dynamic Server metrics values to identify any trend. The
onperf utility allows you to scroll back over a time interval, as explained in
“Displaying Recent-History Values” on page 11-17.

Diagnosing Performance Degradation

Performance problems that gradually develop might be difficult to diagnose.
For example, if you detect a degradation in Dynamic Server response time, it
might not be obvious from looking at the current metrics which value is
responsible for the slowdown. The performance degradation might also be
sufficiently gradual that you cannot detect a change by observing the recent
history of metric values. To allow for comparisons over longer intervals,
onperfallows you to save metric values to a file, as explained in “Status Tool”
on page 11-20.

11-22 Performance Guide for Informix Dynamic Server

The onperf Metrics

The onperf Metrics

The following sections describe the various metric classes. Each section
indicates the scope levels available and describes the metrics within each
class.

Dynamic Server performance depends on many factors, including your
operating-system configuration, your Dynamic Server configuration, and
your workload. It is difficult to describe relationships between onperf
metrics and specific performance characteristics.

The approach taken here is to describe each metric without speculating on
what specific performance problems it might indicate. Through experimen-
tation, you can determine which metrics best monitor performance for a
specific Dynamic Server instance.

Database Server Metrics

The scope for these metrics is always the named database server, which
means the database server as a whole, rather than a component of the
database server or disk space.

Metric Name Description

CPU System Time System time, as defined by the platform vendor

CPU User Time User time, as defined by the platform vendor

Percent Cached Percentage of all read operations that are read from the

(Read) buffer cache without requiring a disk read, calculated as
follows:

100 * ((buffer_reads — disk_reads) / (buffer_reads))

Percent Cached Percentage of all write operations that are buffer writes,
(Write) calculated as follows:

100 * ((buffer_writes — disk_writes) / (buffer_writes))

Disk Reads Total number of read operations from disk

Disk Writes Total number of write operations to disk

(1 0of3)

The onperf Utility on UNIX 11-23

Database Server Metrics

Metric Name Description
Page Reads Number of pages transferred to disk
Page Writes Number of pages read from disk

Buffer Reads

Number of reads from the buffer cache

Buffer Writes Number of writes to the buffer cache

ISAM Calls Number of calls received at the ISAM layer of the database
server

ISAM Reads Number of read calls received at the ISAM layer of the
database server

ISAM Writes Number of write calls received at the ISAM layer of the

database server

ISAM Rewrites

Number of rewrite calls received at the ISAM layer of the
database server

ISAM Deletes

Number of delete calls received at the ISAM layer of the
database server

ISAM Commits

Number of commit calls received at the ISAM layer of the
database server

ISAM Rollbacks

Number of rollback calls received at the ISAM layer of the
database server

Table Overflows

Number of times that the tblspace table was unavailable
(overflowed)

Lock Overflows

Number of times that the lock table was unavailable
(overflowed)

User Overflows

Number of times that the user table was unavailable
(overflowed)

Checkpoints

Number of checkpoints written since Dynamic Server
shared memory was initialized

Buffer Waits Number of times that a thread waited to access a buffer
Lock Waits Number of times that a thread waited for a lock
Lock Requests Number of times that a lock was requested

(2 of 3)

11-24 Performance Guide for Informix Dynamic Server

Database Server Metrics

Metric Name

Description

Deadlocks

Number of deadlocks detected

Deadlock Timeouts

Number of deadlock timeouts that occurred (Deadlock
timeouts involve distributed transactions.)

Checkpoint Waits

Number of checkpoint waits; in other words, the number
of times that threads have waited for a checkpoint to
complete

Index to Data Pages
Read-aheads

Number of read-ahead operations for index keys

Index Leaves Read-
aheads

Number of read-ahead operations for index leaf nodes

Data-path-only Read-
aheads

Number of read-ahead operations for data pages

Latch Requests

Number of latch requests

Network Reads

Number of ASF messages read

Network Writes

Number of ASF messages written

Memory Allocated

Amount of Dynamic Server virtual address space in
kilobytes

Memory Used

Amount of Dynamic Server shared memory in kilobytes

Temp Space Used

Amount of shared memory allocated for temporary tables
in kilobytes

PDQ Calls The total number of parallel-processing actions that the
database server performed
DSS Memory Amount of memory currently in use for decision-support

queries

(30f3)

The onperf Utility on UNIX 11-25

Disk-Chunk Metrics

Disk-Chunk Metrics

The disk-chunk metrics take the pathname of a chunk as the metric scope.

Metric Name

Description

Disk Operations

Total number of 1/0 operations to or from the indicated
chunk

Disk Reads

Total number of reads from the chunk

Disk Writes

Total number of writes to the chunk

Free Space (MB)

The amount of free space available in megabytes

Disk-Spindle Metrics

The disk-spindle metrics take the pathname of a disk device or operation-
system file as the metric scope.

Metric Name

Description

Disk Operations

Total number of 1/0 operations to or from the indicated
disk or cooked file

Disk Reads

Total number of reads from the disk or operating-system
file

Disk Writes

Total number of writes to the disk or operating-system file

Free Space

The amount of free space available in megabytes

11-26 Performance Guide for Informix Dynamic Server

Physical-Processor Metrics

Physical-Processor Metrics

The physical-processor metrics take either a physical-processor identifier (for
example, 0 or 1) or Total as the metric scope.

Metric Name Description

Percent CPU System CPU system time for the physical processors
Time

Percent CPU User CPU user time for the physical processors
Time

Percent CPU Idle Time CPU idle time for the physical processors

Percent CPU Time The sum of CPU system time and CPU user time for the
physical processors

Virtual-Processor Metrics

These metrics take a virtual-processor class as a metric scope (cpu, aio, kio,
and so on). Each metric value represents a sum across all instances of this
virtual-processor class.

Metric Name Description

User Time Accumulated user time for a class

System Time Accumulated system time for a class

Semaphore Total count of semaphore operations

Operations

Busy Waits Number of times that virtual processors in class avoided a

context switch by spinning in a loop before going to sleep

Spins Number of times through the loop

(1of2)

The onperf Utility on UNIX 11-27

Session Metrics

Metric Name

Description

1/0 Operations

Number of 1/0 operations per second

1/0 Reads

Number of read operations per second

1/0 Writes

Number of write operations per second

Session Metrics

(2 of2)

These metrics take an active session as the metric scope.

Metric Name Description
Page Reads Number of pages read from disk on behalf of a session
Page Writes Number of pages written to disk on behalf of a session

Number of Threads

Number of threads currently running for the session

Lock Requests

Number of lock requests issued by the session

Lock Waits

Number of lock waits for session threads

Deadlocks

Number of deadlocks involving threads that belong to the
session

Deadlock timeouts

Number of deadlock timeouts involving threads that
belong to the session

Log Records

Number of log records written by the session

ISAM Calls Number of ISAM calls by session
ISAM Reads Number of ISAM read calls by session
ISAM Writes Number of ISAM write calls by session

ISAM Rewrites

Number of ISAM rewrite calls by session

ISAM Deletes

Number of ISAM delete calls by session

ISAM Commits

Number of ISAM commit calls by session

11-28 Performance Guide for Informix Dynamic Server

(1 of2)

Tblspace Metrics

Metric Name

Description

ISAM Rollbacks

Number of ISAM rollback calls by session

Long Transactions

Number of long transactions owned by session

Buffer Reads

Number of buffer reads performed by session

Buffer Writes

Number of buffer writes performed by session

Log Space Used

Amount of logical-log space used

Maximum Log Space
Used

High-water mark of logical-log space used for this session

Sequential Scans

Number of sequential scans initiated by session

PDQ Calls

Number of parallel-processing actions performed for
queries initiated by the session

Memory Allocated

Memory allocated for the session in kilobytes

Memory Used

Memory used by the session in kilobytes

Thlspace Metrics

(2 0f 2)

These metrics take a tblspace name as the metric scope. A tblspace

name is composed of the database name, a colon, and the table name
(database:table). For fragmented tables, the tblspace represents the sum of all
fragments in atable. To obtain measurements for an individual fragmentin a
fragmented table, use the Fragment Metric class.

Metric Name

Description

Lock Requests

Total requests to lock tblspace

Lock Waits Number of times that threads waited to obtain a lock for
the tblspace
Deadlocks Number of times that a deadlock involved the thispace

Deadlock Timeouts

Number of times that a deadlock timeout involved the
tbispace

(L of2)

The onperf Utility on UNIX 11-29

Fragment Metrics

Metric Name Description
ISAM Reads Number of ISAM read calls involving the tblspace
ISAM Writes Number of ISAM write calls involving the tblspace

ISAM Rewrites

Number of ISAM rewrite calls involving the tblspace

ISAM Deletes

Number of ISAM delete calls involving the tblspace

ISAM Calls

Total ISAM calls involving the tblspace

Buffer Reads

Number of buffer reads involving tblspace data

Buffer Writes

Number of buffer writes involving tbispace data

Sequential Scans

Number of sequential scans of the tblspace

Percent Free Space

Percent of the tblspace that is free

Pages Allocated

Number of pages allocated to the tblspace

Pages Used Number of pages allocated to the tblspace that have been
written
Data Pages Number of pages allocated to the tblspace that are used as

data pages

2 of2)

Fragment Metrics

These metrics take the dbspace of an individual table fragment as the metric

scope.

Metric Name

Description

Lock Requests

Total requests to lock fragment

Lock Waits Number of times that threads have waited to obtain a lock
for the fragment
Deadlocks Number of times that a deadlock involved the fragment

Deadlock Timeouts

Number of times that a deadlock timeout involved the
fragment

(1of2)

11-30 Performance Guide for Informix Dynamic Server

Fragment Metrics

Metric Name Description
ISAM Reads Number of ISAM read calls involving the fragment
ISAM Writes Number of ISAM write calls involving the fragment

ISAM Rewrites

Number of ISAM rewrite calls involving the fragment

ISAM Deletes

Number of ISAM delete calls involving the fragment

ISAM Calls

Total ISAM calls involving the fragment

Buffer Reads

Number of buffer reads involving fragment data

Buffer Writes

Number of buffer writes involving fragment data

Sequential Scans

Number of sequential scans of the fragment

Percent Free Space

Percent of the fragment that is free

Pages Allocated

Number of pages allocated to the fragment

Pages Used Number of pages allocated to the fragment that have been
written to
Data Pages Number of pages allocated to the fragment that are used as

data pages

2 of2)

The onperf Utility on UNIX 11-31

Case Studies and
Examples

This appendix contains a case study and several extended
examples of performance-tuning methods described in this
manual.

Case Study

The following case study illustrates a case in which the disks are
overloaded. It shows the steps taken to isolate the symptoms and
identify the problem based on an initial report from a user, and
it describes the needed correction.

A database application that has not achieved the desired
throughput is being examined to see how performance can be
improved. The operating-system monitoring tools reveal that a
high proportion of process time was spent idle, waiting for 1/0.
The Dynamic Server administrator has increased the number of
CPU VPs to make more processors available to handle concurrent
1/0. However, throughput does not increase, which indicates
that one or more disks are overloaded.

To verify the 170 bottleneck, the Dynamic Server administrator
must identify the overloaded disks and the dbspaces that reside
on those disks.

Case Study

To identify overloaded disks and the dbspaces that reside on those disks

1. Checkthe asynchronous I/0 (AIO) queues using onstat -g ioq, which
gives the result shown in Figure A-1.

Figure A-1
AIO I/0 queues: Display from onstat
g name/id Ten maxlen totalops dskread dskwrite dskcopy -g iog Utility
adt 0 0 0 0 0 0 0
opt 0 0 0 0 0 0 0
msc 0 0 0 0 0 0 0
aio 0 0 0 0 0 0 0
pio 0 0 1 1 0 1 0
Tio 0 0 1 341 0 341 0
gfd 3 0 1 225 2 223 0
gfd 4 0 1 225 2 223 0
gfd 5 0 1 225 2 223 0
gfd 6 0 1 225 2 223 0
gfd 7 0 0 0 0 0 0
gfd 8 0 0 0 0 0 0
gfd 9 0 0 0 0 0 0
gfd 10 0 0 o 0 0 0
gfd 11 0 28 32693 29603 3090 0
gfd 12 0 18 32557 29373 3184 0
gfd 13 0 22 20446 18496 1950 0

The maxlen and totalops columns show significant results in
Figure A-1:

= The maxlen column shows the largest backlog of 1/0 requests to
accumulate within the queue. The last three queues are much
longer than any other queue in this column listing.

= The totalops column shows 100 times more 1/0 operations
completed through the last three queues than for any other
gueue in the column listing.

The maxlen and totalops columns indicate that the 1/0 load is
severely unbalanced.

Another way to check 1/0 activity is to use onstat -g iov. This option
gives a slightly less detailed display for all VvPs.

A-2 Performance Guide for Informix Dynamic Server

Case Study

Check the AIO activity for each disk device using onstat -g iof, as
Figure A-2 shows.

Figure A-2
ALO global files: Display from onstat
gfd pathname totalops dskread dskwriteio/s -g iof Utility
3 /dev/infx2 0 0 00.0
4 /dev/infx2 0 0 00.0
5 /dev/infx2 2 2 00.0
6 /dev/infx2 223 0 2230.5
7 /dev/infx4 0 0 00.0
8 /dev/infx4 1 0 10.0
9 /dev/infx4 341 0 3410.7
10 /dev/infx4 0 0 00.0
11§ /dev/infx5 32692 29602 309067.1
12)/dev/infx6 32556 29372 318466.9
13 /dev/infx7 20446 18496 195042.0

This display indicates the disk device associated with each queue.
Depending on how your chunks are arranged, several queues can be
associated with the same device. In this case, the total activity for
/dev/infx2 is the sum of the totalops column for queues 3, 4, 5, and 6,
which is 225 operations. This activity is still insignificant when
compared with /dev/infx5, /dev/infx6, and /dev/infx7.

Case Studies and Examples A-3

Case Study

A-4 Performance Guide for Informix Dynamic Server

Figure A-3
Display from onstat
-d Utility

3. Determine the dbspaces that account for the 1/0 load using onstat
-d, as shown in Figure A-3.
Dbspaces
address number flags fchunk nchunks flags owner name
c009ad00 1 1 1 1 N informix rootdbs
c009ad44 2 2001 2 1 N T informix tmpldbs
c009ad88 3 1 3 1 N informix oltpdbs
c009adcc 4 1 4 1 N informix histdbs
c009ael0 5 2001 5 1 N T informix tmp2dbs
c009aeb4 6 1 6 1 N informix physdbs
c009ae98 7 1 7 1 N informix logidbs
c009aedc 8 1 8 1 N informix _runsdbs
c009af20E 1 9 3 N informix[acctdbs]
9 active, 32 total
Chunks
address chk/dbs offset size free bpages flags pathname
c0099574 1 1 500000 10000 9100 PO- /dev/infx2
c009960c 2 2 510000 10000 9947 PO- /dev/infx2
c00996a4 3 3 520000 10000 9472 PO- /dev/infx2
c009973c 4 4 530000 250000 242492 PO- /dev/infx2
c00997d4 5 5 500000 10000 9947 PO- /dev/infx4
c009986c 6 6 510000 10000 2792 PO- /dev/infx4
c0099904 7 7 520000 25000 11992 PO- /dev/infx4
c009999c 8 8 545000 10000 9536 PO- /dev/infx4
c0099a34 9 250000 450000 4947 PO- /dev/infx5
c0099acc 10 250000 450000 4997 PO- /dev/infx6
c0099b64 11 250000 450000 169997 PO- /dev/infx7
11 active, total

In the Chunks display, the pathname column indicates the disk
device. The chk/dbs column indicates the numbers of the chunk and
dbspace that reside on each disk. In this case, only one chunk is
defined on each of the overloaded disks. Each chunk is associated
with dbspace number 9.

The Dbspaces display shows the name of the dbspace that is
associated with each dbspace number. In this case, all three of the

overloaded disks are part of the acctdbs dbspace.

Case Study

Although the original disk configuration allocated three entire disks to the
acctdbs dbspace, the activity within this dbspace suggests that three disks are
not enough. Because the load is about equal across the three disks, it does not
appear that the tables are necessarily laid out badly or improperly
fragmented. However, you could get better performance by adding
fragments on other disks to one or more large tables in this dbspace or by
moving some tables to other disks with lighter loads.

Case Studies and Examples A-5

Index

A

Access plan
description 7-4
different types 7-15
directives 8-6
effects of OPTCOMPIND 7-7
in SET EXPLAIN output 9-23
SET EXPLAIN output 7-17
subquery 7-9
Activity tool 11-6, 11-21
Administrator, database server
allocate DSS memory 9-12
control DSS resources 3-16, 9-16
create staging-area
blobspace 3-56
halt database server 3-67
limit DSS resources 9-8
limit number of DSS queries 9-13
limit number of scan threads 9-13
limit PDQ priority 9-13, 9-16
mark dbspace down 3-67
responsibility 1-28, 3-44
specify unavailable fragments 6-8
use of MAX_PDQPRIORITY 9-16
ADTERR configuration
parameter 3-70
ADTMODE configuration
parameter 3-70
AFF_NPROCS configuration
parameter 3-13
AFF_SPROC configuration
parameter 3-13
AIlO queues A-2

AIO VPs 3-13, 3-14
Algorithm, in-place alter 4-36, 7-28
ALTER FRAGMENT statement
eliminating index build during
DETACH 6-37, 6-38, 6-39
least cost index build during
ATTACH 6-31, 6-33, 6-35, 6-36
to move table 4-4
to release space 4-37
ALTER INDEX statement 4-23,
4-35, 4-37
ALTER TABLE statement
in-place alter algorithm 4-36, 7-28
to add or drop a column 4-36
to change data type 4-36
to change extent sizes 4-30, 4-31
ANSI compliance
level Intro-16
ANSI Repeatable Read isolation
level 5-10
ANSI Serializable isolation
level 5-10
Application developer
concurrency 1-29
encountering locks 5-7, 5-10
forcing use of index 5-11
general responsibility 1-29
isolation level 5-7,5-10
phantom row 5-8
setting PDQ priority 9-10
SQLWARN array 3-61
Assigning table to a dbspace 4-3
Attached index 6-18
Auditing
and performance 3-63
facility 1-12

AUDITPATH configuration
parameter 3-70

AUDITSIZE configuration
parameter 3-70

B

Background 170 3-61
Backup and restore
and table placement 4-7, 6-12
fragmentation for 6-9
Bar graph 11-13
Benchmarks 1-12
Big buffers 3-25, 3-26
Binary large object (blob). See TEXT
or BYTE data type.
Blobpages
estimating number in
tblspace 4-16
locating in blobspace 4-18
sizing in blobspace 3-55
Blobspace
disk 1/0s 4-18
unbuffered 4-18
Blobspace configuration
impacts 3-54
Branch index pages 4-13
B-tree
btree cleaner 10-14
description 4-13
Buffer cache rate 3-43
Buffer pool
BUFFERS configuration
parameter 3-34
bypass with light scans 3-59
LRU queues 3-68
memory-resident pages 3-42,
3-43
network 3-20
restrictions with BYTE or TEXT
data 4-18
Buffered logging 3-49
Buffers
data-replication 3-42
logical log 3-38
memory-resident tables 3-43
network 3-20

physical log 3-38
TCP/IP connections 3-31
BUFFERS configuration
parameter 3-34
reducing disk 1/0s 3-34
BYTE data type
blobspace 3-54
bufferpool restriction 4-18
estimating table size 4-9
how stored 4-17
in blobspace 4-18
in tblspace 4-17
locating 4-17
memory cache 3-56
on disk 4-17
parallel access 3-54
staging area 3-56
B+ tree. See B-tree.

C

Cardinality 10-6
Case study A-1
Central processing unit (CPU)
configuration impacts on 3-6
configuration parameters
affecting 3-10
environment variables
affecting 3-10
utilization and 1-21
VPs and 3-21

Changing the scale of metrics 11-17

CHAR data type 4-50
GLS recommendations 7-31
Checking indexes 4-25
Checkpoints, logging, and
performance 3-62
Chunks
and dbspace configuration 3-44
and disk partitions 3-45
critical data 3-46
monitoring 4-33
CKPINTVL configuration
parameter 3-65
Class of metrics 11-12
CLEANERS configuration
parameter 3-69

2 Performance Guide for Informix Dynamic Server

Client applications

connection 1-7

description 1-4, 1-5

types 1-8

virtual processors 1-6
Client/server architecture 1-4
Clustering 4-23

index for sequential access 7-28
Columns

filter expression, with join 7-11

filtered 4-21

order-by and group-by 4-22

with duplicate keys 4-22
Command-line conventions

elements of Intro-10

example diagram Intro-11

how to read Intro-11
Commands, UNIX

iostat 2-5

ps 2-5

sar 2-5, 3-35

time 1-16

vmstat 2-5, 3-35
Comment icons Intro-8
COMMIT WORK statement 1-12
Committed Read isolation

level 3-59

Complex query

example of 7-16
Compliance, with industry

standards Intro-16

Composite index

order of columns 10-12

use 10-11
Concurrency

defined 5-3

effects of isolation level 5-8, 7-4

fragmentation 6-5

page lock on index 5-5

page locks 5-15

row and key locks 5-4

table lock 5-6

table locks 5-15

with oncheck 4-25, 4-26
Configuration 3-67, 3-68, 3-70

and CPU 3-6

and 170 3-44

and memory 3-23
evaluating 3-5
operating-system parameters
and CPU 3-6,11-3
Configuration parameter
affecting multiple
connections 3-23
DEADLOCK_TIMEOUT 5-17
DIRECTIVES 8-15
LOCKS 5-14
NETTYPE 3-23
OPTCOMPIND 8-15
OPT_GOAL 10-19
Configuration parameters
ADTERR 3-70
ADTMODE 3-70
affecting auditing 3-64
affecting backup and restore 3-64
affecting checkpoints 3-63
affecting CPU 3-10
affecting critical data 3-49
affecting data replication 3-64
affecting logging 170 3-63
affecting logical log 3-50
affecting memory 3-31
affecting page cleaning 3-64
affecting physical log 3-50
affecting recovery 3-64
affecting root dbspace 3-49
affecting sequential /0 3-60
AFF_NPROCS 3-13
AFF_SPROC 3-13
AUDITPATH 3-70
AUDITSIZE 3-70
BUFFERS 3-34
CKPINTVL 3-65
CLEANERS 3-69
control PDQ resources 9-5
DATASKIP 3-61
DBSPACETEMP 3-50, 3-51, 4-7,
4-27
DRAUTO 3-70
DRLOSTFOUND 3-70
DRTIMEOUT 3-70
DS_MAX_QUERIES 3-16, 4-27,
9-5, 9-6, 9-13
DS_MAX_SCANS 3-17, 9-5, 9-6,
9-13

DS_TOTAL_MEMORY 3-16,
3-38, 3-39, 4-27, 9-5, 9-8, 9-12

FILLFACTOR 4-15

LBU_PRESERVE 3-68

LOCKS 3-36

LOGBUFF 3-38, 3-50, 3-67

LOGFILES 3-66

LOGSIZE 3-50, 3-65

LOGSMAX 3-50, 3-66

LRUS 3-68

LRU_MAX_DIRTY 3-68

LTAPEBLK 3-69

LTAPEDEV 3-69

LTAPESIZE 3-69

LTXHWM 3-67

MAX_PDQPRIORITY 3-11, 3-15,
9-5, 9-8, 9-9, 9-13, 9-15, 9-16,
10-16

MIRROR 3-50, 3-52

MIRROROFFSET 3-50

MIRRORPATH 3-50

MULTIPROCESSOR 3-12

NOAGE 3-12

NUMAIOVPS 3-14

NUMCPUVPS 3-11

OFF_RECVRY_THREADS 3-69

ONDBSPDOWN 3-66, 3-67

ON_RECVRY_THREADS 3-69

OPCACHEMAX 3-58

OPTCOMPIND 3-11, 3-15, 9-14

PHYSBUFF 3-38, 3-67

PHYSFILE 3-66

RA_PAGES 3-60, 3-64

RA_THRESHOLD 3-60, 3-64

RESIDENT 3-35

ROOTNAME 3-49

ROOTOFFSET 3-49

ROOTPATH 3-49

ROOTSIZE 3-49

SHMADD 3-26, 3-32

SHMBASE 3-31

SHMTOTAL 3-26, 3-33

SHMVIRTSIZE 3-26, 3-32

SINGLE_CPU_VP 3-12

STACKSIZE 3-36

STAGEBLOB 3-57

TAPEBLK 3-69

TAPEDEV 3-69

TAPESIZE 3-69

CONNECT statement 3-46, 4-3
Contention
cost of reading a page 7-26
reducing with fragmentation 6-7
Contiguous extents
performance advantage 4-30,
4-34
Conventions
screen-illustration Intro-12
Cost per transaction 1-17
CPU VPs 3-11, 3-12, 9-7
and fragmentation 6-5
limited by
MAX_PDQPRIORITY 3-15
CREATE CLUSTERED INDEX
statement 4-23
CREATE INDEX statement 4-15,
4-35, 4-36, 6-18, 6-19
CREATE TABLE statement 3-46,
4-3, 4-17, 4-30, 6-18, 6-19
CREATE TEMP TABLE
statement 6-21
Critical data
configuration parameters
affecting 3-49
description 3-66
introduced 3-46
mirroring 3-47
Critical media
mirroring 3-47
separating 3-47
Critical resource 1-19
cron UNIX scheduling facility 2-5,
2-6, 3-30
Cursor Stability isolation
level 3-59, 5-9

D

Data conversion 7-30
Data distributions
creating 7-19
creating on filtered columns 8-5,
10-7
effect on memory 3-26
filter selectivity 7-21
guidelines to create 10-8
how optimizer uses 7-20

Index 3

join columns 10-9
multiple columns 10-10
syscolumns 10-7
sysdistrib 10-7
Data migration between
fragments 6-34
Data replication
and performance 3-62
buffers 3-42
Data transfers per second 1-24
Data types
BYTE 3-54, 4-9, 4-17, 4-18
CHAR 4-50, 7-31
effect of mismatch 7-30
NCHAR 4-50
NVARCHAR 4-12, 4-50
TEXT 3-54, 4-9, 4-17, 4-18, 4-50
VARCHAR 4-12, 4-50, 7-31
Database
demonstration Intro-5
Database server administrator
allocate DSS memory 9-12
control DSS resources 3-16, 9-16
create staging-area
blobspace 3-56
halt database server 3-67
limit DSS resources 9-8
limit number of DSS queries 9-13
limit number of scan threads 9-13
limit PDQ priority 9-13, 9-16
mark dbspace down 3-67
placing system catalog tables 3-46
responsibility 1-28, 3-44
specify unavailable fragments 6-8
use of MAX_PDQPRIORITY 9-16
DATABASE statement 3-46, 4-3
Data-collector
buffer 11-4
process 11-4
DATASKIP configuration
parameter 3-61
DB-Access utility 2-6, 4-34
dbload utility 4-24, 4-34, 4-39
DB-Monitor utility 3-56
dbschema utility
data distributions 6-15
distribution output 10-7
to examine value
distribution 6-10

Dbspaces
and chunk configuration 3-44
configuration parameters
affecting root 3-49
for temporary tables and sort
files 3-50, 4-7
mirroring root 3-48
multiple disks within 4-6
reorganizing to prevent extent
interleaving 4-34
DBSPACETEMP
advantages over
PSORT_DBTEMP 3-53
Configuration parameter 4-7
configuration parameter 3-50,
3-51
environment variable 3-51, 3-52,
4-7,4-27
overriding configuration
parameter 3-52
parallel inserts 3-50
DBSPACETEMP configuration
parameter 4-27
DBSPACETEMP environment
variable 3-52
DBUPSPACE
environment variable 10-10
DB/ Cockpit utility 2-7
Deadlock 5-17
DEADLOCK_TIMEOUT
configuration parameter 5-17
Decision-support queries (DSS)
applications 1-8
balanced with transaction
throughput 1-15
controlling resources 9-16
effects of
DS_TOTAL_MEMORY 3-38
gates 9-19, 9-20
monitoring resources
allocated 9-17, 9-22
monitoring threads for 9-20, 9-21
performance impact 1-18
use of temporary files 6-10, 6-11
Default locale Intro-4
Demonstration database Intro-5
Denormalizing
data model 4-49
tables 4-49

4 Performance Guide for Informix Dynamic Server

Derived data 4-53
Detached index 6-19
Dimensional tables 10-12, 10-13
DIRECTIVES configuration
parameter 8-15
Directives. See Optimizer.
Dirty Read isolation level 5-12
Disk
cost to read row from 7-26
Disk access
performance 10-14
performance effect of 7-26
sequential 10-14
sequential forced by query 10-5,
10-6
Disk extent 4-29
Disk I/0
allocating AlO VPs 3-14
background database server
activities 1-10
balancing 3-51
big buffers 3-26
bind AIO VPs 3-13
blobspace data 3-54
buffered in shared memory 4-18
BUFFERS configuration
parameter 3-34
BYTE or TEXT data 3-55
contention 7-26
effect on performance 3-44
effects of UNIX configuration 3-9
hot spots 3-44
isolating critical data 3-47
KAIO 3-14
light scans 3-59
limiting 3-15
log buffers 3-48
mirroring 3-47
monitoring AlIO VPs 3-14
nonsequential access 4-21
parallel 1-4
physical log 3-49
query plan cost 7-4,7-14, 7-18
read-ahead configuration
parameters 3-60
reducing 3-34, 4-49
root dbspace 3-52
seek time 3-58
sort files 3-52

temporary tables 3-52
TPC-A benchmark 1-13
unbuffered (raw) devices 1-5,
3-52
Disk layout
and backup 4-7, 6-9
and table isolation 4-4
Disk utilization 1-24
Disks
and saturation 3-44
critical data 3-46
middle partitions 4-5
multiple within dbspace 4-6
partitions and chunks 3-45
DISTINCT keyword 10-12
Distribution scheme
description of 6-4
designing 6-13, 6-14, 6-15
methods described 6-12 to 6-13
Documentation
on-line manuals Intro-13
related Intro-15
Documentation conventions
command-line Intro-9
icon Intro-7
sample-code Intro-12
typographical Intro-7
Documentation notes Intro-14
Documentation notes, program
item Intro-15
Documentation, types of
documentation notes Intro-14
error message files Intro-13
machine notes Intro-14
printed manuals Intro-13
related reading Intro-15
release notes Intro-14
DRAUTO configuration
parameter 3-70
DRINTERVAL configuration
parameter 3-70
DRLOSTFOUND configuration
parameter 3-70
DROP INDEX statement, releasing
an index 10-15
Dropping indexes 4-24
for performance 4-38
DRTIMEOUT configuration
parameter 3-70

DSS. See Decision-support queries
(DSS).
DS_MAX_QUERIES
changing value 9-8
DS_MAX_QUERIES Configuration
parameter 4-27, 9-6, 9-13
DS_MAX_QUERIES configuration
parameter 3-16, 9-5
DS_MAX_SCANS
changing value 9-8
MGM use of 9-5
scan threads 9-6
DS_MAX_SCANS Configuration
parameter 9-13
DS_MAX_SCANS configuration
parameter 3-17, 9-6
DS_TOTAL_MEMORY
changing value 9-8
increasing for DSS
applications 9-16
reduce value for OLTP 9-12
DS_TOTAL_MEMORY
Configuration parameter 4-27,
9-8,9-12
DS_TOTAL_MEMORY
configuration parameter 3-16,
3-38, 3-39,9-5
dtcurrent() ESQL/C function, to get
current date and time 1-17
Duplicate index keys 4-22
Dynamic scalable architecture
(DSA) 1-4

E

Early indications of performance
problems 1-9
Environment variable
IFX_DIRECTIVES 8-15
OPT_GOAL 10-19
Environment variables
affecting CPU 3-10
affecting 170 3-53
affecting parallel sorts 3-53, 3-54
affecting sort files 3-52
affecting sorting 3-46, 3-53
affecting temporary tables 3-46,
3-52, 3-53

DBSPACETEMP 3-46, 3-51, 3-52,
4-7,4-27
DBUPSPACE 10-10
INFORMIXOPCACHE 3-56, 3-58
OPTCOMPIND 3-11, 3-15, 9-14
PDQPRIORITY 3-11, 4-27, 9-6,
9-7,9-9, 10-10, 10-16
PSORT_DBTEMP 3-52, 3-53
PSORT_NPROCS 3-10,3-53,3-54,
4-27,10-16
en_us.8859-1 locale Intro-4
Equality expression, defined 6-24
Error message files Intro-13
Estimating the maximum number
of extents 4-32
Explicit temporary table 6-21
Expression-based distribution
scheme
and fragment elimination 6-26
definition 6-12
designing 6-15
which type to use 6-15
EXTENT SIZE clause 4-30
Extents
allocating 4-32
eliminating interleaved 4-34
interleaved 4-33
managing 4-29
monitoring 4-33
next-extent size 4-30
performance 4-30, 4-33
reclaiming empty space 4-36
reorganizing dbspace to prevent
interleaving 4-34
size limit 4-32
size of 4-30

F

Fact tables 10-12, 10-13

Feature icons Intro-8

Features, product Intro-5

File descriptors 3-9

Files
executables for onperf 11-7
machine notes 3-25
saving performance metrics 11-4
sort 4-7

Index 5

tbconfig 3-25
/tmp directory 3-53
$INFORMIXDIR/bin 11-7
FILLFACTOR
configuration parameter 4-15
CREATE INDEX 4-15, 10-14
Filter
columns 7-11
defined 7-20
effect on sorting 7-25
index used to evaluate 7-22
join 8-5
memory used to evaluate 7-23
query plan 8-4
selectivity 7-20
Filter expression
effect on performance 10-5, 10-6
evaluated from index 10-11
selectivity estimates 7-21
Filtered columns 4-21
finderr utility Intro-14
Forced residency 3-35
Foreground write 3-62
Formula
blobpages 4-16
buffer pool size 3-34
connections per poll thread 3-19
CPU utilization 1-21
data buffer size estimate 3-25
decision-support queries 9-12
disk utilization 1-24
DS total memory 3-40, 3-41
file descriptors 3-9
for number of extents 4-32
index pages 4-11, 4-15
initial stack size 3-36
LOGSIZE 3-65
memory grant basis 9-12
message portion 3-28
minimum DS memory 3-40
number of remainder pages 4-10
operating-system shared
memory 3-29
paging delay 1-23
partial remainder pages 4-11
quantum of memory 3-39, 9-5
RA_PAGES 3-60
RA_THRESHOLD 3-60
resident portion 3-25

resources allocated 3-15
rows per page 4-10
scan threads 9-6
scan threads per query 3-17, 9-13
semaphores 3-8
service time 1-20
shared-memory estimate 9-12
shared-memory increment
size 3-33
size of physical log 3-66
sort operation, costs of 7-24
threshold for free network
buffers 3-21
Fragment
nonoverlapping on multiple
columns 6-28
nonoverlapping on single
column 6-26
overlapping on single
column 6-27
FRAGMENT BY EXPRESSION
clause 6-18
Fragment elimination
definition 6-22
equality expressions 6-24
range expressions 6-23
Fragment ID
defined 6-20
fragmented table 6-11
index entry 4-14
space estimates 4-14, 6-11
sysfragments 6-20
Fragmentation
attached index 6-18
detached index 6-19
distribution schemes for fragment
elimination 6-22
for finer granularity of backup
and restore 6-9
for increased availability of
data 6-8
FRAGMENT BY EXPRESSION
clause 6-18, 6-19
goals of 6-4
improving 6-16
improving ATTACH
operation 6-30, 6-31, 6-33,
6-35, 6-36

6 Performance Guide for Informix Dynamic Server

improving DETACH
operation 6-37, 6-38, 6-39
indexes 6-18, 6-19
monitoring 6-40
monitoring 1/0 requests 6-40
no data migration during
ATTACH 6-34
of indexes 6-18
of temporary tables 6-21
restrictions on index 6-21
setting priority levels for
PDQ 9-15
sysfragments system catalog 6-40
table name when monitoring 6-40
TEMP TABLE clause 6-21
temporary tables 6-21
to reduce contention 6-7

Fragmentation strategy

ALTER FRAGMENT ATTACH
clause 6-30, 6-31, 6-34, 6-35,
6-37

ALTER FRAGMENT DETACH
clause 6-38, 6-39

attached index 6-18

description of 6-4

detached index 6-19

formulating 6-4

how data used 6-9

index dbspaces 6-19

monitoring 6-40

next-extent size 6-17

number of fragments 6-5

of index 6-18

sysfragments system catalog 6-20

temporary table 6-21

Freeing shared memory 3-30
Function, ESQL/C,

dtcurrent() 1-17

G
Global Language Support

(GLS) Intro-4

Graph tool 11-6, 11-9
GROUP BY clause 7-23

composite index used for 10-11
indexes for 10-15

Group-by columns 4-22

H

Hash join 7-4, 7-6, 8-5, 8-7
History, recent performance 11-17
Home pages, in indexes 4-10

Hot spots 3-44

Icons
comment Intro-8
feature Intro-8
platform Intro-8
product Intro-8
IFX_DIRECTIVES environment
variable 8-15
Improving fragmentation 6-16
IN DBSPACE clause 4-3
Indexes
adding for performance 4-21
and filtered columns 4-21
autoindex 7-5, 7-15, 10-11
avoiding duplicate keys 4-22
B-tree cleaner 10-14
checking 4-25
choosing columns for 4-21
composite 10-11
disk space used by 4-19, 10-15
dropping 4-24, 4-38
duplicate entries 4-22
effect of physical order of table
rows 7-14
effect of updating 10-14
estimating pages 4-14
fact table 10-13
fragmenting 6-18
impacts on delete, insert, and
update operations 4-20
key-only scan 7-4
managing 4-19
order-by and group-by
columns 4-22
ordering columns in
composite 10-12
size 4-14
snowflake schema 10-13

star schema 10-13
structure of entries 4-14
time cost of 4-19
when not used by optimizer 7-31,
10-5, 10-6
when replaced by join plans 7-13
when to rebuild 10-14
when used by optimizer 7-13
Industry standards, compliance
with Intro-16
$INFORMIXDIRZhhelp
directory 11-7
$INFORMIXDIR/bin
directory 11-7
INFORMIXDIR/bin
directory Intro-5
INFORMIXOPCACHE

environment variable 3-56, 3-58

Inner table 7-5
Inner table, directives 8-9, 8-10
Input-output
background activities 3-61
configuration impacts on 3-44
contention and high-use
tables 4-4
disk saturation 3-44
tables, configuring 3-58
INSERT cursor 6-12
Interleaved extents 4-33
iostat command 2-5
I1SO 8859-1 code set Intro-4
Isolating tables 4-4
Isolation levels
ANSI Repeatable Read 5-10
ANSI Serializable 5-10
Committed Read 3-59, 5-9
Cursor Stability 3-59, 5-9
Dirty Read 5-8, 5-12
effect on concurrency 7-4
effect on joins 7-4
Repeatable Read 3-59, 5-10
Repeatable Read and
OPTCOMPIND 7-8, 9-14
Repeatable Read and
OPTCOMPIND setting 7-7
SET ISOLATION statement 5-8

J

Join
avoiding 10-5
directives 8-7
effect of large join on
optimization 10-18
filter 8-5
in subquery 9-10
in view 9-10
order 7-7, 8-4, 8-6, 8-7, 8-8, 8-13,
8-14
outer 9-10
parallel execution 9-10
plan
hash 7-6
hash join 7-4,7-6
isolation level effect 7-4
nested-loop join 7-4,7-5
selected by optimizer 7-3
semi join 7-9
to replace index use 7-7
SET EXPLAIN output 9-14
temporary tables 10-5
thread 9-4
with column filters 7-11
Join and sort, reducing impact
of 10-15
Join column
composite index 10-12
running UPDATE STATISTICS
on 10-9
Join plan
definition 7-4
directives 8-9
directives to alter 8-6
effects of OPTCOMPIND 7-8
hash 8-5, 8-7, 8-13, 8-14, 9-5, 9-14,
9-23
nested-loop 8-7, 8-11, 8-13
OPTCOMPIND 9-14
optimizer choosing 8-4
precedence 8-15
star 10-13
subquery 7-9

Index 7

K

Kernel asynchronous 1/0
(KAIO) 3-14

Key-first scan 7-18

Key-only index scan 7-4, 7-17

L

Latency, disk I/0O 7-26
LBU_PRESERVE configuration
parameter 3-68
Leaf index pages 4-13
Least-recently-used (LRU)
and memory-resident tables 3-42
memory-management
algorithm 1-22
monitoring 3-68
queues 3-59, 3-68
thresholds for 170 to physical
log 3-49
Light scan 3-59
LIKE test 10-5
LOAD and UNLOAD
statements 4-4, 4-24, 4-34, 4-37,
4-39
Locale Intro-4
Locating BYTE or TEXT data 4-17
Locks
blobpage 3-55
byte 5-13
concurrency 4-25, 5-3
database 5-7
determining owner 5-16
duration 5-8
during oncheck 4-25
effects of table lock 5-6
exclusive 4-26, 5-5, 5-12, 5-13
granularity 5-3
intent 5-13
intent shared (IS) lock 4-25
internal lock table 5-9, 5-13
isolation level 5-8
isolation levels and join 7-4
key-value 5-12
longspins 2-8
maximum number 5-14
monitoring by session 5-15

not wait for 5-7
number of 3-36
page 5-4
promotable 5-11
row and key 5-4
shared 5-5, 5-13
table 5-5, 5-6
types 5-13
update 5-13
wait for 5-7
waiting for 5-9
LOCKS configuration
parameter 3-36, 5-14
LOGBUFF configuration
parameter 3-38, 3-50, 3-67
LOGFILES configuration
parameter 3-66
Logical log

and data-replication buffers 3-42

and LBU_PRESERVE 3-68
assigning files to a dbspace 3-47
buffer size 3-38
buffered 3-49
configuration parameters
affecting 3-50
logging mode 3-48
mirroring 3-48
unbuffered 3-48
viewing records 1-12
LOGSIZE configuration
parameter 3-50, 3-65
LOGSMAX configuration
parameter 3-50, 3-66
Long transactions
ALTER TABLE operation 4-41
LBU_PRESERVE configuration
parameter 3-68
LTXHWM configuration
parameter 4-40
when occurs 3-68
LRUS configuration
parameter 3-68
LRU_MAX_DIRTY configuration
parameter 3-68
LRU_MIN_DIRTY configuration
parameter 3-68
LTAPEBLK configuration
parameter 3-69

8 Performance Guide for Informix Dynamic Server

LTAPEDEYV configuration
parameter 3-69
LTAPESIZE configuration
parameter 3-69
LTXEHWM configuration
parameter 3-67
LTXHWM configuration
parameter 3-67

M

Machine notes Intro-14, 3-25
Managing extents 4-29
MAX_PDQPRIORITY
changing value 9-8
configuration parameter 3-15
description 3-15
effects on transaction
throughput 3-16
limiting PDQ priority 9-7,9-9
limiting PDQ resources 10-16
limiting scans 3-15, 9-13
limiting user-requested
resources 9-15, 9-16
number of queries 9-8
OLTP resources 9-9
PDQ resources 9-5
to increase interquery
performance 9-10
to maximize OLTP
throughput 9-9
MAX_PDQPRIORITY
configuration parameter 3-11
limiting disk I/0s 3-15
Memory
activity costs 7-23
and data-replication buffers 3-42
configuration impacts on 3-23
configuration parameters
affecting 3-31
estimate for sorting 4-28
for stored procedure 9-11
limited by
MAX_PDQPRIORITY 3-15
limited by PDQ priority 3-11
monitoring by session 9-22
monitoring MGM allocation 9-6
network bufferpool 3-20

PDQ priority affect on 4-28
PDQ priority effect on 9-8
quantum allocated by MGM 9-5,
9-16
UNIX configuration
parameters 3-9
utilization 1-22
Memory Grant Manager (MGM)
description 9-5
DSS queries 9-5
memory allocated 3-39
monitoring resources 9-6, 9-17
scan threads 9-6
sort memory 4-28
Memory-management system 1-22
Memory-resident tables
described 3-42
monitoring 3-43
Message
portion of shared memory 3-28
queues 3-26
Message file
error messages Intro-13
Metric
changing line color 11-13
changing line width 11-13
changing scale 11-17
class and scope 11-12
Metric classes, onperf
database server 11-23
disk chunk 11-26
disk spindle 11-26
fragment 11-30
physical processor 11-27
session 11-28
tablespace 11-29
virtual processor 11-27
MIRROR configuration
parameter 3-50, 3-52
Mirroring, and critical media 3-47
MIRROROFFSET configuration
parameter 3-50
MIRRORPATH configuration
parameter 3-50
MODIFY NEXT SIZE clause 4-30,
4-31
Monitoring
buffer pool 3-34
checkpoints 3-65

CPU utilization 2-8
deadlocks 5-17
disk utilization 2-10
estimated number of rows 7-15
foreground writes 3-62
fragments 6-40
170 queues for AIO VPs 3-14
lock owner 5-16
locks 5-14, 5-16
locks used by sessions 5-15
logical-log files 2-10
longspins 2-8
LRU queues 3-68
memory 3-28
memory pools 3-27, 3-28
memory utilization 2-9
memory-resident tables 3-43
MGM resources 9-17
PDQ threads 9-20, 9-21
resources for a session 9-22
sort files 2-10
temporary dbspaces 2-10
threads for a session 9-20
threads per CPU VP 3-12
threads per session 3-12
Monitoring tools
database server utilities 2-6
UNIX 2-5
Windows NT 2-5
Motif window manager 11-4, 11-6,
11-8
Multiple residency, avoiding 3-6
Multiplexed connection
description 3-22
performance improvement
with 3-22
MULTIPROCESSOR configuration
parameter 3-12
Mutex 2-9
mwm window manager 11-7

N

NCHAR data type 4-50

Nested-loop join 7-4, 7-5, 8-7

NETTYPE configuration
parameter 3-23

Network
as performance bottleneck 3-6
communication delays 3-44
connections 3-9
free buffers threshold 3-20
performance issues 7-31
Network buffers
threshold of free buffers 3-21
NEXT SIZE clause 4-30
NOAGE configuration
parameter 3-12
NOFILE, NOFILES, NFILE, or
NFILES operating-system
configuration parameters 3-9
Not in this manual 1-30
NUMAIOVPS configuration
parameter 3-14
NUMCPUVPS configuration
parameter 3-11
NVARCHAR data type 4-12, 4-50

0

OFF_RECVRY_THREADS
configuration parameter 3-69
OLTP applications
description 1-8
effects of
MAX_PDQPRIORITY 3-16
effects of PDQ 9-7
maximizing throughtput with
MAX_PDQPRIORITY 9-6, 9-9
reduce
DS_TOTAL_MEMORY 9-12
using MGM to limit DSS
resources 9-5
ON-Archive utility 3-69
onaudit utility 3-70
oncheck utility
and index sizing 4-15
checking index pages 4-25
-clw option 4-25
-ciw option 4-25
description 2-11
determining free space in
index 10-14
displaying data-page
versions 4-45, 4-46

Index 9

displaying free space 4-35
displaying size of table 4-9
improving concurrency 4-26
locks 4-26
obtaining page size 4-9, 4-32, 4-45
outstanding in-place alters 4-45
-pB option 2-11
-pc option 2-11
-pD option 2-11
-pd option 2-11
-pe option 4-35
-pe option 2-11, 4-33
physical layout of chunk 4-33
-pK option 2-11
-pk option 2-11
-pKw option 4-25
-pkw option 4-25
-pL option 2-11
-pl option 2-11
-pLw option 4-25
-plw option 4-25
-pP option 2-11
-pp option 2-11
-pr option 4-9, 4-32, 4-45
-pr option 2-11
printing index pages 4-26
-pT option 4-45, 4-46
-pT option 2-11
-pt option 2-11, 4-9
to monitor table growth 4-32
-w option 4-25, 4-26
ONDBSPDOWN configuration
parameter 3-66, 3-67
On-line manuals Intro-13
onload and onunload utilities 3-69,
4-4,4-34, 4-37
onlog utility 1-12, 2-10
onmode utility
and forced residency 3-35
and shared-memory
connections 3-7
—F option 3-30
-MQDS options 9-8
-P option 3-14
-p option 3-21
ON-Monitor utility 3-21, 3-54
onparams utility 3-47, 3-49

onperf

metric classes
database server 11-23
disk chunk 11-26
disk spindle 11-26
fragment 11-30
physical processor 11-27
session 11-28
tblspace 11-29
virtual processor 11-27
monitoring tool 2-6

onperf utility

activity tools 11-21
data flow 11-4
described 11-3
graph tool 11-9
metrics 11-23
query-tree tool 11-17
replaying metrics 11-5
requirements 11-6
saving metrics 11-4
starting 11-8

status tool 11-20
tools 11-6

user interface 11-9

onspaces utility

and blobspaces 3-54
-t option 3-51, 4-7
-t option 4-27

onstat utility

-b option 2-7, 3-43

-c option 4-16

-d option 2-10

-F option 3-62

-g act option 2-8

-g ath option 2-8, 3-12, 9-21
-g glo option 2-8

-g iof option 2-10

-g iog option 2-10

-g ioq option 2-10, 3-14

-g iov option 2-10

-g mem option 2-9

-g mem option 3-27, 3-28
-g mgm option 2-9, 9-6, 9-17
-g ntd option 2-8

-g ntf option 2-8

-g ntu option 2-8

10 Performance Guide for Informix Dynamic Server

-g option 2-7
-g ppf option 6-40
-g gst option 2-8
-g rea option 2-8
-g sch option 2-8
-g seg option 2-9, 3-33
-g ses option 2-8, 3-12, 9-22
-g ses option 3-28
-g sle option 2-8
-g spi option 2-8
-g sql option 2-8
-g sts option 2-8
-g tpf option 2-9
-g wai option 2-9
-g wst option 2-9
introduced 2-7
-k option 5-14, 5-16
-l option 2-7
-m option 3-65
monitoring PDQ 9-17
-O option 3-56
-P option 2-7, 3-43
-p option 1-12, 2-7, 3-34, 3-43,
5-14, 5-17
-R option 2-7, 3-68
-u option 2-7, 5-15, 5-16, 9-20
-X option 2-7
ontape utility 3-69
ON_RECVRY_THREADS
configuration parameter 3-69
OPCACHEMAX configuration
parameter 3-58
Operating-system
configuration parameters 3-6,
11-3
file descriptors 3-9
NOFILE, NOFILES, NFILE, or
NFILES configuration
parameter 3-9
semaphores 3-7
SHMMAX configuration
parameter 3-29
SHMMNI configuration
parameter 3-30
SHMSEG configuration
parameter 3-30
SHMSIZE configuration
parameter 3-29
timing commands 1-16

OPTCOMPIND

and directives 8-15

configuration parameter 3-11,
3-15,9-14

effects on query plan 7-7

environment variable 3-11, 3-15,
9-14

preferred join plan 9-14

Optical Subsystem 3-56

Optimization goal

default total query time 10-19

precedence of settings 10-20

setting with directives 8-10, 10-20

total query time 10-18, 10-20,
10-21

total-query time 10-22

user-response and fragmented
indexes 10-22

user-response time 10-18, 10-19,
10-20, 10-21

Optimization level

default 10-18

setting to low 10-18

table scan versus index
scan 10-22

Optimizer

and optimization goal 8-10, 10-19

and SET OPTIMIZATION
statement 10-18, 10-20

autoindex path 10-11

choosing query plan 8-4, 8-5

composite index use 10-11

data distributions 10-7

index not used by 10-5

specifying high or low level of
optimization 10-18

See also Query Optimizer.

Optimizer directives

ALL_ROWS 8-10

altering query plan 8-11

and OPTCOMPIND 8-15

AVOID_FULL 8-7,8-16

AVOID_HASH 8-10

AVOID_INDEX 8-6

AVOID_NL 8-10, 8-16

configuration parameter 8-15

effect on views 8-8, 8-9

FIRST_ROWS 8-10, 8-11

FULL 8-7

guidelines 8-16
INDEX 8-6
influencing access plan 8-6
join order 8-6, 8-7
join plan 8-9
ORDERED 8-6, 8-7, 8-8, 8-9
purpose 8-3
stored procedures 8-15
table scan 8-6
types 8-6
use index 8-6
USE_HASH 8-9
USE_NL 8-9
OPT_GOAL configuration
parameter 10-19
OPT_GOAL environment
variable 10-19
ORDER BY clause 7-23, 10-15
Order-by columns 4-22
Ordered merge 10-22
Outer table 7-5
Outstanding in-place alters
definition 4-45
displaying 4-46
performance impact 4-46

P

Page buffer
effect on performance 7-26
restrictions with BYTE or TEXT
data 4-18
Page cleaners 3-62
Page cleaning 3-44, 3-60, 3-62, 3-64
Pages in memory 1-22
Page, obtaining size 4-9
Paging
described 1-22
DS_TOTAL_MEMORY 9-12
expected delay 1-23
memory-resident tables 3-42
monitoring 2-3, 3-35
RA_PAGES configuration
parameter 3-60
RA_THRESHOLD configuration
parameter 3-60
RESIDENT configuration
parameter 3-25

Parallel access
table and BYTE or TEXT data 3-54
Parallel database queries (PDQ)
allocating resources for 9-7
and fragmentation 6-3
and SQL 6-3
controlling resources for 9-15
effect of table fragmentation 9-3
gates 9-19
MGM resources 9-20
monitoring resources allocated
for 9-17, 9-19, 9-20
scans 3-17
SET PDQPRIORITY
statement 9-15
uses of 9-3
Parallel inserts 3-51
DBSPACETEMP configuration
parameter 3-50
Parallel joins 9-10
Parallel processing
architecture 1-4
MGM control of resources 9-5
PDQ threads 9-4
virtual processors 1-6
with fragmentation 1-7, 6-16, 9-3
Parallel scans 9-23
Parallel sorts 9-10
interaction with PDQ 10-16
when used 3-53
Partitioning, defined 6-3
PDQ priority
-1 value 9-8
determining parallelism 9-10
effect of remote database 9-10
effect of stored procedure 9-11
effect on parallel execution 9-7
effect on sorting memory 4-27
maximum parallelism 9-10
outer joins 9-10
parallel execution limits 9-10
SET PDQPRIORITY
statement 9-15
stored procedures 9-11
PDQPRIORITY
environment variable 3-11, 9-6,
9-7,9-9, 10-10
limiting PDQ priority 9-7,9-9

Index 11

PDQPRIORITY environment
variable 4-27, 10-16
PDQ. See Parallel database queries.
Peak loads 1-18
Performance
basic approach to measurement
and tuning 1-9
capturing data 2-5
contiguous extents 4-30, 4-33
disk access 10-14
dropping indexes for
updates 4-38
dropping indexes to speed
modifications 4-24
early indications of problems 1-9
effect of
BYTE or TEXT location 4-17
contiguous disk space 4-30
data mismatch 7-30
disk access 7-27, 7-28
duplicate keys 4-22
filter expression 10-5, 10-6
indexes 4-21 to 4-22
regular expressions 10-5
table size 10-14
effects of disk 1/0 3-44
filter selectivity 7-21
goals 1-10
high performance of Dynamic
Server 1-5
improved by
contiguous extents 4-30
specifying optimization
level 10-18
temporary table 10-16
index time during
modification 4-19
measurements of 1-11
sequential access 10-14
slowed by data mismatch 7-30
slowed by duplicate keys 4-22
tuning mechanisms 1-5
use of redundant data 4-53
PHYSBUFF configuration
parameter 3-38, 3-67
PHYSFILE configuration
parameter 3-66

Physical log
buffer size 3-38
configuration parameters
affecting 3-50
mirroring 3-49
Pie chart 11-14
Platform icons Intro-8
Playback process 11-5
Poll thread, added with network
VP 3-21
Printed manuals Intro-13
Probe table, directives 8-9, 8-10
Product icons Intro-8
Program group
Documentation notes Intro-15
Release notes Intro-15
PSORT_DBTEMP environment
variable 3-52, 3-53
PSORT_NPROCS environment
variable 3-10, 4-27, 10-16

restrictive filters 8-4

row access cost 7-26

time costs of 7-7, 7-23, 7-24, 7-26

use of indexes in 7-13
Query-tree tool 11-6, 11-17

Q

Quantum, of memory 3-16, 3-39,
9-5,9-16

Queries

decision-support 1-15, 9-16
Queries, DSS

and temporary files 6-11
Query optimizer

and hash join 7-6

data distributions used by 10-7
Query plan 7-3

all rows 8-10

alteringwith directives 8-11,8-13,

8-14

autoindex path 10-11

chosen by optimizer 8-4

directives to alter 8-6

disk accesses 7-12

first-row 8-10

fragment elimination 6-41, 9-23

how to display 7-14

in pseudocode 7-10 to 7-12

join order 8-13

optimizer choosing 8-5

12 Performance Guide for Informix Dynamic Server

R

Range expression, defined 6-23
Raw devices. See Unbuffered
devices.
RA_PAGES configuration
parameter 3-60, 3-64
RA_THRESHOLD configuration
parameter 3-60, 3-64
Read cache rate 3-34
Read-ahead operations 3-58
Recent history 11-17
Reclaiming empty extent
space 4-36
Redundant data, introduced for
performance 4-53
Redundant pairs, defined 7-14
Regular expression, effect on
performance 10-5
Related reading Intro-15
Relational model,
denormalizing 4-49
Release notes Intro-14
Release notes, program
item Intro-15
Remainder pages 4-10
Repeatable Read isolation
level 3-59, 5-10, 7-7
Residency 3-35
RESIDENT configuration
parameter 3-35
Resident portion 3-24
Resize table
reclaiming empty space 4-36
Resource utilization
and performance 1-18
capturing data 2-4
CPU 1-21
described 1-19
disk 1-24

factors affecting 1-26
memory 1-22
operating-system resources 1-19
Resource, critical 1-19
Response time
introduced 1-14
measuring 1-16
Root index page 4-13
ROOTNAME configuration
parameter 3-49
ROOTOFFSET configuration
parameter 3-49
ROOTPATH configuration
parameter 3-49
ROOTSIZE configuration
parameter 3-49
Round-robin distribution
scheme 6-12 to 6-13
Routine monitoring 11-22
Row access cost 7-26
Row ID
in fragmented table 6-11
space estimates 4-14, 6-11

S

Sample-code conventions Intro-12
sar command 2-5, 3-35
Saturated disks 3-44
Scalability
Dynamic Server 1-4
Scans
DS_MAX_QUERIES 9-6
DS_MAX_SCANS 9-6
first-row 7-9
key-only 7-4
limited by
MAX_PDQPRIORITY 3-15
limiting number of 9-13
memory-management
system 1-22
parallel 9-22
parallel database query 3-17
skip-duplicate-index 7-9
table 7-4,7-5
Scheduling facility, cron 2-6, 3-30
Scope of metrics 11-12

Screen-illustration
conventions Intro-12
Seek time, disk 170 7-26
SELECT statement 4-9, 7-7, 7-10,
7-11,7-12, 7-14
Selectivity
and indexed columns 4-22
column, and filters 4-21
defined 7-20
estimates for filters 7-21
Semaphores 3-7
Semi join 7-5
SEMMNI UNIX configuration
parameter 3-7, 3-8
SEMMNS UNIX configuration
parameter 3-8
SEMMSL UNIX configuration
parameter 3-7
Sequential
access costs 7-27
scans 10-14
Service time formula 1-20
Session
monitoring 2-8
setting optimization goal 10-20
SET DATASKIP statement 6-8
SET EXPLAIN output
converted data 7-30
data mismatch 7-31
decisions of query optimizer 9-14
directives 8-12, 8-14
displaying secondary
threads 9-22
estimated cost of query 7-15
join rows returned 10-9
key-first scan 7-18
optimization all rows 10-21
optimization first rows 10-21
optimization low 10-18
parallel scans 9-22
PDQ priority LOW 9-23
PDQ priority ON 9-23
resources required by query 10-3
secondary threads 9-4
serial scans 9-22
temporary table for view 7-29
UNIX sgexplain.out file 7-15
Windows NT sgexpln file 7-15

SET EXPLAIN statement
displaying estimated number of
rows 7-15
displaying fragments
scanned 6-41
displaying order of tables
accessed 7-17
displaying query plan 6-9, 7-14,
7-15,9-14
displaying subquery 7-9
displaying temporary table for
views 7-29
estimated cost of query 7-15
how data accessed 6-9
optimizer access paths 7-17
use to determine UPDATE
STATISTICS 10-9
SET INDEX statement 3-42
SET ISOLATION statement 5-8
SET LOCK MODE statement 5-7,
5-10, 5-12, 5-13, 5-15, 5-17
SET LOG statement 1-12
SET OPTIMIZATION statement
setting ALL_ROWS 10-20
setting FIRST_ROWS 10-20
setting high or low 10-18
setting to ALL_ROWS 10-21
stored procedures 7-34
SET PDQPRIORITY statement
DEFAULT tag 9-8, 9-15
in application 9-7,9-15
in stored procedure 9-11
limiting CPU VP utilization 3-11
sort memory 10-10
SET TABLE statement 3-42
SET TRANSACTION
statement 5-8
Shared memory
allowed per query 3-38
amount for sorting 4-27, 4-28
communication interface 3-7
dynamic management of 1-6
freeing 3-30
message portion 3-28
resident portion 3-24
server portion 3-24
size limit 3-33
size of added increments 3-32
virtual portion 3-26

Index 13

SHMADD configuration
parameter 3-26, 3-32
SHMBASE configuration
parameter 3-31
SHMMAX operating-system
configuration parameter 3-29
SHMMNI operating-system
configuration parameter 3-30
SHMSEG operating-system
configuration parameter 3-30
SHMSIZE operating-system
configuration parameter 3-29
SHMTOTAL configuration
parameter 3-26, 3-33
SHMVIRTSIZE configuration
parameter 3-26, 3-32
Short rows
reducing disk I/0s 4-49
SINGLE_CPU_VP configuration
parameter 3-12
Slow degradation 11-22
Snowflake schema 10-13
Software dependencies Intro-4
Sorting
avoiding with temporary
table 10-16
costs of 7-24
DBSPACETEMP configuration
parameter 3-50
DBSPACETEMP environment
variable 3-51
effect of PDQ priority 10-10
effect on performance 10-15
estimating temporary space 4-29
memory estimate 4-28
more memory with PDQ
priority 4-27, 4-28
query plan cost 7-4
sort files 2-10, 3-50
space pool 3-26
sgexplain.out file 7-15
sqgexpln file 7-15
SQL Intro-16
SQLCODE field of SQL
Communications Area 4-51
sqlhosts file
mentioned 1-7
multiplexed option 3-23

SQLWARN array 3-61
Stack size 3-36
STACKSIZE configuration
parameter 3-36
STAGEBLOB configuration
parameter 3-57
Staging area, optimal size 3-57
Star join 10-13
Star schema 10-12
Status tool 11-6, 11-20
Stored Procedure Language
(SPL) 7-35
Stored procedures
effect of PDQ priority 9-11
optimization level 7-34
when executed 7-35
when optimized 7-33
stores7 database Intro-5
Strings, expelling long 4-50
Structured Query Language (SQL)
ALTER FRAGMENT
statement 4-4, 4-37
ALTER INDEX statement 4-23,
4-35, 4-37
ALTER TABLE statement 4-30,
4-31, 4-36
client requests 1-5
code Intro-16
COMMIT WORK statement 1-12
CONNECT statement 3-46, 4-3
CREATE CLUSTERED INDEX
statement 4-23
CREATE INDEX statement 4-35,
4-36, 6-18, 6-19
CREATE TABLE statement 3-46,
4-3, 4-17, 4-30, 6-18, 6-19
CREATE TEMP TABLE
statement 6-21
DATABASE statement 3-46, 4-3
DISTINCT keyword 10-12
EXTENT SIZE clause 4-30
FRAGMENT BY EXPRESSION
clause 6-18
GROUP BY clause 7-23
IN DBSPACE clause 4-3
INSERT statement 6-12
LOAD and UNLOAD
statements 4-4, 4-24, 4-34,
4-37, 4-39

14 Performance Guide for Informix Dynamic Server

MODIFY NEXT SIZE clause 4-30,
4-31
NEXT SIZE clause 4-30
optimizer directives 8-6
ORDER BY clause 7-23
SELECT statement 4-9, 7-7, 7-10,
7-11,7-12, 7-14
SET DATASKIP statement 6-8
SET EXPLAIN statement 6-9,
6-41, 7-9, 7-14, 7-15, 7-17, 7-29,
9-14
SET INDEX statement 3-42
SET ISOLATION statement 5-8
SET LOCK MODE statement 5-7,
5-10, 5-12, 5-13, 5-15, 5-17
SET OPTIMIZATION
statement 10-18, 10-20
SET PDQPRIORITY
statement 3-11, 9-7, 9-8, 9-11,
9-15, 10-10
SET TABLE statement 3-42
SET TRANSACTION
statement 5-8
TO CLUSTER clause 4-35, 4-37
UPDATE STATISTICS
statement 3-26, 7-19, 8-5, 9-11,
10-6, 10-7, 10-8, 10-9, 10-10
WHERE clause 7-22, 10-5, 10-6
Subqueries 7-9, 9-10
Sudden performance loss 11-22
Swap space 1-22, 3-30
Swapping
device 1-23
Swapping, memory-management
scheme 1-23,9-12
Symbol table 4-51
System catalog tables
data distributions 7-19
optimizer use of 7-19, 7-20
syscolumns 10-7
sysdistrib 10-7
sysfragments 6-41
sysfragments table 6-20
sysprocbody 7-33
sysprocedure 7-33
sysprocplan 7-33, 7-34
systables 4-26, 7-34
updated by UPDATE
STATISTICS 7-19

System resources 1-19
System-monitoring interface
(SM1) 2-6

T

Table partitioning, defined 6-3
Table scan 7-4, 7-5
Tables
adding redundant data 4-53
and middle partitions of disks 4-5
assigning to dbspace 4-3
calculating size 4-8
companion, for long strings 4-51
configuring 170 for 3-58
cost of access 10-14
costs of companion 4-53
denormalizing 4-49
dimensional 10-12, 10-13
division by bulk 4-52
estimating
blobpages in tblspace 4-16
data pages 4-9
index pages 4-13
size with fixed-length rows 4-9
size with variable-length
rows 4-11
expelling long strings 4-50
fact 10-12, 10-13
frequently updated
attributes 4-52
infrequently accessed
attributes 4-52
isolating high-use 4-4
managing
extents 4-29
indexes 4-19
multiple access arms to reduce
contention 4-6
nonfragmented 4-8
placement on disk 4-3
reducing contention between 4-4
redundant and derived data 4-53
rows too wide 4-52
shorter rows 4-49
storage on middle partitions of
disk 4-6

temporary 4-7
variable-length rows 4-11
with variable-length rows 4-11
TAPEBLK configuration
parameter 3-69
TAPEDEV configuration
parameter 3-69
TAPESIZE configuration
parameter 3-69
tbconfig file 3-25
tblspace 4-8
Thlspace ID 6-20
tbmonitor utility 3-25
TCP/IP buffers 3-31
TEMP TABLE clause of the
CREATE TABLE
statement 3-52, 6-21
Temporary dbspaces
creating 4-27
DBSPACETEMP configuration
parameter 3-51
DBSPACETEMP environment
variable 3-52
decision-support queries 6-10
for index builds 4-27, 4-29
in root dbspace 3-52
monitoring 2-10
onspaces -t 3-51
optimizing 3-51
Temporary tables
configuring 3-50
DBSPACETEMP configuration
parameter 3-50, 3-51
DBSPACETEMP environment
variable 3-52
decision-support queries 6-10
explicit 6-21
fragmentation 6-21
in root dbspace 3-46
speed up a query 10-16
views 7-29
TEXT data type 4-9, 4-50
blobspace 3-54
bufferpool restriction 4-18
how stored 4-17
in blobspace 4-18
in tblspace 4-17
locating 4-17

memory cache 3-56
on disk 4-17
parallel access 3-54
staging area 3-56
The 4-31
Thrashing 1-22
Thread
DS_MAX_SCANS configuration
parameter 9-6
dynamic allocation of 1-6
MAX_PDQPRIORITY 3-15
page-cleaner 3-49
primary 9-4,9-21
secondary 9-4, 9-22
sqlexec 2-8, 3-62, 9-21
Thread control blocks 3-26
Throughput
benchmarks 1-12
capturing data 1-12
contrasted with response
time 1-15
introduced 1-11
measured by logged COMMIT
WORK statements 1-12
Time
getting current in ESQL/C 1-17
getting user, processor, and
elapsed 1-17
getting user, system, and
elapsed 1-16
time command 1-16
Timing
commands 1-16
functions 1-17
performance monitor 1-17
/tmp directory 3-53
TO CLUSTER clause 4-35, 4-37
TPC-A, TPC-B, TPC-C, and TPC-D
benchmarks 1-13
Transaction
cost 1-17
rate 1-11
rollback 4-20
Transaction Processing
Performance Council
(TPC) 1-12

Index 15

Transaction throughput
effects of
MAX_PDQPRIORITY 3-15

U

Unbuffered logging 3-48
Unbuffered (raw) devices 7-27
Unbuffered (raw) files 1-5, 3-53
UNIX
cron scheduling facility 2-6
iostat command 2-5
ps command 2-5
sar command 2-5
SEMMNI configuration
parameter 3-7, 3-8
SEMMNS configuration
parameter 3-8
SEMMSL configuration
parameter 3-7
sgexplain.out file 7-15
time command 1-16
vmstat command 2-5
Update cursor 5-11
UPDATE STATISTICS statement
creating data distributions 10-7
data distributions 7-19
effect on virtual portion of
memory 3-26
guidelines to run 10-6
HIGH mode 8-5, 10-8, 10-9
improving ALTER FRAGMENT
ATTACH performance 6-35
LOW mode 10-6, 10-8
MEDIUM mode 10-8
multiple column
distributions 10-10
on join columns 10-9
optimize stored procedure 9-11
providing information for query
optimization 7-19, 10-6
query plan 8-5
sort memory 10-10
to improve ALTER FRAGMENT
ATTACH performance 6-35
updating system catalog 7-19,
10-6

using
with join columns 10-9

Utilities

database server performance
measurement 2-6
DB-Access 4-34
dbload 4-24, 4-34, 4-39
dbschema 6-10, 6-15, 10-7
ON-Archive 3-69
onaudit 3-70
oncheck
and index sizing 4-15
-clw option 4-25
-ciw option 4-25
introduced 2-11
locks 4-26
monitoring table growth 4-32
-pB option 2-11
-pc option 2-11
-pD option 2-11
-pd option 2-11
-pe option 2-11, 4-33, 4-35
-pK option 2-11
-pk option 2-11
-pKw option 4-25
-pkw option 4-25
-pL option 2-11
-pl option 2-11
-pLw option 4-25
-plw option 4-25
-pP option 2-11
-pp option 2-11
-pr option 2-11, 4-9, 4-32, 4-45
-pT option 2-11, 4-45, 4-46
-pt option 2-11, 4-9
-w option 4-25, 4-26
onload and onunload 3-69, 4-4,
4-34, 4-37
onlog 1-12, 2-10
onmode
and forced residency 3-35
and shared-memory
connections 3-7
-F option 3-30
-MQDS options 9-8
-P option 3-14
-p option 3-21

16 Performance Guide for Informix Dynamic Server

ON-Monitor 3-21, 3-54, 3-56
onparams 3-47, 3-49
onperf

activity tools 11-21

data flow 11-4

described 11-3

graph tool 11-9

metrics 11-23

query-tree tool 11-17

replaying metrics 11-5

requirements 11-6

saving metrics 11-4

starting 11-8

status tool 11-20

tools 11-6

user interface 11-9
onspaces

and blobspaces 3-54

-t option 3-51, 4-7, 4-27

to create staging-area

blobspace 3-56

onstat

-b option 2-7, 3-43

-c option 4-16

-d option 2-10

-F option 3-62

-g act option 2-8

-g ath option 2-8, 3-12, 9-21

-g glo option 2-8

-g iof option 2-10

-g iog option 2-10

-g ioq option 2-10, 3-14

-g iov option 2-10

-g mem option 2-9, 3-27, 3-28

-g mgm option 2-9, 9-6, 9-17

-g ntd option 2-8

-g ntf option 2-8

-g ntu option 2-8

-g option 2-7

-g ppf option 6-40

-g gst option 2-8

-g rea option 2-8

-g sch option 2-8

-g seg option 2-9, 3-33

-g ses option 2-8, 3-12, 3-28, 9-22

-g sle option 2-8
-g spi option 2-8
-g sql option 2-8
-g sts option 2-8

-g tpf option 2-9
-g wai option 2-9
-g wst option 2-9
introduced 2-7
-k option 5-14, 5-16
-l option 2-7
-m option 3-65
monitoring threads per
session 3-12
-O option 3-56
-P option 2-7, 3-43
-p option 1-12, 2-7, 3-34, 3-43,
5-14, 5-17
-R option 2-7, 3-68
-u option 2-7, 5-15, 5-16, 9-20
-X option 2-7
ontape 3-69
tbmonitor 3-25
Utilization
capturing data 2-4
configuration impacts on
CPU 3-6
170 3-44
memory 3-23
CPU 1-21
defined 1-19
disk 1-24
factors affecting 1-26
memory 1-22
service time 1-19

V

VARCHAR data type 4-11, 4-12,
4-50

cost of 7-31
Variable-length rows 4-11
Views

effect of directives 8-8, 8-9
Virtual memory, size of 3-30
Virtual portion 3-26, 3-32
Virtual processors (VPs)

and CPU 3-21

DSA 1-4

network (SOC or TLI) 3-21

semaphores required for 3-7

starting additional 3-21
vmstat command 2-5, 3-35

w

WHERE clause 7-22, 10-5, 10-6

Windows NT
getting user, processor, and

elapsed time 1-17

Performance Monitor 1-17, 2-5
sgexpln file 7-15

Write once read many (WORM)

optical subsystem 3-56

X

X display server 11-7
X/0Open compliance
level Intro-16

Index

17

	Answers OnLine Web Site
	Table of Contents
	Introduction
	About This Manual
	Types of Users
	Software Dependencies
	Assumptions About Your Locale
	Demonstration Database

	New Features
	Documentation Conventions
	Typographical Conventions
	Icon Conventions
	Comment Icons
	Feature, Product, and Platform Icons

	Command-Line Conventions
	How to Read a Command-Line Diagram

	Sample-Code Conventions
	Screen-Illustration Conventions

	Additional Documentation
	On-Line Manuals
	Printed Manuals
	Error Message Files
	Documentation Notes, Release Notes, Machine Notes
	Related Reading

	Compliance with Industry Standards
	Informix Welcomes Your Comments

	Performance Basics
	Informix Dynamic Server
	Parallel-Process Architecture
	Scalability
	Client/Server Architecture

	High Performance
	Unbuffered Disk Management
	Dynamic Shared-Memory Management
	Dynamic Thread Allocation
	Parallel Execution and Fragmentation
	Connecting Clients and Database Servers

	Client Application Types
	OLTP Applications
	DSS Applications

	A Basic Approach to Performance Measurement and Tu...
	Performance Goals
	Measurements of Performance
	Throughput
	Throughput Measurement
	Standard Throughput Benchmarks

	Response Time
	Response Time and Throughput
	Response Time Measurement

	Cost per Transaction

	Resource Utilization and Performance
	Resource Utilization
	CPU Utilization
	Memory Utilization
	Disk Utilization

	Factors That Affect Resource Utilization
	Maintenance of Good Performance
	Topics Beyond the Scope of This Manual

	Performance Monitoring
	Creating a Performance History
	The Importance of a Performance History
	Tools That Create a Performance History

	Operating-System Tools
	Capturing Database Server Performance Data
	The onstat Utility
	The onlog Utility
	The oncheck Utility

	Configuration Impacts on Performance
	Your Current Configuration
	How Configuration Affects CPU Utilization
	UNIX Parameters That Affect CPU Utilization
	UNIX Semaphore Parameters
	UNIX File-Descriptor Parameters
	UNIX Memory Configuration Parameters

	Configuration Parameters and Environment Variables...
	NUMCPUVPS, MULTIPROCESSOR, and SINGLE_CPU_VP
	NOAGE
	AFF_NPROCS and AFF_SPROC
	NUMAIOVPS
	OPTCOMPIND
	MAX_PDQPRIORITY
	DS_MAX_QUERIES
	DS_MAX_SCANS
	NETTYPE

	Virtual Processors and CPU Utilization
	Multiplexed Connections

	How Configuration Affects Memory Utilization
	Allocating Shared Memory
	The Resident Portion
	The Virtual Portion
	The Message Portion

	Configuring UNIX Shared Memory
	Using onmode �F to Free Shared Memory
	Configuration Parameters That Affect Memory Utiliz...
	SHMVIRTSIZE
	SHMADD
	SHMTOTAL
	BUFFERS
	RESIDENT
	STACKSIZE
	LOCKS
	LOGBUFF
	PHYSBUFF
	DS_TOTAL_MEMORY

	Algorithm for Determining DS_TOTAL_MEMORY
	Derive a Minimum for Decision-Support Memory
	Derive a Working Value for Decision-Support Memory...
	Check Derived Value for Decision-Support Memory

	Data-Replication Buffers and Memory Utilization
	Memory-Resident Tables and the Buffer Pool

	How Configuration Affects I/O Activity
	Chunk and Dbspace Configuration
	Associate Disk Partitions with Chunks
	Associate Dbspaces with Chunks
	Place Database System Catalog Tables with Database...

	Placement of Critical Data
	Consider Separate Disks for Critical Data Componen...
	Consider Mirroring for Critical Data Components

	Configuration Parameters That Affect Critical Data...
	Dbspaces for Temporary Tables and Sort Files
	Parameters and Variables That Affect �Temporary Ta...
	The DBSPACETEMP Configuration Parameter
	The DBSPACETEMP and PSORT_NPROCS Environment Varia...

	How Blobspace Configuration Affects Performance
	How Optical Subsystem Affects Performance
	Environment Variables and Configuration Parameters...
	STAGEBLOB
	OPCACHEMAX
	INFORMIXOPCACHE

	I/O for Tables
	Sequential Scans
	Light Scans
	Unavailable Data

	Configuration Parameters That Affect I/O for Table...
	RA_PAGES and RA_THRESHOLD
	DATASKIP

	Background I/O Activities
	Configuration Parameters That Affect Background I/...
	CKPINTVL
	LOGSIZE, �LOGFILES, LOGSMAX, and PHYSFILE
	ONDBSPDOWN
	LOGBUFF and PHYSBUFF
	LTXHWM and LTXEHWM
	LBU_PRESERVE
	LRUS, LRU_MAX_DIRTY, and LRU_MIN_DIRTY
	CLEANERS
	TAPEBLK, TAPEDEV, TAPESIZE, LTAPEBLK, LTAPEDEV, an...
	OFF_RECVRY_THREADS and ON_RECVRY_THREADS
	DRINTERVAL and DRTIMEOUT
	ADTERR and ADTMODE

	Table and Index Performance Considerations
	Placement of Tables on Disk
	Isolating High-Use Tables
	Placing High-Use Tables on Middle Partitions of Di...
	Using Multiple Disks for a Dbspace
	Spreading Temporary Tables and Sort Files Across M...
	Backup-and-Restore Considerations

	Improving Performance for Nonfragmented Tables and...
	Estimating Table and Index Size
	Estimating Data Pages
	Estimating Index Pages
	Estimating Tblspace Pages Occupied by BYTE or TEXT...
	Locating TEXT or BYTE Data in the Tblspace or a Se...

	Managing Indexes
	Space Costs of Indexes
	Time Costs of Indexes
	Choosing Columns for Indexes
	Dropping Indexes
	Checking Indexes

	Improving Performance for Index Builds
	Estimating Sort Memory
	Estimating Temporary Space for Index Builds

	Managing Extents
	Choosing Extent Sizes
	Upper Limit on Extents
	Checking for Extent Interleaving
	Eliminating Interleaved Extents
	Reclaiming Unused Space Within an Extent

	Changing Tables
	Loading and Unloading Tables
	Dropping Indexes Before Loading or Updating Tables...

	Attaching or Detaching Fragments
	Altering a Table Definition
	Slow Alter
	In-Place Alter
	Fast Alter

	Denormalizing the Data Model to Improve Performanc...
	Shorter Rows for Faster �Queries
	Expelling Long Strings
	Using VARCHAR Strings
	Using TEXT Data
	Moving Strings to a Companion Table
	Building a Symbol Table

	Splitting Wide Tables
	Division by Bulk
	Division by Frequency of Use
	Division by Frequency of Update
	Costs of Companion Tables

	Redundant Data
	Adding Redundant Data

	Locking
	Lock Granularity
	Row and Key Locks
	Page Locks
	Table Locks
	Table Locks That the Database Server Places

	Database Locks
	Waiting for Locks

	Locks with the SELECT Statement
	Isolation Level
	Dirty Read Isolation (ANSI Read Uncommitted)
	Committed Read Isolation (ANSI Read Committed)
	Cursor Stability Isolation
	Repeatable Read Isolation (ANSI Serializable, ANSI...

	Update Cursors

	Locks Placed with INSERT, UPDATE, and DELETE
	Key-Value Locking

	Monitoring and Administering Locks
	Monitoring Locks
	Configuring and Monitoring the Number of Locks
	Monitoring Lock Waits and Lock Errors
	Monitoring Deadlocks

	Fragmentation Guidelines
	Planning a Fragmentation Strategy
	Setting Fragmentation Goals
	Improving Performance for Individual Queries
	Reducing Contention Between Queries and Transactio...
	Increasing Data Availability
	Increasing Granularity for Backup and Restore

	Examining Your Data and Queries
	Physical Fragmentation Factors

	Designing a Distribution Scheme
	Choosing a Distribution Scheme
	Designing an Expression-Based Distribution Scheme
	Suggestions for Improving Fragmentation

	Fragmenting Indexes
	Attached Indexes
	Detached Indexes
	Restrictions on Indexes for Fragmented Tables

	Fragmenting a Temporary Table
	Distribution Schemes for Fragment Elimination
	Query Expressions for Fragment Elimination
	Range Expressions in Query
	Equality Expressions in Query

	Effectiveness of Fragment Elimination
	Nonoverlapping Fragments on a Single Column
	Overlapping Fragments on a Single Column
	Nonoverlapping Fragments, Multiple Columns

	Improving the Performance of Attaching and Detachi...
	Improving ALTER FRAGMENT ATTACH Performance
	Formulating Appropriate Distribution Schemes
	Ensuring No Data Movement When You Attach a Fragme...
	Updating Statistics on All Participating Tables

	Improving ALTER FRAGMENT DETACH Performance
	Fragmenting the Index in the Same Way as the Table...
	Fragmenting the Index with the Same Distribution S...

	Monitoring Fragment Use
	Using the onstat Utility
	Using SET EXPLAIN

	Queries and the Query Optimizer
	The Query Plan
	Access Plan
	Join Plan
	Nested-Loop Join
	Hash Join

	Join Order
	How OPTCOMPIND Affects the Query Plan
	How Available Memory Affects the Query Plan
	Query Plans for Subqueries
	An Example of How Query Plans Are Executed
	A Join with Column Filters
	A Join Using Indexes

	How the Optimizer Evaluates Query Plans
	How to Display the Query Plan

	Factors That Affect the Query Plan
	Using Statistics
	Assessing Filters
	Assessing Indexes

	Time Costs of a Query
	Memory Activity Costs
	Sort-Time Costs
	Row-Reading Costs
	Sequential Access Costs
	Nonsequential Access Costs
	Index Look-Up Costs
	In-Place ALTER TABLE Costs
	View Costs
	Small-Table Costs
	Data-Mismatch Costs
	GLS Functionality Costs
	Network-Access Costs

	SQL Within Stored Procedures
	When SQL Is Optimized
	Automatic Optimization
	Optimization Levels for SQL in Stored Procedures

	How a Stored Procedure Is Executed

	Optimizer Directives
	Optimizer Directives
	Why Use Optimizer Directives?
	Before You Use Directives
	Types of Directives
	Access Plan Directives
	Join Order Directives
	Join Plan Directives
	Optimization Goal Directives
	An Example with Directives
	Directives Configuration Parameters and Environmen...

	Directives and Stored Procedures
	Guidelines for Using Directives

	Parallel Database Query
	How the Optimizer Structures a PDQ Query
	The Memory Grant Manager
	Allocating Resources for PDQ Queries
	Limiting the Priority of DSS Queries
	Limiting the Value of PDQ Priority
	Maximizing OLTP Throughput
	Conserving Resources
	Allowing Maximum Use of Parallelism
	Determining the Level of Parallelism
	Limits on Parallelism Associated with PDQPRIORITY
	Using Stored Procedures

	Adjusting the Amount of Memory
	Limiting the Number of Concurrent Scans
	Limiting the Maximum Number of Queries

	Managing Applications
	Using SET EXPLAIN
	Using OPTCOMPIND
	Using SET PDQPRIORITY
	User Control of Resources
	Dynamic Server Administrator Control of Resources
	Controlling Resources Allocated to PDQ
	Controlling Resources Allocated to Decision-Suppor...

	Monitoring PDQ Resources
	Using the onstat Utility
	Monitoring MGM Resources
	Monitoring PDQ Threads
	Monitoring Resources Allocated for a Sessions

	Using SET EXPLAIN

	Improving Individual Query Performance
	Using a Dedicated Test System
	Improving Filter Selectivity
	Avoiding Difficult �Regular �Expressions
	Avoiding Noninitial Substrings

	Updating Statistics
	Creating Data Distributions
	UPDATE STATISTICS Performance Considerations

	How to Improve Performance with Indexes
	Replacing Autoindexes with Permanent Indexes
	Using Composite Indexes
	Using Indexes for Data Warehousing Applications
	Dropping and Rebuilding Indexes After Updates

	Improving Sequential Scans
	Reducing the Impact of Join and Sort Operations
	Avoiding or Simplifying Sort Operations
	Using Parallel Sorts
	Using Temporary Tables to Reduce Sorting Scope

	Reviewing the Optimization Level
	Optimizing User-Response Time for Queries
	How to Specify the Query Performance Goal
	Preferred Query Plans for User-Response-Time Optim...
	Nested-Loop Joins Versus Hash Join
	Table Scans Versus Index Scans
	Ordering with Fragmented Indexes

	The onperf Utility on UNIX
	Overview of the onperf Utility
	Basic onperf Functions
	Displaying Metric Values
	Saving Metric Values to a File
	Reviewing Metric Measurements

	The onperf Tools

	Requirements for Running onperf
	Starting and Exiting onperf
	The onperf User Interface
	Graph Tool
	Title Bar
	Graph Tool Graph Menu
	Graph Tool Metrics Menu
	Graph Tool View Menu
	Graph Tool Configure Menu and the Configuration Di...
	Graph Tool Tools Menu
	Changing the Scale of Metrics
	 Displaying Recent-History Values

	Query-Tree Tool
	 Status Tool
	Status Tool File Menu
	Status Tool Tools Menu

	Activity Tools
	Activity Tool Graph Menu
	Activity Tool Tools Menu

	Ways to Use onperf
	Routine Monitoring
	Diagnosing Sudden Performance Loss
	Diagnosing Performance Degradation

	The onperf Metrics
	Database Server Metrics
	Disk-Chunk Metrics
	Disk-Spindle Metrics
	Physical-Processor Metrics
	Virtual-Processor Metrics
	Session Metrics
	Tblspace Metrics
	Fragment Metrics

	Case Studies and Examples
	Index

