
901 San Antonio Road
Palo Alto, CA 94303 USA
650 960-1300 fax: 650 969-9131

Sun Microsystems, Inc.

Enterprise JavaBeans™

Specification, v1.1

Please send technical comments to: ejb-spec-comments@sun.com
Please send business comments to: ejb-marketing@sun.com

Final Release Vlada Matena & Mark Hapner

Enterprise JavaBeans™ Specification ("Specification")
Version: 1.1
Status: Final Release
Release: 12/17/99

Copyright 1999 Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, CA 94303, U.S.A.
All rights reserved.

NOTICE.
This Specification is protected by copyright and the information described herein may be protected by one or more U.S. patents, foreign
patents, or pending applications. Except as provided under the following license, no part of this Specification may be reproduced in any
form by any means without the prior written authorization of Sun Microsystems, Inc. (“Sun”) and its licensors, if any. Any use of this
Specification and the information described herein will be governed by these terms and conditions and the Export Control and General
Terms as set forth in Sun's website Legal Terms. By viewing, downloading or otherwise copying this Specification, you agree that you have
read, understood, and will comply with all the terms and conditions set forth herein.

Sun hereby grants you a fully-paid, non-exclusive, non-transferable, worldwide, limited license (without the right to sublicense), under
Sun's intellectual property rights that are essential to practice this Specification, to internally practice this Specification solely for the
purpose of creating a clean room implementation of this Specification that: (i) includes a complete implementation of the current version of
this Specification, without subsetting or supersetting; (ii) implements all of the interfaces and functionality of this Specification, as defined
by Sun, without subsetting or supersetting; (iii) includes a complete implementation of any optional components (as defined by Sun in this
Specification) which you choose to implement, without subsetting or supersetting; (iv) implements all of the interfaces and functionality of
such optional components, without subsetting or supersetting; (v) does not add any additional packages, classes or interfaces to the
"java.*" or "javax.*" packages or subpackages (or other packages defined by Sun); (vi) satisfies all testing requirements available from Sun
relating to the most recently published version of this Specification six (6) months prior to any release of the clean room implementation or
upgrade thereto; (vii) does not derive from any Sun source code or binary code materials; and (viii) does not include any Sun source code or
binary code materials without an appropriate and separate license from Sun. This Specification contains the proprietary information of Sun
and may only be used in accordance with the license terms set forth herein. This license will terminate immediately without notice from
Sun if you fail to comply with any provision of this license. Sun may, at its sole option, terminate this license without cause upon ten (10)
days notice to you. Upon termination of this license, you must cease use of or destroy this Specification.

TRADEMARKS.
No right, title, or interest in or to any trademarks, service marks, or trade names of Sun or Sun's licensors is granted hereunder. Sun, Sun
Microsystems, the Sun logo, Java, Jini, JavaServer Pages, Enterprise JavaBeans, Java Compatible, JDK, JDBC, JavaBeans, JavaMail, Write
Once, Run Anywhere, and Java Naming and Directory Interface are trademarks or registered trademarks of Sun Microsystems, Inc. in the
U.S. and other countries.

DISCLAIMER OF WARRANTIES.
THIS SPECIFICATION IS PROVIDED "AS IS". SUN MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
OR NON-INFRINGEMENT THAT THE CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY PURPOSE OR THAT ANY
PRACTICE OR IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,
TRADE SECRETS OR OTHER RIGHTS. This document does not represent any commitment to release or implement any portion of this
Specification in any product.

THIS SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED INTO NEW VERSIONS OF
THE SPECIFICATION, IF ANY. SUN MAY MAKE IMPROVEMENTS AND/OR CHANGES TO THE PRODUCT(S) AND/OR THE
PROGRAM(S) DESCRIBED IN THIS SPECIFICATION AT ANY TIME. Any use of such changes in the Specification will be governed by
the then-current license for the applicable version of the Specification.

LIMITATION OF LIABILITY.
TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION, LOST REVENUE, PROFITS OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL,
INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT
OF OR RELATED TO ANY FURNISHING, PRACTICING, MODIFYING OR ANY USE OF THE SPECIFICATION, EVEN IF SUN
AND/OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
You will indemnify, hold harmless, and defend Sun and its licensors from any claims arising or resulting from: (i) your use of the
Specification; (ii) the use or distribution of your Java application, applet and/or clean room implementation; and/or (iii) any claims that
later versions or releases of any Specification furnished to you are incompatible with the Specification provided to you under this license.
Please

Recycle

RESTRICTED RIGHTS LEGEND.
Use, duplication, or disclosure by the U.S. Government is subject to the restrictions set forth in this license and as provided in DFARS
227.7202-1(a) and 227.7202-3(a) (1995), DFARS 252.227-7013(c)(1)(ii)(Oct 1988), FAR 12.212(a) (1995), FAR 52.227-19 (June 1987), or FAR
52.227-14(ALT III) (June 1987), as applicable.

REPORT.
You may wish to report any ambiguities, inconsistencies, or inaccuracies you may find in connection with your use of the Specification
("Feedback"). To the extent that you provide Sun with any Feedback, you hereby: (i) agree that such Feedback is provided on a non-
proprietary and non-confidential basis and (ii) grant Sun a perpetual, non-exclusive, worldwide, fully paid-up, irrevocable license, with
the right to sublicense through multiple levels of sublicensees, to incorporate, disclose, and use without limitation the Feedback for any
purpose related to the Specification and future versions, implementations, and test suites thereof.

Please

Recycle

Enterprise JavaBeans v1.1, Final Release

Sun Microsystem Inc

1

9

Table of Contents

Chapter 1 Introduction.. 15

1.1 Target audience.. 15

1.2 What is new in EJB 1.1 ... 15

1.3 Application compatibility and interoperability ... 16

1.4 Acknowledgments ... 17

1.5 Organization .. 17

1.6 Document conventions .. 18

Chapter 2 Goals .. 19

2.1 Overall goals.. 19

2.2 Goals for Release 1.0... 20

2.3 Goals for Release 1.1... 20

Chapter 3 EJB Architecture Roles and Scenarios .. 2

3.1 EJB Architecture Roles ... 21

3.1.1 Enterprise Bean Provider .. 22
3.1.2 Application Assembler.. 22
3.1.3 Deployer.. 22
3.1.4 EJB Server Provider .. 23
3.1.5 EJB Container Provider... 23
3.1.6 System Administrator ... 24

3.2 Scenario: Development, assembly, and deployment 25

Chapter 4 Overview.. 29

4.1 Enterprise Beans as components ... 29

4.1.1 Component characteristics .. 30
4.1.2 Flexible component model.. 30

4.2 Enterprise JavaBeans Architecture contracts... 31

4.2.1 Client-view contract .. 31
4.2.2 Component contract .. 32
4.2.3 Ejb-jar file ... 33
4.2.4 Contracts summary ... 33

4.3 Session and entity objects.. 34

4.3.1 Session objects .. 34
4.3.2 Entity objects... 35

4.4 Standard mapping to CORBA protocols ... 35

Chapter 5 Client View of a Session Bean... 3

5.1 Overview ... 39

5.2 EJB Container.. 40
1 11/24/99

Enterprise JavaBeans v1.1, Final Release

Sun Microsystems Inc.

9

7

5.2.1 Locating a session bean’s home interface ... 40
5.2.2 What a container provides... 41

5.3 Home interface... 41

5.3.1 Creating a session object ... 42
5.3.2 Removing a session object .. 42

5.4 EJBObject .. 43

5.5 Session object identity ... 43

5.6 Client view of session object’s life cycle... 44

5.7 Creating and using a session object ... 45

5.8 Object identity ... 46

5.8.1 Stateful session beans.. 46
5.8.2 Stateless session beans .. 46
5.8.3 getPrimaryKey() .. 47

5.9 Type narrowing .. 47

Chapter 6 Session Bean Component Contract.. 4

6.1 Overview.. 49

6.2 Goals .. 50

6.3 A container’s management of its working set.. 50

6.4 Conversational state ... 51

6.4.1 Instance passivation and conversational state.................................... 51
6.4.2 The effect of transaction rollback on conversational state 53

6.5 Protocol between a session bean instance and its container 53

6.5.1 The requiredSessionBean interface .. 53
6.5.2 TheSessionContext interface .. 54
6.5.3 The optionalSessionSynchronization interface................................. 54
6.5.4 Business method delegation .. 55
6.5.5 Session bean’s ejbCreate(...) methods... 55
6.5.6 Serializing session bean methods.. 56
6.5.7 Transaction context of session bean methods 56

6.6 STATEFUL Session Bean State Diagram.. 56

6.6.1 Operations allowed in the methods of a stateful session bean class . 59
6.6.2 Dealing with exceptions .. 61
6.6.3 Missed ejbRemove() calls ... 61
6.6.4 Restrictions for transactions .. 62

6.7 Object interaction diagrams for a STATEFUL session bean 62

6.7.1 Notes.. 62
6.7.2 Creating a session object ... 63
6.7.3 Starting a transaction... 63
6.7.4 Committing a transaction .. 64
6.7.5 Passivating and activating an instance between transactions 65
6.7.6 Removing a session object .. 66

6.8 Stateless session beans... 6

6.8.1 Stateless session bean state diagram ... 68
6.8.2 Operations allowed in the methods of a stateless session bean class 69
6.8.3 Dealing with exceptions .. 71
 11/24/99 2

Enterprise JavaBeans v1.1, Final Release

Sun Microsystem Inc
6.9 Object interaction diagrams for a STATELESS session bean 71

6.9.1 Client-invoked create().. 71
6.9.2 Business method invocation.. 72
6.9.3 Client-invoked remove() ... 72
6.9.4 Adding instance to the pool .. 73

6.10 The responsibilities of the bean provider .. 74

6.10.1 Classes and interfaces ... 74
6.10.2 Session bean class ... 75
6.10.3 ejbCreate methods... 76
6.10.4 Business methods.. 76
6.10.5 Session bean’s remote interface .. 77
6.10.6 Session bean’s home interface .. 77

6.11 The responsibilities of the container provider ... 78

6.11.1 Generation of implementation classes .. 78
6.11.2 Session EJBHome class .. 78
6.11.3 Session EJBObject class ... 78
6.11.4 Handle classes ... 79
6.11.5 EJBMetaData class ... 79
6.11.6 Non-reentrant instances... 79
6.11.7 Transaction scoping, security, exceptions ... 79

Chapter 7 Example Session Scenario ... 81

7.1 Overview ... 81

7.2 Inheritance relationship ... 81

7.2.1 What the session Bean provider is responsible for 83
7.2.2 Classes supplied by container provider... 83
7.2.3 What the container provider is responsible for 83

Chapter 8 Client View of an Entity... 85

8.1 Overview ... 85

8.2 EJB Container.. 86

8.2.1 Locating an entity bean’s home interface.. 87
8.2.2 What a container provides... 87

8.3 Entity bean’s home interface ... 88

8.3.1 create methods... 89
8.3.2 finder methods... 90
8.3.3 remove methods .. 90

8.4 Entity object’s life cycle .. 91

8.5 Primary key and object identity... 92

8.6 Entity Bean’s remote interface .. 93

8.7 Entity bean’s handle .. 94

8.8 Entity home handles .. 95

8.9 Type narrowing of object references ... 96
3 11/24/99

Enterprise JavaBeans v1.1, Final Release

Sun Microsystems Inc.

7

te

0

1
1

4

9

Chapter 9 Entity Bean Component Contract .. 9

9.1 Concepts .. 97

9.1.1 Runtime execution model.. 97
9.1.2 Granularity of entity beans.. 99
9.1.3 Entity persistence (data access protocol) .. 99

9.1.3.1 Bean-managed persistence.. 100
9.1.3.2 Container-managed persistence .. 101

9.1.4 Instance life cycle.. 102
9.1.5 The entity bean component contract ... 104

9.1.5.1 Entity bean instance’s view:.. 104
9.1.5.2 Container’s view: .. 107

9.1.6 Operations allowed in the methods of the entity bean class.............. 109
9.1.7 Caching of entity state and the ejbLoad and ejbStore methods 112

9.1.7.1 ejbLoad and ejbStore with the NotSupported transaction attribu
113

9.1.8 Finder method return type ... 114
9.1.8.1 Single-object finder... 114
9.1.8.2 Multi-object finders... 114

9.1.9 Standard application exceptions for Entities 116
9.1.9.1 CreateException.. 116
9.1.9.2 DuplicateKeyException .. 116
9.1.9.3 FinderException.. 117
9.1.9.4 ObjectNotFoundException ... 117
9.1.9.5 RemoveException ... 117

9.1.10 Commit options ... 118
9.1.11 Concurrent access from multiple transactions 119
9.1.12 Non-reentrant and re-entrant instances ... 12

9.2 Responsibilities of the Enterprise Bean Provider .. 121

9.2.1 Classes and interfaces.. 12
9.2.2 Enterprise bean class ... 12
9.2.3 ejbCreate methods ... 122
9.2.4 ejbPostCreate methods .. 12
9.2.5 ejbFind methods .. 124
9.2.6 Business methods .. 125
9.2.7 Entity bean’s remote interface... 125
9.2.8 Entity bean’s home interface ... 126
9.2.9 Entity bean’s primary key class... 127

9.3 The responsibilities of the Container Provider .. 127

9.3.1 Generation of implementation classes... 127
9.3.2 Entity EJBHome class... 128
9.3.3 Entity EJBObject class .. 128
9.3.4 Handle class... 128
9.3.5 Home Handle class.. 128
9.3.6 Meta-data class.. 129
9.3.7 Instance’s re-entrance.. 129
9.3.8 Transaction scoping, security, exceptions ... 129
9.3.9 Implementation of object references ... 129

9.4 Entity beans with container-managed persistence... 12

9.4.1 Container-managed fields.. 130
 11/24/99 4

Enterprise JavaBeans v1.1, Final Release

Sun Microsystem Inc

1

34
134

5

8

9

1

7

9.4.2 ejbCreate, ejbPostCreate ... 13
9.4.3 ejbRemove... 132
9.4.4 ejbLoad.. 132
9.4.5 ejbStore ... 133
9.4.6 finder methods... 133
9.4.7 primary key type ... 133

9.4.7.1 Primary key that maps to a single field in the entity bean class1
9.4.7.2 Primary key that maps to multiple fields in the entity bean class
9.4.7.3 Special case: Unknown primary key class.......................... 134

9.5 Object interaction diagrams... 135

9.5.1 Notes ... 135
9.5.2 Creating an entity object ... 136
9.5.3 Passivating and activating an instance in a transaction 138
9.5.4 Committing a transaction .. 140
9.5.5 Starting the next transaction.. 142
9.5.6 Removing an entity object .. 145
9.5.7 Finding an entity object... 146
9.5.8 Adding and removing an instance from the pool 147

Chapter 10 Example entity scenario... 149

10.1 Overview ... 149

10.2 Inheritance relationship ... 150

10.2.1 What the entity Bean Provider is responsible for.............................. 151
10.2.2 Classes supplied by Container Provider.. 151
10.2.3 What the container provider is responsible for 151

Chapter 11 Support for Transactions.. 153

11.1 Overview ... 153

11.1.1 Transactions .. 153
11.1.2 Transaction model ... 154
11.1.3 Relationship to JTA and JTS... 154

11.2 Sample scenarios ... 15

11.2.1 Update of multiple databases .. 155
11.2.2 Update of databases via multiple EJB Servers.................................. 156
11.2.3 Client-managed demarcation .. 156
11.2.4 Container-managed demarcation .. 157
11.2.5 Bean-managed demarcation.. 15
11.2.6 Interoperability with non-Java clients and servers 158

11.3 Bean Provider’s responsibilities .. 159

11.3.1 Bean-managed versus container-managed transaction demarcation. 15
11.3.1.1 Non-transactional execution ... 160

11.3.2 Isolation levels... 160
11.3.3 Enterprise beans using bean-managed transaction demarcation....... 16

11.3.3.1 getRollbackOnly() and setRollbackOnly() method............ 166
11.3.4 Enterprise beans using container-managed transaction demarcation 16

11.3.4.1 javax.ejb.SessionSynchronization interface........................ 168
11.3.4.2 javax.ejb.EJBContext.setRollbackOnly() method 168
5 11/24/99

Enterprise JavaBeans v1.1, Final Release

Sun Microsystems Inc.

3

79

7

0

4
4

11.3.4.3 javax.ejb.EJBContext.getRollbackOnly() method 169
11.3.5 Declaration in deployment descriptor ... 169

11.4 Application Assembler’s responsibilities .. 169

11.4.1 Transaction attributes .. 169
11.5 Deployer’s responsibilities... 172

11.6 Container Provider responsibilities.. 173

11.6.1 Bean-managed transaction demarcation.. 17
11.6.2 Container-managed transaction demarcation 175

11.6.2.1 NotSupported .. 175
11.6.2.2 Required.. 175
11.6.2.3 Supports .. 176
11.6.2.4 RequiresNew... 176
11.6.2.5 Mandatory ... 177
11.6.2.6 Never... 177
11.6.2.7 Transaction attribute summary.. 177
11.6.2.8 Handling of setRollbackOnly() method.............................. 178
11.6.2.9 Handling of getRollbackOnly() method 178

11.6.2.10 Handling of getUserTransaction() method 179
11.6.2.11 javax.ejb.SessionSynchronization callbacks....................... 179

11.6.3 Handling of methods that run with “an unspecified transaction context”1
11.7 Access from multiple clients in the same transaction context 180

11.7.1 Transaction “diamond” scenario with an entity object...................... 180
11.7.2 Container Provider’s responsibilities... 182
11.7.3 Bean Provider’s responsibilities .. 183
11.7.4 Application Assembler and Deployer’s responsibilities 184
11.7.5 Transaction diamonds involving session objects............................... 184

Chapter 12 Exception handling .. 187

12.1 Overview and Concepts ... 18

12.1.1 Application exceptions.. 187
12.1.2 Goals for exception handling .. 188

12.2 Bean Provider’s responsibilities .. 188

12.2.1 Application exceptions.. 188
12.2.2 System exceptions ... 189

12.2.2.1 javax.ejb.NoSuchEntityException 190
12.3 Container Provider responsibilities.. 190

12.3.1 Exceptions from an enterprise bean’s business methods................... 19
12.3.2 Exceptions from container-invoked callbacks................................... 193
12.3.3 javax.ejb.NoSuchEntityException... 193
12.3.4 Non-existing session object... 193
12.3.5 Exceptions from the management of container-managed transactions19
12.3.6 Release of resources .. 19
12.3.7 Support for deprecated use of java.rmi.RemoteException................ 194

12.4 Client’s view of exceptions.. 195

12.4.1 Application exception.. 195
12.4.2 java.rmi.RemoteException .. 196

12.4.2.1 javax.transaction.TransactionRolledbackException 197
 11/24/99 6

Enterprise JavaBeans v1.1, Final Release

Sun Microsystem Inc

7

1

ry

 in

7

1

12.4.2.2 javax.transaction.TransactionRequiredException............... 197
12.4.2.3 java.rmi.NoSuchObjectException 197

12.5 System Administrator’s responsibilities .. 197

12.6 Differences from EJB 1.0 .. 197

Chapter 13 Support for Distribution... 199

13.1 Overview ... 199

13.2 Client-side objects in distributed environment .. 200

13.3 Standard distribution protocol ... 200

Chapter 14 Enterprise bean environment ... 201

14.1 Overview ... 201

14.2 Enterprise bean’s environment as a JNDI API naming context 202

14.2.1 Bean Provider’s responsibilities.. 203
14.2.1.1 Access to enterprise bean’s environment............................ 203
14.2.1.2 Declaration of environment entries..................................... 204

14.2.2 Application Assembler’s responsibility .. 207
14.2.3 Deployer’s responsibility .. 207
14.2.4 Container Provider responsibility ... 207

14.3 EJB references ... 20

14.3.1 Bean Provider’s responsibilities.. 208
14.3.1.1 EJB reference programming interfaces 208
14.3.1.2 Declaration of EJB references in deployment descriptor ... 208

14.3.2 Application Assembler’s responsibilities.. 210
14.3.3 Deployer’s responsibility .. 211
14.3.4 Container Provider’s responsibility... 211

14.4 Resource manager connection factory references ... 21

14.4.1 Bean Provider’s responsibilities.. 212
14.4.1.1 Programming interfaces for resource manager connection facto

references212
14.4.1.2 Declaration of resource manager connection factory references

deployment descriptor213
14.4.1.3 Standard resource manager connection factory types 214

14.4.2 Deployer’s responsibility .. 215
14.4.3 Container provider responsibility.. 215
14.4.4 System Administrator’s responsibility .. 216

14.5 Deprecated EJBContext.getEnvironment() method .. 216

14.6 UserTransaction interface.. 21

Chapter 15 Security management... 219

15.1 Overview ... 219

15.2 Bean Provider’s responsibilities .. 220

15.2.1 Invocation of other enterprise beans ... 220
15.2.2 Resource access... 22
15.2.3 Access of underlying OS resources .. 221
7 11/24/99

Enterprise JavaBeans v1.1, Final Release

Sun Microsystems Inc.

5

4

36

8

15.2.4 Programming style recommendations... 221
15.2.5 Programmatic access to caller’s security context 221

15.2.5.1 Use of getCallerPrincipal() ... 223
15.2.5.2 Use of isCallerInRole(String roleName) 224
15.2.5.3 Declaration of security roles referenced from the bean’s code22

15.3 Application Assembler’s responsibilities .. 226

15.3.1 Security roles... 227
15.3.2 Method permissions .. 228
15.3.3 Linking security role references to security roles 232

15.4 Deployer’s responsibilities... 232

15.4.1 Security domain and principal realm assignment 233
15.4.2 Assignment of security roles ... 233
15.4.3 Principal delegation... 233
15.4.4 Security management of resource access .. 23
15.4.5 General notes on deployment descriptor processing......................... 234

15.5 EJB Architecture Client Responsibilities .. 234

15.6 EJB Container Provider’s responsibilities ... 235

15.6.1 Deployment tools .. 235
15.6.2 Security domain(s) .. 235
15.6.3 Security mechanisms... 235
15.6.4 Passing principals on EJB architecture calls 236
15.6.5 Security methods in javax.ejbEJBContext .. 236
15.6.6 Secure access to resource managers.. 2
15.6.7 Principal mapping ... 236
15.6.8 System principal .. 236
15.6.9 Runtime security enforcement .. 237

15.6.10 Audit trail .. 238
15.7 System Administrator’s responsibilities .. 238

15.7.1 Security domain administration .. 238
15.7.2 Principal mapping ... 238
15.7.3 Audit trail review... 238

Chapter 16 Deployment descriptor ... 239

16.1 Overview.. 239

16.2 Bean Provider’s responsibilities .. 240

16.3 Application Assembler’s responsibility... 242

16.4 Container Provider’s responsibilities... 244

16.5 Deployment descriptor DTD ... 244

16.6 Deployment descriptor example .. 259

Chapter 17 Ejb-jar file .. 267

17.1 Overview.. 267

17.2 Deployment descriptor... 268

17.3 Class files ... 26

17.4 ejb-client JAR file .. 268
 11/24/99 8

Enterprise JavaBeans v1.1, Final Release

Sun Microsystem Inc

9

1

83

3

8

9

17.5 Deprecated in EJB 1.1 ... 26

17.5.1 ejb-jar Manifest ... 269
17.5.2 Serialized deployment descriptor JavaBeans™ components............ 269

Chapter 18 Runtime environment... 271

18.1 Bean Provider’s responsibilities .. 271

18.1.1 APIs provided by Container.. 272
18.1.2 Programming restrictions.. 272

18.2 Container Provider’s responsibility ... 275

18.2.1 Java 2 Platform-based Container... 275
18.2.1.1 Java 2 APIs requirements ... 275
18.2.1.2 EJB 1.1 requirements.. 276
18.2.1.3 JNDI 1.2 requirements.. 276
18.2.1.4 JTA 1.0.1 requirements... 277
18.2.1.5 JDBC™ 2.0 extension requirements 277

18.2.2 JDK™ 1.1 based Container... 277
18.2.2.1 JDK 1.1 APIs requirements .. 277
18.2.2.2 EJB 1.1 requirements.. 279
18.2.2.3 JNDI 1.2 requirements.. 279
18.2.2.4 JTA 1.0.1 requirements... 279
18.2.2.5 JDBC 2.0 extension requirements 279

18.2.3 Argument passing semantics... 279

Chapter 19 Responsibilities of EJB Architecture Roles... 28

19.1 Bean Provider’s responsibilities .. 281

19.1.1 API requirements .. 281
19.1.2 Packaging requirements .. 281

19.2 Application Assembler’s responsibilities .. 282

19.3 EJB Container Provider’s responsibilities ... 282

19.4 Deployer’s responsibilities .. 282

19.5 System Administrator’s responsibilities .. 282

19.6 Client Programmer’s responsibilities .. 282

Chapter 20 Enterprise JavaBeans™ API Reference... 2

package javax.ejb... 28

package javax.ejb.deployment ... 284

Chapter 21 Related documents ... 285

Appendix A Features deferred to future releases ... 27

Appendix B Frequently asked questions .. 289

B.1 Client-demarcated transactions ... 28
9 11/24/99

Enterprise JavaBeans v1.1, Final Release

Sun Microsystems Inc.

0

1

2

2

93

94

95

6

7

7

9

0

1

2

2

3

B.2 Inheritance ... 29

B.3 Entities and relationships... 291

B.4 Finder methods for entities with container-managed persistence.................... 291

B.5 JDK 1.1 or Java 2... 29

B.6 javax.transaction.UserTransaction versus javax.jts.UserTransaction 291

B.7 How to obtain database connections.. 29

B.8 Session beans and primary key.. 29

B.9 Copying of parameters required for EJB calls within the same JVM 292

Appendix C Revision History... 293

C.1 Changes since Release 0.8... 2

C.2 Changes since Release 0.9... 2

C.3 Changes since Release 0.95... 2

C.4 Changes since 1.0 .. 29

C.5 Changes since 1.1 Draft 1.. 29

C.6 Changes since 1.1 Draft 2.. 29

C.7 Changes since EJB 1.1 Draft 3 .. 29

C.8 Changes since EJB 1.1 Public Draft .. 30

C.9 Changes since EJB 1.1 Public Draft 2 ... 30

C.10 Changes since EJB 1.1 Public Draft 3 ... 30

C.11 Changes since EJB 1.1 Public Release.. 30

C.12 Changes since EJB 1.1 Public Release.. 30
 11/24/99 10

Enterprise JavaBeans v1.1, Final Release

Sun Microsystem Inc

........72

........73

........74

.......

........1

.......119

........

.......13

......137

........138

......139

.......140

nce141

........143

.......144

.......145

.......145

.......146

nce147
List of Figures

Figure 1 Enterprise JavaBeans Architecture Contracts ...34

Figure 2 Heterogeneous EJB Environment ...37

Figure 3 Client View of session beans deployed in a Container..41

Figure 4 Lifecycle of a session object. ..44

Figure 5 Session Bean Example Objects ...45

Figure 6 Lifecycle of a STATEFUL Session bean instance...57

Figure 7 OID for Creation of a session object ..63

Figure 8 OID for session object at start of a transaction. ..64

Figure 9 OID for session object transaction synchronization..65

Figure 10 OID for passivation and activation of a session object ...66

Figure 11 OID for the removal of a session object ...67

Figure 12 Lifecycle of a STATELESS Session bean ..69

Figure 13 OID for creation of a STATELESS session object..71

Figure 14 OID for invocation of business method on a STATELESS session object......................................

Figure 15 OID for removal of a STATELESS session object..73

Figure 16 OID for Container Adding Instance of a STATELESS session bean to a method-ready pool........

Figure 17 OID for a Container Removing an Instance of a STATELESS Session bean from ready pool

Figure 18 Example of Inheritance Relationships Between EJB Classes..82

Figure 19 Client view of entity beans deployed in a container ...88

Figure 20 Client View of Entity Object Life Cycle ...91

Figure 21 Overview of the entity bean runtime execution model..98

Figure 22 Client view of underlying data sources accessed through entity bean ..00

Figure 23 Life cycle of an entity bean instance. ..102

Figure 24 Multiple clients can access the same entity object using multiple instances

Figure 25 Multiple clients can access the same entity object using single instance......................................120

Figure 26 OID of Creation of an entity object with bean-managed persistence ..6

Figure 27 OID of creation of an entity object with container-managed persistence

Figure 28 OID of passivation and reactivation of an entity bean instance with bean-managed persistence .

Figure 29 OID of passivation and reactivation of an entity bean instance with CMP.....................................

Figure 30 OID of transaction commit protocol for an entity bean instance with bean-managed persistence

Figure 31 OID of transaction commit protocol for an entity bean instance with container-managed persiste

Figure 32 OID of start of transaction for an entity bean instance with bean-managed persistence

Figure 33 OID of start of transaction for an entity bean instance with container-managed persistence

Figure 34 OID of removal of an entity bean object with bean-managed persistence.....................................

Figure 35 OID of removal of an entity bean object with container-managed persistence..............................

Figure 36 OID of execution of a finder method on an entity bean instance with bean-managed persistence

Figure 37 OID of execution of a finder method on an entity bean instance with container-managed persiste

Figure 38 OID of a container adding an instance to the pool ..148

Figure 39 OID of a container removing an instance from the pool...148
11 11/24/99

Enterprise JavaBeans v1.1, Final Release

Sun Microsystems Inc.

........150

.

.....
Figure 40 Example of the inheritance relationship between the interfaces and classes:

Figure 41 Updates to Simultaneous Databases..155

Figure 42 Updates to Multiple Databases in Same Transaction ...156

Figure 43 Updates on Multiple Databases on Multiple Servers ..157

Figure 44 Update of Multiple Databases from Non-Transactional Client..158

Figure 45 Interoperating with Non-Java Clients and/or Servers..159

Figure 46 Transaction diamond scenario with entity object ..181

Figure 47 Handling of diamonds by a multi-process container ..183

Figure 48 Transaction diamond scenario with a session bean ...184

Figure 49 Location of EJB Client Stubs. ...200
 11/24/99 12

Enterprise JavaBeans v1.1, Final Release

Sun Microsystem Inc

......

.......

.

........174

tion

on

.....

........27
List of Tables

Table 1 EJB architecture Roles in the example scenarios..28

Table 2 Operations allowed in the methods of a stateful session bean ..60

Table 3 Operations allowed in the methods of a stateless session bean..70

Table 4 Operations allowed in the methods of an entity bean ..111

Table 5 Summary of commit-time options...118

Table 6 Container’s actions for methods of beans with bean-managed transaction

Table 7 Transaction attribute summary ..177

Table 8 Handling of exceptions thrown by a business method of a bean with container-managed transac
demarcation191

Table 9 Handling of exceptions thrown by a business method of a session with bean-managed transacti
demarcation192

Table 10 Java 2 Platform Security policy for a standard EJB Container ..275

Table 11 JDK 1.1 Security manager checks for a standard EJB Container ...8
13 11/24/99

Enterprise JavaBeans v1.1, Final Release

Sun Microsystems Inc.
 11/24/99 14

Enterprise JavaBeans v1.1, Final Release

Sun Microsystem Inc
Chapter 1 Introduction
c-
ributed
alable,
on any

ndors
ns™

erprise

r Con-

pment,
es the

ify all

t. The
This is the specification of the Enterprise JavaBeansTM architecture. The Enterprise JavaBeans archite
ture is a component architecture for the development and deployment of component-based dist
business applications. Applications written using the Enterprise JavaBeans architecture are sc
transactional, and multi-user secure. These applications may be written once, and then deployed
server platform that supports the Enterprise JavaBeans specification.

1.1 Target audience

The target audiences for this specification are the vendors of transaction processing platforms, ve
of enterprise application tools, and other vendors who want to support the Enterprise JavaBea
(EJB) technology in their products.

Many concepts described in this document are system-level issues that are transparent to the Ent
JavaBeans application programmer.

1.2 What is new in EJB 1.1

We have tightened the Entity bean specification, and made support for Entity beans mandatory fo
tainer Providers.

The other changes in the EJB 1.1 specification were made to improve the support for the develo
application assembly, and deployment of ISV-produced enterprise beans. The specification includ
following primary changes:

• Enhanced support for the enterprise bean’s environment. The Bean Provider must spec
the bean’s environmental dependencies using entries in a JNDI naming context.

• Added support for Application Assembly in the deployment descriptor.

• Clearly separated the responsibilities of the Bean Provider and Application Assembler.

• Removed the EJB 1.0 deployment descriptor features that describe the Deployer’s outpu
role of the deployment descriptor is to describe the information that is theinput to the
Deployer, not the Deployer’soutput.
15 11/24/99

Introduction Enterprise JavaBeans v1.1, Final Release Application compatibility and interoperability

Sun Microsystems Inc.

r ven-
f the

e input

were
rprise
e does
tions:

e
r
t uses
e

-

ple-
rprise
work

lue of
n-
work

were
The changes affected mainly Chapters 11, 14, 15, and 16. We minimized the impact on the serve
dors who implemented support for EJB 1.0 in their runtime. The only change to the runtime API o
EJB Container is the replacement of thejava.security.Identity class with thejava.secu-
rity.Principal interface, necessitated by changes in JDK 1.2.

We have also added a number of clarifications and corrections to the specification based on th
that we have received from the reviewers.

1.3 Application compatibility and interoperability

EJB 1.1 attempts to provide a high degree of application compatibility for enterprise beans that
written for the EJB 1.0 specification. Principally, the deployment descriptor of EJB 1.0 based ente
beans must be converted to the EJB 1.1 XML format. However, the EJB 1.0 enterprise bean cod
not have to be changed or re-compiled to run in an EJB 1.1 Container, except in the following situa

• The bean uses thejavax.jts.UserTransaction interface. The package name of th
javax.jts interface has changed tojavax.transaction , and there have been mino
changes to the exceptions thrown by the methods of this interface. An enterprise bean tha
the javax.jts.UserTransaction interface needs to be modified to use the new nam
javax.transaction.UserTransaction .

• The bean uses thegetCallerIdentity() or isCallerInRole(Identity iden-
tity) methods of thejavax.ejb.EJBContext interface. These method were depre
cated in EJB 1.1 because the classjava.security.Identity is deprecated in Java 2
platform. While a Container Provider may choose to provide a backward compatible im
mentation of these two methods, the Container Provider is not required to do so. An ente
bean written to the EJB 1.0 specification needs to be modified to use the new methods to
in all EJB 1.1. Containers.

• The bean is an entity bean with container-managed persistence. The required return va
ejbCreate(...) is different in EJB 1.1 than in EJB 1.0. An enterprise bean with co
tainer-managed persistence written to the EJB 1.0 specification needs to be recompiled to
with all EJB 1.1 compliant Containers.

• The bean is an entity bean whose finders do not define theFinderException in the meth-
ods’ throws clauses. EJB 1.1 requires that all finders define theFinderException.

• The bean is an entity bean that uses theUserTransaction interface. In EJB 1.1, an entity
bean must not use theUserTransaction interface.

• The bean uses theUserTransaction interface and implements theSessionSynchro-
nization interface at the same time. This is disallowed in EJB 1.1.

• The bean violates any of the additional semantic restrictions defined in EJB 1.1 but which
not defined in EJB 1.0.
 11/24/99 16

Acknowledgments Enterprise JavaBeans v1.1, Final Release Introduction

Sun Microsystem Inc

erprise
sa.

he-
able

rous
tremely

riod.

ation
ect to

ents the

nts the

bean
rprise
The client view of an enterprise bean is the same in EJB 1.0 and EJB 1.1. This means that ent
beans written to EJB 1.1 can seamlessly interoperate with those written to EJB 1.0, and vice ver

1.4 Acknowledgments

Rick Cattell, Linda DeMichiel, Shel Finkelstein, Graham Hamilton, Li Gong, Rohit Garg, Susan C
ung, Hans Hrasna, Sanjeev Krishnan, Kevin Osborn, Bill Shannon, Anil Vijendran, and Larry C
have provided invaluable input to the design of Enterprise JavaBeans architecture.

The Enterprise JavaBeans architecture is a broad effort that includes contributions from nume
groups at Sun and at partner companies. The ongoing specification review process has been ex
valuable, and the many comments that we have received helped us to define the specification.

We would also like to thank all the reviewers who sent us feedback during the public review pe
Their input helped us to improve the specification.

1.5 Organization

Chapter 2, “Goals” discusses the advantages of Enterprise JavaBeans architecture.

Chapter 3, “Roles and Scenarios” discusses the responsibilities of the Bean Provider, Applic
Assembler, Deployer, EJB Container and Server Providers, and System Administrators with resp
the Enterprise JavaBeans architecture.

Chapter 4, “Fundamentals” defines the scope of the Enterprise JavaBeans specification.

Chapters 5 through 7 define Session Beans: Chapter 5 discusses the client view, Chapter 6 pres
Session Bean component contract, and Chapter 7 outlines an example Session Bean scenario.

Chapters 8 through 10 define Entity Beans: Chapter 8 discusses the client view, Chapter 9 prese
Entity Bean component contract, and Chapter 10 outlines an example Entity Bean scenario.

Chapters 11 through 15 discuss transactions, exceptions, distribution, environment, and security.

Chapters 16 and 17 describe the format of the ejb-jar file and its deployment descriptor.

Chapter 18 defines the runtime APIs that a compliant EJB container must provide to the enterprise
instances at runtime. The chapter also specifies the programming restrictions for portable ente
beans.

Chapter 19 summarizes the responsibilities of the individual EJB Roles.

Chapter 20 is the Enterprise JavaBeans API Reference.

Chapter 21 provides a list of related documents.
17 11/24/99

Introduction Enterprise JavaBeans v1.1, Final Release Document conventions

Sun Microsystems Inc.

scrib-
1.6 Document conventions

The regular Times font is used for information that is prescriptive by the EJB specification.

The italic Times font is used for paragraphs that contain descriptive information, such as notes de
ing typical use, or notes clarifying the text with prescriptive specification.

The Courier font is used for code examples.
 11/24/99 18

Overall goals Enterprise JavaBeans v1.1, Final Release Goals

Sun Microsystem Inc

uild-
age.
ions

tion
tails,

phy
then

ntime
Chapter 2 Goals

2.1 Overall goals

We have set the following goals for the Enterprise JavaBeans (EJB) architecture:

• The Enterprise JavaBeans architecture will be the standard component architecture for b
ing distributed object-oriented business applications in the Java™ programming langu
The Enterprise JavaBeans architecture will make it possible to build distributed applicat
by combining components developed using tools from different vendors.

• The Enterprise JavaBeans architecture will make it easy to write applications: Applica
developers will not have to understand low-level transaction and state management de
multi-threading, connection pooling, and other complex low-level APIs.

• Enterprise JavaBeans applications will follow the Write Once, Run Anywhere™” philoso
of the Java programming language. An enterprise Bean can be developed once, and
deployed on multiple platforms without recompilation or source code modification.

• The Enterprise JavaBeans architecture will address the development, deployment, and ru
aspects of an enterprise application’s life cycle.
19 11/24/99

Goals Enterprise JavaBeans v1.1, Final Release Goals for Release 1.0

Sun Microsystems Inc.

ltiple

Ven-

lan-

eans

ese
• The Enterprise JavaBeans architecture will define the contracts that enable tools from mu
vendors to develop and deploy components that can interoperate at runtime.

• The Enterprise JavaBeans architecture will be compatible with existing server platforms.
dors will be able to extend their existing products to support Enterprise JavaBeans.

• The Enterprise JavaBeans architecture will be compatible with other Java programming
guage APIs.

• The Enterprise JavaBeans architecture will provide interoperability between enterprise B
and non-Java programming language applications.

• The Enterprise JavaBeans architecture will be compatible with the CORBA protocols.

2.2 Goals for Release 1.0

In Release 1.0, we focused on the following:

• Defined the distinct “EJB Roles” that are assumed by the component architecture.

• Defined the client view of enterprise Beans.

• Defined the enterprise Bean developer’s view.

• Defined the responsibilities of an EJB Container provider and server provider; together th
make up a system that supports the deployment and execution of enterprise Beans.

• Defined the format of the ejb-jar file, EJB’s unit of deployment.

2.3 Goals for Release 1.1

In the EJB 1.1 Release, we focus on the following aspects:

• Provide better support for application assembly and deployment.

• Specify in greater detail the responsibilities of the individual EJB roles.
 11/24/99 20

EJB Architecture Roles Enterprise JavaBeans v1.1, Final Release EJB Architecture Roles and Scenarios

Sun Microsystem Inc

t and
spec-

of the
o sup-

,
-

Chapter 3 EJB Architecture Roles and Scenarios

3.1 EJB Architecture Roles

The Enterprise JavaBeans architecture defines six distinct roles in the application developmen
deployment life cycle. Each EJB Role may be performed by a different party. The EJB architecture
ifies the contracts that ensure that the product of each EJB Role is compatible with the product
other EJB architecture Roles. The EJB specification focuses on those contracts that are required t
port the development and deployment of ISV-written enterprise Beans.

In some scenarios, a single party may perform several EJB architecture Roles. For example
the Container Provider and the EJB Server Provider may be the same vendor. Or a single pro
grammer may perform the two EJB architecture Roles of the Enterprise Bean Provider and the
Application Assembler.

The following sections define the six EJB architecture Roles.
21 11/24/99

EJB Architecture Roles and Scenarios Enterprise JavaBeans v1.1, Final Release EJB Architecture Roles

Sun Microsystems Inc.

or her
nsible
bean’s
cludes
eclares
gers that

lops

Bean
ices

plica-

. The
. The

with
ssem-

mpo-

at appli-

Beans.
rprise
d by
e of the

mbler
nt. The
3.1.1 Enterprise Bean Provider

The Enterprise Bean Provider (Bean Provider for short) is the producer of enterprise beans. His
output is an ejb-jar file that contains one or more enterprise bean(s). The Bean Provider is respo
for the Java classes that implement the enterprise bean’s business methods; the definition of the
remote and home interfaces; and the bean’s deployment descriptor. The deployment descriptor in
the structural information (e.g. the name of the enterprise bean class) of the enterprise bean and d
all the enterprise bean’s external dependencies (e.g. the names and types of the resource mana
the enterprise bean uses).

The Enterprise Bean Provider is typically an application domain expert. The Bean Provider deve
reusable enterprise beans that typically implement business tasks or business entities.

The Bean Provider is not required to be an expert at system-level programming. Therefore, the
Provider usually does not program transactions, concurrency, security, distribution, or other serv
into the enterprise Beans. The Bean Provider relies on the EJB Container for these services.

A Bean Provider of multiple enterprise beans often performs the EJB architecture Role of the Ap
tion Assembler.

3.1.2 Application Assembler

The Application Assembler combines enterprise beans into larger deployable application units
input to the Application Assembler is one or more ejb-jar files produced by the Bean Provider(s)
Application Assembler outputs one or more ejb-jar files that contain the enterprise beans along
their application assembly instructions. The Application Assembler has inserted the application a
bly instruction into the deployment descriptors.

The Application Assembler can also combine enterprise beans with other types of application co
nents (e.g. Java ServerPages™) when composing an application.

The EJB specification describes the case in which the application assembly step occursbefore the
deployment of the enterprise beans. However, the EJB architecture does not preclude the case th
cation assembly is performedafter the deployment of all or some of the enterprise beans.

The Application Assembler is a domain expert who composes applications that use enterprise
The Application Assembler works with the enterprise Bean’s deployment descriptor and the ente
Bean’s client-view contract. Although the Assembler must be familiar with the functionality provide
the enterprise Beans’ remote and home interfaces, he or she does not need to have any knowledg
enterprise Beans’ implementation.

3.1.3 Deployer

The Deployer takes one or more ejb-jar files produced by a Bean Provider or Application Asse
and deploys the enterprise beans contained in the ejb-jar files in a specific operational environme
operational environment includes a specific EJB Server and Container.
 11/24/99 22

EJB Architecture Roles Enterprise JavaBeans v1.1, Final Release EJB Architecture Roles and Scenarios

Sun Microsystem Inc

.g. the
ans are
onnec-

ssem-
tools

beans)
pecific

ent of
by the
nt in

s. The

ner to

onal

at their
lica-

buted
endor,

vider
Server
The Deployer must resolve all the external dependencies declared by the Bean Provider (e
Deployer must ensure that all resource manager connection factories used by the enterprise be
present in the operational environment, and he or she must bind them to the resource manager c
tion factory references declared in the deployment descriptor), and must follow the application a
bly instructions defined by the Application Assembler. To perform his role, the Deployer uses
provided by the EJB Container Provider.

The Deployer’s output are enterprise beans (or an assembled application that includes enterprise
that have been customized for the target operational environment, and that are deployed in a s
EJB Container.

The Deployer is an expert at a specific operational environment and is responsible for the deploym
enterprise Beans. For example, the Deployer is responsible for mapping the security roles defined
Application Assembler to the user groups and accounts that exist in the operational environme
which the enterprise beans are deployed.

The Deployer uses tools supplied by the EJB Container Provider to perform the deployment task
deployment process is typically two-stage:

• The Deployer first generates the additional classes and interfaces that enable the contai
manage the enterprise beans at runtime. These classes are container-specific.

• The Deployer performs the actual installation of the enterprise beans and the additi
classes and interfaces into the EJB Container.

In some cases, a qualified Deployer may customize the business logic of the enterprise Beans
deployment. Such a Deployer would typically use the container tools to write relatively simple app
tion code that wraps the enterprise Bean’s business methods.

3.1.4 EJB Server Provider

The EJB Server Provider is a specialist in the area of distributed transaction management, distri
objects, and other lower-level system-level services. A typical EJB Server Provider is an OS v
middleware vendor, or database vendor.

The current EJB architecture assumes that the EJB Server Provider and the EJB Container Pro
roles are the same vendor. Therefore, it does not define any interface requirements for the EJB
Provider.

3.1.5 EJB Container Provider

The EJB Container Provider (Container Provider for short) provides

• The deployment tools necessary for the deployment of enterprise beans.

• The runtime support for the deployed enterprise beans’ instances.
23 11/24/99

EJB Architecture Roles and Scenarios Enterprise JavaBeans v1.1, Final Release EJB Architecture Roles

Sun Microsystems Inc.

nviron-
y man-
that are

o be
n does
o split

some
lable,
vider
mple,
Beans

tence
code
appli-

po-
ithout

and

rise’s
ystem
appli-

he Sys-
erver
From the perspective of the enterprise beans, the Container is a part of the target operational e
ment. The Container runtime provides the deployed enterprise beans with transaction and securit
agement, network distribution of clients, scalable management of resources, and other services
generally required as part of a manageable server platform.

The “EJB Container Provider’s responsibilities” defined by the EJB architecture are meant t
requirements for the implementation of the EJB Container and Server. Since the EJB specificatio
not architect the interface between the EJB Container and Server, it is left up to the vendor how t
the implementation of the required functionality between the EJB Container and Server.

The expertise of the Container Provider is system-level programming, possibly combined with
application-domain expertise. The focus of a Container Provider is on the development of a sca
secure, transaction-enabled container that is integrated with an EJB Server. The Container Pro
insulates the enterprise Bean from the specifics of an underlying EJB Server by providing a si
standard API between the enterprise Bean and the container. This API is the Enterprise Java
component contract.

For Entity Beans with container-managed persistence, the entity container is responsible for persis
of the Entity Beans installed in the container. The Container Provider’s tools are used to generate
that moves data between the enterprise Bean’s instance variables and a database or an existing
cation.

The Container Provider typically provides support for versioning the installed enterprise Bean com
nents. For example, the Container Provider may allow enterprise Bean classes to be upgraded w
invalidating existing clients or losing existing enterprise Bean objects.

The Container Provider typically provides tools that allow the system administrator to monitor
manage the container and the Beans running in the container at runtime.

3.1.6 System Administrator
The System Administrator is responsible for the configuration and administration of the enterp
computing and networking infrastructure that includes the EJB Server and Container. The S
Administrator is also responsible for overseeing the well-being of the deployed enterprise beans
cations at runtime.

The EJB architecture does not define the contracts for system management and administration. T
tem Administrator typically uses runtime monitoring and management tools provided by the EJB S
and Container Providers to accomplish these tasks.
 11/24/99 24

Scenario: Development, assembly, and deploymentEnterprise JavaBeans v1.1, Final Release EJB Architecture Roles and Scenarios

Sun Microsystem Inc

plica-

plica-

service
loyee

t
erms

ess to

ause
uitable
an will
ill be

ents of
terprise
ans are
rprises

ll the

ompo-
prise
ole of

terms
3.2 Scenario: Development, assembly, and deployment

Aardvark Inc. specializes in application integration. Aardvark developed theAardvarkPayrollenter-
prise bean, which is a generic payroll access component that allows Java technology-enabled ap
tions to access the payroll modules of the leading ERP systems. Aardvark packages theAardvarkPayroll
enterprise bean in a standard ejb-jar file and markets it as a customizable enterprise bean to ap
tion developers. In the terms of the EJB architecture, Aardvark is theBean Providerof theAardvark-
Payroll bean.

Wombat Inc. is a Web-application development company. Wombat developed an employee self-
application. The application allows a target enterprise’s employees to access and update emp
record information. The application includes theEmployeeService, EmployeeServiceAdmin, and
EmployeeRecordenterprise beans. TheEmployeeRecordbean is a container-managed entity tha
allows deployment-time integration with an enterprise’s existing human resource applications. In t
of the EJB architecture, Wombat is theBean Providerof theEmployeeService, EmployeeServiceAd-
min, andEmployeeRecord enterprise beans.

In addition to providing access to employee records, Wombat would like to provide employee acc
the enterprise’s payroll and pension plan systems. To provide payroll access, Wombat licenses theAard-
varkPayrollenterprise bean from Aardvark, and includes it as part of the Wombat application. Bec
there is no available generic enterprise bean for pension plan access, Wombat decides that a s
pension plan enterprise bean will have to be developed at deployment time. The pension plan be
implement the necessary application integration logic, and it is likely that the pension plan bean w
specific to each Wombat customer.

In order to provide a complete solution, Wombat also develops the necessary non-EJB compon
the employee self-service application, such as the Java ServerPages (JSP) that invoke the en
beans and generate the HTML presentation to the clients. Both the JSP pages and enterprise be
customizable at deployment time because they are intended to be sold to a number of target ente
that are Wombat customers.

The Wombat application is packaged as a collection of JAR files. A single ejb-jar file contains a
enterprise beans developed by Wombat and also theAardvarkPayrollenterprise bean developed by
Aardvark; the other JAR files contain the non-EJB application components, such as the JSP c
nents. The ejb-jar file contains the application assembly instructions describing how the enter
beans are composed into an application. In terms of the EJB architecture, Wombat performs the r
theApplication Assembler.

Acme Corporation is a server software vendor. Acme developed an EJB Server and Container. In
of the EJB architecture, Acme performs theEJB Container Provider andEJB Server Providerroles.
25 11/24/99

EJB Architecture Roles and Scenarios Enterprise JavaBeans v1.1, Final ReleaseScenario: Development, assembly, and deploy-

Sun Microsystems Inc.

payroll
sys-
buys

h the
e EJB

a-

ting
such
payroll
nec-

C’s IT
icing
rms
The ABC Enterprise wants to enable its employees to access and update employee records,
information, and pension plan information over the Web. The information is stored in ABC’s ERP
tem. ABC buys the employee self-service application from Wombat. To host the application, ABC
the EJB Container and Server from Acme. ABC’s Information Technology (IT) department, wit
help of Wombat’s consulting services, deploys the Wombat self-service application. In terms of th
architecture, ABC’s IT department and Wombat consulting services perform theDeployerrole. ABC’s
IT department also develops theABCPensionPlanenterprise bean that provides the Wombat applic
tion with access to ABC’s existing pension plan application.

ABC’s IT staff is responsible for configuring the Acme product and integrating it with ABC’s exis
network infrastructure. The IT staff is responsible for the following tasks: security administration,
as adding and removing employee accounts; adding employees to user groups such as the
department; and mapping principals from digital certificates that identify employees on VPN con
tions from home computers to the Kerberos user accounts that are used on ABC’s intranet. AB
staff also monitors the well-being of the Wombat application at runtime, and is responsible for serv
any error conditions raised by the application. In terms of the EJB architecture, ABC’s IT staff perfo
the role of theSystem Administrator.
 11/24/99 26

Scenario: Development, assembly, and deploymentEnterprise JavaBeans v1.1, Final Release EJB Architecture Roles and Scenarios

Sun Microsystem Inc
The following diagrams illustrates the products of the various EJB architecture Roles.

Aardvark
Payroll

ejb-jar file

Employee
RecordEmployee

Service

Employee
ServiceAdmin

Aardvark
Payroll

ejb-jar file
with assembly instructions

JAR file
with JSP pages

Employee
Record

Employee
Service

Employee
ServiceAdmin

Aardvark
Payroll

deployed
 JSP pages

ACME EJB Container

ACME EJB Server

ABCPension
Plan

A Web Server

ABC’s ERP System

HR module

Payroll module

ABC’s pension
plan application

deployed enterprise beans

(a) Aardvark’s product is an ejb-jar file with an enterprise bean

(b) Wombat’s product is an ejb-jar file with several enterprise beans assembled into
an application. Wombat’s product also includes non-EJB components.

(c) Wombat’s application is deployed in ACME’s EJB Container at the ABC enterprise.
27 11/24/99

EJB Architecture Roles and Scenarios Enterprise JavaBeans v1.1, Final ReleaseScenario: Development, assembly, and deploy-

Sun Microsystems Inc.

sce-
The following table summarizes the EJB architecture Roles of the organizations involved in the
nario.

Table 1 EJB architecture Roles in the example scenarios

Organization EJB Architecture Roles

Aardvark Inc. Bean Provider

Wombat Inc. Bean Provider
Application Assembler

Acme Corporation EJB Container Provider
EJB Server Provider

ABC Enterprise’s IT staff Deployer
Bean Provider (ofABCPensionPlan)
System Administrator
 11/24/99 28

Enterprise Beans as components Enterprise JavaBeans v1.1, Final Release Overview

Sun Microsystem Inc

puting.
Chapter 4 Overview

This chapter provides an overview of the Enterprise JavaBeans specification.

4.1 Enterprise Beans as components

The Enterprise JavaBeans architecture is an architecture for component-based distributed com
Enterprise beans are components of distributed transaction-oriented enterprise applications.
29 11/24/99

Overview Enterprise JavaBeans v1.1, Final Release Enterprise Beans as components

Sun Microsystems Inc.

ta.

tries.

e from
uring

rprise
ovide
n that
e.

code

manu-
ent
yed.
envi-

ing:

bjects

nts.

e order,
should

it pro-
4.1.1 Component characteristics

The essential characteristics of an enterprise bean are:

• An enterprise bean typically contains business logic that operates on the enterprise’s da

• An enterprise bean’s instances are created and managed at runtime by a Container.

• An enterprise bean can be customized at deployment time by editing its environment en

• Various services information, such as a transaction and security attributes, are separat
the enterprise bean class. This allows the services information to be managed by tools d
application assembly and deployment.

• Client access is mediated by the Container in which the enterprise Bean is deployed.

• If an enterprise Bean uses only the services defined by the EJB specification, the ente
Bean can be deployed in any compliant EJB Container. Specialized containers can pr
additional services beyond those defined by the EJB specification. An enterprise Bea
depends on such a service can be deployed only in a container that supports that servic

• An enterprise Bean can be included in an assembled application without requiring source
changes or recompilation of the enterprise Bean.

• The Bean Provider defines a client view of an enterprise Bean. The Bean developer can
ally define the client view or it can be generated automatically by application developm
tools. The client view is unaffected by the container and server in which the Bean is deplo
This ensures that both the Beans and their clients can be deployed in multiple execution
ronments without changes or recompilation.

4.1.2 Flexible component model

The enterprise Bean architecture is flexible enough to implement components such as the follow

• An object that represents a stateless service.

• An object that represents a conversational session with a particular client. Such session o
automatically maintain their conversational state across multiple client-invoked methods.

• An entity object that represents a business object that can be shared among multiple clie

Enterprise beans are intended to be relatively coarse-grained business objects (e.g. purchas
employee record). Fine-grained objects (e.g. line item on a purchase order, employee’s address)
not be modeled as enterprise bean components.

While the state management protocol defined by the Enterprise JavaBeans architecture is simple,
vides an enterprise Bean developer great flexibility in managing a Bean’s state.
 11/24/99 30

Enterprise JavaBeans Architecture contracts Enterprise JavaBeans v1.1, Final Release Overview

Sun Microsystem Inc

gard-

cts are

velop-
the use

terprise

t Con-
let, or
s, such

’s client

JB
rface is

ce. The

rectory
A client always uses the same API for object creation, lookup, method invocation, and removal, re
less of how an enterprise bean is implemented or what function it provides to the client.

4.2 Enterprise JavaBeans Architecture contracts

This section provides an overview of the Enterprise JavaBeans architecture contracts. The contra
described in detail in the following chapters of this document.

4.2.1 Client-view contract

This is a contract between a client and a container. The client-view contract provides a uniform de
ment model for applications using enterprise Beans as components. This uniform model enables
of higher level development tools and allows greater reuse of components.

The enterprise bean client view is remotable—both local and remote programs can access an en
bean using the same view of the enterprise bean.

A client of an enterprise bean can be another enterprise bean deployed in the same or differen
tainer. Or it can be an arbitrary Java technology-enabled program, such as an application, app
servlet. The client view of an enterprise bean can also be mapped to non-Java client environment
as CORBA clients that are not written in the Java programming language.

The enterprise Bean Provider and the container provider cooperate to create the enterprise bean
view. The client view includes:

• Home interface

• Remote interface

• Object identity

• Metadata interface

• Handle

The enterprise bean’shome interfacedefines the methods for the client to create, remove, and find E
objects of the same type (i.e. they are implemented by the same enterprise bean). The home inte
specified by the Bean Provider; the Container creates a class that implements the home interfa
home interface extends thejavax.ejb.EJBHome interface.

A client can locate an enterprise Bean home interface through the standard Java Naming and Di
InterfaceTM (JNDI) API.
31 11/24/99

Overview Enterprise JavaBeans v1.1, Final Release Enterprise JavaBeans Architecture contracts

Sun Microsystems Inc.

er; the
ds the

-
e EJB

e Con-
is not

ession
bject

cli-

pically
tion is
nt pro-

require-
n.)

rprise
cation

nvoke

inter-
these

acks
An EJB object is accessible via the enterprise bean’sremote interface. The remote interface defines the
business methods callable by the client. The remote interface is specified by the Bean Provid
Container creates a class that implements the remote interface. The remote interface exten
javax.ejb.EJBObject interface. Thejavax.ejb.EJBObject interface defines the opera
tions that allow the client to access the EJB object’s identity and create a persistent handle for th
object.

Each EJB object lives in a home, and has a unique identity within its home. For session beans, th
tainer is responsible for generating a new unique identifier for each session object. The identifier
exposed to the client. However, a client may test if two object references refer to the same s
object. For entity beans, the Bean Provider is responsible for supplying a primary key at entity o
creation time[1]; the Container uses the primary key to identify the entity object within its home. A
ent may obtain an entity object’s primary key via thejavax.ejb.EJBObject interface. The client
may also test if two object references refer to the same entity object.

A client may also obtain the enterprise bean’s metadata interface. The metadata interface is ty
used by clients who need to perform dynamic invocation of the enterprise bean. (Dynamic invoca
needed if the classes that provide the enterprise client view were not available at the time the clie
gram was compiled.)

4.2.2 Component contract

This subsection describes the contract between an enterprise Bean and its Container. The main
ments of the contract follow. (This is only a partial list of requirements defined by the specificatio

• The requirement for the Bean Provider to implement the business methods in the ente
bean class. The requirement for the Container provider to delegate the client method invo
to these methods.

• The requirement for the Bean Provider to implement theejbCreate , ejbPostCreate,
andejbRemove methods, and to implement theejbFind<METHOD> methods if the bean is
an entity with bean-managed persistence. The requirement for the Container provider to i
these methods during an EJB object creation, removal, and lookup.

• The requirement for the Bean Provider to define the enterprise bean’s home and remote
faces. The requirement for the Container Provider to provide classes that implement
interfaces.

• For sessions, the requirement for the Bean Provider to implement the Container callb
defined in the javax.ejb.SessionBean interface, and optionally the

[1] In special situations, the primary key type can be specified at deployment time (see subsection 9.4.7.3).
 11/24/99 32

Enterprise JavaBeans Architecture contracts Enterprise JavaBeans v1.1, Final Release Overview

Sun Microsystem Inc

r

acks
o

with

the

t that

behalf

rfere

clar-
yment

r, and

nd
ation
ons
javax.ejb.SessionSynchronization interfaces. The requirement for the Containe
to invoke these callbacks at the appropriate times.

• For entities, the requirement for the Bean Provider to implement the Container callb
defined in thejavax.ejb.EntityBean interface. The requirement for the Container t
invoke these callbacks at the appropriate times.

• The requirement for the Container Provider to implement persistence for entity beans
container-managed persistence.

• The requirement for the Container Provider to provide thejavax.ejb.SessionContext
interface to session bean instances, and thejavax.ejb.EntityContext interface to
entity bean instances. The context interface allows the instance to obtain information from
container.

• The requirement for the Container to provide to the bean instances the JNDI API contex
contains the enterprise bean’s environment.

• The requirement for the Container to manage transactions, security, and exceptions on
of the enterprise bean instances.

• The requirement for the Bean Provider to avoid programming practices that would inte
with the Container’s runtime management of the enterprise bean instances.

4.2.3 Ejb-jar file

An ejb-jar file is a standard format used by EJB tools for packaging enterprise Beans with their de
ative information. The ejb-jar file is intended to be processed by application assembly and deplo
tools.

The ejb-jar file is a contract used both between the Bean Provider and the Application Assemble
between the Application Assembler and the Deployer.

The ejb-jar file includes:

• Java class files for the enterprise Beans and their remote and home interfaces.

• An XML deployment descriptor. The deployment descriptor provides both the structural a
application assembly information about the enterprise beans in the ejb-jar file. The applic
assembly information is optional. (Typically, only ejb-jar files with assembled applicati
include this information.)

4.2.4 Contracts summary

The following figure illustrates the Enterprise JavaBeans contracts.
33 11/24/99

Overview Enterprise JavaBeans v1.1, Final Release Session and entity objects

Sun Microsystems Inc.

cli-
er.
Figure 1 Enterprise JavaBeans Architecture Contracts

Note that while the figure illustrates only a remote client running outside of the Container, the
ent-view API is also applicable to clients that are enterprise Beans deployed in the same Contain

4.3 Session and entity objects

The Enterprise JavaBeans architecture defines two types of enterprise bean objects:

• A session object.

• An entity object.

4.3.1 Session objects

A typical session object has the following characteristics:

• Executes on behalf of a single client.

client Enterprise bean

deployment descriptor

Container

component
contract

client-view

EJB Server

instances
 11/24/99 34

Standard mapping to CORBA protocols Enterprise JavaBeans v1.1, Final Release Overview

Sun Microsystem Inc

pdate

ssion

ssion

l) Ses-

er. If
d, the
sh is
in a

con-

ne a
proto-
• Can be transaction-aware.

• Updates shared data in an underlying database.

• Does not represent directly shared data in the database, although it may access and u
such data.

• Is relatively short-lived.

• Is removed when the EJB Container crashes. The client has to re-establish a new se
object to continue computation.

A typical EJB Container provides a scalable runtime environment to execute a large number of se
objects concurrently.

Session beans are intended to be stateful. The EJB specification also defines astateless Session beanas
a special case of a Session Bean. There are minor differences in the API between stateful (norma
sion beans and stateless Session beans.

4.3.2 Entity objects

A typical entity object has the following characteristics:

• Provides an object view of data in the database.

• Allows shared access from multiple users.

• Can be long-lived (lives as long as the data in the database).

• The entity, its primary key, and its remote reference survive the crash of the EJB Contain
the state of an entity was being updated by a transaction at the time the container crashe
entity’s state is automatically reset to the state of the last committed transaction. The cra
not fully transparent to the client—the client may receive an exception if it calls an entity
container that has experienced a crash.

A typical EJB Container and Server provide a scalable runtime environment for a large number of
currently active entity objects.

4.4 Standard mapping to CORBA protocols

To help interoperability for EJB environments that include systems from multiple vendors, we defi
standard mapping of the Enterprise JavaBeans architecture client-view contract to the CORBA
cols.
35 11/24/99

Overview Enterprise JavaBeans v1.1, Final Release Standard mapping to CORBA protocols

Sun Microsystems Inc.

JB 1.1
dor

is an

ors’
pplica-

prop-

nsac-
nsure
to-

erent
The use of the EJB architecture to CORBA mapping by the EJB Server is not a requirement for E
compliance. A later release of the J2EE platform is likely to require that the J2EE platform ven
implement the EJB architecture to CORBA mapping.

The EJB-to-CORBA mapping covers:

1. Mapping of the EJB architecture remote and home interfaces to RMI-IIOP. This mapping
identity mapping because every remote and home interface is an RMI-IIOP interface.

2. Propagation of transaction context over IIOP.

3. Propagation of security context over IIOP.

4. Interoperable naming service.

The EJB-to-CORBA mapping not only enables on-the-wire interoperability among multiple vend
implementations of the EJB Container, but also enables non-Java clients to access server-side a
tions written as enterprise Beans through standard CORBA APIs.

The EJB-to-CORBA mapping depends on the standard CORBA Object Services protocols for the
agation of the transaction and security context.

The CORBA mapping is defined in an accompanying document [8].

While the EJB-to-CORBA mapping defines the mapping of the EJB application interfaces and tra
tion interoperability, the mapping must be used in conjunction with other CORBA standards to e
full “on-the-wire” interoperability. For example, multiple EJB servers must agree on the security pro
col to achieve seamless interoperability.

The following figure illustrates a heterogeneous environment that includes systems from five diff
vendors.
 11/24/99 36

Standard mapping to CORBA protocols Enterprise JavaBeans v1.1, Final Release Overview

Sun Microsystem Inc
Figure 2 Heterogeneous EJB Environment

Enterprise
JavaBeans

EJB
server

Enterprise
JavaBeans

EJB
server

Enterprise
JavaBeans
client

Java IDL
client

CORBA
client

vendor 4 vendor 5

vendor 3

vendor1

vendor 2

IIOP
IIOP

IIOP

IIOP

Component Component
37 11/24/99

Overview Enterprise JavaBeans v1.1, Final Release Standard mapping to CORBA protocols

Sun Microsystems Inc.
 11/24/99 38

Overview Enterprise JavaBeans v1.1, Final Release Client View of a Session Bean

Sun Microsystem Inc

usiness
ctions,

tainer

ing on
t runs

ject that
a

t, the
er ser-
Chapter 5 Client View of a Session Bean

This chapter describes the client view of a session bean. The session bean itself implements the b
logic. The bean’s container provides functionality for remote access, security, concurrency, transa
and so forth.

While classes implemented by the container provide the client view of the session bean, the con
itself is transparent to the client.

5.1 Overview

For a client, a session object is a non-persistent object that implements some business logic runn
the server. One way to think of a session object is as a logical extension of the client program tha
on the server. A session object is not shared among multiple clients.

A client accesses a session object through the session bean’s remote interface. The Java ob
implements this remote interface is called a sessionEJBObject. A session EJBObject is a remote Jav
object accessible from a client through the standard Java APIs for remote object invocation [3].

From its creation until destruction, a session object lives in a container. Transparently to the clien
container provides security, concurrency, transactions, swapping to secondary storage, and oth
vices for the session object.
39 11/24/99

Client View of a Session Bean Enterprise JavaBeans v1.1, Final Release EJB Container

Sun Microsystems Inc.

-
the cli-

e ses-
chine.

ntainer;
a ses-
ot writ-

up the
e pro-

n bean

eans.
r mak-
xten-

PI.

ce for

beans
ns of
e bean.

Con-
ltiple
Each session object has an identity which, in general,does notsurvive a crash and restart of the con
tainer, although a high-end container implementation can mask container and server crashes to
ent.

The client view of a session bean is location-independent. A client running in the same JVM as th
sion object uses the same API as a client running in a different JVM on the same or different ma

A client of an session bean can be another enterprise bean deployed in the same or different Co
or it can be an arbitrary Java program, such as an application, applet, or servlet. The client view of
sion bean can also be mapped to non-Java client environments, such as CORBA clients that are n
ten in the Java programming language.

Multiple enterprise beans can be installed in a container. The container allows the clients to look
home interfaces of the installed enterprise beans via JNDI API. A session bean’s home interfac
vides methods to create and remove the session objects of a particular session bean.

The client view of an session object is the same, irrespective of the implementation of the sessio
and the container.

5.2 EJB Container

An EJB Container (container for short) is a system that functions as the “container” for enterprise b
Multiple enterprise beans can be deployed in the same container. The container is responsible fo
ing the home interfaces of its deployed enterprise beans available to the client through JNDI API e
sion. Thus, the client can look up the home interface for a specific enterprise bean using JNDI A

5.2.1 Locating a session bean’s home interface

A client locates a session bean’s home interface using JNDI API. For example, the home interfa
theCart session bean can be located using the following code segment:

Context initialContext = new InitialContext();
CartHome cartHome = (CartHome)javax.rmi.PortableRemoteObject.narrow(

initialContext.lookup(“java:comp/env/ejb/cart”),
CartHome.class);

A client’s JNDI name space may be configured to include the home interfaces of enterprise
installed in multiple EJB Containers located on multiple machines on a network. The actual locatio
an enterprise bean and EJB Container are, in general, transparent to the client using the enterpris

The lifecycle of the distributed object implementing the home interface (the EJBHome object) is
tainer-specific. A client application should be able to obtain a home interface, and then use it mu
times, during the client application’s lifetime.
 11/24/99 40

Home interface Enterprise JavaBeans v1.1, Final Release Client View of a Session Bean

Sun Microsystem Inc

on can
ned via

object
ntainer
A client can pass a home interface object reference to another application. The receiving applicati
use the home interface in the same way that it would use a home interface object reference obtai
JNDI API.

5.2.2 What a container provides

The following diagram illustrates the view that a container provides to clients of session beans.

Figure 3 Client View of session beans deployed in a Container

5.3 Home interface

A Container implements the home interface of the enterprise bean installed in the container. The
that implements a session bean’s home interface is called a session EJBHome object. The co
makes the session beans’ home interfaces available to the client through JNDI API.

client

EJB objects

EJBHome

container

EJB objectsEJBObjects

session bean 1

EJB objects

EJBHome

EJB objectsEJBObjects

session bean 2
41 11/24/99

Client View of a Session Bean Enterprise JavaBeans v1.1, Final Release Home interface

Sun Microsystems Inc.

e
to
d cli-

stable
orage

on
es-

e

The home interface allows a client to do the following:

• Create a new session object.

• Remove a session object.

• Get the javax.ejb.EJBMetaData interface for the session bean. Th
javax.ejb.EJBMetaData interface is intended to allow application assembly tools
discover information about the session bean, and to allow loose client/server binding an
ent-side scripting.

• Obtain a handle for the home interface. The home handle can be serialized and written to
storage. Later, possibly in a different JVM, the handle can be deserialized from stable st
and used to obtain back a reference of the home interface.

5.3.1 Creating a session object

A home interface defines one or morecreate(...) methods, one for each way to create a sessi
object. The arguments of thecreatemethods are typically used to initialize the state of the created s
sion object.

The following example illustrates a home interface that defines a singlecreate(...) method:

public interface CartHome extends javax.ejb.EJBHome {
Cart create(String customerName, String account)

throws RemoteException, BadAccountException,
CreateException;

}

The following example illustrates how a client creates a new session object using acreate(...)
method of theCartHome interface:

cartHome.create(“John”, “7506”);

5.3.2 Removing a session object

A client may remove a session object using theremove() method on thejavax.ejb.EJBObject
interface, or the remove(Handle handle) method of thejavax.ejb.EJBHome interface.

Because session objects do not have primary keys that are accessible to clients, invoking the
javax.ejb.Home.remove(Object primaryKey) method on a session results in th
javax.ejb.RemoveException .
 11/24/99 42

EJBObject Enterprise JavaBeans v1.1, Final Release Client View of a Session Bean

Sun Microsystem Inc

session
on bean’s

n of a

:

For this
bjects,

s

home

to per-
as the

he ses-

e.

ht to
nd then
d on the
5.4 EJBObject

A client never directly accesses instances of the session bean’s class. A client always uses the
bean’s remote interface to access a session bean’s instance. The class that implements the sessi
remote interface is provided by the container; its instances are called sessionEJBObject s.

A session EJBObject supports:

• The business logic methods of the object. The session EJBObject delegates invocatio
business method to the session bean instance.

• The methods of thejavax.ejb.EJBObject interface. These methods allow the client to

• Get the session object’s home interface.

• Get the session object’s handle.

• Test if the session object is identical with another session object.

• Remove the session object.

The implementation of the methods defined in thejavax.ejb.EJBObject interface is provided by
the container. They are not delegated to the instances of the session bean class.

5.5 Session object identity

Session objects are intended to be private resources used only by the client that created them.
reason, session objects, from the client’s perspective, appear anonymous. In contrast to entity o
which expose their identity as a primary key, session objects hide their identity. As a result, theEJBOb-
ject.getPrimaryKey() andEJBHome.remove(Object primaryKey) methods result in
a java.rmi.RemoteException if called on a session bean. If theEJBMetaData.getPrima-
ryKeyClass() method is invoked on aEJBMetaData object for a Session bean, the method throw
the java.lang.RuntimeException .

Since all session objects hide their identity, there is no need to provide a finder for them. The
interface of a session bean must not define any finder methods.

A session object handle can be held beyond the life of a client process by serializing the handle
sistent store. When the handle is later deserialized, the session object it returns will work as long
session object still exists on the server. (An earlier timeout or server crash may have destroyed t
sion object.)

The client code must use thejavax.rmi.PortableRemoteObject.narrow(...) method to
convert the result of thegetEJBObject() method invoked on a handle to the remote interface typ

A handle is not a capability, in the security sense, that would automatically grant its holder the rig
invoke methods on the object. When a reference to a session object is obtained from a handle, a
a method on the session object is invoked, the container performs the usual access checks base
caller’s principal.
43 11/24/99

Client View of a Session Bean Enterprise JavaBeans v1.1, Final Release Client view of session object’s life cycle

Sun Microsystems Inc.

t has a

tically
5.6 Client view of session object’s life cycle

From a client point of view, the life cycle of a session object is illustrated below

Figure 4 Lifecycle of a session object.

A session object does not exist until it is created. When a client creates a session object, the clien
reference to the newly created session object’s remote interface.

A client that has a reference to a session object can then do any of the following:

• Invoke business methods defined in the session object’s remote interface.

• Get a reference to the session object’s home interface.

• Get a handle for the session object.

• Pass the reference as a parameter or return value within the scope of the client.

• Remove the session object. A container may also remove the session object automa
when the session object’s lifetime expires.

does not exist
and

not referenced

does not exist
and

referenced

exists
and

not referenced

exists
and

referenced

release reference

home.create(...)

object.remove(),

release reference

client’s method on reference

client’s method on reference
generates NoSuchObjectException

home.remove(...),

Container crash,

handle.getEJBObject()

or
Container crash

system exception in bean,
bean timeout,

or bean timeout
 11/24/99 44

Creating and using a session object Enterprise JavaBeans v1.1, Final Release Client View of a Session Bean

Sun Microsystem Inc

object

items

n tempo-
get-

later to

the
It is invalid to reference a session object that does not exist. Attempted invocations on a session
that does not exist result injava.rmi.NoSuchObjectException .

5.7 Creating and using a session object

An example of the session bean runtime objects is illustrated by the following diagram:

Figure 5 Session Bean Example Objects

A client creates aCart session object (which provides a shopping service) using acreate(...)
method of the Cart’s home interface. The client then uses this session object to fill the cart with
and to purchase its contents.

Suppose that the end-user wishes to start the shopping session, suspend the shopping sessio
rarily for a day or two, and later complete the session. The client might implement this feature by
ting the session object’s handle, saving the serialized handle in persistent storage, then using it
reestablish access to the originalCart .

For the following example, we start by looking up the Cart’s home interface in JNDI. We then use
home interface to create aCart session object and add a few items to it:

CartHome cartHome = (CartHome)javax.rmi.PortableRemoteObject.narrow(
initialContext.lookup(...), CartHome.class);

Cart cart = cartHome.create(...);
cart.addItem(66);
cart.addItem(22);

CartBeanclient

Cart

CartHome

container
45 11/24/99

Client View of a Session Bean Enterprise JavaBeans v1.1, Final Release Object identity

Sun Microsystems Inc.

art ses-

ct, and

ect iden-
(each
ave a

to
Next we decide to complete this shopping session at a later time so we serialize a handle to this c
sion object and store it in a file:

Handle cartHandle = cart.getHandle();
serialize cartHandle, store in a file...

Finally we deserialize the handle at a later time, re-create the reference to the cart session obje
purchase the contents of the shopping cart:

Handle cartHandle = deserialize from a file...
Cart cart = (Cart)javax.rmi.PortableRemoteObject.narrow(

cartHandle.getEJBObject(), Cart.class);
cart.purchase();
cart.remove();

5.8 Object identity

5.8.1 Stateful session beans
A stateful session object has a unique identity that is assigned by the container at create time.

A client can determine if two object references refer to the same session object by invoking theisI-
dentical(EJBObject otherEJBObject) method on one of the references.

The following example illustrates the use of theisIdentical method for a stateful session object.

FooHome fooHome = ...; // obtain home of a stateful session bean
Foo foo1 = fooHome.create(...);
Foo foo2 = fooHome.create(...);

if (foo1.isIdentical(foo1)) {// this test must return true
...

}

if (foo1.isIdentical(foo2)) {// this test must return false
...

}

5.8.2 Stateless session beans

All session objects of the same stateless session bean within the same home have the same obj
tity, which is assigned by the container. If a stateless session bean is deployed multiple times
deployment results in the creation of a distinct home), session objects from different homes will h
different identity.

The isIdentical(EJBObject otherEJBObject) method always returns true when used
compare object references of two session objects of the same stateless session bean.
 11/24/99 46

Type narrowing Enterprise JavaBeans v1.1, Final Release Client View of a Session Bean

Sun Microsystem Inc

t.

tions

o fail
The following example illustrates the use of theisIdentical method for a stateless session objec

FooHome fooHome = ...; // obtain home of a stateless session bean
Foo foo1 = fooHome.create();
Foo foo2 = fooHome.create();

if (foo1.isIdentical(foo1)) {// this test returns true
...

}

if (foo1.isIdentical(foo2)) {// this test returns true
...

}

5.8.3 getPrimaryKey()

The object identifier of a session object is, in general, opaque to the client. The result ofgetPrima-
ryKey() on a session EJBObject reference results injava.rmi.RemoteException .

5.9 Type narrowing

A client program that is intended to be interoperable with all compliant EJB Container implementa
must use the javax.rmi.PortableRemoteObject.narrow(...) method to perform
type-narrowing of the client-side representations of the home and remote interface.

Note: Programs using the cast operator for narrowing the remote and home interfaces are likely t
if the Container implementation uses RMI-IIOP as the underlying communication transport.
47 11/24/99

Client View of a Session Bean Enterprise JavaBeans v1.1, Final Release Type narrowing

Sun Microsystems Inc.
 11/24/99 48

Overview Enterprise JavaBeans v1.1, Final Release Session Bean Component Contract

Sun Microsystem Inc

ycle of

respon-

ate.

te

ction,
Chapter 6 Session Bean Component Contract

This chapter specifies the contract between a session bean and its container. It defines the life c
the session bean instances.

This chapter defines the developer’s view of session bean state management and the container’s
sibility for managing session bean state.

6.1 Overview

A session bean instance is an instance of the session bean class. It holds the session object’s st

By definition, a session bean instance is an extension of the client that creates it:

• Its fields contain aconversational stateon behalf of the session object’s client. This sta
describes the conversation represented by a specific client/session object pair.

• It typically reads and updates data in a database on behalf of the client. Within a transa
some of this data may be cached in the instance.

• Its lifetime is controlled by the client.
49 11/24/99

Session Bean Component Contract Enterprise JavaBeans v1.1, Final Release Goals

Sun Microsystems Inc.

-

s

veloper
time of

on bean
refresh

ping the

n bean
imple-

en the

orarily
e trans-

e of the

thods;

tained
A container may also terminate a session bean instance’s life after a deployer-specified time
out or as a result of the failure of the server on which the bean instance is running. For this
reason, a client should be prepared to recreate a new session object if it loses the one it i
using.

Typically, a session object’s conversational state is not written to the database. A session bean de
simply stores it in the session bean instance’s fields and assumes its value is retained for the life
the instance.

On the other hand, the session bean must explicitly manage cached database data. A sessi
instance must write any cached database updates prior to a transaction completion, and it must
its copy of any potentially stale database data at the beginning of the next transaction.

6.2 Goals

The goal of the session bean model is to make developing a session bean as simple as develo
same functionality directly in a client.

The container manages the life cycle of the session bean instances. It notifies the instances whe
action may be necessary, and it provides a full range of services to ensure that the session bean
mentation is scalable and can support a large number of clients.

The remainder of this section describes the session bean life cycle in detail and the protocol betwe
bean and its container.

6.3 A container’s management of its working set

To efficiently manage the size of its working set, a session bean container may need to temp
transfer the state of an idle stateful session bean instance to some form of secondary storage. Th
fer from the working set to secondary storage is called instancepassivation. The transfer back is called
activation.

A container may only passivate a session bean instance when the instance isnot in a transaction.

To help the container manage its state, a session bean is specified at deployment as having on
following state management modes:

• STATELESS—the session bean instances contain no conversational state between me
any instance can be used for any client.

• STATEFUL—the session bean instances contain conversational state which must be re
across methods and transactions.
 11/24/99 50

Conversational state Enterprise JavaBeans v1.1, Final Release Session Bean Component Contract

Sun Microsystem Inc

’s field
Java

as open
sion bean
s in the

s

.

nces

f-
l-

versa-

lizab
6.4 Conversational state

The conversational state of a STATEFUL session object is defined as the session bean instance
values, plus the transitive closure of the objects from the instance’s fields reached by following
object references.

In advanced cases, a session object’s conversational state may contain open resources, such
sockets and open database cursors. A container cannot retain such open resources when a ses
instance is passivated. A developer of such a session bean must close and open the resource
ejbPassivate and ejbActivate notifications.

6.4.1 Instance passivation and conversational state

The Bean Provider is required to ensure that theejbPassivate method leaves the instance field
ready to be serialized by the Container. The objects that are assigned to the instance’s non-transient
fields after theejbPassivate method completes must be one of the following:

• A serializable object[2].

• A null .

• An enterprise bean’s remote interface reference, even if the stub class is not serializable

• An enterprise bean’s home interface reference, even if the stub class is not serializable.

• A reference to theSessionContext object, even if it is not serializable.

• A reference to the environment naming context (that is, thejava:comp/env JNDI context)
or any of its subcontexts.

• A reference to theUserTransaction interface.

• An object that is not directly serializable, but becomes serializable by replacing the refere
to an enterprise bean’s remote and home interfaces, the references to theSessionContext
object, the references to thejava:comp/env JNDI context and its subcontexts, and the re
erences to theUserTransaction interface by serializable objects during the object’s seria
ization.

This means, for example, that the Bean Provider must close all JDBC™ API connections inejbPas-
sivate and assign the instance’s fields storing the connections tonull .

The last bulleted item covers cases such as storing Collections of remote interfaces in the con
tional state.

[2] Note that the Java programming language Serialization protocol dynamically determines whether or not an object is seriale.
This means that it is possible to serialize an object of a serializable subclass of a non-serializable declared field type.
51 11/24/99

Session Bean Component Contract Enterprise JavaBeans v1.1, Final Release Conversational state

Sun Microsystems Inc.

a

g lan-

f the

terfaces
ct refer-

f the
and

o the

tance’s

o the
e the
with a

tance’s
alent

ents for

guage
excep-

age S
 the

ing lan-
The Bean Provider must assume that the content of transient fields may be lost between theejbPas-
sivate and ejbActivate notifications. Therefore, the Bean Provider should not store in
transient field a reference to any of the following objects:SessionContext object; environ-
ment JNDI naming context and any its subcontexts; home and remote interfaces; and theUserTrans-
action interface.

The restrictions on the use of transient fields ensure that Containers can use Java programmin
guage Serialization during passivation and activation.

The following are the requirements for the Container.

The container performs the Java programming language Serialization (or its equivalent) o
instance’s state after it invokes theejbPassivate method on the instance.

The container must be able to properly save and restore the reference to the remote and home in
of the enterprise beans stored in the instance’s state even if the classes that implement the obje
ences are not serializable.

The container may use, for example, the object replacement technique that is part o
java.io.ObjectOutputStream and java.io.ObjectInputStream protocol to externalize the remote
home references.

If the session bean instance stores in its conversational state an object reference t
javax.ejb.SessionContext interface passed to the instance in thesetSessionCon-
text(...) method, the container must be able to save and restore the reference across the ins
passivation. The container can replace the originalSessionContext object with a different and
functionally equivalentSessionContext object during activation.

If the session bean instance stores in its conversational state an object reference t
java:comp/env JNDI context or its subcontext, the container must be able to save and restor
object reference across the instance’s passivation. The container can replace the original object
different and functionally equivalent object during activation.

If the session bean instance stores in its conversational state an object reference to theUserTransac-
tion interface, the container must be able to save and restore the object reference across the ins
passivation. The container can replace the original object with a different and functionally equiv
object during activation.

The container may destroy a session bean instance if the instance does not meet the requirem
serialization afterejbPassivate .

While the container is not required to use the Serialization protocol for the Java programming lan
to store the state of a passivated session instance, it must achieve the equivalent result. The one
tion is that containers are not required to reset the value oftransient fields during activation[3].
Declaring the session bean’s fields astransient is, in general, discouraged.

[3] This is to allow the Container to swap out an instance’s state through techniques other than the Java programming langueri-
alization protocol. For example, the Container’s Java Virtual Machine implementation may use a block of memory to keep
instance’s variables, and the Container swaps the whole memory block to the disk instead of performing Java programm
guage Serialization on the instance.
 11/24/99 52

Protocol between a session bean instance and its containerEnterprise JavaBeans v1.1, Final Release Session Bean Component Contract

Sun Microsystem Inc

s ini-

nd the
by the

ontainer
ations

ce
on-

con-
ses in

The
auto-
session
e open
ring an
6.4.2 The effect of transaction rollback on conversational state

A session object’s conversational state is not transactional. It is not automatically rolled back to it
tial state if the transaction in which the object has participated rolls back.

If a rollback could result in an inconsistency between a session object’s conversational state a
state of the underlying database, the bean developer (or the application development tools used
developer) must use theafterCompletion notification to manually reset its state.

6.5 Protocol between a session bean instance and its container

Containers themselves make no actual service demands on the session bean instances. The c
makes calls on a bean instance to provide it with access to container services and to deliver notific
issued by the container.

6.5.1 The requiredSessionBean interface

All session beans must implement theSessionBean interface.

The bean’s container calls thesetSessionContext method to associate a session bean instan
with its context maintained by thecontainer. Typically, a session bean instance retains its session c
text as part of its conversational state.

The ejbRemove notification signals that the instance is in the process of being removed by the
tainer. In theejbRemove method, the instance typically releases the same resources that it relea
theejbPassivate method.

The ejbPassivate notification signals the intent of the container to passivate the instance.
ejbActivate notification signals the instance it has just been reactivated. Because containers
matically maintain the conversational state of a session bean instance when it is passivated, most
beans can ignore these notifications. Their purpose is to allow session beans to maintain thos
resources that need to be closed prior to an instance’s passivation and then reopened du
instance’s activation.
53 11/24/99

Session Bean Component Contract Enterprise JavaBeans v1.1, Final Release Protocol between a session bean instance and

Sun Microsystems Inc.

ular

uch
with

has
action

obtain
marca-

otifica-
y cache

. The
eces-

ion.

leted
ce. At
ause the
6.5.2 The SessionContext interface

A container provides the session bean instances with aSessionContext , which gives the session
bean instance access to the instance’s context maintained by the container. TheSessionContext
interface has the following methods:

• ThegetEJBObject method returns the session bean’s remote interface.

• ThegetEJBHome method returns the session bean’s home interface.

• The getCallerPrincipal method returns thejava.security.Principal that
identifies the invoker of the bean instance’s EJB object.

• The isCallerInRole method tests if the session bean instance’s caller has a partic
role.

• The setRollbackOnly method allows the instance to mark the current transaction s
that the only outcome of the transaction is a rollback. Only instances of a session bean
container-managed transaction demarcation can use this method.

• The getRollbackOnly method allows the instance to test if the current transaction
been marked for rollback. Only instances of a session bean with container-managed trans
demarcation can use this method.

• The getUserTransaction method returns thejavax.transaction.UserTrans-
action interface. The instance can use this interface to demarcate transactions and to
transaction status. Only instances of a session bean with bean-managed transaction de
tion can use this method.

6.5.3 The optional SessionSynchronization interface

A session bean class can optionally implement thejavax.ejb.SessionSynchronization
interface. This interface provides the session bean instances with transaction synchronization n
tions. The instances can use these notifications, for example, to manage database data they ma
within transactions.

The afterBegin notification signals a session bean instance that a new transaction has begun
container invokes this method before the first business method within a transaction (which is not n
sarily at the beginning of the transaction). TheafterBegin notification is invoked with the transac-
tion context. The instance may do any database work it requires within the scope of the transact

ThebeforeCompletion notification is issued when a session bean instance’s client has comp
work on its current transaction but prior to committing the resource managers used by the instan
this time, the instance should write out any database updates it has cached. The instance can c
transaction to roll back by invoking thesetRollbackOnly method on its session context.
 11/24/99 54

Protocol between a session bean instance and its containerEnterprise JavaBeans v1.1, Final Release Session Bean Component Contract

Sun Microsystem Inc

tion

need to

nt the

on call
ut to be

session
er tools.
usiness

’s
menta-

he bean
lls the
calls

a

its create
 use.
TheafterCompletion notification signals that the current transaction has completed. A comple
status oftrue indicates that the transaction has committed; a status offalse indicates that a rollback
has occurred. Since a session bean instance’s conversational state is not transactional, it may
manually reset its state if a rollback occurred.

All container providers must supportSessionSynchronization . It is optional only for the bean
implementor. If a bean class implementsSessionSynchronization , the container must invoke
theafterBegin , beforeCompletion andafterCompletion notifications as required by the
specification.

Only a stateful Session bean with container-managed transaction demarcation may impleme
SessionSynchronization interface. A stateless Session bean must not implement theSes-
sionSynchronization interface.

There is no need for a Session bean with bean-managed transaction to rely on the synchronizati
backs because the bean is in control of the commit—the bean knows when the transaction is abo
committed and it knows the outcome of the transaction commit.

6.5.4 Business method delegation

The session bean’s remote interface defines the business methods callable by a client. The
bean’s remote interface is implemented by the session EJBObject class generated by the contain
The session EJBObject class delegates an invocation of a business method to the matching b
method that is implemented in the session bean class.

6.5.5 Session bean’s ejbCreate(...) methods

A client creates a session bean instance using one of thecreate methods defined in the session bean
home interface. The session bean’s home interface is provided by the bean developer; its imple
tion is generated by the deployment tools provided by the container provider.

The container creates an instance of a session bean in three steps. First, the container calls t
class’newInstance method to create a new session bean instance. Second, the container ca
setSessionContext method to pass the context object to the instance. Third, the container
the instance’sejbCreate method whose signature matches the signature of thecreate method
invoked by the client. The input parameters sent from the client are passed to theejbCreate method.

Each session bean class must have at least oneejbCreate method. The number and signatures of
session bean’screate methods are specific to each session bean class.

Since a session bean represents a specific, private conversation between the bean and its client,
parameters typically contain the information the client uses to customize the bean instance for its
55 11/24/99

Session Bean Component Contract Enterprise JavaBeans v1.1, Final Release STATEFUL Session Bean State Diagram

Sun Microsystems Inc.

tances
ence of

usi-

ethod
rrives

nce.
calls

he

e of a

e

c-
ecified

The
ing
6.5.6 Serializing session bean methods

A container serializes calls to each session bean instance. Most containers will support many ins
of a session bean executing concurrently; however, each instance sees only a serialized sequ
method calls. Therefore, a session bean does not have to be coded as reentrant.

The container must serialize all the container-invoked callbacks (that is, the methodsejbPassivate ,
beforeCompletion , and so on), and it must serialize these callbacks with the client-invoked b
ness method calls.

Clients are not allowed to make concurrent calls to a session object. If a client-invoked business m
is in progress on an instance when another client-invoked call, from the same or different client, a
at the same instance, the container must throw thejava.rmi.RemoteException to the second cli-
ent. One implication of this rule is that it is illegal to make a “loopback” call to a session bean insta
An example of a loopback call is when a client calls instance A, instance A calls instance B, and B
A. The loopback call attempt from B to A would result in the container throwing t
java.rmi.RemoteException to B.

6.5.7 Transaction context of session bean methods

The implementation of a business method defined in the remote interface is invoked in the scop
transaction determined by the transaction attribute specified in the deployment descriptor.

A session bean’safterBegin andbeforeCompletion methods are always called with the sam
transaction context as the business methods executed between theafterBegin andbeforeCom-
pletion methods.

A session bean’snewInstance, setSessionContext , ejbCreate , ejbRemove , ejbPas-
sivate , ejbActivate, andafterCompletion methods are called with an unspecified transa
tion context. Refer to Subsection 11.6.3 for how the Container executes methods with an unsp
transaction context.

For example, it would be wrong to perform database operations within a session bean’sejbCreate
or ejbRemove method and to assume that the operations are part of the client’s transaction.
ejbCreate andejbRemove methods are not controlled by a transaction attribute because handl
rollbacks in these methods would greatly complicate the session instance’s state diagram.

6.6 STATEFUL Session Bean State Diagram

The following figure illustrates the life cycle of a STATEFUL session bean instance.
 11/24/99 56

STATEFUL Session Bean State Diagram Enterprise JavaBeans v1.1, Final Release Session Bean Component Contract

Sun Microsystem Inc
Figure 6 Lifecycle of a STATEFUL Session bean instance

The following steps describe the life cycle of a STATEFUL session bean instance:

• A session bean instance’s life starts when a client invokes acreate(...) method on the
session bean’s home interface. This causes the container to invokenewInstance() on the

tx method

commitafterBegin()

1. beforeCompletion()

does not
 exist

method ready passive

1. newInstance()
2. setSessionContext(sc)
3. ejbCreate(args)

create(args)

ejbRemove()

remove(),
chosen as LRU victim

ejbPassivate()
non-tx method

create()
newInstance

action initiated by client
action initiated by container

method
ready in TX

ejbActivate()

method

2. afterCompletion(true)
afterCompletion(false)

rollback

tx method non-tx or different tx method
ERROR

timeout

or timeout

instance throws system
exception from any method
57 11/24/99

Session Bean Component Contract Enterprise JavaBeans v1.1, Final Release STATEFUL Session Bean State Diagram

Sun Microsystems Inc.

ce

saction
ciated
xt or
dia-

ction.

ss
trans-

to the
ct and

in a
or in

of the

uested

n

mit or

the
ginning

from
con-
the
transac-

ct after
r the
session bean class to create a new session bean instance. Next, the container callssetSes-
sionContext() andejbCreate(...) on the instance and returns the remote referen
of the session object to the client. The instance is now in the method ready state.

• The session bean instance is now ready for client’s business methods. Based on the tran
attributes in the session bean’s deployment descriptor and the transaction context asso
with the client’s invocation, a business method is executed either in a transaction conte
with an unspecified transaction context (shown as tx method and non-tx method in the
gram). See Chapter 11 for how the container deals with transactions.

• A non-transactional method is executed while the instance is in the method ready state.

• An invocation of a transactional method causes the instance to be included in a transa
When the session bean instance is included in a transaction, the container issues theafter-
Begin() method on it. TheafterBegin is delivered to the instance before any busine
method is executed as part of the transaction. The instance becomes associated with the
action and will remain associated with the transaction until the transaction completes.

• Session bean methods invoked by the client in this transaction can now be delegated
bean instance. An error occurs if a client attempts to invoke a method on the session obje
the deployment descriptor for the method requires that the container invoke the method
different transaction context than the one with which the instance is currently associated
an unspecified transaction context.

• If a transaction commit has been requested, the transaction service notifies the container
commit request before actually committing the transaction, and the container issues abefor-
eCompletion on the instance. WhenbeforeCompletion is invoked, the instance
should write any cached updates to the database. If a transaction rollback had been req
instead, the rollback status is reached without the container issuing abeforeCompletion .
The container may not call thebeforeCompletion method if the transaction has bee
marked for rollback (nor does the instance write any cached updates to the database).

• The transaction service then attempts to commit the transaction, resulting in either a com
rollback.

• When the transaction completes, the container issuesafterCompletion on the instance,
specifying the status of the completion (either commit or rollback). If a rollback occurred,
bean instance may need to reset its conversational state back to the value it had at the be
of the transaction.

• The container’s caching algorithm may decide that the bean instance should be evicted
memory (this could be done at the end of each method, or by using an LRU policy). The
tainer issuesejbPassivate on the instance. After this completes, the container saves
instance’s state to secondary storage. A session bean can be passivated only between
tions, and not within a transaction.

• While the instance is in the passivated state, the Container may remove the session obje
the expiration of a timeout specified by the deployer. All object references and handles fo
 11/24/99 58

STATEFUL Session Bean State Diagram Enterprise JavaBeans v1.1, Final Release Session Bean Component Contract

Sun Microsystem Inc

tainer

he con-
res the

ect,
ion
invoke

ove a
the
e

bean

ces can

t access is
session object become invalid. If a client attempts to invoke the session object, the Con
will throw the java.rmi.NoSuchObjectException to the client.

• If a client invokes a session object whose session bean instance has been passivated, t
tainer will activate the instance. To activate the session bean instance, the container resto
instance’s state from secondary storage and issuesejbActivate on it.

• The session bean instance is again ready for client methods.

• When the client callsremove on the home or remote interface to remove the session obj
the container issuesejbRemove() on the bean instance. This ends the life of the sess
bean instance and the associated session object. Any subsequent attempt by its client to
the session object causes thejava.rmi.NoSuchObjectException to be thrown. (This
exception is a subclass ofjava.rmi.RemoteException). TheejbRemove() method
cannot be called when the instance is participating in a transaction. An attempt to rem
session object while the object is in a transaction will cause the container to throw
javax.ejb.RemoveException to the client. Note that a container can also invoke th
ejbRemove() method on the instance without a client call toremove the session object
after the lifetime of the EJB object has expired.

Notes:

1. The Container must call theafterBegin , beforeCompletion , andafterComple-
tion methods if the session bean class implements, directly or indirectly, theSessionSyn-
chronization interface. The Container does not call these methods if the session
class does not implement theSessionSynchronization interface.

6.6.1 Operations allowed in the methods of a stateful session bean class

Table 2 defines the methods of a stateful session bean class from which the session bean instan
access the methods of thejavax.ejb.SessionContext interface, thejava:comp/env envi-
ronment naming context, resource managers, and other enterprise beans.

If a session bean instance attempts to invoke a method of theSessionContext interface, and that
access is not allowed in Table 2, the Container must throw thejava.lang.IllegalStateEx-
ception.

If a session bean instance attempts to access a resource manager or an enterprise bean, and tha
not allowed in Table 2, the behavior is undefined by the EJB architecture.
59 11/24/99

Session Bean Component Contract Enterprise JavaBeans v1.1, Final Release STATEFUL Session Bean State Diagram

Sun Microsystems Inc.

trans-
ith an
Notes:

• The ejbCreate , ejbRemove , ejbPassivate , andejbActivate methods of a ses-
sion bean with container-managed transaction demarcation execute with an unspecified
action context. Refer to Subsection 11.6.3 for how the Container executes methods w
unspecified transaction context.

Table 2 Operations allowed in the methods of a stateful session bean

Bean method

Bean method can perform the following operations

Container-managed transaction
demarcation

Bean-managed transaction
demarcation

constructor - -

setSessionContext
SessionContext methods:getEJBHome

JNDI access to java:comp/env

SessionContext methods:getEJBHome

JNDI access to java:comp/env

ejbCreate
ejbRemove
ejbActivate
ejbPassivate

SessionContext methods:getEJBHome,
getCallerPrincipal, isCallerInRole,
getEJBObject

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

SessionContext methods:getEJBHome,
getCallerPrincipal, isCallerInRole,
getEJBObject, getUserTransaction

UserTransaction methods

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

business method
from remote interface

SessionContext methods:getEJBHome,
getCallerPrincipal, getRollback-
Only, isCallerInRole, setRollback-
Only, getEJBObject

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

SessionContext methods:getEJBHome,
getCallerPrincipal, isCallerInRole,
getEJBObject, getUserTransaction

UserTransaction methods

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

afterBegin
beforeCompletion

SessionContext methods:getEJBHome,
getCallerPrincipal, getRollback-
Only, isCallerInRole, setRollback-
Only, getEJBObject

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

N/A

(a bean with bean-managed transaction
demarcation cannot implement the Ses-
sionSynchronization interface)

afterCompletion

SessionContext methods:getEJBHome,
getCallerPrincipal, isCallerInRole,
getEJBObject

JNDI access to java:comp/env
 11/24/99 60

STATEFUL Session Bean State Diagram Enterprise JavaBeans v1.1, Final Release Session Bean Component Contract

Sun Microsystem Inc

trans-

ich

t.

ontext,

ethods
con-

ged

ess
exist”

nt invo-
Additional restrictions:

• The getRollbackOnly and setRollbackOnly methods of theSessionContext
interface should be used only in the session bean methods that execute in the context of a
action. The Container must throw thejava.lang.IllegalStateException if the
methods are invoked while the instance is not associated with a transaction.

The reasons for disallowing the operations in Table 2 follow:

• Invoking thegetEJBObject methods is disallowed in the session bean methods in wh
there is no session object identity established for the instance.

• Invoking thegetCallerPrincipal and isCallerInRole methods is disallowed in
the session bean methods for which the Container does not have a client security contex

• Invoking thegetRollbackOnly andsetRollbackOnly methods is disallowed in the
session bean methods for which the Container does not have a meaningful transaction c
and to all session beans with bean-managed transaction demarcation.

• Accessing resource managers and enterprise beans is disallowed in the session bean m
for which the Container does not have a meaningful transaction context or client security
text.

• TheUserTransaction interface is unavailable to enterprise beans with container-mana
transaction demarcation.

6.6.2 Dealing with exceptions
A RuntimeException thrown from any method of the session bean class (including the busin
methods and the callbacks invoked by the Container) results in the transition to the “does not
state. Exception handling is described in detail in Chapter 12.

From the client perspective, the corresponding session object does not exist any more. Subseque
cations through the remote interface will result injava.rmi.NoSuchObjectException .

6.6.3 MissedejbRemove() calls

The Bean Provider cannot assume that the Container will always invoke theejbRemove() method on
a session bean instance. The following scenarios result inejbRemove() not being called on an
instance:

• A crash of the EJB Container.

• A system exception thrown from the instance’s method to the Container.

• A timeout of client inactivity while the instance is in thepassive state. The timeout is speci-
fied by the Deployer in an EJB Container implementation specific way.
61 11/24/99

Session Bean Component Contract Enterprise JavaBeans v1.1, Final Release Object interaction diagrams for a STATEFUL

Sun Microsystems Inc.

l
uld pro-

n bean
peri-

busi-
nt pro-

ke a
criptor
in an

e the
must

t to

es.

either
e classes
efore,

than as
If the session bean instance allocates resources in theejbCreate(...) method and/or in the busi-
ness methods, and normally releases the resources in theejbRemove() method, these resources wil
not be automatically released in the above scenarios. The application using the session bean sho
vide some clean up mechanism to periodically clean up the unreleased resources.

For example, if a shopping cart component is implemented as a session bean, and the sessio
stores the shopping cart content in a database, the application should provide a program that runs
odically and removes “abandoned” shopping carts from the database.

6.6.4 Restrictions for transactions

The state diagram implies the following restrictions on transaction scoping of the client invoked
ness methods. The restrictions are enforced by the container and must be observed by the clie
grammer.

• A session bean instance can participate in at most a single transaction at a time.

• If a session bean instance is participating in a transaction, it is an error for a client to invo
method on the session object such that the transaction attribute in the deployment des
would cause the container to execute the method in a different transaction context or
unspecified transaction context. The container throws thejava.rmi.RemoteExcep-
tion to the client in such a case.

• If a session bean instance is participating in a transaction, it is an error for a client to invok
remove method on the session object’s remote or home interface object. The container
detect such an attempt and throw thejavax.ejb.RemoveException to the client. The
container should not mark the client’s transaction for rollback, thus allowing the clien
recover.

6.7 Object interaction diagrams for a STATEFUL session bean

This section contains object interaction diagrams (OID) that illustrates the interaction of the class

6.7.1 Notes

The object interaction diagrams illustrate a box labeled “container-provided classes.” These are
classes that are part of the container, or classes that were generated by the container tools. Thes
communicate with each other through protocols that are container-implementation specific. Ther
the communication between these classes is not shown in the diagrams.

The classes shown in the diagrams should be considered as an illustrative implementation rather
a prescriptive one.
 11/24/99 62

Object interaction diagrams for a STATEFUL session beanEnterprise JavaBeans v1.1, Final ReleaseSession Bean Component Contract

Sun Microsystem Inc
6.7.2 Creating a session object

The following diagram illustrates the creation of a session object.

Figure 7 OID for Creation of a session object

6.7.3 Starting a transaction

The following diagram illustrates the protocol performed at the beginning of a transaction.

client instance transaction
service

EJB

ejbCreate(args)

session
context

EJB
Object

create(args)

container provided classes

new

synchro-
nization

new

setSessionContext()

new

Home
container
63 11/24/99

Session Bean Component Contract Enterprise JavaBeans v1.1, Final Release Object interaction diagrams for a STATEFUL

Sun Microsystems Inc.
Figure 8 OID for session object at start of a transaction.

6.7.4 Committing a transaction

The following diagram illustrates the transaction synchronization protocol for a session object.

business method

afterBegin

client instance transactiondatabase
service

EJB session
context

EJB
Object

container provided classes

synchro-
nization

javax.transaction.UserTransaction.begin()

If the instance was passivated it is reactivated

registerSynchronization(synchronization)

new

business method
business method

business method

read some data

Home
container

register resource manager
 11/24/99 64

Object interaction diagrams for a STATEFUL session beanEnterprise JavaBeans v1.1, Final ReleaseSession Bean Component Contract

Sun Microsystem Inc

ivation
hen a
Figure 9 OID for session object transaction synchronization

6.7.5 Passivating and activating an instance between transactions

The following diagram illustrates the passivation and reactivation of a session bean instance. Pass
typically happens spontaneously based on the needs of the container. Activation typically occurs w
client calls a method.

write updates to DB

client instance transactiondatabase
service

EJB session
context

EJB
Object

container provided classes

synchro-
nization

UserTransaction.commit()

beforeCompletion()

prepare

commit

afterCompletion(status)

beforeCompletion()

afterCompletion(status)

Home
container
65 11/24/99

Session Bean Component Contract Enterprise JavaBeans v1.1, Final Release Object interaction diagrams for a STATEFUL

Sun Microsystems Inc.
Figure 10 OID for passivation and activation of a session object

6.7.6 Removing a session object

The following diagram illustrates the removal of a session object.

ejbActivate

ejbPassivate

read state

client instanceEJB instance
context

containerEJB
Object

container provided classes

synchro-
nization

secondary store

write state

Activation:

Passivation:

Home
 11/24/99 66

Stateless session beans Enterprise JavaBeans v1.1, Final Release Session Bean Component Contract

Sun Microsystem Inc

eans that

tance
f such

s

elegate a
dele-

hat the

d. Due
iva-

nstance if
to han-
Figure 11 OID for the removal of a session object

6.8 Stateless session beans

Stateless session beans are session beans whose instances have no conversational state. This m
all bean instances are equivalent when they are not involved in serving a client-invoked method.

The term “stateless” signifies that an instance has no state for a specific client. However, the ins
variables of the instance can contain the state across client-invoked method calls. Examples o
states include an open database connection and an object reference to an EJB object.

The home interface of a stateless session bean must have onecreate method that takes no argument
and returns the session bean’s remote interface. There can be no othercreate methods in the home
interface. The session bean class must define a singleejbCreate method that takes no arguments.

Because all instances of a stateless session bean are equivalent, the container can choose to d
client-invoked method to any available instance. This means, for example, that the Container may
gate the requests from the same client within the same transaction to different instances, and t
Container may interleave requests from multiple transactions to the same instance.

A container only needs to retain the number of instances required to service the current client loa
to client “think time,” this number is typically much smaller than the number of active clients. Pass
tion is not needed for stateless sessions. The container creates another stateless session bean i
one is needed to handle an increase in client work load. If a stateless session bean is not needed
dle the current client work load, the container can destroy it.

client instance

remove()

EJB session
context

containerEJB
Object

container provided classes

synchro-
nization

ejbRemove()

Home
67 11/24/99

Session Bean Component Contract Enterprise JavaBeans v1.1, Final Release Stateless session beans

Sun Microsystems Inc.

f clients,
ns may
t by the

the
ycle of

es a cli-
Because stateless session beans minimize the resources needed to support a large population o
depending on the implementation of the container, applications that use stateless session bea
scale somewhat better than those using stateful session beans. However, this benefit may be offse
increased complexity of the client application that uses the stateless beans.

Clients use thecreate andremove methods on the home interface of a stateless session bean in
same way as on a stateful session bean. To the client, it appears as if the client controls the life c
the session object. However, the container handles thecreate andremove calls without necessarily
creating and removing an EJB instance.

There is no fixed mapping between clients and stateless instances. The container simply delegat
ent’s work to any available instance that is method-ready.

A stateless session bean must not implement thejavax.ejb.SessionSynchronization inter-
face.

6.8.1 Stateless session bean state diagram

When a client calls a method on a stateless session object, the container selects one of itsmethod-ready
instances and delegates the method invocation to it.

The following figure illustrates the life cycle of a STATELESS session bean instance.
 11/24/99 68

Stateless session beans Enterprise JavaBeans v1.1, Final Release Session Bean Component Contract

Sun Microsystem Inc

e

client.

educe
on it.

nces can
Figure 12 Lifecycle of a STATELESS Session bean

The following steps describe the lifecyle of a session bean instance:

• A stateless session bean instance’s life starts when the container invokesnewInstance()
on the session bean class to create a new instance. Next, the container callssetSession-
Context() followed by ejbCreate() on the instance. The container can perform th
instance creation at any time—there is no relationship to a client’s invocation of thecre-
ate() method.

• The session bean instance is now ready to be delegated a business method call from any

• When the container no longer needs the instance (usually when the container wants to r
the number of instances in the method-ready pool), the container invokes ejbRemove()
This ends the life of the stateless session bean instance.

6.8.2 Operations allowed in the methods of a stateless session bean class

Table 3 defines the methods of a stateless session bean class in which the session bean insta
access the methods of thejavax.ejb.SessionContext interface, thejava:comp/env envi-
ronment naming context, resource managers, and other enterprise beans.

does not
 exist

method-ready
 pool

1. newInstance()
2. setSessionContext(sc)
3. ejbCreate()

ejbRemove()

method

method()
ejbCreate()

action initiated by client
action initiated by container
69 11/24/99

Session Bean Component Contract Enterprise JavaBeans v1.1, Final Release Stateless session beans

Sun Microsystems Inc.

access is

trans-

ich

t.
If a session bean instance attempts to invoke a method of theSessionContext interface, and the
access is not allowed in Table 3, the Container must throw thejava.lang.IllegalStateEx-
ception.

If a session bean instance attempts to access a resource manager or an enterprise bean and the
not allowed in Table 3, the behavior is undefined by the EJB architecture.

Additional restrictions:

• The getRollbackOnly and setRollbackOnly methods of theSessionContext
interface should be used only in the session bean methods that execute in the context of a
action. The Container must throw thejava.lang.IllegalStateException if the
methods are invoked while the instance is not associated with a transaction.

The reasons for disallowing operations in Table 3:

• Invoking thegetEJBObject method is disallowed in the session bean methods in wh
there is no session object identity associated with the instance.

• Invoking thegetCallerPrincipal and isCallerInRole methods is disallowed in
the session bean methods for which the Container does not have a client security contex

Table 3 Operations allowed in the methods of a stateless session bean

Bean method

Bean method can perform the following operations

Container-managed transaction
demarcation

Bean-managed transaction
demarcation

constructor - -

setSessionContext
SessionContext methods:getEJBHome

JNDI access to java:comp/env

SessionContext methods:getEJBHome

JNDI access to java:comp/env

ejbCreate
ejbRemove

SessionContext methods:getEJBHome,
getEJBObject

JNDI access to java:comp/env

SessionContext methods:getEJBHome,
getEJBObject, getUserTransaction

UserTransaction methods

JNDI access to java:comp/env

business method
from remote interface

SessionContext methods:getEJBHome,
getCallerPrincipal, getRollback-
Only, isCallerInRole, setRollback-
Only, getEJBObject

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

SessionContext methods:getEJBHome,
getCallerPrincipal, isCallerInRole,
getEJBObject, getUserTransaction

UserTransaction methods

JNDI access to java:comp/env

Resource manager access

Enterprise bean access
 11/24/99 70

Object interaction diagrams for a STATELESS session beanEnterprise JavaBeans v1.1, Final Release Session Bean Component Con-

Sun Microsystem Inc

ontext,

ethods
con-

ged

ess
exist”

ing the
• Invoking thegetRollbackOnly andsetRollbackOnly methods is disallowed in the
session bean methods for which the Container does not have a meaningful transaction c
and for all session beans with bean-managed transaction demarcation.

• Accessing resource managers and enterprise beans is disallowed in the session bean m
for which the Container does not have a meaningful transaction context or client security
text.

• The UserTransaction interface is unavailable to session beans with container-mana
transaction demarcation.

6.8.3 Dealing with exceptions
A RuntimeException thrown from any method of the enterprise bean class (including the busin
methods and the callbacks invoked by the Container) results in the transition to the “does not
state. Exception handling is described in detail in Chapter 12.

From the client perspective, the session object continues to exist. The client can continue access
session object because the Container can delegate the client’s requests to another instance.

6.9 Object interaction diagrams for a STATELESS session
bean

This section contains object interaction diagrams that illustrates the interaction of the classes.

6.9.1 Client-invokedcreate()

The following diagram illustrates the creation of a stateless session object.

Figure 13 OID for creation of a STATELESS session object

client instance transaction
service

EJB session
context

EJB
Object

create()

container-provided classes

new

synchro-
nizationHome

container
71 11/24/99

Session Bean Component Contract Enterprise JavaBeans v1.1, Final ReleaseObject interaction diagrams for a STATELESS

Sun Microsystems Inc.
6.9.2 Business method invocation

The following diagram illustrates the invocation of a business method.

Figure 14 OID for invocation of business method on a STATELESS session object

6.9.3 Client-invoked remove()

The following diagram illustrates the destruction of a stateless session object.

business method

client instance transactiondatabase
service

EJB session
context

EJB
Object

container-provided classes

synchro-
nization

business method

read or update some data

Home
container

register resource manager
 11/24/99 72

Object interaction diagrams for a STATELESS session beanEnterprise JavaBeans v1.1, Final Release Session Bean Component Con-

Sun Microsystem Inc

-ready
Figure 15 OID for removal of a STATELESS session object

6.9.4 Adding instance to the pool

The following diagram illustrates the sequence for a container adding an instance to the method
pool.

Figure 16 OID for Container Adding Instance of a STATELESS session bean to a method-ready pool

client instance

remove()

EJB session
context

containerEJB
Object

container-provided classes

synchro-
nizationHome

instance transaction
service

EJB

ejbCreate()

session
context

EJB
Object

container-provided classes

synchro-
nization

setSessionContext()

new

Home
container

new
73 11/24/99

Session Bean Component Contract Enterprise JavaBeans v1.1, Final Release The responsibilities of the bean provider

Sun Microsystems Inc.

the

n can be
The following diagram illustrates the sequence for a container removing an instance from
method-ready pool.

Figure 17 OID for a Container Removing an Instance of a STATELESS Session bean from ready pool

6.10 The responsibilities of the bean provider

This section describes the responsibilities of session bean provider to ensure that a session bea
deployed in any EJB Container.

6.10.1 Classes and interfaces

The session bean provider is responsible for providing the following class files:

• Session bean class.

• Session bean’s remote interface.

• Session bean’s home interface.

instance transaction
service

EJB session
context

EJB
Object

container-provided classes

synchro-
nizationHome

container

ejbRemove()
 11/24/99 74

The responsibilities of the bean provider Enterprise JavaBeans v1.1, Final Release Session Bean Component Contract

Sun Microsystem Inc

this

ean has

thods
EJB

s.
6.10.2 Session bean class

The following are the requirements for session bean class:

• The class must implement, directly or indirectly, thejavax.ejb.SessionBean interface.

• The class must be defined aspublic , must not befinal , and must not beabstract .

• The class must have apublic constructor that takes no parameters. The Container uses
constructor to create instances of the session bean class.

• The class must not define thefinalize() method.

• The class may, but is not required to, implement the session bean’s remote interface[4].

• The class must implement the business methods and theejbCreate methods.

• If the class is a stateful session bean, it may optionally implement thejavax.ejb.Ses-
sionSynchronization interface.

• The session bean class may have superclasses and/or superinterfaces. If the session b
superclasses, then the business methods, theejbCreate methods, the methods of theSes-
sionBean interface, and the methods of the optionalSessionSynchronization inter-
face may be defined in the session bean class, or in any of its superclasses.

• The session bean class is allowed to implement other methods (for example helper me
invoked internally by the business methods) in addition to the methods required by the
specification.

[4] If the session bean class does implement the remote interface, care must be taken to avoid passing ofthis as a method argument
or result. This potential error can be avoided by choosing not to implement the remote interface in the session bean clas
75 11/24/99

Session Bean Component Contract Enterprise JavaBeans v1.1, Final Release The responsibilities of the bean provider

Sun Microsystems Inc.

t

the

com-
n to

w these

with

com-
n to
6.10.3 ejbCreate methods

The session bean class must define one or moreejbCreate(...) methods whose signatures mus
follow these rules:

• The method name must beejbCreate .

• The method must be declared aspublic .

• The method must not be declared asfinal or static .

• The return type must bevoid .

• The method arguments must be legal types for RMI/IIOP.

• The throws clause may define arbitrary application exceptions, possibly including
javax.ejb.CreateException .

Compatibility Note: EJB 1.0 allowed the ejbCreate method to throw thejava.rmi.RemoteExcep-
tion to indicate a non-application exception. This practice is deprecated in EJB 1.1—an EJB 1.1
pliant enterprise bean should throw the javax.ejb.EJBException or another RuntimeExceptio
indicate non-application exceptions to the Container (see Section 12.2.2).

6.10.4 Business methods

The session bean class may define zero or more business methods whose signatures must follo
rules:

• The method names can be arbitrary, but they must not start with “ejb” to avoid conflicts
the callback methods used by the EJB architecture.

• The business method must be declared aspublic .

• The method must not be declared asfinal or static .

• The argument and return value types for a method must be legal types for RMI/IIOP.

• The throws clause may define arbitrary application exceptions.

Compatibility Note: EJB 1.0 allowed the business methods to throw thejava.rmi.RemoteExcep-
tion to indicate a non-application exception. This practice is deprecated in EJB 1.1—an EJB 1.1
pliant enterprise bean should throw the javax.ejb.EJBException or another RuntimeExceptio
indicate non-application exceptions to the Container (see Section 12.2.2).
 11/24/99 76

The responsibilities of the bean provider Enterprise JavaBeans v1.1, Final Release Session Bean Component Contract

Sun Microsystem Inc

heir
must

ubject

e ses-

sion
rface.

heir
ause

ject to
6.10.5 Session bean’s remote interface

The following are the requirements for the session bean’s remote interface:

• The interface must extend thejavax.ejb.EJBObject interface.

• The methods defined in this interface must follow the rules for RMI/IIOP. This means that t
argument and return values must be of valid types for RMI/IIOP, and their throws clause
include thejava.rmi.RemoteException .

• The remote interface is allowed to have superinterfaces. Use of interface inheritance is s
to the RMI/IIOP rules for the definition of remote interfaces.

• For each method defined in the remote interface, there must be a matching method in th
sion bean’s class. The matching method must have:

• The same name.

• The same number and types of arguments, and the same return type.

• All the exceptions defined in the throws clause of the matching method of the ses
bean class must be defined in the throws clause of the method of the remote inte

6.10.6 Session bean’s home interface

The following are the requirements for the session bean’s home interface:

• The interface must extend thejavax.ejb.EJBHome interface.

• The methods defined in this interface must follow the rules for RMI/IIOP. This means that t
argument and return values must be of valid types for RMI/IIOP, and that their throws cl
must include thejava.rmi.RemoteException .

• The home interface is allowed to have superinterfaces. Use of interface inheritance is sub
the RMI/IIOP rules for the definition of remote interfaces.

• A session bean’s home interface must define one or morecreate(...) methods.

• Eachcreate method must be named “create”, and it must match one of theejbCreate
methods defined in the session bean class. The matchingejbCreate method must have the
same number and types of arguments. (Note that the return type is different.)

• The return type for acreate method must be the session bean’s remote interface type.

• All the exceptions defined in the throws clause of anejbCreate method of the session bean
class must be defined in the throws clause of the matchingcreate method of the home inter-
face.

• The throws clause must includejavax.ejb.CreateException .
77 11/24/99

Session Bean Component Contract Enterprise JavaBeans v1.1, Final Release The responsibilities of the container provider

Sun Microsystems Inc.

e con-
bean

iner, we
yment

lasses
of the
rovider

he ses-
runtime.

ethods
wrap-

s

bean’s

ession
6.11 The responsibilities of the container provider

This section describes the responsibilities of the container provider to support a session bean. Th
tainer provider is responsible for providing the deployment tools and for managing the session
instances at runtime.

Because the EJB specification does not define the API between deployment tools and the conta
assume that the deployment tools are provided by the container provider. Alternatively, the deplo
tools may be provided by a different vendor who uses the container vendor’s specific API.

6.11.1 Generation of implementation classes

The deployment tools provided by the container are responsible for the generation of additional c
when the session bean is deployed. The tools obtain the information that they need for generation
additional classes by introspecting the classes and interfaces provided by the enterprise bean p
and by examining the session bean’s deployment descriptor.

The deployment tools must generate the following classes:

• A class that implements the session bean’s home interface (session EJBHome class).

• A class that implements the session bean’s remote interface (session EJBObject class).

The deployment tools may also generate a class that mixes some container-specific code with t
sion bean class. This code may, for example, help the container to manage the bean instances at
The tools can use subclassing, delegation, and code generation.

The deployment tools may also allow the generation of additional code that wraps the business m
and is used to customize the business logic to an existing operational environment. For example, a
per for adebit function on theAccountManager bean may check that the debited amount doe
not exceed a certain limit.

6.11.2 Session EJBHome class

The session EJBHome class, which is generated by the deployment tools, implements the session
home interface. This class implements the methods of thejavax.ejb.EJBHome interface and the
create methods specific to the session bean.

The implementation of eachcreate(...) method invokes a matchingejbCreate(...)
method.

6.11.3 Session EJBObject class

The Session EJBObject class, which is generated by the deployment tools, implements the s
bean’s remote interface. It implements the methods of thejavax.ejb.EJBObject interface and the
business methods specific to the session bean.
 11/24/99 78

The responsibilities of the container provider Enterprise JavaBeans v1.1, Final Release Session Bean Component Contract

Sun Microsystem Inc

passive

s home

client

client
t throw

tance.

xcep-
The implementation of each business method must activate the instance (if the instance is in the
state) and invoke the matching business method on the instance.

6.11.4 Handle classes

The deployment tools are responsible for implementing the handle classes for the session bean’
and remote interfaces.

6.11.5 EJBMetaData class

The deployment tools are responsible for implementing the class that provides meta-data to the
view contract. The class must be a valid RMI Value class and must implement thejavax.ejb.EJB-
MetaData interface.

6.11.6 Non-reentrant instances

The container must ensure that only one thread can be executing an instance at any time. If a
request arrives for an instance while the instance is executing another request, the container mus
the java.rmi.RemoteException to the second request.

Note that a session object is intended to support only a single client. Therefore, it would be an
application error if two clients attempted to invoke the same session object.

One implication of this rule is that an application cannot make loopback calls to a session bean ins

6.11.7 Transaction scoping, security, exceptions

The container must follow the rules with respect to transaction scoping, security checking, and e
tion handling, as described in Chapters 11, 15, and 12, respectively.
79 11/24/99

Session Bean Component Contract Enterprise JavaBeans v1.1, Final Release The responsibilities of the container provider

Sun Microsystems Inc.
 11/24/99 80

Overview Enterprise JavaBeans v1.1, Final Release Example Session Scenario

Sun Microsystem Inc

use the

ustra-
ssion
per-

ro-

e fol-
Chapter 7 Example Session Scenario

This chapter describes an example development and deployment scenario of a session bean. We
scenario to explain the responsibilities of the bean provider and those of the container provider.

The classes generated by the container provider’s tools in this scenario should be considered ill
tive rather than prescriptive. Container providers are free to implement the contract between a se
bean and its container in a different way, provided that it achieves an equivalent effect (from the
spectives of the bean provider and the client-side programmer).

7.1 Overview

Wombat Inc. has developed theCartBean session Bean. The CartBean is deployed in a container p
vided by the Acme Corporation.

7.2 Inheritance relationship

An example of the inheritance relationship between the interfaces and classes is illustrated in th
lowing diagram:
81 11/24/99

Example Session Scenario Enterprise JavaBeans v1.1, Final Release Inheritance relationship

Sun Microsystems Inc.
Figure 18 Example of Inheritance Relationships Between EJB Classes

AcmeRemoteCart

Cart

CartBean

AcmeRemote

JDK

Enterprise
JavaBeans

enterprise bean
provider

container
provider

produced by
Acme tools

java.rmi.Remote

EJBObject

(Wombat Inc.)

(Acme)

EnterpriseBean

Java interface Java class

java.io.Serializable

CartHome

extends or implements interface

extends implementation, code generation, or delegation

AcmeCartHome

AcmeHome AcmeBean

SessionBean

AcmeCartBean

EJBHome

EJBMetaData

AcmeCartMetaData

AcmeMetaData
 11/24/99 82

Inheritance relationship Enterprise JavaBeans v1.1, Final Release Example Session Scenario

Sun Microsystem Inc

siness
inter-
ust

s may,
prise
meth-

st be
s for

n pro-
rkflow.

ge its
an may

hods.

erface.
arti-

Acme-
th the
d code
7.2.1 What the session Bean provider is responsible for

Wombat Inc. is responsible for providing the following:

• Define the session Bean’s remote interface (Cart). The remote interface defines the bu
methods callable by a client. The remote interface must extend the javax.ejb.EJBObject
face, and follow the standard rules for a RMI-IIOP remote interface. The remote interface m
be defined as public.

• Write the business logic in the session Bean class (CartBean). The enterprise Bean clas
but is not required to, implement the enterprise Bean’s remote interface (Cart). The enter
Bean must implement the javax.ejb.SessionBean interface, and define the ejbCreate(...)
ods invoked at an EJB object creation.

• Define a home interface (CartHome) for the enterprise Bean. The home interface mu
defined as public, extend the javax.ejb.EJBHome interface, and follow the standard rule
RMI-IIOP remote interfaces.

• Define a deployment descriptor specifying any declarative metadata that the session Bea
vider wishes to pass with the Bean to the next stage of the development/deployment wo

7.2.2 Classes supplied by container provider

The following classes are supplied by the container provider Acme Corp:

The AcmeHome class provides the Acme implementation of the javax.ejb.EJBHome methods.

The AcmeRemote class provides the Acme implementation of the javax.ejb.EJBObject methods.

The AcmeBean class provides additional state and methods to allow Acme’s container to mana
session Bean instances. For example, if Acme’s container uses an LRU algorithm, then AcmeBe
include the clock count and methods to use it.

The AcmeMetaData class provides the Acme implementation of the javax.ejb.EJBMetaData met

7.2.3 What the container provider is responsible for

The tools provided by Acme Corporation are responsible for the following:

• Generate the class (AcmeRemoteCart) that implements the session bean’s remote int
The tools also generate the classes that implement the communication protocol specific
facts for the remote interface.

• Generate the implementation of the session Bean class suitable for the Acme container (
CartBean). AcmeCartBean includes the business logic from the CartBean class mixed wi
services defined in the AcmeBean class. Acme tools can use inheritance, delegation, an
generation to achieve a mix-in of the two classes.
83 11/24/99

Example Session Scenario Enterprise JavaBeans v1.1, Final Release Inheritance relationship

Sun Microsystems Inc.

e. The
ts for

inter-

imple-
ntime
• Generate the class (AcmeCartHome) that implements the session bean’s home interfac
tools also generate the classes that implement the communication protocol specific artifac
the home interface.

• Generate the class (AcmeCartMetaData) that implements the javax.ejb.EJBMetaData
face for the Cart Bean.

Many of the above classes and tools are container-specific (i.e., they reflect the way Acme Corp
mented them). Other container providers may use different mechanisms to produce their ru
classes, and these classes will likely be different from those generated by Acme’s tools.
 11/24/99 84

Overview Enterprise JavaBeans v1.1, Final Release Client View of an Entity

Sun Microsystem Inc

on-
rprise

con-

ntities
g enter-

ntainer
imple-
ugh the
Chapter 8 Client View of an Entity

This chapter describes the client view of an entity bean. It is actually a contract fulfilled by the C
tainer in which the entity bean is deployed. Only the business methods are supplied by the ente
bean itself.

Although the client view of the deployed entity beans is provided by classes implemented by the
tainer, the container itself is transparent to the client.

8.1 Overview

For a client, an entity bean is a component that represents an object-oriented view of some e
stored in a persistent storage, such as a database, or entities that are implemented by an existin
prise application.

A client accesses an entity bean through the entity bean’s remote and home interfaces. The co
provides classes that implement the entity bean’s remote and home interfaces. The objects that
ment the home and remote objects are remote Java objects, and are accessible from a client thro
standard Java APIs for remote object invocation [3].
85 11/24/99

Client View of an Entity Enterprise JavaBeans v1.1, Final Release EJB Container

Sun Microsystems Inc.

lient,
e entity
client

an is

ner in
th the

ntity
on the

tainer;
iew of
written

tainer,

client
iner

nd its
ns in

rprise

a con-
ty
ned by
ce for

client:
con-
From its creation until its destruction, an entity object lives in a container. Transparently to the c
the container provides security, concurrency, transactions, persistence, and other services for th
objects that live in the container. The container is transparent to the client—there is no API that a
can use to manipulate the container.

Multiple clients can access an entity object concurrently. The container in which the entity be
deployed properly synchronizes access to the entity object’s state using transactions.

Each entity object has an identity which, in general, survives a crash and restart of the contai
which the entity object has been created. The object identity is implemented by the container wi
cooperation of the enterprise bean class.

The client view of an entity bean is location independent. A client running in the same JVM as an e
bean instance uses the same API to access the entity bean as a client running in a different JVM
same or different machine.

A client of an entity object can be another enterprise bean deployed in the same or different Con
or a client can be an arbitrary Java program, such as an application, applet, or servlet. The client v
an entity bean can also be mapped to non-Java client environments, such as CORBA clients not
in the Java programming language.

Multiple enterprise beans can be deployed in a container. For each entity bean deployed in a con
the container provides a class that implements the entity bean’shome interface.The home interface
allows the client to create, find, and remove entity objects within the enterprise bean’s home. A
can look up the entity bean’s home interface through JNDI API; it is the responsibility of the conta
to make the entity bean’s home interface available in the JNDI API name space.

A client view of an entity bean is the same, irrespective of the implementation of the entity bean a
container. This ensures that a client application is portable across all container implementatio
which the entity bean might be deployed.

8.2 EJB Container

An EJB Container (Container for short) is a system that functions as a runtime container for ente
beans.

Multiple enterprise beans can be deployed in a single container. For each entity bean deployed in
tainer, the container provides ahome interfacethat allows the client to create, find, and remove enti
objects that belong to the entity bean. The container makes the entity beans’ home interfaces (defi
the bean provider and implemented by the container provider) available in the JNDI API name spa
clients.

An EJB Server may host one or multiple EJB Containers. The containers are transparent to the
there is no client API to manipulate the container, and there is no way for a client to tell in which
tainer an enterprise bean is installed.
 11/24/99 86

EJB Container Enterprise JavaBeans v1.1, Final Release Client View of an Entity

Sun Microsystem Inc

r the

beans
ion of

eans
8.2.1 Locating an entity bean’s home interface

A client locates an entity bean’s home interface using JNDI. For example, the home interface fo
Account entity bean can be located using the following code segment:

Context initialContext = new InitialContext();
AccountHome accountHome = (AccountHome)

javax.rmi.PortableRemoteObject.narrow(
initialContext.lookup(“java:comp/env/ejb/accounts”),

AccountHome.class);

A client’s JNDI name space may be configured to include the home interfaces of enterprise
deployed in multiple EJB Containers located on multiple machines on a network. The actual locat
an EJB Container is, in general, transparent to the client.

8.2.2 What a container provides

The following diagram illustrates the view that a container provides to the clients of the entity b
deployed in the container.
87 11/24/99

Client View of an Entity Enterprise JavaBeans v1.1, Final Release Entity bean’s home interface

Sun Microsystems Inc.

in the
acces-

ce is
Figure 19 Client view of entity beans deployed in a container

8.3 Entity bean’s home interface

The container provides the implementation of the home interface for each entity bean deployed
container. The container makes the home interface of every entity bean deployed in the container
sible to the clients through JNDI API. An object that implements an entity bean’s home interfa
called anEJBHome object.

client

EJB objects

EJBHome

container

EJB objectsEJBObjects

entity bean 1

EJB objects

EJBHome

EJB objectsEJBObjects

entity bean 2

other enterprise beans
 11/24/99 88

Entity bean’s home interface Enterprise JavaBeans v1.1, Final Release Client View of an Entity

Sun Microsystem Inc

inter-
ation
cript-

stable
orage

e

The entity bean’s home interface allows a client to do the following:

• Create new entity objects within the home.

• Find existing entity objects within the home.

• Remove an entity object from the home.

• Get the javax.ejb.EJBMetaData interface for the entity bean. The javax.ejb.EJBMetaData
face is intended to allow application assembly tools to discover the meta-data inform
about the entity bean. The meta-data information allows loose client/server binding and s
ing.

• Obtain a handle for the home interface. The home handle can be serialized and written to
storage; later, possibly in a different JVM, the handle can be deserialized from stable st
and used to obtain a reference to the home interface.

An entity bean’s home interface must extend thejavax.ejb.EJBHome interface and follow the stan-
dard rules for Java programming language remote interfaces.

8.3.1 create methods

An entity bean’s home interface can define zero or morecreate(...) methods, one for each way to
create an entity object. The arguments of thecreate methods are typically used to initialize the stat
of the created entity object.

The return type of acreate method is the entity bean’s remote interface.

The throws clause of everycreate method includes thejava.rmi.RemoteException and the
javax.ejb.CreateException . It may include additional application-level exceptions.

The following home interface illustrates two possiblecreate methods:

public interface AccountHome extends javax.ejb.EJBHome {
public Account create(String firstName, String lastName,

double initialBalance)
 throws RemoteException, CreateException;

public Account create(String accountNumber,
double initialBalance)
 throws RemoteException, CreateException,

LowInitialBalanceException;
 ...

}

The following example illustrates how a client creates a new entity object:

AccountHome accountHome = ...;
Account account = accountHome.create(“John”, “Smith”, 500.00);
89 11/24/99

Client View of an Entity Enterprise JavaBeans v1.1, Final Release Entity bean’s home interface

Sun Microsystems Inc.

with
by
ethod

ement

lways
key

ntity

client
8.3.2 finder methods

An entity bean’s home interface defines one or morefinder methods[5], one for each way to find an
entity object or collection of entity objects within the home. The name of each finder method starts
the prefix “find”, such asfindLargeAccounts (...). The arguments of a finder method are used
the entity bean implementation to locate the requested entity objects. The return type of a finder m
must be the entity bean’s remote interface, or a type representing a collection of objects that impl
the entity bean’s remote interface (see Subsection 9.1.8).

The throws clause of every finder method includes thejava.rmi.RemoteException and the
javax.ejb.FinderException .

The home interface of every entity bean includes thefindByPrimaryKey(primaryKey) method
that allows a client to locate an entity object using a primary key. The name of the method is a
findByPrimaryKey ; it has a single argument that is the same type as the entity bean’s primary
type, and its return type is the entity bean’s remote interface. The implementation of thefindByPri-
maryKey(primaryKey) method must ensure that the entity object exists.

The following example shows thefindByPrimaryKey method:

public interface AccountHome extends javax.ejb.EJBHome {
 ...
public Account findByPrimaryKey(String AccountNumber)

throws RemoteException, FinderException;
}

The following example illustrates how a client uses thefindByPrimaryKey method:

AccountHome = ...;
Account account = accountHome.findByPrimaryKey(“100-3450-3333”);

8.3.3 remove methods

Thejavax.ejb.EJBHome interface defines several methods that allow the client to remove an e
object.

public interface EJBHome extends Remote {
void remove(Handle handle) throws RemoteException,

RemoveException;
void remove(Object primaryKey) throws RemoteException,

RemoveException;
}

After an entity object has been removed, subsequent attempts to access the entity object by a
result in thejava.rmi.NoSuchObjectException .

[5] ThefindByPrimaryKey(primaryKey)method is mandatory for all Entity Beans.
 11/24/99 90

Entity object’s life cycle Enterprise JavaBeans v1.1, Final Release Client View of an Entity

Sun Microsystem Inc

inter-

ted,
ass is
nce to
8.4 Entity object’s life cycle

This section describes the life cycle of an entity object from the perspective of a client.

The following diagram illustrates a client’s point of view of an entity object life cycle. (The termrefer-
encedin the diagram means that the client program has a reference to the entity object’s remote
face.)

Figure 20 Client View of Entity Object Life Cycle

An entity object does not exist until it is created. Until it is created, it has no identity. After it is crea
it has identity. A client creates an entity object using the entity bean’s home interface whose cl
implemented by the container. When a client creates an entity object, the client obtains a refere
the newly created entity object.

does not exist
and

not referenced

does not exist
and

referenced

exists
and

not referenced

exists
and

referenced

release reference

home.create(...)

home.remove(...)

home.find(...)

object.remove()

release reference

object.businessMethod(...)

object.businessMethod(...)

direct
insert

direct delete
or

throws NoSuchObjectException

home.remove(...)
or

create()
direct delete

action initiated by client
action on database from outside EJB

direct delete
or
91 11/24/99

Client View of an Entity Enterprise JavaBeans v1.1, Final Release Primary key and object identity

Sun Microsystems Inc.

n are
r than
, but
ay be
e
abase

ays:

ntity

ash of
ously
ents.

the cli-

e and
In an environment with legacy data, entity objects may “exist” before the container and entity bea
deployed. In addition, an entity object may be “created” in the environment via a mechanism othe
by invoking acreate(...) method of the home interface (e.g. by inserting a database record)
still may be accessible by a container’s clients via the finder methods. Also, an entity object m
deleted directly using other means than theremove() operation (e.g. by deletion of a databas
record). The “direct insert” and “direct delete” transitions in the diagram represent such direct dat
manipulation.

A client can get a reference to an existing entity object’s remote interface in any of the following w

• Receive the reference as a parameter in a method call (input parameter or result).

• Find the entity object using a finder method defined in the entity bean’s home interface.

• Obtain the reference from the entity object’s handle. (see Section 8.7)

A client that has a reference to an entity object’s remote interface can do any of the following:

• Invoke business methods on the entity object through the remote interface.

• Obtain a reference to the enterprise Bean’s home interface.

• Pass the reference as a parameter or return value of a remote method call.

• Obtain the entity object’s primary key.

• Obtain the entity object’s handle.

• Remove the entity object.

All references to an entity object that does not exist are invalid. All attempted invocations on an e
object that does not exist result in anjava.rmi.NoSuchObjectException being thrown.

All entity objects are consideredpersistent objects. The lifetime of an entity object is not limited by the
lifetime of the Java Virtual Machine process in which the entity bean instance executes. While a cr
the Java Virtual Machine may result in a rollback of current transactions, it does not destroy previ
created entity objects nor invalidate the references to the remote and home interfaces held by cli

Multiple clients can access the same entity object concurrently. Transactions are used to isolate
ents’ work from each other.

8.5 Primary key and object identity

Every entity object has a unique identity within its home. If two entity objects have the same hom
the same primary key, they are considered identical.
 11/24/99 92

Entity Bean’s remote interface Enterprise JavaBeans v1.1, Final Release Client View of an Entity

Sun Microsystem Inc

l Value
ay be
rimary

ject’s
t
at is,
nce.)

m
using

o

ct by

he
a pro-

ran-

emote
ss
The Enterprise JavaBeans architecture allows a primary key class to be any class that is a lega
Type in RMI-IIOP, subject to the restrictions defined in Subsection 9.2.9. The primary key class m
specific to an entity Bean class (i.e. each entity bean class may define a different class for its p
key, but it is possible that multiple entity beans use the same primary key class).

A client that holds a reference to an entity object’s remote interface can determine the entity ob
identity within its home by invoking thegetPrimaryKey() method on the reference. The objec
identity associated with a reference does not change over the lifetime of the reference. (Th
getPrimaryKey() always returns the same value when called on the same entity object refere

A client can test whether two entity object references refer to the same entity object by using theisI-
dentical(EJBObject) method. Alternatively, if a client obtains two entity object references fro
the same home, it can determine if they refer to the same entity by comparing their primary keys
theequals method.

The following code illustrates using theisIdentical method to test if two object references refer t
the same entity object:

Account acc1 = ...;
Account acc2 = ...;

if (acc1.isIdentical(acc2)) {
acc1 and acc2 are the same entity object

} else {
acc2 and acc2 are different entity objects

}

A client that knows the primary key of an entity object can obtain a reference to the entity obje
invoking thefindByPrimaryKey(key) method on the entity bean’s home interface.

Note that the Enterprise JavaBeans architecture does not specify “object equality” (i.e use of t==
operator) for entity object references. The result of comparing two object references using the Jav
gramming languageObject.equals(Object obj) method is unspecified. Performing the
Object.hashCode() method on two object references that represent the entity object is not gua
teed to yield the same result. Therefore, a client should always use theisIdentical method to deter-
mine if two entity object references refer to the same entity object.

8.6 Entity Bean’s remote interface

A client accesses an entity object through the entity bean’s remote interface. An entity bean’s r
interface must extend thejavax.ejb.EJBObject interface. A remote interface defines the busine
methods that are callable by clients.
93 11/24/99

Client View of an Entity Enterprise JavaBeans v1.1, Final Release Entity bean’s handle

Sun Microsystems Inc.

ol-

.

iner to

as a
g the

t
refer-

te
The following example illustrates the definition of an entity bean’s remote interface:

public interface Account extends javax.ejb.EJBObject {
void debit(double amount)

throws java.rmi.RemoteException,
InsufficientBalanceException;

void credit(double amount)
throws java.rmi.RemoteException;

double getBalance()
throws java.rmi.RemoteException;

}

The javax.ejb.EJBObject interface defines the methods that allow the client to perform the f
lowing operations on an entity object’s reference:

• Obtain the home interface for the entity object.

• Remove the entity object.

• Obtain the entity object’s handle.

• Obtain the entity object’s primary key.

The container provides the implementation of the methods defined in thejavax.ejb.EJBObject
interface. Only the business methods are delegated to the instances of the enterprise bean class

Note that the entity object does not expose the methods of thejavax.ejb.EnterpriseBean
interface to the client. These methods are not intended for the client—they are used by the conta
manage the enterprise bean instances.

8.7 Entity bean’s handle

An entity object’s handle is an object that identifies the entity object on a network. A client that h
reference to an entity object’s remote interface can obtain the entity object’s handle by invokin
getHandle() method on the remote interface.

Since a handle class extendsjava.io.Serializable , a client may serialize the handle. The clien
may use the serialized handle later, possibly in a different process or even system, to re-obtain a
ence to the entity object identified by the handle.

The client code must use thejavax.rmi.PortableRemoteObject.narrow(...) method to
convert the result of thegetEJBObject() method invoked on a handle to the entity bean’s remo
interface type.
 11/24/99 94

Entity home handles Enterprise JavaBeans v1.1, Final Release Client View of an Entity

Sun Microsystem Inc

gram
g in a
typi-

server

ents
of the
ile the

fica-

B Con-

ht to
then a
caller’s

se the
eate the
erface
The lifetime and scope of a handle is specific to the handle implementation. At the minimum, a pro
running in one JVM must be able to obtain and serialize the handle, and another program runnin
different JVM must be able to deserialize it and re-create an object reference. An entity handle is
cally implemented to be usable over a long period of time—it must be usable at least across a
restart.

Containers that store long-lived entities will typically provide handle implementations that allow cli
to store a handle for a long time (possibly many years). Such a handle will be usable even if parts
technology used by the container (e.g. ORB, DBMS, server) have been upgraded or replaced wh
client has stored the handle. Support for this “quality of service” is not required by the EJB speci
tion.

An EJB Container is not required to accept a handle that was generated by another vendor’s EJ
tainer.

The use of a handle is illustrated by the following example:

// A client obtains a handle of an account entity object and
// stores the handle in stable storage.
//
ObjectOutputStream stream = ...;
Account account = ...;
Handle handle = account.getHandle();
stream.writeObject(handle);

// A client can read the handle from stable storage, and use the
// handle to resurrect an object reference to the
// account entity object.
//
ObjectInputStream stream = ...;
Handle handle = (Handle) stream.readObject(handle);
Account account = (Account)javax.rmi.PortableRemoteObject.narrow(

handle.getEJBObject(), Account.class);
account.debit(100.00);

A handle is not a capability, in the security sense, that would automatically grant its holder the rig
invoke methods on the object. When a reference to a object is obtained from a handle, and
method on the object is invoked, the container performs the usual access checks based on the
principal.

8.8 Entity home handles

The EJB specification allows the client to obtain a handle for the home interface. The client can u
home handle to store a reference to an entity bean’s home interface in stable storage, and re-cr
reference later. This handle functionality may be useful to a client that needs to use the home int
in the future, but does not know the JNDI API name of the home interface.

A handle to a home interface must implement thejavax.ejb.HomeHandle interface.
95 11/24/99

Client View of an Entity Enterprise JavaBeans v1.1, Final Release Type narrowing of object references

Sun Microsystems Inc.

gram
erent
mple-
t.

tions

fail if
The client code must use thejavax.rmi.PortableRemoteObject.narrow(...) method to
convert the result of thegetEJBHome() method invoked on a handle to the home interface type.

The lifetime and scope of a handle is specific to the handle implementation. At the minimum, a pro
running in one JVM must be able to serialize the handle, and another program running in a diff
JVM must be able to deserialize it and re-create an object reference. An entity handle is typically i
mented to be usable over a long period of time—it must be usable at least across a server restar

8.9 Type narrowing of object references

A client program that is intended to be interoperable with all compliant EJB Container implementa
must use the javax.rmi.PortableRemoteObject.narrow(...) method to perform
type-narrowing of the client-side representations of the home and remote interface.

Note: Programs that use the cast operator to narrow the remote and home interfaces are likely to
the Container implementation uses RMI-IIOP as the underlying communication transport.
 11/24/99 96

Concepts Enterprise JavaBeans v1.1, Final Release Entity Bean Component Contract

Sun Microsystem Inc

efines
oked
ross all

ider’s

etween
Chapter 9 Entity Bean Component Contract

Note: Container support for entity beans is a mandatory feature in the EJB 1.1 release.

The entity bean component contract is the contract between an entity bean and its container. It d
the life cycle of the entity bean instances and the model for method delegation of the client-inv
business methods. The main goal of this contract is to ensure that a component is portable ac
compliant EJB Containers.

This chapter defines the enterprise Bean Provider’s view of this contract and the Container Prov
responsibility for managing the life cycle of the enterprise bean instances.

9.1 Concepts

9.1.1 Runtime execution model

This section describes the runtime model and the classes used in the description of the contract b
an entity bean and its container.
97 11/24/99

Entity Bean Component Contract Enterprise JavaBeans v1.1, Final Release Concepts

Sun Microsystems Inc.

r Pro-
never
e class

tity
ols at
t was
Figure 21 Overview of the entity bean runtime execution model

An enterprise bean instanceis an object whose class was provided by the Bean Provider.

An entity EJBObject is an object whose class was generated at deployment time by the Containe
vider’s tools. The entity EJBObject class implements the entity bean’s remote interface. A client
references an entity bean instance directly—a client always references an entity EJBObject whos
is generated by the Container Provider’s tools.

An entity EJBHome object provides the life cycle operations (create, remove, find) for its en
objects. The class for the entity EJBHome object is generated by the Container Provider’s to
deployment time. The entity EJBHome object implements the entity bean’s home interface tha
defined by the Bean Provider.

classes provided by
Bean Provider

classes generated by
Container Provider tools

client

container

EJB objects

EJBHome

EJB objectsEJBObjects

enterprise bean
instances

EJB objects

EJBHome

EJB objectsEJBObjects

enterprise bean
instances

enterprise bean 1

enterprise bean 2
 11/24/99 98

Concepts Enterprise JavaBeans v1.1, Final Release Entity Bean Component Contract

Sun Microsystem Inc

 beans.

ent iden-

better
hich it

ct A, if
s when
ccess
le of

ms on
e record

imple-

ultiple

deci-

mote
st go
rough

ction
y be

emas
ped to
, the
the

entity
ERP
bean
9.1.2 Granularity of entity beans

This section provides guidelines to the Bean Providers for modeling of business objects as entity

In general, an entity bean should represent an independent business object that has an independ
tity and lifecycle, and is referenced by multiple enterprise beans and/or clients.

A dependent objectshould not be implemented as an entity bean. Instead, a dependent object is
implemented as a Java class (or several classes) and included as part of the entity bean on w
depends.

A dependent object can be characterized as follows. An object B is a dependent object of an obje
B is created by A, accessed only by A, and removed by A. This implies, for example, that if B exist
A is being removed, B is automatically removed as well. It also implies that other programs can a
the object B only indirectly through object A. In other words, the object A fully manages the lifecyc
the object B.

For example, a purchase order might be implemented as an entity bean, but the individual line ite
the purchase order should be implemented as helper classes, not as entity beans. An employe
might be implemented as an entity bean, but the employee address and phone number should be
mented as helper classes, not as entity beans.

The state of an entity object that has dependent objects is often stored in multiple records in m
database tables.

In addition, the Bean Provider must take into consideration the following factors when making a
sion on the granularity of an entity object:

• Every method call to an entity object via the remote and home interface is potentially a re
call. Even if the calling and called entity bean are collocated in the same JVM, the call mu
through the container, which must create copies of all the parameters that are passed th
the interface by value (i.e. all parameters that do not extend thejava.rmi.Remote inter-
face). The container is also required to check security and apply the declarative transa
attribute on the inter-component calls. The overhead of an inter-component call will likel
prohibitive for object interactions that are too fine-grained.

• The EJB deployment descriptor does not provide a mechanism for describing object sch
(the relationships among the fine-grained objects, and how fine-grained objects are map
the underlying database). If these relationships need to be visible at deployment time
information describing the relationships must be passed from the Bean Provider to
Deployer through some means outside of the EJB specification.

9.1.3 Entity persistence (data access protocol)

An entity bean implements an object view of an entity stored in an underlying database, or an
implemented by an existing enterprise application (for example, by a mainframe program or by an
application). The data access protocol for transferring the state of the entity between the entity
instances and the underlying database is referred to as object persistence.
99 11/24/99

Entity Bean Component Contract Enterprise JavaBeans v1.1, Final Release Concepts

Sun Microsystems Inc.

ntity
ith the
he Con-

.

.g. using
e per-

ted in a
The entity bean component protocol allows the entity Bean Provider either to implement the e
bean’s persistence directly in the entity bean class or in one or more helper classes provided w
entity bean class (bean-managed persistence), or to delegate the entity bean’s persistence to t
tainer Provider tools used at deployment time (container-managed persistence).

In many cases, the underlying data source may be an existing application rather than a database

Figure 22 Client view of underlying data sources accessed through entity bean

9.1.3.1 Bean-managed persistence

In the bean-managed persistence case, the entity Bean Provider writes database access calls (e
JDBC API technology or SQLJ) directly in the entity bean component. The data access calls ar
formed in the ejbCreate(...) , ejbRemove() , ejbFind<METHOD> (), ejbLoad() , and
ejbStore() methods; and/or in the business methods.

The data access calls can be coded directly into the entity bean class, or they can be encapsula
data access component that is part of the entity bean.

Account

container

client
Account 100

entity bean

Account

container

client
Account 100

entity bean

existing

application

(a) Entity bean is an object view of a record in the database

(b) Entity bean is an object view of an existing application
 11/24/99 100

Concepts Enterprise JavaBeans v1.1, Final Release Entity Bean Component Contract

Sun Microsystem Inc

h will
e same

egies.

entity

ents may
en to a
JB speci-

s calls in
e entity
Pro-

ainer

pendent
at use
cess to
o exist-

bean’s

r-man-
s part of
rated at
We expect that most enterprise beans will be created by application development tools whic
encapsulate data access in components. These data access components will probably not be th
for all tools. This EJB specification does not define the architecture for data access objects or strat

Directly coding data access calls in the entity bean class may make it more difficult to adapt the
bean to work with a database that has a different schema, or with a different type of database.

If the data access calls are encapsulated in data access components, the data access compon
optionally provide deployment interfaces to allow adapting data access to different schemas or ev
different database type. These data access component strategies are beyond the scope of the E
fication.

9.1.3.2 Container-managed persistence

In the container-managed persistence case, the Bean Provider does not write the database acces
the entity bean. Instead, the Container Provider’s tools generate the database access calls at th
bean’s deployment time (i.e. when the entity bean is installed into a container). The entity Bean
vider must specify in the deployment descriptor the list of the instance fields for which the cont
provider tools must generate access calls.

The advantage of using container-managed persistence is that the entity bean can be largely inde
from the data source in which the entity is stored. The container tools can generate classes th
JDBC API or SQLJ to access the entity state in a relational database, or classes that implement ac
a non-relational data source, such as an IMS database, or classes that implement function calls t
ing enterprise applications.

The disadvantage is that sophisticated tools must be used at deployment time to map the entity
fields to a data source. These tools and containers are typically specific to each data source.

The essential difference between an entity with bean-managed persistence and one with containe
aged persistence is that in the bean-managed case, the data access components are provided a
the entity bean, whereas in the container-managed case, the data access components are gene
deployment time by the container tools.
101 11/24/99

Entity Bean Component Contract Enterprise JavaBeans v1.1, Final Release Concepts

Sun Microsystems Inc.

bject
9.1.4 Instance life cycle

Figure 23 Life cycle of an entity bean instance.

An entity bean instance is in one of the following three states:

• It does not exist.

• Pooled state. An instance in the pooled state is not associated with any particular entity o
identity.

• Ready state. An instance in the ready state is assigned an entity object identity.

The following steps describe the life cycle of an entity bean instance:

• An entity bean instance’s life starts when the container creates the instance usingnewIn-
stance() . The container then invokes thesetEntityContext() method to pass the
instance a reference to theEntityContext interface. TheEntityContext interface

does not
 exist

1. newInstance()
2. setEntityContext(ec)

ejbActivate()

pooled

1. unsetEntityContext()

ready

ejbPassivate()
ejbRemove()ejbCreate(args)

ejbStore()ejbLoad()

business method

ejbFind<METHOD>()

ejbPostCreate(args)

instance throws
system exception
from any method
 11/24/99 102

Concepts Enterprise JavaBeans v1.1, Final Release Entity Bean Component Contract

Sun Microsystem Inc

ation

While
entity
tance
state.
any of
The

ts that
the

hrough
meth-
n the
s the

n invo-
in the

pecific
ejb-

on the
arbi-
tore

rlying
to syn-

ssivate
-

sible
rough
tainer
ntity
g the
ote

bject
bean

the
allows the instance to invoke services provided by the container and to obtain the inform
about the caller of a client-invoked method.

• The instance enters the pool of available instances. Each entity bean has its own pool.
the instance is in the available pool, the instance is not associated with any particular
object identity. All instances in the pool are considered equivalent, and therefore any ins
can be assigned by the container to any entity object identity at the transition to the ready
While the instance is in the pooled state, the container may use the instance to execute
the entity bean’s finder methods (shown as ejbFind<METHOD>(...) in the diagram).
instance doesnot move to the ready state during the execution of a finder method.

• An instance transitions from the pooled state to the ready state when the container selec
instance to service a client call to an entity object. There are two possible transitions from
pooled to the ready state: through the ejbCreate(...) and ejbPostCreate(...) methods, or t
the ejbActivate() method. The container invokes the ejbCreate(...) and ejbPostCreate(...)
ods when the instance is assigned to an entity object during entity object creation (i.e. whe
client invokes a create method on the entity bean’s home object). The container invoke
ejbActivate() method on an instance when an instance needs to be activated to service a
cation on an existing entity object—this occurs because there is no suitable instance
ready state to service the client’s call.

• When an entity bean instance is in the ready state, the instance is associated with a s
entity object identity. While the instance is in the ready state, the container can invoke the
Load() and ejbStore() methods zero or more times. A business method can be invoked
instance zero or more times. Invocations of the ejbLoad() and ejbStore() methods can be
trarily mixed with invocations of business methods. The purpose of the ejbLoad and ejbS
methods is to synchronize the state of the instance with the state of the entity in the unde
data source—the container can invoke these methods whenever it determines a need
chronize the instance’s state.

• The container can choose to passivate an entity bean instance within a transaction. To pa
an instance, the container first invokes theejbStore method to allow the instance to syn
chronize the database state with the instance’s state, and then the container invokes theejb-
Passivate method to return the instance to the pooled state.

• Eventually, the container will transition the instance to the pooled state. There are two pos
transitions from the ready to the pooled state: through the ejbPassivate() method and th
the ejbRemove() method. The container invokes the ejbPassivate() method when the con
wants to disassociate the instance from the entity object identity without removing the e
object. The container invokes the ejbRemove() method when the container is removin
entity object (i.e. when the client invoked the remove() method on the entity object’s rem
interface, or one of the remove() methods on the entity bean’s home interface).

• When the instance is put back into the pool, it is no longer associated with an entity o
identity. The container can assign the instance to any entity object within the same entity
home.

• An instance in the pool can be removed by calling the unsetEntityContext() method on
instance.
103 11/24/99

Entity Bean Component Contract Enterprise JavaBeans v1.1, Final Release Concepts

Sun Microsystems Inc.

, the

s

he
to the
ter a
ntity
mote

client’s

oling
ation.
.

ed here
anaged

ean

reate

.3 for
ity of

pecific
Notes:

1. TheEntityContext interface passed by the container to the instance in thesetEntity-
Context method is an interface, not a class that contains static information. For example
result of theEntityContext.getPrimaryKey() method might be different each time
an instance moves from the pooled state to the ready state, and the result of thegetCaller-
Principal() andisCallerInRole(...) methods may be different in each busines
method.

2. A RuntimeException thrown from any method of the entity bean class (including t
business methods and the callbacks invoked by the container) results in the transition
“does not exist” state. The container must not invoke any method on the instance af
RuntimeException has been caught. From the client perspective, the corresponding e
object continues to exist. The client can continue accessing the entity object through its re
interface because the container can use a different entity bean instance to delegate the
requests. Exception handling is described further in Chapter 12.

3. The container is not required to maintain a pool of instances in the pooled state. The po
approach is an example of a possible implementation, but it is not the required implement
Whether the container uses a pool or not has no bearing on the entity bean coding style

9.1.5 The entity bean component contract

This section specifies the contract between an entity bean and its container. The contract specifi
assumes the use of bean-managed persistence. The differences in the contract for container-m
persistence are defined in Section 9.4.

9.1.5.1 Entity bean instance’s view:

The following describes the entity bean instance’s view of the contract:

The entity Bean Provider is responsible for implementing the following methods in the entity b
class:

• A public constructor that takes no arguments. The Container uses this constructor to c
instances of the entity bean class.

• public void setEntityContext(EntityContext ic) ;

A container uses this method to pass a reference to theEntityContext interface to the
entity bean instance. If the entity bean instance needs to use theEntityContext interface
during its lifetime, it must remember theEntityContext interface in an instance variable.

This method executes with an unspecified transaction context (Refer to Subsection 11.6
how the Container executes methods with an unspecified transaction context). An ident
an entity object is not available during this method.

The instance can take advantage of thesetEntityContext() method to allocate any
resources that are to be held by the instance for its lifetime. Such resources cannot be s
 11/24/99 104

Concepts Enterprise JavaBeans v1.1, Final Release Entity Bean Component Contract

Sun Microsystem Inc

erve

ct is

by the

a-
kes
ing

ethod

sac-

the
ter-
ument.

ious

from

in the

in the

iden-

e
ts the cli-
to an entity object identity because the instance might be reused during its lifetime to s
multiple entity object identities.

• public void unsetEntityContext();

A container invokes this method before terminating the life of the instance.

This method executes with an unspecified transaction context. An identity of an entity obje
not available during this method.

The instance can take advantage of theunsetEntityContext() method to free any
resources that are held by the instance. (These resources typically had been allocated
setEntityContext() method.)

• public PrimaryKeyClass ejbCreate(...) ;

There are zero[6] or moreejbCreate(...) methods, whose signatures match the sign
tures of thecreate(...) methods of the entity bean home interface. The container invo
an ejbCreate(...) method on an entity bean instance when a client invokes a match
create(...) method to create an entity object.

The implementation of theejbCreate(...) method typically validates the client-supplied
arguments, and inserts a record representing the entity object into the database. The m
also initializes the instance’s variables. TheejbCreate(...) method must return the pri-
mary key for the created entity object.

An ejbCreate(...) method executes in the transaction context determined by the tran
tion attribute of the matchingcreate(...) method, as described in subsection 11.6.2.

• public void ejbPostCreate(...);

For eachejbCreate(...) method, there is a matchingejbPostCreate(...) method
that has the same input parameters but the return value isvoid . The container invokes the
matchingejbPostCreate(...) method on an instance after it invokes theejbCre-
ate(...) method with the same arguments. The entity object identity is available during
ejbPostCreate(...) method. The instance may, for example, obtain the remote in
face of the associated entity object and pass it to another enterprise bean as a method arg

An ejbPostCreate(...) method executes in the same transaction context as the prev
ejbCreate(...) method.

• public void ejbActivate();

The container invokes this method on the instance when the container picks the instance
the pool and assigns it to a specific entity object identity. TheejbActivate() method gives
the entity bean instance the chance to acquire additional resources that it needs while it is
ready state.

This method executes with an unspecified transaction context. The instance can obta
identity of the entity object via thegetPrimaryKey() or getEJBObject() method on
the entity context. The instance can rely on the fact that the primary key and entity object
tity will remain associated with the instance until the completion ofejbPassivate() or
ejbRemove() .

[6] An entity enterprise Bean has noejbCreate(...)andejbPostCreate(...)methods if it does not define any create methods in its hom
interface. Such an entity enterprise Bean does not allow the clients to create new EJB objects. The enterprise Bean restric
ents to accessing entities that were created through direct database inserts.
105 11/24/99

Entity Bean Component Contract Enterprise JavaBeans v1.1, Final Release Concepts

Sun Microsystems Inc.

ociate
vail-
se any
ically

in the

of the
e

ion in

f this
stance

e that
in the
y time

ot use
advan-
the

of the

must
iables.
Note that the instance should not use theejbActivate() method to read the state of the
entity from the database; the instance should load its state only in theejbLoad() method.

• public void ejbPassivate() ;
The container invokes this method on an instance when the container decides to disass
the instance from an entity object identity, and to put the instance back into the pool of a
able instances. The ejbPassivate() method gives the instance the chance to relea
resources that should not be held while the instance is in the pool. (These resources typ
had been allocated during the ejbActivate() method.)

This method executes with an unspecified transaction context. The instance can still obta
identity of the entity object via thegetPrimaryKey() or getEJBObject() method of
theEntityContext interface.

Note that an instance should not use theejbPassivate() method to write its state to the
database; an instance should store its state only in theejbStore() method.

• public void ejbRemove() ;

The container invokes this method on an instance as a result of a client’s invoking aremove
method. The instance is in the ready state whenejbRemove() is invoked and it will be
entered into the pool when the method completes.

This method executes in the transaction context determined by the transaction attribute
remove method that triggered theejbRemove method. The instance can still obtain th
identity of the entity object via thegetPrimaryKey() or getEJBObject() method of
theEntityContext interface.

The container synchronizes the instance’s state before it invokes theejbRemove method.
This means that the state of the instance variables at the beginning of theejbRemove method
is the same as it would be at the beginning of a business method.

An entity bean instance should use this method to remove the entity object’s representat
the database.

Since the instance will be entered into the pool, the state of the instance at the end o
method must be equivalent to the state of a passivated instance. This means that the in
must release any resource that it would normally release in theejbPassivate() method.

• public void ejbLoad() ;

The container invokes this method on an instance in the ready state to inform the instanc
it must synchronize the entity state cached in its instance variables from the entity state
database. The instance must be prepared for the container to invoke this method at an
that the instance is in the ready state.

If the instance is caching the entity state (or parts of the entity state), the instance must n
the previously cached state in the subsequent business method. The instance may take
tage of theejbLoad method, for example, to refresh the cached state by reading it from
database.

This method executes in the transaction context determined by the transaction attribute
business method that triggered theejbLoad method.

• public void ejbStore();

The container invokes this method on an instance to inform the instance that the instance
synchronize the entity state in the database with the entity state cached in its instance var
 11/24/99 106

Concepts Enterprise JavaBeans v1.1, Final Release Entity Bean Component Contract

Sun Microsystem Inc

t the

in the

vious
e

nce to

ainer

ans-

-
. The

bsec-

r must

tance,

, the

tances

lt of a

e

ce for
The instance must be prepared for the container to invoke this method at any time tha
instance is in the ready state.

An instance must write any updates cached in the instance variables to the database
ejbStore() method.

This method executes in the same transaction context as the previousejbLoad or ejbCre-
ate method invoked on the instance. All business methods invoked between the pre
ejbLoad or ejbCreate method and thisejbStore method are also invoked in the sam
transaction context.

• public primary key type or collectionejbFind<METHOD>(...) ;

The container invokes this method on the instance when the container selects the insta
execute a matching client-invokedfind<METHOD>(...) method. The instance is in the
pooled state (i.e. it is not assigned to any particular entity object identity) when the cont
selects the instance to execute theejbFind<METHOD> method on it, and it is returned to the
pooled state when the execution of theejbFind<METHOD> method completes.

TheejbFind<METHOD> method executes in the transaction context determined by the tr
action attribute of the matchingfind(...) method, as described in subsection 11.6.2.

The implementation of anejbFind<METHOD> method typically uses the method’s argu
ments to locate the requested entity object or a collection of entity objects in the database
method must return a primary key or a collection of primary keys to the container (see Su
tion 9.1.8).

9.1.5.2 Container’s view:

This subsection describes the container’s view of the state management contract. The containe
call the following methods:

• public void setEntityContext(ec) ;

The container invokes this method to pass a reference to theEntityContext interface to
the entity bean instance. The container must invoke this method after it creates the ins
and before it puts the instance into the pool of available instances.

The container invokes this method with an unspecified transaction context. At this point
EntityContext is not associated with any entity object identity.

• public void unsetEntityContext() ;

The container invokes this method when the container wants to reduce the number of ins
in the pool. After this method completes, the container must not reuse this instance.

The container invokes this method with an unspecified transaction context.

• public PrimaryKeyClass ejbCreate(...) ;
public void ejbPostCreate(...) ;

The container invokes these two methods during the creation of an entity object as a resu
client invoking acreate(...) method on the entity bean’s home interface.

The container first invokes theejbCreate(...) method whose signature matches th
create(...) method invoked by the client. TheejbCreate(...) method returns a pri-
mary key for the created entity object. The container creates an entity EJBObject referen
107 11/24/99

Entity Bean Component Contract Enterprise JavaBeans v1.1, Final Release Concepts

Sun Microsystems Inc.

t’s

n the
must
if the

must

en the
The

o the

invoke

a cli-

ction

le to

data-
o-

for the
hat the
ner,

ached
the primary key. The container then invokes a matchingejbPostCreate(...) method to
allow the instance to fully initialize itself. Finally, the container returns the entity objec
remote interface (i.e. a reference to the entity EJBObject) to the client.

The container must invoke theejbCreate(...) andejbPostCreate(...) methods
in the transaction context determined by the transaction attribute of the matchingcre-
ate(...) method, as described in subsection 11.6.2.

• public void ejbActivate() ;

The container invokes this method on an entity bean instance at activation time (i.e., whe
instance is taken from the pool and assigned to an entity object identity). The container
ensure that the primary key of the associated entity object is available to the instance
instance invokes thegetPrimaryKey() or getEJBObject() method on itsEnti-
tyContext interface.

The container invokes this method with an unspecified transaction context.

Note that instance is not yet ready for the delivery of a business method. The container
still invoke theejbLoad() method prior to a business method.

• public void ejbPassivate() ;

The container invokes this method on an entity bean instance at passivation time (i.e., wh
instance is being disassociated from an entity object identity and moved into the pool).
container must ensure that the identity of the associated entity object is still available t
instance if the instance invokes thegetPrimaryKey() or getEJBObject() method
on its entity context.

The container invokes this method with an unspecified transaction context.

Note that if the instance state has been updated by a transaction, the container must first
theejbStore() method on the instance before it invokesejbPassivate() on it.

• public void ejbRemove();

The container invokes this method before it ends the life of an entity object as a result of
ent invoking aremove operation.

The container invokes this method in the transaction context determined by the transa
attribute of the invokedremove method.
The container must ensure that the identity of the associated entity object is still availab
the instance in theejbRemove() method (i.e. the instance can invoke thegetPrima-
ryKey() or getEJBObject() method on itsEntityContext in theejbRemove()
method).

The container must ensure that the instance’s state is synchronized from the state in the
base before invoking theejbRemove() method (i.e. if the instance is not already synchr
nized from the state in the database, the container must invokeejbLoad before it invokes
ejbRemove).

• public void ejbLoad() ;

The container must invoke this method on the instance whenever it becomes necessary
instance to synchronize its instance state from its state in the database. The exact times t
container invokesejbLoad depend on the configuration of the component and the contai
and are not defined by the EJB architecture. Typically, the container will callejbLoad before
the first business method within a transaction to ensure that the instance can refresh its c
 11/24/99 108

Concepts Enterprise JavaBeans v1.1, Final Release Entity Bean Component Contract

Sun Microsystem Inc

s been
e via

action

for the
is syn-

also
en it
same

ously

t
e
ciated

led
y the

t

er
f the
ner
from
for-

cess the
state of the entity object from the database. After the firstejbLoad within a transaction, the
container is not required to recognize that the state of the entity object in the database ha
changed by another transaction, and it is not required to notify the instance of this chang
anotherejbLoad call.

The container must invoke this method in the transaction context determined by the trans
attribute of the business method that triggered theejbLoad method.

• public void ejbStore() ;

The container must invoke this method on the instance whenever it becomes necessary
instance to synchronize its state in the database with the state of the instance’s fields. Th
chronization always happens at the end of a transaction. However, the container may
invoke this method when it passivates the instance in the middle of a transaction, or wh
needs to transfer the most recent state of the entity object to another instance for the
entity object in the same transaction (see Subsection 11.7).

The container must invoke this method in the same transaction context as the previ
invokedejbLoad or ejbCreate method.

• public primary key type or collectionejbFind<METHOD>(...) ;

The container invokes theejbFind<METHOD>(...) method on an instance when a clien
invokes a matchingfind<METHOD>(...) method on the entity bean’s home interface. Th
container must pick an instance that is in the pooled state (i.e. the instance is not asso
with any entity object identity) for the execution of theejbFind<METHOD>(...) method.
If there is no instance in the pooled state, the container creates one and calls thesetEntity-
Context(...) method on the instance before dispatching the finder method.

After theejbFind<METHOD>(...) method completes, the instance remains in the poo
state. The container may, but is not required to, activate the objects that were located b
finder using the transition through theejbActivate() method.

The container must invoke theejbFind<METHOD>(...) method in the transaction contex
determined by the transaction attribute of the matchingfind(...) method, as described in
subsection 11.6.2.

If the ejbFind<METHOD> method is declared to return a single primary key, the contain
creates an entity EJBObject reference for the primary key and returns it to the client. I
ejbFind<METHOD> method is declared to return a collection of primary keys, the contai
creates a collection of entity EJBObject references for the primary keys returned
ejbFind<METHOD> , and returns the collection to the client. (See Subsection 9.1.8 for in
mation on collections.)

9.1.6 Operations allowed in the methods of the entity bean class

Table 4 defines the methods of an entity bean class in which the enterprise bean instances can ac
methods of thejavax.ejb.EntityContext interface, thejava:comp/env environment nam-
ing context, resource managers, and other enterprise beans.

If an entity bean instance attempts to invoke a method of theEntityContext interface, and the
access is not allowed in Table 4, the Container must throw thejava.lang.IllegalStateEx-
ception.
109 11/24/99

Entity Bean Component Contract Enterprise JavaBeans v1.1, Final Release Concepts

Sun Microsystems Inc.

access is
If an entity bean instance attempts to access a resource manager or an enterprise bean, and the
not allowed in Table 4, the behavior is undefined by the EJB architecture.
 11/24/99 110

Concepts Enterprise JavaBeans v1.1, Final Release Entity Bean Component Contract

Sun Microsystem Inc
Table 4 Operations allowed in the methods of an entity bean

Bean method Bean method can perform the following operations

constructor -

setEntityContext
unsetEntityContext

EntityContext methods:getEJBHome

JNDI access to java:comp/env

ejbCreate

EntityContext methods:getEJBHome, getCallerPrincipal, getRollbackOnly,
isCallerInRole, setRollbackOnly

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

ejbPostCreate

EntityContext methods:getEJBHome, getCallerPrincipal, getRollbackOnly,
isCallerInRole, setRollbackOnly, getEJBObject, getPrimaryKey

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

ejbRemove

EntityContext methods:getEJBHome, getCallerPrincipal, getRollbackOnly,
isCallerInRole, setRollbackOnly, getEJBObject, getPrimaryKey

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

ejbFind

EntityContext methods:getEJBHome, getCallerPrincipal, getRollbackOnly,
isCallerInRole, setRollbackOnly

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

ejbActivate
ejbPassivate

EntityContext methods:getEJBHome, getEJBObject, getPrimaryKey

JNDI access to java:comp/env

ejbLoad
ejbStore

EntityContext methods:getEJBHome, getCallerPrincipal, getRollbackOnly,
isCallerInRole, setRollbackOnly, getEJBObject, getPrimaryKey

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

business method
from remote interface

EntityContext methods:getEJBHome, getCallerPrincipal, getRollbackOnly,
isCallerInRole, setRollbackOnly, getEJBObject, getPrimaryKey

JNDI access to java:comp/env

Resource manager access

Enterprise bean access
111 11/24/99

Entity Bean Component Contract Enterprise JavaBeans v1.1, Final Release Concepts

Sun Microsystems Inc.

xt of a

ntext.

ods for
ntext.

etween
part of

t of

all
vokes
hen

state

rd
ached

e the

hed
Additional restrictions:

• The getRollbackOnly and setRollbackOnly methods of theEntityContext
interface should be used only in the enterprise bean methods that execute in the conte
transaction. The Container must throw thejava.lang.IllegalStateException if
the methods are invoked while the instance is not associated with a transaction.

Reasons for disallowing operations:

• Invoking thegetEJBObject and getPrimaryKey methods is disallowed in the entity
bean methods in which there is no entity object identity associated with the instance.

• Invoking thegetCallerPrincipal and isCallerInRole methods is disallowed in
the entity bean methods for which the Container does not have a client security context.

• Invoking thegetRollbackOnly andsetRollbackOnly methods is disallowed in the
entity bean methods for which the Container does not have a meaningful transaction co
These are the methods that have theNotSupported , Never , or Supports transaction
attribute.

• Accessing resource managers and enterprise beans is disallowed in the entity bean meth
which the Container does not have a meaningful transaction context or client security co

9.1.7 Caching of entity state and theejbLoad and ejbStore methods

An instance of an entity bean with bean-managed persistence can cache the entity object’s state b
business method invocations. An instance may choose to cache the entire entity object’s state,
the state, or no state at all.

The container-invokedejbLoad andejbStore methods assist the instance with the managemen
the cached entity object’s state. The instance must handle theejbLoad andejbStore methods as
follows:

• When the container invokes theejbStore method on the instance, the instance must push
cached updates of the entity object’s state to the underlying database. The container in
theejbStore method at the end of a transaction, and may also invoke it at other times w
the instance is in the ready state. (For example the container may invokeejbStore when
passivating an instance in the middle of a transaction, or when transferring the instance’s
to another instance to support distributed transactions in a multi-process server.)

• When the container invokes theejbLoad method on the instance, the instance must disca
any cached entity object’s state. The instance may, but is not required to, refresh the c
state by reloading it from the underlying database.

The following examples, which are illustrative but not prescriptive, show how an instance may cach
entity object’s state:

• An instance loads the entire entity object’s state in theejbLoad method and caches it until
the container invokes theejbStore method. The business methods read and write the cac
 11/24/99 112

Concepts Enterprise JavaBeans v1.1, Final Release Entity Bean Component Contract

Sun Microsystem Inc

the

usiness

access
ovide

ce

od,
xt (See

bound-

er
uaran-
ransac-

e

n con-

access
entity state. TheejbStore method writes the updated parts of the entity object’s state to
database.

• An instance loads the most frequently used part of the entity object’s state in theejbLoad
method and caches it until the container invokes theejbStore method. Additional parts of
the entity object’s state are loaded as needed by the business methods. TheejbStore method
writes the updated parts of the entity object’s state to the database.

• An instance does not cache any entity object’s state between business methods. The b
methods access and modify the entity object’s state directly in the database. TheejbLoad
andejbStore methods have an empty implementation.

We expect that most entity developers will not manually code the cache management and data
calls in the entity bean class. We expect that they will rely on application development tools to pr
various data access components that encapsulate data access and provide state caching.

9.1.7.1 ejbLoad and ejbStore with the NotSupported transaction attribute

The use of theejbLoad andejbStore methods for caching an entity object’s state in the instan
works well only if the Container can use transaction boundaries to drive theejbLoad andejbStore
methods. When theNotSupported [7] transaction attribute is assigned to a remote interface meth
the corresponding enterprise bean class method executes with an unspecified transaction conte
Subsection 11.6.3). This means that the Container does not have any well-defined transaction
aries to drive theejbLoad andejbStore methods on the instance.

Therefore, theejbLoad andejbStore methods are “unreliable” for the instances that the Contain
uses to dispatch the methods with an unspecified transaction context. The following are the only g
tees that the Container provides for the instances that execute the methods with an unspecified t
tion context:

• The Container invokes at least oneejbLoad betweenejbActivate and the first business
method in the instance.

• The Container invokes at least oneejbStore between the last business method on th
instance and theejbPassivate method.

Because the entity object’s state accessed between theejbLoad andejbStore method pair is not
protected by a transaction boundary for the methods that execute with an unspecified transactio
text, the Bean Provider should not attempt to use theejbLoad andejbStore methods to control
caching of the entity object’s state in the instance. Typically, the implementation of theejbLoad and
ejbStore methods should be a no-op (i.e. an empty method), and each business method should
the entity object’s state directly in the database.

[7] This applies also to theNever andSupports attribute.
113 11/24/99

Entity Bean Component Contract Enterprise JavaBeans v1.1, Final Release Concepts

Sun Microsystems Inc.

ty

pond-
ity

rs, the

nding
ass

lients
9.1.8 Finder method return type

9.1.8.1 Single-object finder

Some finder methods (such asejbFindByPrimaryKey) are designed to return at most one enti
object. For these single-object finders, the result type of thefind<METHOD>(...) method defined in
the entity bean’s home interface is the entity bean’s remote interface. The result type of the corres
ing ejbFind<METHOD>(...) method defined in the entity’s implementation class is the ent
bean’s primary key type.

The following code illustrates the definition of a single-object finder.

// Entity’s home interface
public AccountHome extends javax.ejb.EJBHome {

...
Account findByPrimaryKey(AccountPrimaryKey primkey)

throws FinderException, RemoteException;
...

}

// Entity’s implementation class
public AccountBean implements javax.ejb.EntityBean {

...
public AccountPrimaryKey ejbFindByPrimaryKey(

AccountPrimaryKey primkey)
throws FinderException

{
...

}
...

}

9.1.8.2 Multi-object finders

Some finder methods are designed to return multiple entity objects. For these multi-object finde
result type of thefind<METHOD>(...) method defined in the entity bean’s home interface is acol-
lectionof objects implementing the entity bean’s remote interface. The result type of the correspo
ejbFind<METHOD>(...) implementation method defined in the entity bean’s implementation cl
is a collection of objects of the entity bean’s primary key type.

The Bean Provider can choose two types to define a collection type for a finder:

• the JDK™ 1.1java.util.Enumeration interface

• the Java™ 2java.util.Collection interface

A Bean Provider that wants to ensure that the entity bean is compatible with containers and c
based on JDKTM 1.1 software must use thejava.util.Enumeration interface for the finder’s
result type[8].

[8] The finder will be also compatible with Java 2 platform-based Containers and Clients.
 11/24/99 114

Concepts Enterprise JavaBeans v1.1, Final Release Entity Bean Component Contract

Sun Microsystem Inc

e the

and

on-
A Bean Provider targeting only containers and clients based on Java 2 platform can us
java.util.Collection interface for the finder’s result type.

The Bean Provider must ensure that the objects in thejava.util.Enumeration or
java.util.Collection returned from theejbFind<METHOD>(...) method are instances of
the entity bean’s primary key class.

The following is an example of a multi-object finder method definition compatible with containers
clients that are based on both JDK 1.1 and Java 2 platform:

// Entity’s home interface
public AccountHome extends javax.ejb.EJBHome {

...
java.util.Enumeration findLargeAccounts(double limit)

throws FinderException, RemoteException;
...

}

// Entity’s implementation class
public AccountBean implements javax.ejb.EntityBean {

...
public java.util.Enumeration ejbFindLargeAccounts(

double limit) throws FinderException
{

...
}
...

}

The following is an example of a multi-object finder method definition that is compatible only with c
tainers and clients based on Java 2:

// Entity’s home interface
public AccountHome extends javax.ejb.EJBHome {

...
java.util.Collection findLargeAccounts(double limit)

throws FinderException, RemoteException;
...

}

// Entity’s implementation class
public AccountBean implements javax.ejb.EntityBean {

...
public java.util.Collection ejbFindLargeAccounts(

double limit) throws FinderException
{

...
}
...

}

115 11/24/99

Entity Bean Component Contract Enterprise JavaBeans v1.1, Final Release Concepts

Sun Microsystems Inc.

ce. The
e addi-
gener-

t fully
been

r
n for

be
n, it

e may
ds are

.

se an
imary
9.1.9 Standard application exceptions for Entities

The EJB specification defines the following standard application exceptions:

• javax.ejb.CreateException

• javax.ejb.DuplicateKeyException

• javax.ejb.FinderException

• javax.ejb.ObjectNotFoundException

• javax.ejb.RemoveException

This section describes the use of these exceptions by entity beans with bean-managed persisten
use of the exceptions by entity beans with container-managed persistence is the same, with on
tional element: The responsibilities for throwing the exceptions apply to the data access methods
ated by the Container Provider’s tools.

9.1.9.1 CreateException

From the client’s perspective, aCreateException (or a subclass ofCreateException) indi-
cates that an application level error occurred during thecreate(...) operation. If a client receives
this exception, the client does not know, in general, whether the entity object was created but no
initialized, or not created at all. Also, the client does not know whether or not the transaction has
marked for rollback. (However, the client may determine the transaction status using theUserTrans-
action interface.)

The Bean Provider throws theCreateException (or subclass ofCreateException) from the
ejbCreate(...) and ejbPostCreate(...) methods to indicate an application-level erro
from the create or initialization operation. Optionally, the Bean Provider may mark the transactio
rollback before throwing this exception.

The Bean Provider is encouraged to mark the transaction for rollback only if data integrity would
lost if the transaction were committed by the client. Typically, when a CreateException is throw
leaves the database in a consistent state, allowing the client to recover. For example, ejbCreat
throw the CreateException to indicate that the some of the arguments to the create(...) metho
invalid.

The Container treats theCreateException as any other application exception. See Section 12.3

9.1.9.2 DuplicateKeyException

The DuplicateKeyException is a subclass ofCreateException . It is thrown by theejb-
Create(...) methods to indicate to the client that the entity object cannot be created becau
entity object with the same key already exists. The unique key causing the violation may be the pr
key, or another key defined in the underlying database.
 11/24/99 116

Concepts Enterprise JavaBeans v1.1, Final Release Entity Bean Component Contract

Sun Microsystem Inc

cep-

t

he

.

must
at no

client
rmine

ion.
n.

be
n, it

.

Normally, the Bean Provider should not mark the transaction for rollback before throwing the ex
tion.

When the client receives theDuplicateKeyException , the client knows that the entity was no
created, and that the client’s transaction has not typically been marked for rollback.

9.1.9.3 FinderException

From the client’s perspective, aFinderException (or a subclass ofFinderException) indi-
cates that an application level error occurred during thefind(...) operation. Typically, the client’s
transaction has not been marked for rollback because of theFinderException .

The Bean Provider throws theFinderException (or subclass ofFinderException) from the
ejbFind<METHOD>(...) methods to indicate an application-level error in the finder method. T
Bean Provider should not, typically, mark the transaction for rollback before throwing theFinderEx-
ception .

The Container treats theFinderException as any other application exception. See Section 12.3

9.1.9.4 ObjectNotFoundException

The ObjectNotFoundException is a subclass ofFinderException . It is thrown by the
ejbFind<METHOD>(...) methods to indicate that the requested entity object does not exist.

Only single-object finders (see Subsection 9.1.8) should throw this exception. Multi-object finders
not throw this exception. Multi-object finders should return an empty collection as an indication th
matching objects were found.

9.1.9.5 RemoveException

From the client’s perspective, aRemoveException (or a subclass ofRemoveException) indi-
cates that an application level error occurred during aremove(...) operation. If a client receives this
exception, the client does not know, in general, whether the entity object was removed or not. The
also does not know if the transaction has been marked for rollback. (However, the client may dete
the transaction status using theUserTransaction interface.)

The Bean Provider throws theRemoveException (or subclass ofRemoveException) from the
ejbRemove() method to indicate an application-level error from the entity object removal operat
Optionally, the Bean Provider may mark the transaction for rollback before throwing this exceptio

The Bean Provider is encouraged to mark the transaction for rollback only if data integrity would
lost if the transaction were committed by the client. Typically, when a RemoteException is throw
leaves the database in a consistent state, allowing the client to recover.

The Container treats theRemoveException as any other application exception. See Section 12.3
117 11/24/99

Entity Bean Component Contract Enterprise JavaBeans v1.1, Final Release Concepts

Sun Microsystems Inc.

f the
e the
bean

ainer
storage.
sistent

ption
to the

ze the

Con-
leted.

n com-

bean
vider

ns in
9.1.10 Commit options

The Entity Bean protocol is designed to give the Container the flexibility to select the disposition o
instance state at transaction commit time. This flexibility allows the Container to optimally manag
caching of entity object’s state and the association of an entity object identity with the enterprise
instances.

The Container can select from the following commit-time options:

• Option A : The Container caches a “ready” instance between transactions. The Cont
ensures that the instance has exclusive access to the state of the object in the persistent
Therefore, the Container does not have to synchronize the instance’s state from the per
storage at the beginning of the next transaction.

• Option B: The Container caches a “ready” instance between transactions. In contrast to O
A, in this option the Container does not ensure that the instance has exclusive access
state of the object in the persistent storage. Therefore, the Container must synchroni
instance’s state from the persistent storage at the beginning of the next transaction.

• Option C: The Container does not cache a “ready” instance between transactions. The
tainer returns the instance to the pool of available instances after a transaction has comp

The following table provides a summary of the commit-time options.

Note that the container synchronizes the instance’s state with the persistent storage at transactio
mit for all three options.

The selection of the commit option is transparent to the entity bean implementation—the entity
will work correctly regardless of the commit-time option chosen by the Container. The Bean Pro
writes the entity bean in the same way.

The object interaction diagrams in subsection 9.5.4 illustrate the three alternative commit optio
detail.

Table 5 Summary of commit-time options

Write instance state
to database

Instance stays
ready

Instance state
remains valid

Option A Yes Yes Yes

Option B Yes Yes No

Option C Yes No No
 11/24/99 118

Concepts Enterprise JavaBeans v1.1, Final Release Entity Bean Component Contract

Sun Microsystem Inc

oncur-
ensure
ctions.

chro-

which
tically
s meth-

ot have
.5.4

s an
could

eed to
r mul-

e con-
to this
9.1.11 Concurrent access from multiple transactions

When writing the entity bean business methods, the Bean Provider does not have to worry about c
rent access from multiple transactions. The Bean Provider may assume that the container will
appropriate synchronization for entity objects that are accessed concurrently from multiple transa

The container typically uses one of the following implementation strategies to achieve proper syn
nization. (These strategies are illustrative, not prescriptive.)

• The container activates multiple instances of the entity bean, one for each transaction in
the entity object is being accessed. The transaction synchronization is performed automa
by the underlying database during the database access calls performed by the busines
ods; and by theejbLoad , ejbCreate , ejbStore , andejbRemove methods. The data-
base system provides all the necessary transaction synchronization; the container does n
to perform any synchronization logic. The commit-time options B and C in Subsection 9
apply to this type of container.

Figure 24 Multiple clients can access the same entity object using multiple instances

With this strategy, the type of lock acquired by ejbLoad leads to a trade-off. If ejbLoad acquire
exclusive lock on the instance's state in the database, then throughput of read-only transactions
be impacted. If ejbLoad acquires a shared lock and the instance is updated, then ejbStore will n
promote the lock to an exclusive lock. This may cause a deadlock if it happens concurrently unde
tiple transactions.

• The container acquires exclusive access to the entity object’s state in the database. Th
tainer activates a single instance and serializes the access from multiple transactions
instance. The commit-time option A in Subsection 9.5.4 applies to this type of container.

Account 100
in TX 1

Account 100
in TX 2

Container

Client 1

Client 2

Account 100Entity object
Account 100

TX 1

TX 2

enterprise bean instances
119 11/24/99

Entity Bean Component Contract Enterprise JavaBeans v1.1, Final Release Concepts

Sun Microsystems Inc.

of a
request

the
ro-

t. An
ack
urrent

ethod

ject an
uting a
e bean,
ck call

e

er must
n gen-
reful
Figure 25 Multiple clients can access the same entity object using single instance

9.1.12 Non-reentrant and re-entrant instances

An entity Bean Provider entity can specify that an entity bean is non-reentrant. If an instance
non-reentrant entity bean executes a client request in a given transaction context, and another
with the same transaction context arrives for the same entity object, the container will throw
java.rmi.RemoteException to the second request. This rule allows the Bean Provider to p
gram the entity bean as single-threaded, non-reentrant code.

The functionality of some entity beans may require loopbacks in the same transaction contex
example of a loopback is when the client calls entity object A, A calls entity object B, and B calls b
A in the same transaction context. The entity bean’s method invoked by the loopback shares the c
execution context (which includes the transaction and security contexts) with the Bean’s m
invoked by the client.

If the entity bean is specified as non-reentrant in the deployment descriptor, the Container must re
attempt to re-enter the instance via the entity bean’s remote interface while the instance is exec
business method. (This can happen, for example, if the instance has invoked another enterpris
and the other enterprise bean tries to make a loopback call.) The container must reject the loopba
and throw thejava.rmi.RemoteException to the caller. The container must allow the call if th
Bean’s deployment descriptor specifies that the entity bean is re-entrant.

Re-entrant entity beans must be programmed and used with great caution. First, the Bean Provid
code the entity bean with the anticipation of a loopback call. Second, since the container cannot, i
eral, tell a loopback from a concurrent call from a different client, the client programmer must be ca
to avoid code that could lead to a concurrent call in the same transaction context.

Account 100
in TX 1

Container

Client 1

Client 2

Account 100

container blocks Client 2
until Client 1 finishes

Entity object
Account 100

TX 1

TX 2

enterprise bean instance
 11/24/99 120

Responsibilities of the Enterprise Bean ProviderEnterprise JavaBeans v1.1, Final Release Entity Bean Component Contract

Sun Microsystem Inc

d may
al con-
backs.
criptor,

an can

he dif-
Concurrent calls in the same transaction context targeted at the same entity object are illegal an
lead to unpredictable results. Since the container cannot, in general, distinguish between an illeg
current call and a legal loopback, application programmers are encouraged to avoid using loop
Entity beans that do not need callbacks should be marked as non-reentrant in the deployment des
allowing the container to detect and prevent illegal concurrent calls from clients.

9.2 Responsibilities of the Enterprise Bean Provider

This section describes the responsibilities of an entity Bean Provider to ensure that the entity be
be deployed in any EJB Container.

The requirements are stated for the provider of an entity bean with bean-managed persistence. T
ferences for entities with container-managed persistence are defined in Section 9.4.

9.2.1 Classes and interfaces

The entity Bean Provider is responsible for providing the following class files:

• Entity bean class and any dependent classes.

• Entity bean’s remote interface

• Entity bean’s home interface

• Primary key class

9.2.2 Enterprise bean class

The following are the requirements for an entity bean class:

The class must implement, directly or indirectly, thejavax.ejb.EntityBean interface.

The class must be defined aspublic and must not beabstract .

The class must not be defined asfinal .

The class must define a public constructor that takes no arguments.

The class must not define thefinalize() method.
121 11/24/99

Entity Bean Component Contract Enterprise JavaBeans v1.1, Final Release Responsibilities of the Enterprise Bean Pro-

Sun Microsystems Inc.

ethods
on

bstract.

rclasses,
e
y of

voked

l-

the

com-
ption
The class may, but is not required to, implement the entity bean’s remote interface[9]. If the class imple-
ments the entity bean’s remote interface, the class must provide no-op implementations of the m
defined in thejavax.ejb.EJBObject interface. The container will never invoke these methods
the bean instances at runtime.

A no-op implementation of these methods is required to avoid defining the entity bean class as a

The entity bean class must implement the business methods, and theejbCreate, ejbPostCre-
ate, andejbFind<METHOD> methods as described later in this section.

The entity bean class may have superclasses and/or superinterfaces. If the entity bean has supe
the business methods, theejbCreate and ejbPostCreate methods, the finder methods, and th
methods of theEntityBean interface may be implemented in the enterprise bean class or in an
its superclasses.

The entity bean class is allowed to implement other methods (for example helper methods in
internally by the business methods) in addition to the methods required by the EJB specification.

9.2.3 ejbCreate methods

The entity bean class may define zero or moreejbCreate(...) methods whose signatures must fo
low these rules:

The method name must beejbCreate .

The method must be declared aspublic .

The method must not be declared asfinal or static .

The return type must be the entity bean’s primary key type.

The method argument and return value types must be legal types for RMI-IIOP.

The throws clause may define arbitrary application specific exceptions, including
javax.ejb.CreateException .

Compatibility Note: EJB 1.0 allowed the ejbCreate method to throw thejava.rmi.RemoteExcep-
tion to indicate a non-application exception. This practice is deprecated in EJB 1.1—an EJB 1.1
pliant enterprise bean should throw the javax.ejb.EJBException or another java.lang.RuntimeExce
to indicate non-application exceptions to the Container (see Section 12.2.2).

[9] If the entity bean class does implement the remote interface, care must be taken to avoid passing ofthis as a method argument
or result. This potential error can be avoided by choosing not to implement the remote interface in the entity bean class.
 11/24/99 122

Responsibilities of the Enterprise Bean ProviderEnterprise JavaBeans v1.1, Final Release Entity Bean Component Contract

Sun Microsystem Inc

at
the

of a
The entity object created by theejbCreate method must have a unique primary key. This means th
the primary key must be different from the primary keys of all the existing entity objects within
same home. TheejbCreate method should throw theDuplicateKeyException on an attempt
to create an entity object with a duplicate primary key. However, it is legal to reuse the primary key
previously removed entity object.
123 11/24/99

Entity Bean Component Contract Enterprise JavaBeans v1.1, Final Release Responsibilities of the Enterprise Bean Pro-

Sun Microsystems Inc.

the

1.1
eEx-

mary

the

t

9.2.4 ejbPostCreate methods

For eachejbCreate(...) method, the entity bean class must define a matchingejbPostCre-
ate(...) method, using the following rules:

The method name must beejbPostCreate .

The method must be declared aspublic .

The method must not be declared asfinal or static .

The return type must bevoid .

The method arguments must be the same as the arguments of the matchingejbCreate(...)
method.

The throws clause may define arbitrary application specific exceptions, including
javax.ejb.CreateException .

Compatibility Note: EJB 1.0 allowed the ejbPostCreate method to throw thejava.rmi.RemoteEx-
ception to indicate a non-application exception. This practice is deprecated in EJB 1.1—an EJB
compliant enterprise bean should throw the javax.ejb.EJBException or another java.lang.Runtim
ception to indicate non-application exceptions to the Container (see Section 12.2.2).

9.2.5 ejbFind methods

The entity bean class may also define additionalejbFind<METHOD>(...) finder methods.

The signatures of the finder methods must follow the following rules:

A finder method name must start with the prefix “ejbFind” (e.g. ejbFindByPrimaryKey ,
ejbFindLargeAccounts , ejbFindLateShipments).

A finder method must be declared aspublic .

The method must not be declared asfinal or static .

The method argument types must be legal types for RMI-IIOP.

The return type of a finder method must be the entity bean’s primary key type, or a collection of pri
keys (seeSection Subsection 9.1.8).

The throws clause may define arbitrary application specific exceptions, including
javax.ejb.FinderException .

Every entity bean must define theejbFindByPrimaryKey method. The result type for this method
must be the primary key type (i.e. theejbFindByPrimaryKey method must be a single-objec
finder).
 11/24/99 124

Responsibilities of the Enterprise Bean ProviderEnterprise JavaBeans v1.1, Final Release Entity Bean Component Contract

Sun Microsystem Inc

com-
ption

these

back

com-
ption

their
must

to the

bean’s

Bean
Compatibility Note: EJB 1.0 allowed the finder methods to throw thejava.rmi.RemoteExcep-
tion to indicate a non-application exception. This practice is deprecated in EJB 1.1—an EJB 1.1
pliant enterprise bean should throw the javax.ejb.EJBException or another java.lang.RuntimeExce
to indicate non-application exceptions to the Container (see Section 12.2.2).

9.2.6 Business methods

The entity bean class may define zero or more business methods whose signatures must follow
rules:

The method names can be arbitrary, but they must not start with ‘ejb’ to avoid conflicts with the call
methods used by the EJB architecture.

The business method must be declared aspublic .

The method must not be declared asfinal or static .

The method argument and return value types must be legal types for RMI-IIOP.

The throws clause may define arbitrary application specific exceptions.

Compatibility Note: EJB 1.0 allowed the business methods to throw thejava.rmi.RemoteExcep-
tion to indicate a non-application exception. This practice is deprecated in EJB 1.1—an EJB 1.1
pliant enterprise bean should throw the javax.ejb.EJBException or another java.lang.RuntimeExce
to indicate non-application exceptions to the Container (see Section 12.2.2).

9.2.7 Entity bean’s remote interface

The following are the requirements for the entity bean’s remote interface:

The interface must extend thejavax.ejb.EJBObject interface.

The methods defined in the remote interface must follow the rules for RMI-IIOP. This means that
argument and return value types must be valid types for RMI-IIOP, and their throws clauses
include thejava.rmi.RemoteException .

The remote interface is allowed to have superinterfaces. Use of interface inheritance is subject
RMI-IIOP rules for the definition of remote interfaces.

For each method defined in the remote interface, there must be a matching method in the entity
class. The matching method must have:

• The same name.

• The same number and types of its arguments, and the same return type.

• All the exceptions defined in the throws clause of the matching method of the enterprise
class must be defined in the throws clause of the method of the remote interface.
125 11/24/99

Entity Bean Component Contract Enterprise JavaBeans v1.1, Final Release Responsibilities of the Enterprise Bean Pro-

Sun Microsystems Inc.

rgu-
e the

to the

r

d

r a

e

9.2.8 Entity bean’s home interface

The following are the requirements for the entity bean’s home interface:

The interface must extend thejavax.ejb.EJBHome interface.

The methods defined in this interface must follow the rules for RMI-IIOP. This means that their a
ment and return types must be of valid types for RMI-IIOP, and that their throws clause must includ
java.rmi.RemoteException .

The home interface is allowed to have superinterfaces. Use of interface inheritance is subject
RMI-IIOP rules for the definition of remote interfaces.

Each method defined in the home interface must be one of the following:

• A create method.

• A finder method.

Eachcreate method must be named “create”, and it must match one of theejbCreate methods
defined in the enterprise Bean class. The matchingejbCreate method must have the same numbe
and types of its arguments. (Note that the return type is different.)

The return type for acreate method must be the entity bean’s remote interface type.

All the exceptions defined in the throws clause of the matchingejbCreate andejbPostCreate
methods of the enterprise Bean class must be included in the throws clause of the matchingcreate
method of the home interface (i.e the set of exceptions defined for thecreate method must be a super-
set of the union of exceptions defined for theejbCreate andejbPostCreate methods)

The throws clause of acreate method must include thejavax.ejb.CreateException .

Each finder method must be named “find <METHOD>” (e.g. findLargeAccounts), and it
must match one of theejbFind<METHOD> methods defined in the entity bean class (e.g.ejbFind-
LargeAccounts). The matchingejbFind<METHOD> method must have the same number an
types of arguments. (Note that the return type may be different.)

The return type for afind<METHOD> method must be the entity bean’s remote interface type (fo
single-object finder), or a collection thereof (for a multi-object finder).

The home interface must always include thefindByPrimaryKey method, which is always a sin-
gle-object finder. The method must declare the primary key class as the method argument.

All the exceptions defined in the throws clause of anejbFind method of the entity bean class must b
included in the throws clause of the matchingfind method of the home interface.

The throws clause of afinder method must include thejavax.ejb.FinderException .
 11/24/99 126

The responsibilities of the Container Provider Enterprise JavaBeans v1.1, Final Release Entity Bean Component Contract

Sun Microsystem Inc

Con-
bean

iner, we
yment

addi-
r gen-

y Bean

.

s).

e entity
at runt-

ds and
ple, a
ot
t.
9.2.9 Entity bean’s primary key class

The Bean Provider must specify a primary key class in the deployment descriptor.

The primary key type must be a legal Value Type in RMI-IIOP.

The class must provide suitable implementation of thehashCode() and equals(Object
other) methods to simplify the management of the primary keys by client code.

9.3 The responsibilities of the Container Provider

This section describes the responsibilities of the Container Provider to support entity beans. The
tainer Provider is responsible for providing the deployment tools, and for managing entity
instances at runtime.

Because the EJB specification does not define the API between deployment tools and the conta
assume that the deployment tools are provided by the container provider. Alternatively, the deplo
tools may be provided by a different vendor who uses the container vendor’s specific API.

9.3.1 Generation of implementation classes

The deployment tools provided by the container provider are responsible for the generation of
tional classes when the entity bean is deployed. The tools obtain the information that they need fo
eration of the additional classes by introspecting the classes and interfaces provided by the entit
Provider and by examining the entity bean’s deployment descriptor.

The deployment tools must generate the following classes:

• A class that implements the entity bean’s home interface (i.e. the entity EJBHome class)

• A class that implements the entity bean’s remote interface (i.e. the entity EJBObject clas

The deployment tools may also generate a class that mixes some container-specific code with th
bean class. The code may, for example, help the container to manage the entity bean instances
ime. Tools can use subclassing, delegation, and code generation.

The deployment tools may also allow generation of additional code that wraps the business metho
that is used to customize the business logic for an existing operational environment. For exam
wrapper for adebit function on theAccount Bean may check that the debited amount does n
exceed a certain limit, or perform security checking that is specific to the operational environmen
127 11/24/99

Entity Bean Component Contract Enterprise JavaBeans v1.1, Final Release The responsibilities of the Container Provider

Sun Microsystems Inc.

home

ean’s

ady in

handle

le class

e han-
9.3.2 Entity EJBHome class

The entity EJBHome class, which is generated by deployment tools, implements the entity bean’s
interface. This class implements the methods of thejavax.ejb.EJBHome interface, and the
type-specificcreate andfinder methods specific to the entity bean.

The implementation of eachcreate(...) method invokes a matchingejbCreate(...) method,
followed by the matchingejbPostCreate(...) method, passing thecreate(...) parameters
to these matching methods.

The implementation of theremove(...) methods defined in thejavax.ejb.EJBHome interface
must activate an instance (if an instance is not already in the ready state) and invoke theejbRemove
method on the instance.

The implementation of each find<METHOD>(...) method invokes a matching
ejbFind<METHOD>(...) method. The implementation of thefind<METHOD>(...) method
must create an entity object reference for the primary key returned from theejbFind<METHOD> and
return the entity object reference to the client. If theejbFind<METHOD> method returns a collection
of primary keys, the implementation of thefind<METHOD>(...) method must create a collection
of entity object references for the primary keys and return the collection to the client.

9.3.3 Entity EJBObject class

The entity EJBObject class, which is generated by deployment tools, implements the entity b
remote interface. It implements the methods of thejavax.ejb.EJBObject interface and the busi-
ness methods specific to the entity bean.

The implementation of theremove(...) method (defined in thejavax.ejb.EJBObject inter-
face) must activate an instance (if an instance is not already in the ready state) and invoke theejbRe-
move method on the instance.

The implementation of each business method must activate an instance (if an instance is not alre
the ready state) and invoke the matching business method on the instance.

9.3.4 Handle class

The deployment tools are responsible for implementing the handle class for the entity bean. The
class must be serializable by the Java programming language Serialization protocol.

As the handle class is not entity bean specific, the container may, but is not required to, use a sing
for all deployed entity beans.

9.3.5 Home Handle class

The deployment tools responsible for implementing the home handle class for the entity bean. Th
dle class must be serializable by the Java programming language Serialization protocol.
 11/24/99 128

Entity beans with container-managed persistenceEnterprise JavaBeans v1.1, Final Release Entity Bean Component Contract

Sun Microsystem Inc

o, use a

tion to
t the

, use a

ption

h that
r a long
sh and
ed, or
a dif-

lient
ethod
ct ref-

persis-
tract for
the dif-

ed per-
Because the home handle class is not entity bean specific, the container may, but is not required t
single class for the home handles of all deployed entity beans.

9.3.6 Meta-data class

The deployment tools are responsible for implementing the class that provides meta-data informa
the client view contract. The class must be a valid RMI-IIOP Value Type, and must implemen
javax.ejb.EJBMetaData interface.

Because the meta-data class is not entity bean specific, the container may, but is not required to
single class for all deployed enterprise beans.

9.3.7 Instance’s re-entrance

The container runtime must enforce the rules defined in Section 9.1.12.

9.3.8 Transaction scoping, security, exceptions

The container runtime must follow the rules on transaction scoping, security checking, and exce
handling described in Chapters 11, 15, and 12.

9.3.9 Implementation of object references

The container should implement the distribution protocol between the client and the container suc
the object references of the home and remote interfaces used by entity bean clients are usable fo
period of time. Ideally, a client should be able to use an object reference across a server cra
restart. An object reference should become invalid only when the entity object has been remov
after a reconfiguration of the server environment (for example, when the entity bean is moved to
ferent EJB server or container).

The motivation for this is to simplify the programming model for the entity bean client. While the c
code needs to have a recovery handler for the system exceptions thrown from the individual m
invocations on the home and remote interface, the client should not be forced to re-obtain the obje
erences.

9.4 Entity beans with container-managed persistence

The previous sections described the component contract for entity beans with bean-managed
tence. The contract for an entity bean with container-managed persistence is the same as the con
an entity bean with bean-managed persistence (as described in the previous sections), except for
ferences described in this section.

The deployment descriptor for an entity bean indicates whether the entity bean uses bean-manag
sistence or container-managed persistence.
129 11/24/99

Entity Bean Component Contract Enterprise JavaBeans v1.1, Final Release Entity beans with container-managed persis-

Sun Microsystems Inc.

nerate
transfer

e times
al, and

access

o
s must

nd the

le for

er.

he con-
itive

beans’

ializa-
fferent
ation.
te and

r the
Java
gram-
tabase,

ds, he
con-

by the
pically
s, pos-

of the
r may
9.4.1 Container-managed fields

An entity bean with container-managed persistence relies on the Container Provider’s tools to ge
methods that perform data access on behalf of the entity bean instances. The generated methods
data between the entity bean instance’s variables and the underlying resource manager at th
defined by the EJB specification. The generated methods also implement the creation, remov
lookup of the entity object in the underlying database.

An entity bean with container-manager persistence must not code explicit data access—all data
must be deferred to the Container.

The Bean Provider is responsible for using thecmp-field elements of the deployment descriptor t
declare the instance’s fields that the Container must load and store at the defined times. The field
be defined in the entity bean class aspublic , and must not be defined astransient .

The container is responsible for transferring data between the entity bean’s instance variables a
underlying data source before or after the execution of theejbCreate , ejbRemove , ejbLoad , and
ejbStore methods, as described in the following subsections. The container is also responsib
the implementation of the finder methods.

The following requirements ensure that an entity bean can be deployed in any compliant contain

• The Bean Provider must ensure that the Java programming language types assigned to t
tainer-managed fields are restricted to the following: Java programming language prim
types, Java programming language serializable types, and references of enterprise
remote or home interfaces.

• The Container Provider may, but is not required to, use Java programming language Ser
tion to store the container-managed fields in the database. If the container chooses a di
approach, the effect should be equivalent to that of Java programming language Serializ
The Container must also be capable of persisting references to enterprise beans’ remo
home interfaces (for example, by storing their handle or primary key).

Although the above requirements allow the Bean Provider to specify almost any arbitrary type fo
container-managed fields, we expect that in practice the Bean Provider will use relatively simple
programming language types, and that most Containers will be able to map these simple Java pro
ming language types to columns in a database schema to externalize the entity state in the da
rather than use Java programming language serialization.

If the Bean Provider expects that the container-managed fields will be mapped to database fiel
should provide mapping instructions to the Deployer. The mapping between the instance’s
tainer-managed fields and the schema of the underlying database manager will be then realized
data access classes generated by the container provider’s tools. Because entity beans are ty
coarse-grained objects, the content of the container-managed fields may be stored in multiple row
sibly spread across multiple database tables. These mapping techniques are beyond the scope
EJB specification, and do not have to be supported by an EJB compliant container. (The containe
simply use the Java serialization protocol in all cases).
 11/24/99 130

Entity beans with container-managed persistenceEnterprise JavaBeans v1.1, Final Release Entity Bean Component Contract

Sun Microsystem Inc

con-
lar map-

owing

same
e data
f the
le to
item.)

con-
i-
rts of

ld use

inserts
r-

nguage

e data-

en-

tence
r over-
ss and
Because a compliant EJB Container is not required to provide any support for mapping the
tainer-managed fields to a database schema, a Bean Provider of entity beans that need a particu
ping to an underlying database schema instead should use bean-managed persistence.

The provider of entity beans with container-managed persistence must take into account the foll
limitations of the container-managed persistence protocol:

• Data aliasing problems. If container-managed fields of multiple entity beans map to the
data item in the underlying database, the entity beans may see an inconsistent view of th
item if the multiple entity beans are invoked in the same transaction. (That is, an update o
data item done through a container-managed field of one entity bean may not be visib
another entity bean in the same transaction if the other entity bean maps to the same data

• Eager loading of state. The Container loads the entire entity object state into the
tainer-managed fields before invoking theejbLoad method. This approach may not be opt
mal for entity objects with large state if most business methods require access to only pa
the state.

An entity bean designer who runs into the limitations of the container-managed persistence shou
bean-managed persistence instead.

9.4.2 ejbCreate, ejbPostCreate

With bean-managed persistence, the entity Bean Provider is responsible for writing the code that
a record into the database in theejbCreate(...) methods. However, with container-managed pe
sistence, the container performs the database insert after theejbCreate(...) method completes.

The Container must ensure that the values of the container-managed fields are set to the Java la
defaults (e.g. 0 for integer,null for pointers) prior to invoking anejbCreate(...) method on an
instance.

The entity Bean Provider’s responsibility is to initialize the container-managed fields in theejbCre-
ate(...) methods from the input arguments such that when anejbCreate(...) method returns,
the container can extract the container-managed fields from the instance and insert them into th
base.

TheejbCreate(...) methods must be defined to return the primary key class type. The implem
tation of theejbCreate(...) methods should be coded to return anull . The returned value is
ignored by the Container.

Note: The above requirement is to allow the creation of an entity bean with bean-managed persis
by subclassing an entity bean with container-managed persistence. The Java language rules fo
riding methods in subclasses requires the signatures of the ejbCreate(...) methods in the subcla
the superclass be the same.
131 11/24/99

Entity Bean Component Contract Enterprise JavaBeans v1.1, Final Release Entity beans with container-managed persis-

Sun Microsystems Inc.

base,
e, and
must

e

ed
te

ne

base.

text
n

object’s
e con-

s from
e
were
The container is responsible for creating the entity object’s representation in the underlying data
extracting the primary key fields of the newly created entity object representation in the databas
for creating an entity EJBObject reference for the newly created entity object. The Container
establish the primary key before it invokes theejbPostCreate(...) method. The container may
create the representation of the entity in the database immediately afterejbCreate(...) returns, or
it can defer it to a later time (for example to the time after the matchingejbPostCreate(...) has
been called, or to the end of the transaction).

Then container invokes the matchingejbPostCreate(...) method on the instance. The instanc
can discover the primary key by callinggetPrimaryKey() on its entity context object.

The container must invokeejbCreate , perform the database insert operation, and invokeejbPost-
Create in the transaction context determined by the transaction attribute of the matchingcre-
ate(...) method, as described in subsection 11.6.2.

The Container throws theDuplicateKeyException if the newly created entity object would have
the same primary key as one of the existing entity objects within the same home.

9.4.3 ejbRemove

The container invokes theejbRemove() method on an entity bean instance with container-manag
persistence in response to a client-invokedremove operation on the entity bean’s home or remo
interface.

The entity Bean Provider can use theejbRemove method to implement any actions that must be do
before the entity object’s representation is removed from the database.

The container synchronizes the instance’s state before it invokes theejbRemove method. This means
that the state of the instance variables at the beginning of theejbRemove method is the same as it
would be at the beginning of a business method.

After ejbRemove returns, the container removes the entity object’s representation from the data

The container must performejbRemove and the database delete operation in the transaction con
determined by the transaction attribute of the invokedremove method, as described in subsectio
11.6.2.

9.4.4 ejbLoad

When the container needs to synchronize the state of an enterprise bean instance with the entity
state in the database, the container reads the entity object’s state from the database into th
tainer-managed fields and then it invokes theejbLoad() method on the instance.

The entity Bean Provider can rely on the container’s having loaded the container-managed field
the database just before the container invokes theejbLoad() method. The entity bean can use th
ejbLoad() method, for instance, to perform some computation on the values of the fields that
read by the container (for example, uncompressing text fields).
 11/24/99 132

Entity beans with container-managed persistenceEnterprise JavaBeans v1.1, Final Release Entity Bean Component Contract

Sun Microsystem Inc

tate of

-

vider’s
ts the

hods

ools
for

d-
ate the
Enter-

for an
ion to

ersis-

ient for
d in a
9.4.5 ejbStore

When the container needs to synchronize the state of the entity object in the database with the s
the enterprise bean instance, the container first calls theejbStore() method on the instance, and
then it extracts the container-managed fields and writes them to the database.

The entity Bean Provider should use theejbStore() method to set up the values of the con
tainer-managed fields just before the container writes them to the database. For example, theejb-
Store() method may perform compression of text before the text is stored in the database.

9.4.6 finder methods

The entity Bean Provider does not write the finder (ejbFind<METHOD>(...)) methods.

The finder methods are generated at the entity bean deployment time using the container pro
tools. The tools can, for example, create a subclass of the entity bean class that implemen
ejbFind<METHOD>() methods, or the tools can generate the implementation of the finder met
directly in the class that implements the entity bean’s home interface.

Note that theejbFind<METHOD> names and parameter signatures do not provide the container t
with sufficient information for automatically generating the implementation of the finder methods
methods other thanejbFindByPrimaryKey . Therefore, the bean provider is responsible for provi
ing a description of each finder method. The entity bean Deployer uses container tools to gener
implementation of the finder methods based in the description supplied by the bean provider. The
prise JavaBeans architecture does not specify the format of the finder method description.

9.4.7 primary k ey type

The container must be able to manipulate the primary key type. Therefore, the primary key type
entity bean with container-managed persistence must follow the rules in this subsection, in addit
those specified in Subsection 9.2.9.

There are two ways to specify a primary key class for an entity bean with container-managed p
tence:

• Primary key that maps to a single field in the entity bean class.

• Primary key that maps to multiple fields in the entity bean class.

The second method is necessary for implementing compound keys, and the first method is conven
single-field keys. Without the first method, simple types such as String would have to be wrappe
user-defined class.
133 11/24/99

Entity Bean Component Contract Enterprise JavaBeans v1.1, Final Release Entity beans with container-managed persis-

Sun Microsystems Inc.

e
ust be

anaged
aged

for an
an does
imary
pri-
ry key

bclass
beans
erlying

ent

velops
when

ram-
neral,

e meth-
cause
9.4.7.1 Primary key that maps to a single field in the entity bean class

The Bean Provider uses theprimkey-field element of the deployment descriptor to specify th
container-managed field of the entity bean class that contains the primary key. The field’s type m
the primary key type.

9.4.7.2 Primary key that maps to multiple fields in the entity bean class

The primary key class must bepublic , and must have apublic constructor with no parameters.

All fields in the primary key class must be declared as public.

The names of the fields in the primary key class must be a subset of the names of the container-m
fields. (This allows the container to extract the primary key fields from an instance’s container-man
fields, and vice versa.)

9.4.7.3 Special case: Unknown primary key class

In special situations, the entity Bean Provider may choose not to specify the primary key class
entity bean with container-managed persistence. This case usually happens when the entity be
not have a natural primary key, and the Bean Provider wants to allow the Deployer to select the pr
key fields at deployment time. The entity bean’s primary key type will usually be derived from the
mary key type used by the underlying database system that stores the entity objects. The prima
used by the database system may not be known to the Bean Provider.

When defining the primary key for the enterprise bean, the Deployer may sometimes need to su
the entity bean class to add additional container-managed fields (this typically happens for entity
that do not have a natural primary key, and the primary keys are system-generated by the und
database system that stores the entity objects).

In this special case, the type of the argument of thefindByPrimaryKey method must be declared as
java.lang.Object , and the return value ofejbCreate() must be declared as
java.lang.Object. The Bean Provider must specify the primary key class in the deploym
descriptor as of the typejava.lang.Object.

The primary key class is specified at deployment time in the situations when the Bean Provider de
an entity bean that is intended to be used with multiple back-ends that provide persistence, and
these multiple back-ends require different primary key structures.

Use of entity beans with a deferred primary key type specification limits the client application prog
ming model, because the clients written prior to deployment of the entity bean may not use, in ge
the methods that rely on the knowledge of the primary key type.

The implementation of the enterprise bean class methods must be done carefully. For example, th
ods should not depend on the type of the object returned from EntityContext.getPrimaryKey(), be
the return type is determined by the Deployer after the EJB class has been written.
 11/24/99 134

Object interaction diagrams Enterprise JavaBeans v1.1, Final Release Entity Bean Component Contract

Sun Microsystem Inc

bean

es are
te with
ication

than as
9.5 Object interaction diagrams

This section uses object interaction diagrams to illustrate the interactions between an entity
instance and its container.

9.5.1 Notes

The object interaction diagrams illustrate a box labeled “container-provided classes.” These class
either part of the container or are generated by the container tools. These classes communica
each other through protocols that are container implementation specific. Therefore, the commun
between these classes is not shown in the diagrams.

The classes shown in the diagrams should be considered as an illustrative implementation rather
a prescriptive one
135 11/24/99

Entity Bean Component Contract Enterprise JavaBeans v1.1, Final Release Object interaction diagrams

Sun Microsystems Inc.
9.5.2 Creating an entity object

Figure 26 OID of Creation of an entity object with bean-managed persistence

client instance transactiondatabase

javax.transaction.UserTransaction.begin()

service
EJB

registerSynchronization(synchronization)

ejbCreate(args)

entity
context

EJB
Object

create(args)

container-provided classes

create representation in DB

new

business method
business method

synchro-
nization

new

Home

ejbPostCreate(args)

container

register resource manager
 11/24/99 136

Object interaction diagrams Enterprise JavaBeans v1.1, Final Release Entity Bean Component Contract

Sun Microsystem Inc
Figure 27 OID of creation of an entity object with container-managed persistence

client instance transactiondatabase

javax.transaction.UserTransaction.begin()

service
EJB

registerSynchronization(synchronization)

instance
context

EJB
Object

create(args)

container-provided classes

extract container-managed field

business method
business method

synchro-
nization

new

ejbCreate(args)

new

Home

ejbPostCreate(args)

container

register resource manager

create entity representation in DB
137 11/24/99

Entity Bean Component Contract Enterprise JavaBeans v1.1, Final Release Object interaction diagrams

Sun Microsystems Inc.
9.5.3 Passivating and activating an instance in a transaction

Figure 28 OID of passivation and reactivation of an entity bean instance with bean-managed persistence

business method
ejbActivate()

ejbStore()

write state to DB

ejbPassivate()

business method

ejbLoad()

read state from DB

business method
business method

business method
business method

client instance transactiondatabase
service

EJB instance
context

containerEJB
Object

container-provided classes

synchro-
nizationHome
 11/24/99 138

Object interaction diagrams Enterprise JavaBeans v1.1, Final Release Entity Bean Component Contract

Sun Microsystem Inc
Figure 29 OID of passivation and reactivation of an entity bean instance with CMP

business method
ejbActivate()

ejbStore()

extract container-managed fields

ejbPassivate()

business method

ejbLoad()

read entity state from DB

business method
business method

business method
business method

client instance transactiondatabase
service

EJB instance
context

containerEJB
Object

container-provided classes

synchro-
nizationHome

update entity state in DB

set container-managed fields
139 11/24/99

Entity Bean Component Contract Enterprise JavaBeans v1.1, Final Release Object interaction diagrams

Sun Microsystems Inc.
9.5.4 Committing a transaction

Figure 30 OID of transaction commit protocol for an entity bean instance with bean-managed persistence

ejbStore()

write state to DB

client instance transactiondatabase
service

EJB instance
context

containerEJB
Object

container-provided classes

synchro-
nization

javax.transaction.UserTransaction.commit()

beforeCompletion()

prepare

commit

afterCompletion(status)

ejbPassivate()Option C:

Option A: mark “not registered”

Option B: mark “invalid state”

Home
 11/24/99 140

Object interaction diagrams Enterprise JavaBeans v1.1, Final Release Entity Bean Component Contract

Sun Microsystem Inc

ce
Figure 31 OID of transaction commit protocol for an entity bean instance with container-managed persisten

ejbStore()

extract container-managed fields

client instance transactiondatabase
service

EJB entity
context

EJB
Object

container-provided classes

synchro-
nization

javax.transaction.UserTransaction.commit()

beforeCompletion()

prepare

commit

afterCompletion(status)

ejbPassivate()Option C:

Option A: mark “not registered”

Option B: mark “invalid state”

Home
container

update entity state in DB
141 11/24/99

Entity Bean Component Contract Enterprise JavaBeans v1.1, Final Release Object interaction diagrams

Sun Microsystems Inc.

aged
corre-
9.5.5 Starting the next transaction

The following diagram illustrates the protocol performed for an entity bean instance with bean-man
persistence at the beginning of a new transaction. The three options illustrated in the diagram
spond to the three commit options in the previous subsection.
 11/24/99 142

Object interaction diagrams Enterprise JavaBeans v1.1, Final Release Entity Bean Component Contract

Sun Microsystem Inc
Figure 32 OID of start of transaction for an entity bean instance with bean-managed persistence

business method

business method

read state from DB

client instance transactiondatabase
service

EJB instance
context

EJB
Object

container-provided classes

synchro-
nization

javax.transaction.UserTransaction.begin()

ejbActivate()Option C:

Option A: do nothing

Option B: ejbLoad()

read state from DB
ejbLoad()

registerSynchronization(synchronization)

new

business method
business method

Home
container

register resource manager

register resource manager
143 11/24/99

Entity Bean Component Contract Enterprise JavaBeans v1.1, Final Release Object interaction diagrams

Sun Microsystems Inc.
Figure 33 OID of start of transaction for an entity bean instance with container-managed persistence

business method

business method

read state from DB

client instance transactiondatabase
service

EJB entity
context

EJB
Object

container-provided classes

synchro-
nization

javax.transaction.UserTransaction.begin()

ejbActivate()Option C:

Option A:
do nothing

Option B:

ejbLoad()

registerSynchronization(synchronization)

new

business method
business method

ejbLoad()

read entity state from DB

Home
container

register resource manager

register resource manager

set container managed fields

set container managed fields
 11/24/99 144

Object interaction diagrams Enterprise JavaBeans v1.1, Final Release Entity Bean Component Contract

Sun Microsystem Inc
9.5.6 Removing an entity object

Figure 34 OID of removal of an entity bean object with bean-managed persistence

Figure 35 OID of removal of an entity bean object with container-managed persistence

client instance transactiondatabase
service

remove()

EJB entity
context

EJB
Object

container-provided classes

synchro-
nization

remove representation
in DB

ejbRemove()

Home
container

client instance transactiondatabase
service

remove()

EJB entity
context

EJB
Object

container-provided classes

synchro-
nization

remove representation in DB

ejbRemove()

Home
container
145 11/24/99

Entity Bean Component Contract Enterprise JavaBeans v1.1, Final Release Object interaction diagrams

Sun Microsystems Inc.
9.5.7 Finding an entity object

Figure 36 OID of execution of a finder method on an entity bean instance with bean-managed persistence

client instance transactiondatabase
service

EJB

ejbFind<METHOD>(args)

entity
context

EJB
Object

find<METHOD>(args)

container-provided classes

search DB

synchro-
nizationHome

new

container
 11/24/99 146

Object interaction diagrams Enterprise JavaBeans v1.1, Final Release Entity Bean Component Contract

Sun Microsystem Inc

nce

oes not
Figure 37 OID of execution of a finder method on an entity bean instance with container-managed persiste

9.5.8 Adding and removing an instance from the pool

The diagrams in Subsections 9.5.2 through 9.5.7 did not show the sequences between the “d
exist” and “pooled” state (see the diagram in Section 9.1.4).

client instance transactiondatabase
service

EJB

search DB

entity
context

EJB
Object

find<METHOD>(args)

container-provided classes

synchro-
nizationHome

new

container
147 11/24/99

Entity Bean Component Contract Enterprise JavaBeans v1.1, Final Release Object interaction diagrams

Sun Microsystems Inc.
Figure 38 OID of a container adding an instance to the pool

Figure 39 OID of a container removing an instance from the pool

instance transactiondatabase
service

EJB entity
context

EJB
Object

container-provided classes

synchro-
nizationHome

container

new

new

setEntityContext(ec)

instance transactiondatabase
service

EJB entity
context

EJB
Object

container-provided classes

synchro-
nizationHome

container

unsetEntityContext()
 11/24/99 148

Overview Enterprise JavaBeans v1.1, Final Release Example entity scenario

Sun Microsystem Inc

use the
vider.

ustra-
ntity
of the

ed
Chapter 10 Example entity scenario

This chapter describes an example development and deployment scenario for an entity bean. We
scenario to explain the responsibilities of the entity Bean Provider and those of the container pro

The classes generated by the container provider’s tools in this scenario should be considered ill
tive rather than prescriptive. Container providers are free to implement the contract between an e
bean and its container in a different way that achieves an equivalent effect (from the perspectives
entity Bean Provider and the client-side programmer).

10.1 Overview

Wombat Inc. has developed theAccountBean entity bean. The AccountBean entity bean is deploy
in a container provided by the Acme Corporation.
149 11/24/99

Example entity scenario Enterprise JavaBeans v1.1, Final Release Inheritance relationship

Sun Microsystems Inc.
10.2 Inheritance relationship

Figure 40 Example of the inheritance relationship between the interfaces and classes:

AcmeRemoteAccount

Account

AccountBean

AcmeRemote

EJBHome

AcmeHome

JDK

Enterprise
JavaBeans

enterprise Bean
provider

container
provider

produced by
Acme tools

java.rmi.Remote

EJBObject

(Wombat Inc.)

(Acme)

EnterpriseBean

Java interface Java class

java.io.Serializable

extends or implements interface

extends implementation, code generation, or delegation

AcmeAccountHome

AcmeBean

EntityBean

AcmeAccountBean

AccountHome

AcmeAccountMetaData

AcmeMetaData

EJBMetaData
 11/24/99 150

Inheritance relationship Enterprise JavaBeans v1.1, Final Release Example entity scenario

Sun Microsystem Inc

siness
inter-
ust

y, but
must
Post-

nders
ce).

s the
public,
ote

bean
yment

thods.

ethods.

man-
then

Data

bean’s
proto-
10.2.1 What the entity Bean Provider is responsible for

Wombat Inc. is responsible for providing the following:

• Define the entity bean’s remote interface (Account). The remote interface defines the bu
methods callable by a client. The remote interface must extend the javax.ejb.EJBObject
face, and follow the standard rules for a RMI-IIOP remote interface. The remote interface m
be defined as public.

• Write the business logic in the entity bean class (AccountBean). The entity bean class ma
is not required to, implement the entity bean’s remote interface (Account). The entity bean
implement the methods of the javax.ejb.EntityBean interface, the ejbCreate(...) and ejb
Create(...) methods invoked at an entity object creation, and the finder methods (the fi
should not have to be implemented if the entity bean uses container-managed persisten

• Define a home interface (AccountHome) for the entity bean. The home interface define
entity bean’s specific create and finder methods. The home interface must be defined as
extend the javax.ejb.EJBHome interface, and follow the standard rules for RMI-IIOP rem
interfaces.

• Define a deployment descriptor that specifies any declarative information that the entity
provider wishes to pass with the entity bean to the next stage of the development/deplo
workflow.

10.2.2 Classes supplied by Container Provider

The following classes are supplied by the container provider, Acme Corp:

• The AcmeHome class provides the Acme implementation of the javax.ejb.EJBHome me

• The AcmeRemote class provides the Acme implementation of the javax.ejb.EJBObject m

• The AcmeBean class provides additional state and methods to allow Acme’s container to
age its entity bean instances. For example, if Acme’s container uses an LRU algorithm,
AcmeBean may include the clock count and methods to use it.

• The AcmeMetaData class provides the Acme implementation of the javax.ejb.EJBMeta
methods.

10.2.3 What the container provider is responsible for

The tools provided by Acme Corporation are responsible for the following:

• Generate the entity EJBOBject class (AcmeRemoteAccount) that implements the entity
remote interface. The tools also generate the classes that implement the communication
col specific artifacts for the remote interface.
151 11/24/99

Example entity scenario Enterprise JavaBeans v1.1, Final Release Inheritance relationship

Sun Microsystems Inc.

eAc-
mixed
ation,

ments
s that

inter-

ented
s, and
• Generate the implementation of the entity bean class suitable for the Acme container (Acm
countBean). AcmeAccountBean includes the business logic from the AccountBean class
with the services defined in the AcmeBean class. Acme tools can use inheritance, deleg
and code generation to achieve mix-in of the two classes.

• Generate the entity EJBHome class (AcmeAccountHome) for the entity bean. that imple
the entity bean’s home interface (AccountHome). The tools also generate the classe
implement the communication protocol specific artifacts for the home interface.

• Generate a class (AcmeAccountMetaData) that implements the javax.ejb.EJBMetaData
face for the Account Bean.

The above classes and tools are container-specific (i.e., they reflect the way Acme Corp implem
them). Other container providers may use different mechanisms to produce their runtime classe
the generated classes most likely will be different from those generated by Acme’s tools.
 11/24/99 152

Overview Enterprise JavaBeans v1.1, Final Release Support for Transactions

Sun Microsystem Inc

ctions.
n that
e sites

narios

the
pro-
ion’s
fully
ram-
Chapter 11 Support for Transactions

One of the key features of the Enterprise JavaBeans architecture is support for distributed transa
The Enterprise JavaBeans architecture allows an application developer to write an applicatio
atomically updates data in multiple databases which may be distributed across multiple sites. Th
may use EJB Servers from different vendors.

11.1 Overview

This section provides a brief overview of transactions and illustrates a number of transaction sce
in EJB.

11.1.1 Transactions

Transactions are a proven technique for simplifying application programming. Transactions free
application programmer from dealing with the complex issues of failure recovery and multi-user
gramming. If the application programmer uses transactions, the programmer divides the applicat
work into units called transactions. The transactional system ensures that a unit of work either
completes, or the work is fully rolled back. Furthermore, transactions make it possible for the prog
mer to design the application as if it ran in an environment that executes units of work serially.
153 11/24/99

Support for Transactions Enterprise JavaBeans v1.1, Final Release Overview

Sun Microsystems Inc.

e enter-
istrib-
arcation

ns using

instruc-
alled
rise
by the
f the

demarca-
ovider.
as the
context

ve any

n
a-
-

nager
grams,

ment
Support for transactions is an essential component of the Enterprise JavaBeans architecture. Th
prise Bean Provider and the client application programmer are not exposed to the complexity of d
uted transactions. The Bean Provider can choose between using programmatic transaction dem
in the enterprise bean code (this style is calledbean-managed transaction demarcation) or declarative
transaction demarcation performed automatically by the EJB Container (this style is calledcon-
tainer-managed transaction demarcation).

With bean-managed transaction demarcation, the enterprise bean code demarcates transactio
the javax.transaction.UserTransaction interface. All resource manager[10] accesses
between theUserTransaction.begin and UserTransaction.commit calls are part of a
transaction.

With container-managed transaction demarcation, the Container demarcates transactions per
tions provided by the Application Assembler in the deployment descriptor. These instructions, c
transaction attributes, tell the container whether it should include the work performed by an enterp
bean method in a client’s transaction, run the enterprise bean method in a new transaction started
Container, or run the method with “no transaction” (Refer to Subsection 11.6.3 for the description o
“no transaction” case).

Regardless whether an enterprise bean uses bean-managed or container-managed transaction
tion, the burden of implementing transaction management is on the EJB Container and Server Pr
The EJB Container and Server implement the necessary low-level transaction protocols, such
two-phase commit protocol between a transaction manager and a database system, transaction
propagation, and distributed two-phase commit.

11.1.2 Transaction model

The Enterprise JavaBeans architecture supports flat transactions. A flat transaction cannot ha
child (nested) transactions.

Note: The decision not to support nested transactions allows vendors of existing transactio
processing and database management systems to incorporate support for Enterprise Jav
Beans. If these vendors provide support for nested transactions in the future, Enterprise Java
Beans may be enhanced to take advantage of nested transactions.

11.1.3 Relationship to JTA and JTS
The Java™ Transaction API (JTA) [5] is a specification of the interfaces between a transaction ma
and the other parties involved in a distributed transaction processing system: the application pro
the resource managers, and the application server.

[10] The termsresourceandresource managerused in this chapter refer to the resources declared in the enterprise bean’s deploy
descriptor using theresource-ref element. These resources are considered to be “managed” by the Container.
 11/24/99 154

Sample scenarios Enterprise JavaBeans v1.1, Final Release Support for Transactions

Sun Microsystem Inc

RBA
g the
r ven-
le, an

archi-

server

f the

data in

con-
calls
ates to
The Java Transaction Service (JTS) [6] API is a Java programming language binding of the CO
Object Transaction Service (OTS) 1.1 specification. JTS provides transaction interoperability usin
standard IIOP protocol for transaction propagation between servers. The JTS API is intended fo
dors who implement transaction processing infrastructure for enterprise middleware. For examp
EJB Server vendor may use a JTS implementation as the underlying transaction manager.

The EJB architecture does not require the EJB Container to support the JTS interfaces. The EJB
tecture requires that the EJB Container support thejavax.transaction.UserTransaction
interface defined in JTA, but it does not require the support for the JTA resource and application
interfaces.

11.2 Sample scenarios

This section describes several scenarios that illustrate the distributed transaction capabilities o
Enterprise JavaBeans architecture.

11.2.1 Update of multiple databases
The Enterprise JavaBeans architecture makes it possible for an application program to update
multiple databases in a single transaction.

In the following figure, a client invokes the enterprise Bean X. X updates data using two database
nections that the Deployer configured to connect with two different databases, A and B. Then X
another enterprise Bean Y. Y updates data in database C. The EJB Server ensures that the upd
databases A, B, and C are either all committed or all rolled back.

Figure 41 Updates to Simultaneous Databases

X

client EJB Server

Y

database A database Bdatabase C
155 11/24/99

Support for Transactions Enterprise JavaBeans v1.1, Final Release Sample scenarios

Sun Microsystems Inc.

enter-
nes, the
mmits,
atomic

a sin-

then
ase B.
nd B in

Y. This

if the

cifi-
The application programmer does not have to do anything to ensure transactional semantics. The
prise Beans X and Y perform the database updates using the standard JDBC API. Behind the sce
EJB Server enlists the database connections as part of the transaction. When the transaction co
the EJB Server and the database systems perform a two-phase commit protocol to ensure
updates across all three databases.

11.2.2 Update of databases via multiple EJB Servers
The Enterprise JavaBeans architecture allows updates of data at multiple sites to be performed in
gle transaction.

In the following figure, a client invokes the enterprise Bean X. X updates data in database A, and
calls another enterprise Bean Y that is installed in a remote EJB Server. Y updates data in datab
The Enterprise JavaBeans architecture makes it possible to perform the updates to databases A a
a single transaction.

Figure 42 Updates to Multiple Databases in Same Transaction

When X invokes Y, the two EJB Servers cooperate to propagate the transaction context from X to
transaction context propagation is transparent to the application-level code.

At transaction commit time, the two EJB Servers use a distributed two-phase commit protocol (
capability exists) to ensure the atomicity of the database updates.

11.2.3 Client-managed demarcation

A Java client can use thejavax.transaction.UserTransaction interface to explicitly
demarcate transaction boundaries. The client program obtains thejavax.transaction.User-
Transaction interface using JNDI API as defined in the Java 2 platform, Enterprise Edition spe
cation [10].

X

client EJB Server

database A

Y

EJB Server

database B
 11/24/99 156

Sample scenarios Enterprise JavaBeans v1.1, Final Release Support for Transactions

Sun Microsystem Inc

viron-

tomic
figure.

r the
tes to

n. The

tion
The EJB specification does not imply that thejavax.transaction.UserTransaction is avail-
able to all Java clients. The Java 2 platform, Enterprise Edition specification specifies the client en
ments in which thejavax.transaction.UserTransaction interface is available.

A client program using explicit transaction demarcation may perform, via enterprise beans, a
updates across multiple databases residing at multiple EJB Servers, as illustrated in the following

Figure 43 Updates on Multiple Databases on Multiple Servers

The application programmer demarcates the transaction withbegin andcommit calls. If the enter-
prise beans X and Y are configured to use a client transaction (i.e. their methods have eithe
Required, Mandatory, or Supports transaction attribute), the EJB Server ensures that the upda
databases A and B are made as part of the client’s transaction.

11.2.4 Container-managed demarcation

Whenever a client invokes an enterprise Bean, the container interposes on the method invocatio
interposition allows the container to control transaction demarcation declaratively through thetransac-
tion attribute set by the Application Assembler. (See [11.4.1] for a description of transac
attributes.)

Xclient

EJB Server

database A

Y

EJB Server

database B

begin

commit
157 11/24/99

Support for Transactions Enterprise JavaBeans v1.1, Final Release Sample scenarios

Sun Microsystems Inc.

e Con-
d that
cludes

Bean
ent
g the

enter-
tically

ng lan-
also
For example, if an enterprise Bean method is configured with theRequired transaction attribute, the
container behaves as follows: If the client request is not associated with a transaction context, th
tainer automatically initiates a transaction whenever a client invokes an enterprise bean metho
requires a transaction context. If the client request contains a transaction context, the container in
the enterprise bean method in the client transaction.

The following figure illustrates such a scenario. A non-transactional client invokes the enterprise
X, and the invoked method has theRequiredtransaction attribute. Because the message from the cli
does not include a transaction context, the container starts a new transaction before dispatchin
remote method on X. X’s work is performed in the context of the transaction. When X calls other
prise Beans (Y in our example), the work performed by the other enterprise Beans is also automa
included in the transaction (subject to the transaction attribute of the other enterprise Bean).

Figure 44 Update of Multiple Databases from Non-Transactional Client

The container automatically commits the transaction at the time X returns a reply to the client.

11.2.5 Bean-managed demarcation

A session Bean can use thejavax.transaction.UserTransaction interface to programmati-
cally demarcate transactions.

11.2.6 Inter operability with non-Java clients and servers

Although the Enterprise JavaBeans architecture focuses on the Java API (and Java programmi
guage) for writing distributed enterprise applications, it is desirable that such applications are
interoperable with non-Java clients and servers.

X

client EJB Server

Y

database A database B

begin

commit
 11/24/99 158

Bean Provider’s responsibilities Enterprise JavaBeans v1.1, Final Release Support for Transactions

Sun Microsystem Inc

exam-
nt to

se to
main-
ssible

g lan-
e con-

g

an will
emarca-
A container can make it possible for an enterprise Bean to be invoked from a non-Java client. For
ple, the CORBA mapping of the Enterprise JavaBeans architecture [8] allows any CORBA clie
invoke any enterprise Bean object on a CORBA-enabled server using the standard CORBA API.

Figure 45 Interoperating with Non-Java Clients and/or Servers

Providing connectivity to existing server applications is also important. An EJB Server may choo
provide access to existing enterprise applications, such as applications running under CICS on a
frame. For example, an EJB Server may provide a bridge that makes existing CICS programs acce
to enterprise Beans. The bridge can make the CICS programs visible to the Java programmin
guage-based developer as if the CICS programs were other enterprise Beans installed in som
tainer on the EJB Server.

Note: It is beyond the scope of the Enterprise JavaBeans specification to define the bridgin
protocols that would enable such interoperability.

11.3 Bean Provider’s responsibilities

This section describes the Bean Provider’s view of transactions and defines his responsibilities.

11.3.1 Bean-managed versus container-managed transaction demarcation
When designing an enterprise bean, the Bean Provider must decide whether the enterprise be
demarcate transactions programmatically in the business methods (bean-managed transaction d
tion), or whether the transaction demarcation is to be performed by the Container based on thetransac-
tion attributes in the deployment descriptor (container-managed transaction demarcation).

X

CORBA client EJB Server

X

database A database B

bridge
CICS

LU 6.2
159 11/24/99

Support for Transactions Enterprise JavaBeans v1.1, Final Release Bean Provider’s responsibilities

Sun Microsystems Inc.

r-man-

e bean’s
3 on

ansaction
me way
nsaction

nsaction
saction
JB
SubSec-

work

tion is

EJB

e same
nter-

rce man-

agers
same

may
ne so

specify
g the
A Session Bean can be designed with bean-managed transaction demarcation or with containe
aged transaction demarcation. (But it cannot be both at the same time.)

An Entity Bean must always be designed with container-managed transaction demarcation.

An enterprise bean instance can access resource managers in a transaction only in the enterpris
methods in which there is a transaction context available. Refer to Table 2 on page 60, Table
page 70, and Table 4 on page 111.

11.3.1.1 Non-transactional execution

Some enterprise beans may need to access resource managers that do not support an external tr
coordinator. The Container cannot manage the transactions for such enterprise beans in the sa
that it can for the enterprise beans that access resource managers that support an external tra
coordinator.

If an enterprise bean needs to access a resource manager that does not support an external tra
coordinator, the Bean Provider should design the enterprise bean with container-managed tran
demarcation and assign theNotSupported transaction attribute to all the bean’s methods. The E
architecture does not specify the transactional semantics of the enterprise bean methods. See
tion 11.6.3 for how the Container implements this case.

11.3.2 Isolation levels

Transactions not only make completion of a unit of work atomic, but they also isolate the units of
from each other, provided that the system allows concurrent execution of multiple units of work.

The isolation leveldescribes the degree to which the access to a resource manager by a transac
isolated from the access to the resource manager by other concurrently executing transactions.

The following are guidelines for managing isolation levels in enterprise beans.

• The API for managing an isolation level is resource-manager specific. (Therefore, the
architecture does not define an API for managing isolation level.)

• If an enterprise bean uses multiple resource managers, the Bean Provider may specify th
or different isolation level for each resource manager. This means, for example, that if an e
prise bean accesses multiple resource managers in a transaction, access to each resou
ager may be associated with a different isolation level.

• The Bean Provider must take care when setting an isolation level. Most resource man
require that all accesses to the resource manager within a transaction are done with the
isolation levels. An attempt to change the isolation level in the middle of a transaction
cause undesirable behavior, such as an implicit sync point (a commit of the changes do
far).

• For session beans with bean-managed transaction demarcation, the Bean Provider can
the desirable isolation level programmatically in the enterprise bean’s methods, usin
 11/24/99 160

Bean Provider’s responsibilities Enterprise JavaBeans v1.1, Final Release Support for Transactions

Sun Microsystem Inc

the

by the
ensure
result

ager in

n-man-

tion.

to

, the
(e.g. it

a busi-
he Con-
lls until

r of a
cation.
resource-manager specific API. For example, the Bean Provider can use
java.sql.Connection.setTransactionIsolation(...) method to set the
appropriate isolation level for database access.

• For entity beans using container-managed persistence, transaction isolation is managed
data access classes that are generated by the container provider’s tools. The tools must
that the management of the isolation levels performed by the data access classes will not
in conflicting isolation level requests for a resource manager within a transaction.

• Additional care must be taken if multiple enterprise beans access the same resource man
the same transaction. Conflicts in the requested isolation levels must be avoided.

11.3.3 Enterprise beans using bean-managed transaction demarcation
This subsection describes the requirements for the Bean Provider of an enterprise bean with bea
aged transaction demarcation.

The enterprise bean with bean-managed transaction demarcation must be a Session bean.

An instance that starts a transaction must complete the transaction before it starts a new transac

The Bean Provider uses theUserTransaction interface to demarcate transactions. All updates
the resource managers between theUserTransaction.begin() and UserTransac-
tion.commit () methods are performed in a transaction. While an instance is in a transaction
instance must not attempt to use the resource-manager specific transaction demarcation API
must not invoke thecommit() or rollback() method on thejava.sql.Connection inter-
face).

A stateful Session Bean instance may, but is not required to, commit a started transaction before
ness method returns. If a transaction has not been completed by the end of a business method, t
tainer retains the association between the transaction and the instance across multiple client ca
the instance eventually completes the transaction.

The bean-managed transaction demarcation programming model presented to the programme
stateful Session Bean is natural because it is the same as that used by a stand-alone Java appli

A stateless session bean instance must commit a transaction before a business method returns.
161 11/24/99

Support for Transactions Enterprise JavaBeans v1.1, Final Release Bean Provider’s responsibilities

Sun Microsystems Inc.

abase
The following example illustrates a business method that performs a transaction involving two dat
connections.

public class MySessionEJB implements SessionBean {
EJBContext ejbContext;

public void someMethod(...) {
javax.transaction.UserTransaction ut;
javax.sql.DataSource ds1;
javax.sql.DataSource ds2;
java.sql.Connection con1;
java.sql.Connection con2;
java.sql.Statement stmt1;
java.sql.Statement stmt2;

InitialContext initCtx = new InitialContext();

// obtain con1 object and set it up for transactions

ds1 = (javax.sql.DataSource)
initCtx.lookup(“java:comp/env/jdbcDatabase1”);

con1 = ds1.getConnection();

stmt1 = con1.createStatement();

// obtain con2 object and set it up for transactions
ds2 = (javax.sql.DataSource)

initCtx.lookup(“java:comp/env/jdbcDatabase2”);
con2 = ds2.getConnection();

stmt2 = con2.createStatement();

//
// Now do a transaction that involves con1 and con2.
//
ut = ejbContext.getUserTransaction();

// start the transaction
ut.begin();

// Do some updates to both con1 and con2. The Container
// automatically enlists con1 and con2 with the transaction.
stmt1.executeQuery(...);
stmt1.executeUpdate(...);
stmt2.executeQuery(...);
stmt2.executeUpdate(...);
stmt1.executeUpdate(...);
stmt2.executeUpdate(...);

// commit the transaction
ut.commit();

// release connections
stmt1.close();
stmt2.close();
con1.close();
con2.close();

}
...
 11/24/99 162

Bean Provider’s responsibilities Enterprise JavaBeans v1.1, Final Release Support for Transactions

Sun Microsystem Inc
}

163 11/24/99

Support for Transactions Enterprise JavaBeans v1.1, Final Release Bean Provider’s responsibilities

Sun Microsystems Inc.

client
The following example illustrates a stateful Session Bean that retains a transaction across three
calls, invoked in the following order:method1, method2, andmethod3.

public class MySessionEJB implements SessionBean {
EJBContext ejbContext;
javax.sql.DataSource ds1;
javax.sql.DataSource ds2;
java.sql.Connection con1;
java.sql.Connection con2;

public void method1(...) {
java.sql.Statement stmt;

InitialContext initCtx = new InitialContext();

// obtain user transaction interface
ut = ejbContext.getUserTransaction();

// start a transaction
ut.begin();

// make some updates on con1
ds1 = (javax.sql.DataSource)

initCtx.lookup(“java:comp/env/jdbcDatabase1”);
con1 = ds1.getConnection();
stmt = con1.createStatement();
stmt.executeUpdate(...);
stmt.executeUpdate(...);

//
// The Container retains the transaction associated with the
// instance to the next client call (which is method2(...)).

}

public void method2(...) {
java.sql.Statement stmt;

InitialContext initCtx = new InitialContext();

// make some updates on con2
ds2 = (javax.sql.DataSource)

initCtx.lookup(“java:comp/env/jdbcDatabase2”);
con2 = ds2.getConnection();
stmt = con2.createStatement();
stmt.executeUpdate(...);
stmt.executeUpdate(...);

// The Container retains the transaction associated with the
// instance to the next client call (which is method3(...)).

}

public void method3(...) {
java.sql.Statement stmt;

// obtain user transaction interface
ut = ejbContext.getUserTransaction();

// make some more updates on con1 and con2
stmt = con1.createStatement();
 11/24/99 164

Bean Provider’s responsibilities Enterprise JavaBeans v1.1, Final Release Support for Transactions

Sun Microsystem Inc
stmt.executeUpdate(...);
stmt = con2.createStatement();
stmt.executeUpdate(...);

// commit the transaction
ut.commit();

// release connections
stmt.close();
con1.close();
con2.close();

}
...

}

165 11/24/99

Support for Transactions Enterprise JavaBeans v1.1, Final Release Bean Provider’s responsibilities

Sun Microsystems Inc.

method
e cli-

e

It is possible for an enterprise bean to open and close a database connection in each business
(rather than hold the connection open until the end of transaction). In the following example, if th
ent executes the sequence of methods (method1, method2, method2, method2, andmethod3), all the
database updates done by the multiple invocations ofmethod2are performed in the scope of the sam
transaction, which is the transaction started inmethod1 and committed inmethod3.

public class MySessionEJB implements SessionBean {
EJBContext ejbContext;
InitialContext initCtx;

public void method1(...) {
java.sql.Statement stmt;

// obtain user transaction interface
ut = ejbContext.getUserTransaction();

// start a transaction
ut.begin();

}

public void method2(...) {
javax.sql.DataSource ds;
java.sql.Connection con;
java.sql.Statement stmt;

// open connection
ds = (javax.sql.DataSource)

initCtx.lookup(“java:comp/env/jdbcDatabase”);
con = ds.getConnection();

// make some updates on con
stmt = con.createStatement();
stmt.executeUpdate(...);
stmt.executeUpdate(...);

// close the connection
stmt.close();
con.close();

}

public void method3(...) {
// obtain user transaction interface
ut = ejbContext.getUserTransaction();

// commit the transaction
ut.commit();

}
...

}

11.3.3.1 getRollbackOnly() and setRollbackOnly() method

An enterprise bean with bean-managed transaction demarcation must not use thegetRollback-
Only() andsetRollbackOnly() methods of theEJBContext interface.
 11/24/99 166

Bean Provider’s responsibilities Enterprise JavaBeans v1.1, Final Release Support for Transactions

Sun Microsystem Inc

ethods,

s of a

action

g con-

on man-
s. For
An enterprise bean with bean-managed transaction demarcation has no need to use these m
because of the following reasons:

• An enterprise bean with bean-managed transaction demarcation can obtain the statu
transaction by using thegetStatus() method of thejavax.transaction.User-
Transaction interface.

• An enterprise bean with bean-managed transaction demarcation can rollback a trans
using therollback() method of thejavax.transaction.UserTrasaction inter-
face.

11.3.4 Enterprise beans using container-managed transaction demarcation
This subsection describes the requirements for the Bean Provider of an enterprise bean usin
tainer-managed transaction demarcation.

The enterprise bean’s business methods must not use any resource-manager specific transacti
agement methods that would interfere with the Container’s demarcation of transaction boundarie
example, the enterprise bean methods must not use the following methods of thejava.sql.Con-
nection interface:commit() , setAutoCommit(...) , androllback() .

The enterprise bean’s business methods must not attempt to obtain or use thejavax.transac-
tion.UserTransaction interface.
167 11/24/99

Support for Transactions Enterprise JavaBeans v1.1, Final Release Bean Provider’s responsibilities

Sun Microsystems Inc.

trans-
ns. The

nt the

ver
efore
e Con-
The following is an example of a business method in an enterprise bean with container-managed
action demarcation. The business method updates two databases using JDBC API connectio
Container provides transaction demarcation per the Application Assembler’s instructions.

public class MySessionEJB implements SessionBean {
EJBContext ejbContext;

public void someMethod(...) {
java.sql.Connection con1;
java.sql.Connection con2;
java.sql.Statement stmt1;
java.sql.Statement stmt2;

// obtain con1 and con2 connection objects
con1 = ...;
con2 = ...;

stmt1 = con1.createStatement();
stmt2 = con2.createStatement();

//
// Perform some updates on con1 and con2. The Container
// automatically enlists con1 and con2 with the container-
// managed transaction.
//
stmt1.executeQuery(...);
stmt1.executeUpdate(...);

stmt2.executeQuery(...);
stmt2.executeUpdate(...);

stmt1.executeUpdate(...);
stmt2.executeUpdate(...);

// release connections
con1.close();
con2.close();

}
...

}

11.3.4.1 javax.ejb.SessionSynchronization interface

A stateful Session Bean with container-managed transaction demarcation can optionally impleme
javax.ejb.SessionSynchronization interface. The use of theSessionSynchroniza-
tion interface is described in Subsection 6.5.2.

11.3.4.2 javax.ejb.EJBContext.setRollbackOnly() method

An enterprise bean with container-managed transaction demarcation can use thesetRollback-
Only() method of itsEJBContext object to mark the transaction such that the transaction can ne
commit. Typically, an enterprise bean marks a transaction for rollback to protect data integrity b
throwing an application exception, because application exceptions do not automatically cause th
tainer to rollback the transaction.
 11/24/99 168

Application Assembler’s responsibilities Enterprise JavaBeans v1.1, Final Release Support for Transactions

Sun Microsystem Inc

could
ilure

oll-
other
on pro-

e. (See

e con-

option-

naged
enter-

e
.

ation

e inter-
d when
For example, an AccountTransfer bean which debits one account and credits another account
mark a transaction for rollback if it successfully performs the debit operation, but encounters a fa
during the credit operation.

11.3.4.3 javax.ejb.EJBContext.getRollbackOnly() method

An enterprise bean with container-managed transaction demarcation can use thegetRollback-
Only() method of itsEJBContext object to test if the current transaction has been marked for r
back. The transaction might have been marked for rollback by the enterprise bean itself, by
enterprise beans, or by other components (outside of the EJB specification scope) of the transacti
cessing infrastructure.

11.3.5 Declaration in deployment descriptor
The Bean Provider of a Session Bean must use thetransaction-type element to declare whether
the Session Bean is of the bean-managed or container-managed transaction demarcation typ
Chapter 16 for information about the deployment descriptor.)

The transaction-type element is not supported for Entity beans because all Entity beans must us
tainer-managed transaction demarcation.

The Bean Provider of an enterprise bean with container-managed transaction demarcation may
ally specify the transaction attributes for the enterprise bean’s methods. See Subsection 11.4.1.

11.4 Application Assembler’s responsibilities

This section describes the view and responsibilities of the Application Assembler.

There is no mechanism for an Application Assembler to affect enterprise beans with bean-ma
transaction demarcation. The Application Assembler must not define transaction attributes for an
prise bean with bean-managed transaction demarcation.

The Application Assembler can use thetransaction attributemechanism described below to manag
transaction demarcation for enterprise beans using container-managed transaction demarcation

11.4.1 Transaction attributes

Note: The transaction attributes may be specified either by the Bean Provider or by the Applic
Assembler.

A transaction attribute is a value associated with a method of an enterprise bean’s remote or hom
face. The transaction attribute specifies how the Container must manage transactions for a metho
a client invokes the business method via the enterprise bean home or remote interface.
169 11/24/99

Support for Transactions Enterprise JavaBeans v1.1, Final Release Application Assembler’s responsibilities

Sun Microsystems Inc.

:

in the
rface,

in the
rface,

direct

cation
value

tion
t

ts the

an’s

tion. If
ction

the
PI
The transaction attribute must be specified for the following remote and home interface methods

• For a session bean, the transaction attributes must be specified for the methods defined
bean’s remote interface and all the direct and indirect superinterfaces of the remote inte
excluding the methods of thejavax.ejb.EJBObject interface. Transaction attributes
must not be specified for the methods of a session bean’s home interface.

• For an entity bean, the transaction attributes must be specified for the methods defined
bean’s remote interface and all the direct and indirect superinterfaces of the remote inte
excluding thegetEJBHome , getHandle , getPrimaryKey , and isIdentical meth-
ods; and for the methods defined in the bean’s home interface and all the direct and in
superinterfaces of the home interface, excluding thegetEJBMetaData andgetHomeHan-
dle methods.

Providing the transaction attributes for an enterprise bean is an optional requirement for the Appli
Assembler, because, for a given enterprise bean, the Application Assembler must either specify a
of the transaction attribute forall the methods of the remote and home interfaces for which a transac
attribute must be specified, or the Assembler must specifynone. If the transaction attributes are no
specified for the methods of an enterprise bean, the Deployer will have to specify them.

Enterprise JavaBeans defines the following values for the transaction attribute:

• NotSupported

• Required

• Supports

• RequiresNew

• Mandatory

• Never

Refer to Subsection 11.6.2 for the specification of how the value of the transaction attribute affec
transaction management performed by the Container.

If an enterprise bean implements thejavax.ejb.SessionSynchronization interface, the
Application Assembler can specify only the following values for the transaction attributes of the be
methods:Required , RequiresNew , orMandatory .

The above restriction is necessary to ensure that the enterprise bean is invoked only in a transac
the bean were invoked without a transaction, the Container would not be able to send the transa
synchronization calls.

The tools used by the Application Assembler can determine if the bean implements
javax.ejb.SessionSynchronization interface, for example, by using the Java reflection A
on the enterprise bean’s class.
 11/24/99 170

Application Assembler’s responsibilities Enterprise JavaBeans v1.1, Final Release Support for Transactions

Sun Microsystem Inc

uses
rfaces.

n

speci-

ee legal

s for

f the
e, this

r

The following is the description of the deployment descriptor rules that the Application Assembler
to specify transaction attributes for the methods of the enterprise beans’ remote and home inte
(See Section 16.5 for the complete syntax of the deployment descriptor.)

The Application Assembler uses thecontainer-transaction elements to define the transactio
attributes for the methods of the enterprise beans’ remote and home interfaces. Eachcon-
tainer-transaction element consists of a list of one or moremethod elements, and the
trans-attribute element. Thecontainer-transaction element specifies that all the listed
methods are assigned the specified transaction attribute value. It is required that all the methods
fied in a singlecontainer-transaction element be methods of the same enterprise bean.

The method element uses theejb-name , method-name , and method-params elements to
denote one or more methods of an enterprise bean’s home and remote interfaces. There are thr
styles of composing themethod element:

Style 1:
<method>

<ejb-name> EJBNAME</ejb-name>
<method-name>*</method-name>

</method>

This style is used to specify a default value of the transaction attribute for the method
which there is no Style 2 or Style 3 element specified. There must be at most onecon-
tainer-transaction element that uses the Style 1method element for a given enter-
prise bean.

Style 2:
<method>

<ejb-name> EJBNAME</ejb-name>
<method-name> METHOD</method-name>

</method>

This style is used for referring to a specified method of the remote or home interface o
specified enterprise bean. If there are multiple methods with the same overloaded nam
style refers to all the methods with the same name. There must be at most onecon-
tainer-transaction element that uses the Style 2method element for a given method
name. If there is also acontainer-transaction element that uses Style 1 element fo
the same bean, the value specified by the Style 2 element takes precedence.

Style 3:
<method>

<ejb-name> EJBNAME</ejb-name>
<method-name> METHOD</method-name>
<method-params>

<method-param> PARAMETER_1</method-param>
...
<method-param> PARAMETER_N</method-param>

</method-params>
</method>
171 11/24/99

Support for Transactions Enterprise JavaBeans v1.1, Final Release Deployer’s responsibilities

Sun Microsystems Inc.

ame.
rprise
r

3 ele-

ame

scrip-
e

h con-
saction
ployer.
This style is used to refer to a single method within a set of methods with an overloaded n
The method must be one defined in the remote or home interface of the specified ente
bean. If there is also acontainer-transaction element that uses the Style 2 element fo
the method name, or the Style 1 element for the bean, the value specified by the Style
ment takes precedence.

The optionalmethod-intf element can be used to differentiate between methods with the s
name and signature that are defined in both the remote and home interfaces.

The following is an example of the specification of the transaction attributes in the deployment de
tor. TheupdatePhoneNumber method of theEmployeeRecord enterprise bean is assigned th
transaction attributeMandatory ; all other methods of theEmployeeRecord bean are assigned the
attributeRequired . All the methods of the enterprise beanAardvarkPayroll are assigned the
attributeRequiresNew .

<ejb-jar>
...
<assembly-descriptor>

...
<container-transaction>

<method>
<ejb-name>EmployeeRecord</ejb-name>
<method-name>*</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>

<container-transaction>
<method>

<ejb-name>EmployeeRecord</ejb-name>
<method-name>updatePhoneNumber</method-name>

</method>
<trans-attribute>Mandatory</trans-attribute>

</container-transaction>

<container-transaction>
<method>

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>*</method-name>

</method>
<trans-attribute>RequiresNew</trans-attribute>

</container-transaction>
</assembly-descriptor>

</ejb-jar>

11.5 Deployer’s responsibilities

The Deployer is responsible for ensuring that the methods of the deployed enterprise beans wit
tainer-managed transaction demarcation have been assigned a transaction attribute. If the tran
attributes have not been assigned previously by the Assembler, they must be assigned by the De
 11/24/99 172

Container Provider responsibilities Enterprise JavaBeans v1.1, Final Release Support for Transactions

Sun Microsystem Inc

face is
bean is

ct the

ed by
actory
ation
object
d pass
th the

erprise

n Pro-

d trans-
bean’s
e client
started
ion with

the

iner is

action
retain
stance
tainer

ross all
11.6 Container Provider responsibilities

This section defines the responsibilities of the Container Provider.

Every client method invocation on an enterprise Bean object via the bean’s remote and home inter
interposed by the Container, and every connection to a resource manager used by an enterprise
obtained via the Container. This managed execution environment allows the Container to affe
enterprise bean’s transaction management.

This does not imply that the Container must interpose on every resource manager access perform
the enterprise bean. Typically, the Container interposes only the resource manager connection f
(e.g. a JDBC API data source) JNDI API look up by registering the container-specific implement
of the resource manager connection factory object. The resource manager connection factory
allows the Container to obtain the XAResource interface as described in the JTA specification an
it to the transaction manager. After the set up is done, the enterprise bean communicates wi
resource manager without going through the Container.

11.6.1 Bean-managed transaction demarcation
This subsection defines the Container’s responsibilities for the transaction management of ent
beans with bean-managed transaction demarcation.

Note that only Session beans can be used with bean-managed transaction demarcation. A Bea
vider is not allowed to provide an Entity bean with bean-managed transaction demarcation.

The Container must manage client invocations to an enterprise bean instance with bean-manage
action demarcation as follows. When a client invokes a business method via the enterprise
remote or home interface, the Container suspends any transaction that may be associated with th
request. If there is a transaction associated with the instance (this would happen if the instance
the transaction in some previous business method), the Container associates the method execut
this transaction.

The Container must make thejavax.transaction.UserTransaction interface available to
the enterprise bean’s business method via thejavax.ejb.EJBContext interface and under the
environment entryjava:comp/UserTransaction . When an instance uses thejavax.trans-
action.UserTransaction interface to demarcate a transaction, the Container must enlist all
resource managers used by the instance between thebegin() andcommit() —or rollback() —
methods with the transaction. When the instance attempts to commit the transaction, the Conta
responsible for the global coordination of the transaction commit[11].

In the case of astatefulsession bean, it is possible that the business method that started a trans
completes without committing or rolling back the transaction. In such a case, the Container must
the association between the transaction and the instance across multiple client calls until the in
commits or rolls back the transaction. When the client invokes the next business method, the Con
must invoke the business method in this transaction context.

[11] The Container typically relies on a transaction manager that is part of the EJB Server to perform the two-phase commit ac
the enlisted resource managers.
173 11/24/99

Support for Transactions Enterprise JavaBeans v1.1, Final Release Container Provider responsibilities

Sun Microsystems Inc.

ansac-
ion was

arized
is cur-
evious

with a

trans-
d with
ciation

ciated
ciated

with a
es the
tainer
se can
If a statelesssession bean instance starts a transaction in a business method, it must commit the tr
tion before the business method returns. The Container must detect the case in which a transact
started, but not completed, in the business method, and handle it as follows:

• Log this as an application error to alert the system administrator.

• Roll back the started transaction.

• Discard the instance of the session bean.

• Throw thejava.rmi.RemoteException to the client.

The actions performed by the Container for an instance with bean-managed transaction are summ
by the following table. T1 is a transaction associated with a client request, T2 is a transaction that
rently associated with the instance (i.e. a transaction that was started but not completed by a pr
business method).

The following items describe each entry in the table:

• If the client request is not associated with a transaction and the instance is not associated
transaction, the container invokes the instance with an unspecified transaction context.

• If the client is associated with a transaction T1, and the instance is not associated with a
action, the container suspends the client’s transaction association and invokes the metho
an unspecified transaction context. The container resumes the client’s transaction asso
(T1) when the method completes.

• If the client request is not associated with a transaction and the instance is already asso
with a transaction T2, the container invokes the instance with the transaction that is asso
with the instance (T2). This case can never happen for a stateless Session Bean.

• If the client is associated with a transaction T1, and the instance is already associated
transaction T2, the container suspends the client’s transaction association and invok
method with the transaction context that is associated with the instance (T2). The con
resumes the client’s transaction association (T1) when the method completes. This ca
never happen for a stateless Session Bean.

Table 6 Container’s actions for methods of beans with bean-managed transaction

Client’s transaction
Transaction currently
associated with instance

Transaction associated
with the method

none none none

T1 none none

none T2 T2

T1 T2 T2
 11/24/99 174

Container Provider responsibilities Enterprise JavaBeans v1.1, Final Release Support for Transactions

Sun Microsystem Inc

s in a

ac-

hat the
beans,

lication

of an
remote

n con-
tainer

d transac-
that are

ext with

ntext,
The Container must allow the enterprise bean instance to serially perform several transaction
method.

When an instance attempts to start a transaction using thebegin() method of thejavax.trans-
action.UserTransaction interface while the instance has not committed the previous trans
tion, the Container must throw thejavax.transaction.NotSupportedException in the
begin() method.

The Container must throw thejava.lang.IllegalStateException if an instance of a bean
with bean-managed transaction demarcation attempts to invoke thesetRollbackOnly() or
getRollbackOnly() method of thejavax.ejb.EJBContext interface.

11.6.2 Container-managed transaction demarcation

The Container is responsible for providing the transaction demarcation for the enterprise beans t
Bean Provider declared with container-managed transaction demarcation. For these enterprise
the Container must demarcate transactions as specified in the deployment descriptor by the App
Assembler. (See Chapter 16 for more information about the deployment descriptor.)

The following subsections define the responsibilities of the Container for managing the invocation
enterprise bean business method when the method is invoked via the enterprise bean’s home or
interface. The Container’s responsibilities depend on the value of the transaction attribute.

11.6.2.1 NotSupported

The Container invokes an enterprise Bean method whose transaction attribute is set toNotSup-
ported with an unspecified transaction context.

If a client calls with a transaction context, the container suspends the association of the transactio
text with the current thread before invoking the enterprise bean’s business method. The con
resumes the suspended association when the business method has completed. The suspende
tion context of the client is not passed to the resource managers or other enterprise Bean objects
invoked from the business method.

If the business method invokes other enterprise beans, the Container passes no transaction cont
the invocation.

Refer to Subsection 11.6.3 for more details of how the Container can implement this case.

11.6.2.2 Required

The Container must invoke an enterprise Bean method whose transaction attribute is set toRequired
with a valid transaction context.

If a client invokes the enterprise Bean’s method while the client is associated with a transaction co
the container invokes the enterprise Bean’s method in the client’s transaction context.
175 11/24/99

Support for Transactions Enterprise JavaBeans v1.1, Final Release Container Provider responsibilities

Sun Microsystems Inc.

ction
to the
nagers
terprise
to com-
t proto-

s as

ps as

sac-
at will

et to

ction
to the
nagers
terprise
to com-
t proto-

n con-
d. The
transac-
If the client invokes the enterprise Bean’s method while the client is not associated with a transa
context, the container automatically starts a new transaction before delegating a method call
enterprise Bean business method. The Container automatically enlists all the resource ma
accessed by the business method with the transaction. If the business method invokes other en
beans, the Container passes the transaction context with the invocation. The Container attempts
mit the transaction when the business method has completed. The container performs the commi
col before the method result is sent to the client.

11.6.2.3 Supports

The Container invokes an enterprise Bean method whose transaction attribute is set toSupports as
follows.

• If the client calls with a transaction context, the Container performs the same step
described in theRequired case.

• If the client calls without a transaction context, the Container performs the same ste
described in theNotSupported case.

TheSupportstransaction attribute must be used with caution. This is because of the different tran
tional semantics provided by the two possible modes of execution. Only the enterprise beans th
execute correctly in both modes should use theSupports transaction attribute.

11.6.2.4 RequiresNew

The Container must invoke an enterprise Bean method whose transaction attribute is s
RequiresNew with a new transaction context.

If the client invokes the enterprise Bean’s method while the client is not associated with a transa
context, the container automatically starts a new transaction before delegating a method call
enterprise Bean business method. The Container automatically enlists all the resource ma
accessed by the business method with the transaction. If the business method invokes other en
beans, the Container passes the transaction context with the invocation. The Container attempts
mit the transaction when the business method has completed. The container performs the commi
col before the method result is sent to the client.

If a client calls with a transaction context, the container suspends the association of the transactio
text with the current thread before starting the new transaction and invoking the business metho
container resumes the suspended transaction association after the business method and the new
tion have been completed.
 11/24/99 176

Container Provider responsibilities Enterprise JavaBeans v1.1, Final Release Support for Transactions

Sun Microsystem Inc

s as

action

ps as

e busi-
nsaction
ile T2
11.6.2.5 Mandatory

The Container must invoke an enterprise Bean method whose transaction attribute is set toMandatory
in a client’s transaction context. The client is required to call with a transaction context.

• If the client calls with a transaction context, the Container performs the same step
described in theRequired case.

• If the client calls without a transaction context, the Container throws thejavax.transac-
tion.TransactionRequiredException exception.

11.6.2.6 Never

The Container invokes an enterprise Bean method whose transaction attribute is set toNever without
a transaction context defined by the EJB specification. The client is required to call without a trans
context.

• If the client calls with a transaction context, the Container throws thejava.rmi.Remote-
Exception exception.

• If the client calls without a transaction context, the Container performs the same ste
described in theNotSupported case.

11.6.2.7 Transaction attribute summary

The following table provides a summary of the transaction context that the Container passes to th
ness method and resource managers used by the business method, as a function of the tra
attribute and the client’s transaction context. T1 is a transaction passed with the client request, wh
is a transaction initiated by the Container.

Table 7 Transaction attribute summary

Transaction attribute Client’s transaction
Transaction associated
with business method

Transaction associated
with resource managers

NotSupported
none none none

T1 none none

Required
none T2 T2

T1 T1 T1

Supports
none none none

T1 T1 T1

RequiresNew
none T2 T2

T1 T2 T2
177 11/24/99

Support for Transactions Enterprise JavaBeans v1.1, Final Release Container Provider responsibilities

Sun Microsystems Inc.

te inter-
ill be

iner

ethod
tainer

trans-
, the
Con-
If the enterprise bean’s business method invokes other enterprise beans via their home and remo
faces, the transaction indicated in the column “Transaction associated with business method” w
passed as part of the client context to the target enterprise bean.

See Subsection 11.6.3 for how the Container handles the “none” case in Table 7.

11.6.2.8 Handling ofsetRollbackOnly() method

The Container must handle theEJBContext.setRollbackOnly() method invoked from a busi-
ness method executing with theRequired , RequiresNew , or Mandatory transaction attribute as
follows:

• The Container must ensure that the transaction will never commit. Typically, the Conta
instructs the transaction manager to mark the transaction for rollback.

• If the Container initiated the transaction immediately before dispatching the business m
to the instance (as opposed to the transaction being inherited from the caller), the Con
must note that the instance has invoked thesetRollbackOnly() method. When the busi-
ness method invocation completes, the Container must roll back rather than commit the
action. If the business method has returned normally or with an application exception
Container must pass the method result or the application exception to the client after the
tainer performed the rollback.

The Container must throw thejava.lang.IllegalStateException if the EJBCon-
text.setRollbackOnly() method is invoked from a business method executing with theSup-
ports , NotSupported , orNever transaction attribute.

11.6.2.9 Handling ofgetRollbackOnly() method

The Container must handle theEJBContext.getRollbackOnly() method invoked from a busi-
ness method executing with theRequired , RequiresNew , orMandatory transaction attribute.

The Container must throw thejava.lang.IllegalStateException if the EJBCon-
text.getRollbackOnly() method is invoked from a business method executing with theSup-
ports , NotSupported , orNever transaction attribute.

Mandatory
none error N/A

T1 T1 T1

Never
none none none

T1 error N/A

Table 7 Transaction attribute summary

Transaction attribute Client’s transaction
Transaction associated
with business method

Transaction associated
with resource managers
 11/24/99 178

Container Provider responsibilities Enterprise JavaBeans v1.1, Final Release Support for Transactions

Sun Microsystem Inc

invoke

ss

he
ack by

come.

ses in
ethod

arca-

 trans-
11.6.2.10 Handling ofgetUserTransaction() method

If an instance of an enterprise bean with container-managed transaction demarcation attempts to
thegetUserTransaction() method of theEJBContext interface, the Container must throw the
java.lang.IllegalStateException .

11.6.2.11 javax.ejb.SessionSynchronization callbacks

If a Session Bean class implements thejavax.ejb.SessionSynchronization interface, the
Container must invoke theafterBegin() , beforeCompletion() , and afterComple-
tion(...) callbacks on the instance as part of the transaction commit protocol.

The Container invokes theafterBegin() method on an instance before it invokes the first busine
method in a transaction.

The Container invokes thebeforeCompletion() method to give the enterprise bean instance t
last chance to cause the transaction to rollback. The instance may cause the transaction to roll b
invoking theEJBContext.setRollbackOnly() method.

The Container invokes theafterCompletion(Boolean committed) method after the comple-
tion of the transaction commit protocol to notify the enterprise bean instance of the transaction out

11.6.3 Handling of methods that run with “an unspecified transaction context”

The term “an unspecified transaction context” is used in the EJB specification to refer to the ca
which the EJB architecture does not fully define the transaction semantics of an enterprise bean m
execution.

This includes the following cases:

• The execution of a method of an enterprise bean with container-managed transaction dem
tion for which the value of the transaction attribute isNotSupported , Never , or Sup-
ports [12].

• The execution of theejbCreate , ejbRemove, ejbPassivate, andejbActivate
methods of a session bean with container-managed transaction demarcation.

[12] For theSupports attribute, the handling described in this section applies only to the case when the client calls without a
action context.
179 11/24/99

Support for Transactions Enterprise JavaBeans v1.1, Final ReleaseAccess from multiple clients in the same trans-

Sun Microsystems Inc.

ethod
emen-
ethod
gies):

ithout a

saction

single

into a

re also
e the

se bean

ction
he EJB

r such a

tainer’s

ram A
it the

eates a
The EJB specification does not prescribe how the Container should manage the execution of a m
with an unspecified transaction context—the transaction semantics are left to the Container impl
tation. Some techniques for how the Container may choose to implement the execution of a m
with an unspecified transaction context are as follows (the list is not inclusive of all possible strate

• The Container may execute the method and access the underlying resource managers w
transaction context.

• The Container may treat each call of an instance to a resource manager as a single tran
(e.g. the Container may set the auto-commit option on a JDBC API connection).

• The Container may merge multiple calls of an instance to a resource manager into a
transaction.

• The Container may merge multiple calls of an instance to multiple resource managers
single transaction.

• If an instance invokes methods on other enterprise beans, and the invoked methods a
designated to run with an unspecified transaction context, the Container may merg
resource manager calls from the multiple instances into a single transaction.

• Any combination of the above.

Since the enterprise bean does not know which technique the Container implements, the enterpri
must be written conservatively not to rely on any particular Container behavior.

A failure that occurs in the middle of the execution of a method that runs with an unspecified transa
context may leave the resource managers accessed from the method in an unpredictable state. T
architecture does not define how the application should recover the resource managers’ state afte
failure.

11.7 Access from multiple clients in the same transaction context

This section describes a more complex distributed transaction scenario, and specifies the Con
behavior required for this scenario.

11.7.1 Transaction “diamond” scenario with an entity object

An entity object may be accessed by multiple clients in the same transaction. For example, prog
may start a transaction, call program B and program C in the transaction context, and then comm
transaction. If programs B and C access the same entity object, the topology of the transaction cr
diamond.
 11/24/99 180

Access from multiple clients in the same transaction contextEnterprise JavaBeans v1.1, Final Release Support for Transactions

Sun Microsystem Inc

dif-
s pur-

ss an
imple-
ltiple

ferent
transac-
of the

ibuted
le net-

access
ming

in all

trans-
Figure 46 Transaction diamond scenario with entity object

An example (not realistic in practice) is a client program that tries to perform two purchases at two
ferent stores within the same transaction. At each store, the program that is processing the client’
chase request debits the client’s bank account.

It is difficult to implement an EJB server that handles the case in which programs B and C acce
entity object through different network paths. This case is challenging because many EJB servers
ment the EJB Container as a collection of multiple processes, running on the same or mu
machines. Each client is typically connected to a single process. If clients B and C connect to dif
EJB Container processes, and both B and C need to access the same entity object in the same
tion, the issue is how the Container can make it possible for B and C to see a consistent state
entity object within the same transaction[13].

The above example illustrates a simple diamond. We use the term diamond to refer to any distr
transaction scenario in which an entity object is accessed in the same transaction through multip
work paths.

Note that in the diamond scenario the clients B and C access the entity object serially. Concurrent
to an entity object in the same transaction context would be considered an application program
error, and it would be handled in a Container-specific way.

Note that the issue of handling diamonds is not unique to the EJB architecture. This issue exists
distributed transaction processing systems.

The following subsections define the responsibilities of the EJB Roles when handling distributed
action topologies that may lead to a diamond involving an entity object.

[13] This diamond problem applies only to the case when B and C are in the same transaction.

Program A

Program C

Program B

Entity
object

TX1

TX1

TX1

TX1

EJB Container
181 11/24/99

Support for Transactions Enterprise JavaBeans v1.1, Final ReleaseAccess from multiple clients in the same trans-

Sun Microsystems Inc.

involv-

l dia-

istrib-
rough
in the

detect

t view
veral

, and
ll the

se the
me

d
t the
ansac-

the
11.7.2 Container Provider’ s responsibilities
This Subsection specifies the EJB Container’s responsibilities with respect to the diamond case
ing an entity object.

The EJB specification requires that the Container provide support for local diamonds. In a loca
mond, components A, B, C, and D are deployed in the same EJB Container.

The EJB specification does not require an EJB Container to support distributed diamonds. In a d
uted diamond, a target entity object is accessed from multiple clients in the same transaction th
multiple network paths, and the clients (programs B and C) are not enterprise beans deployed
same EJB Container as the target entity object.

If the Container Provider chooses not to support distributed diamonds, and if the Container can
that a client invocation would lead to a diamond, the Container should throw thejava.rmi.Remo-
teException to the client.

If the Container Provider chooses to support distributed diamonds, it should provide a consisten
of the entity state within a transaction. The Container Provider can implement the support in se
ways. (The options that follow are illustrative, not prescriptive.)

• Always instantiate the entity bean instance for a given entity object in the same process
route all clients’ requests to this process. Within the process, the Container routes a
requests within the same transaction to the same enterprise bean instance.

• Instantiate the entity bean instance for a given entity object in multiple processes, and u
ejbStore andejbLoad methods to synchronize the state of the instances within the sa
transaction. For example, the Container can issueejbStore after each business method, an
issueejbLoad before the start of the next business method. This technique ensures tha
instance used by a one client sees the updates done by other clients within the same tr
tion.

An illustration of the second approach follows. The illustration is illustrative, not prescriptive for
Container implementors.
 11/24/99 182

Access from multiple clients in the same transaction contextEnterprise JavaBeans v1.1, Final Release Support for Transactions

Sun Microsystem Inc

to an
te
hod.
te

uted to
te
s 1.
ontainer

object

involv-
Figure 47 Handling of diamonds by a multi-process container

Program B makes a call to an entity object representing Account 100. The request is routed
instance in process 1. The Container invokesejbLoad on the instance. The instance loads the sta
from the database in theejbLoad method. The instance updates the state in the business met
When the method completes, the Container invokesejbStore . The instance writes the updated sta
to the database in theejbStore method.

Now program C makes a call to the same entity object in the same transaction. The request is ro
a different process (2). The Container invokesejbLoad on the instance. The instance loads the sta
from the database in theejbLoad method. The loaded state was written by the instance in proces
The instance updates the state in the business method. When the method completes, the C
invokesejbStore . The instance writes the updated state to the database in theejbStore method.

In the above scenario, the Container presents the business methods operating on the entity
Account 100 with a consistent view of the entity object’s state within the transaction.

Another implementation of the EJB Container might avoid callingejbLoad andejbStore on each
business method by using a distributed lock manager.

11.7.3 Bean Provider’ s responsibilities
This Subsection specifies the Bean Provider’s responsibilities with respect to the diamond case
ing an entity object.

Program C

Program B

TX1

TX1

Multi-process EJB Container

Account 100
instance 1

Account 100
instance 2

ejbLoad/ejbStore

ejbLoad/ejbStore

process 1

process 2
183 11/24/99

Support for Transactions Enterprise JavaBeans v1.1, Final ReleaseAccess from multiple clients in the same trans-

Sun Microsystems Inc.

ode the
prob-
s of the

to the

ur. In
s.

er-spe-
os.

at use
nd then

) across
rrect

session
etween
The diamond case is transparent to the Bean Provider—the Bean Provider does not have to c
enterprise bean differently for the bean to participate in a diamond. Any solution to the diamond
lem implemented by the Container is transparent to the bean and does not change the semantic
bean.

11.7.4 Application Assembler and Deployer’s responsibilities
This Subsection specifies the Application Assembler and Deployer’s responsibilities with respect
diamond case involving an entity object.

The Application Assembler and Deployer should be aware that distributed diamonds might occ
general, the Application Assembler should try to avoid creating unnecessary distributed diamond

If a distributed diamond is necessary, the Deployer should advise the Container (using a Contain
cific API) that an entity objects of the entity bean may be involved in distributed diamond scenari

11.7.5 Transaction diamonds involving session objects
While it is illegal for two clients to access the same session object, it is possible for applications th
session beans to encounter the diamond case. For example, program A starts a transaction a
invokes two different session objects.

Figure 48 Transaction diamond scenario with a session bean

If the session bean instances cache the same data item (e.g. the current balance of Account 100
method invocations in the same transaction, most likely the program is going to produce inco
results.

The problem may exist regardless of whether the two session objects are the same or different
beans. The problem may exist (and may be harder to discover) if there are intermediate objects b
the transaction initiator and the session objects that cache the data.

Program A

Session
instance 1

TX1

TX1

EJB Container

Session
instance 2

read and cache
Account 100

read and cache
Account 100
 11/24/99 184

Access from multiple clients in the same transaction contextEnterprise JavaBeans v1.1, Final Release Support for Transactions

Sun Microsystem Inc

detect

ult in
There are no requirements for the Container Provider because it is impossible for the Container to
this problem.

The Bean Provider and Application Assembler must avoid creating applications that would res
inconsistent caching of data in the same transaction by multiple session objects.
185 11/24/99

Support for Transactions Enterprise JavaBeans v1.1, Final ReleaseAccess from multiple clients in the same trans-

Sun Microsystems Inc.
 11/24/99 186

Overview and Concepts Enterprise JavaBeans v1.1, Final Release Exception handling

Sun Microsystem Inc

rise

pplica-
client

port-
Chapter 12 Exception handling

12.1 Overview and Concepts

12.1.1 Application exceptions

An application exceptionis an exception defined in the throws clause of a method of the enterp
Bean’s home and remote interfaces, other than thejava.rmi.RemoteException .

Enterprise bean business methods use application exceptions to inform the client of abnormal a
tion-level conditions, such as unacceptable values of the input arguments to a business method. A
can typically recover from an application exception. Application exceptions are not intended for re
ing system-level problems.

For example, theAccountenterprise bean may throw an application exception to report that adebit
operation cannot be performed because of an insufficient balance. TheAccountbean should not use an
application exception to report, for example, the failure to obtain a database connection.
187 11/24/99

Exception handling Enterprise JavaBeans v1.1, Final Release Bean Provider’s responsibilities

Sun Microsystems Inc.

excep-

les on

client

roll-
nsac-

rlying

n han-

remote
d not by
ot for

iness
es not
fol-

bean

it the
appli-
tance

that
The javax.ejb.CreateException , javax.ejb.RemoveException , javax.ejb.Fin-
derException , and subclasses thereof, are considered to be application exceptions. These
tions are used as standard application exceptions to report errors to the client from thecreate ,
remove , andfinder methods (see Subsection 9.1.9). These exceptions are covered by the ru
application exceptions that are defined in this chapter.

12.1.2 Goals for exception handling

The EJB specification for exception handling is designed to meet these high-level goals:

• An application exception thrown by an enterprise bean instance should be reported to the
precisely (i.e. the client gets the same exception).

• An application exception thrown by an enterprise bean instance should not automatically
back a client’s transaction. The client should typically be given a chance to recover a tra
tion from an application exception.

• An unexpected exception that may have left the instance’s state variables and/or unde
persistent data in an inconsistent state can be handled safely.

12.2 Bean Provider’s responsibilities

This section describes the view and responsibilities of the Bean Provider with respect to exceptio
dling.

12.2.1 Application exceptions

The Bean Provider defines the application exceptions in the throws clauses of the methods of the
and home interfaces. Because application exceptions are intended to be handled by the client, an
the system administrator, they should be used only for reporting business logic exceptions, n
reporting system level problems.

The Bean Provider is responsible for throwing the appropriate application exception from the bus
method to report a business logic exception to the client. Because the application exception do
automatically result in marking the transaction for rollback, the Bean Provider must do one of the
lowing to ensure data integrity before throwing an application exception from an enterprise
instance:

• Ensure that the instance is in a state such that a client’s attempt to continue and/or comm
transaction does not result in loss of data integrity. For example, the instance throws an
cation exception indicating that the value of an input parameter was invalid before the ins
performed any database updates.

• Mark the transaction for rollback using theEJBContext.setRollbackOnly() method
before throwing an application exception. Marking the transaction for rollback will ensure
the transaction can never commit.
 11/24/99 188

Bean Provider’s responsibilities Enterprise JavaBeans v1.1, Final Release Exception handling

Sun Microsystem Inc

ee

tions

stances
o the

ns and
od or a

ceptions
se the
w how
ection,

w the
that is
exact

catch

n applies
An application exception must not be defined as a subclass of thejava.lang.RuntimeExcep-
tion , or of the java.rmi.RemoteException . These are reserved for system exceptions (S
next subsection).

The Bean Provider is also responsible for using the standard EJB application excep
(javax.ejb.CreateException , javax.ejb.RemoveException , javax.ejb.Find-
erException , and subclasses thereof) as described in Subsection 9.1.9.

Bean Providers may define subclasses of the standard EJB application exceptions and throw in
of the subclasses in the entity bean methods. A subclass will typically provide more information t
client that catches the exception.

12.2.2 System exceptions

This subsection describes how the Bean Provider should handle various system-level exceptio
errors that an enterprise bean instance may encounter during the execution of a business meth
container callback method (e.g.ejbLoad).

The enterprise bean business method and container callback methods may encounter various ex
or errors that prevent the method from successfully completing. Typically, this happens becau
exception or error is unexpected, or the exception is expected but the EJB Provider does not kno
to recover from it. Examples of such exceptions and errors are: failure to obtain a database conn
JNDI API exceptions, unexpectedRemoteException from invocation of other enterprise beans[14],
unexpectedRuntimeException , JVM errors, and so on.

If the enterprise bean method encounters a system-level exception or error that does not allo
method to successfully complete, the method should throw a suitable non-application exception
compatible with the method’s throws clause. While the EJB specification does not prescribe the
usage of the exception, it encourages the Bean Provider to follow these guidelines:

• If the bean method encounters aRuntimeException or error, it should simply propagate
the error from the bean method to the Container (i.e. the bean method does not have to
the exception).

• If the bean method performs an operation that results in a checked exception[15] that the bean
method cannot recover, the bean method should throw thejavax.ejb.EJBException
that wraps the original exception.

• Any other unexpected error conditions should be reported using thejavax.ejb.EJBEx-
ception.

Note that thejavax.ejb.EJBException is a subclass of thejava.lang.RuntimeExcep-
tion , and therefore it does not have to be listed in the throws clauses of the business methods.

[14] Note that the enterprise bean business method may attempt to recover from a RemoteException. The text in this subsectio
only to the case when the business method does not wish to recover from the RemoteException.

[15] A checked exception is one that is not a subclass ofjava.lang.RuntimeException .
189 11/24/99

Exception handling Enterprise JavaBeans v1.1, Final Release Container Provider responsibilities

Sun Microsystems Inc.

stem
.
appli-

ing a

e EJB

home
The Container catches a non-application exception, logs it (which can result in alerting the Sy
Administrator), and throws thejava.rmi.RemoteException (or subclass thereof) to the client
The Bean Provider can rely on the Container to perform the following tasks when catching a non-
cation exception:

• The transaction in which the bean method participated will be rolled back.

• No other method will be invoked on an instance that threw a non-application exception.

This means that the Bean Provider does not have to perform any cleanup actions before throw
non-application exception. It is the Container that is responsible for the cleanup.

12.2.2.1 javax.ejb.NoSuchEntityException

TheNoSuchEntityException is a subclass ofEJBException . It should be thrown by the entity
bean class methods to indicate that the underlying entity has been removed from the database.

An entity bean class typically throws this exception from theejbLoad andejbStore methods, and
from the methods that implement the business methods defined in the remote interface.

12.3 Container Provider responsibilities

This section describes the responsibilities of the Container Provider for handling exceptions. Th
architecture specifies the Container’s behavior for the following exceptions:

• Exceptions from enterprise bean’s business methods.

• Exceptions from container-invoked callbacks on the enterprise bean.

• Exceptions from management of container-managed transaction demarcation.

12.3.1 Exceptions from an enterprise bean’s business methods

Business methodsare considered to be the methods defined in the enterprise bean’s remote and
interface (including all their superinterfaces); and the following methods:ejbCreate(...) , ejb-
PostCreate(...) , ejbRemove() , and theejbFind<METHOD> methods.
 11/24/99 190

Container Provider responsibilities Enterprise JavaBeans v1.1, Final Release Exception handling

Sun Microsystem Inc

ds for
ion as a
by the
client

ion
Table 8 specifies how the Container must handle the exceptions thrown by the business metho
beans with container-managed transaction demarcation. The table specifies the Container’s act
function of the condition under which the business method executes and the exception thrown
business method. The table also illustrates the exception that the client will receive and how the
can recover from the exception. (Section 12.4 describes the client’s view of exceptions in detail.)

Table 8 Handling of exceptions thrown by a business method of a bean with container-managed transact
demarcation

 Method condition Method exception Container’s action Client’s view

Bean method runs in the
context of the caller’s
transaction [Note A].
This case may happen
with Required , Man-
datory , andSup-
ports attributes.

AppException Re-throw AppException Receives AppException.

Can attempt to continue
computation in the trans-
action, and eventually
commit the transaction
(the commit would fail if
the instance calledset-
RollbackOnly()).

all other exceptions and
errors

Log the exception or
error [Note B].

Mark the transaction for
rollback.

Discard instance
[Note C].

Throw Transaction-
RolledBackException to
the client.

ReceivesTransaction-
RolledBackException .

Continuing transaction is
fruitless.

Bean method runs in the
context of a transaction
that the Container started
immediately before dis-
patching the business
method.
This case may happen
with Required and
RequiresNew
attributes.

AppException If the instance called set-
RollbackOnly(), then
rollback the transaction,
and re-throw AppExcep-
tion.

Otherwise, attempt to
commit the transaction,
and then re-throw
AppException.

Receives AppException.

If the client executes in a
transaction, the client’s
transaction is not marked
for rollback, and client
can continue its work.

all other exceptions Log the exception or
error.

Rollback the con-
tainer-started transaction.

Discard instance.

Throw RemoteException .

ReceivesRemoteExcep-
tion .

If the client executes in a
transaction, the client’s
transaction is not marked
for rollback, and client
can continue its work.
191 11/24/99

Exception handling Enterprise JavaBeans v1.1, Final Release Container Provider responsibilities

Sun Microsystems Inc.

ds for
a

by the
client

min-

acks

n

ion
Table 9 specifies how the Container must handle the exceptions thrown by the business metho
beans with bean-managed transaction demarcation[16]. The table specifies the Container’s action as
function of the condition under which the business method executes and the exception thrown
business method. The table also illustrates the exception that the client will receive and how the
can recover from the exception. (Section 12.4 describes the client’s view of exceptions in detail.)

Bean method runs with
an unspecified transac-
tion context.
This case may happen
with theNotSup-
ported , Never , and
Supports attributes.

AppException Re-throw AppException. Receives AppException.

If the client executes in a
transaction, the client’s
transaction is not marked
for rollback, and client
can continue its work.

all other exceptions Log the exception or
error.

Discard instance.

Throw RemoteException .

ReceivesRemoteExcep-
tion .

If the client executes in a
transaction, the client’s
transaction is not marked
for rollback, and client
can continue its work.

Notes:

[A] The caller can be another enterprise bean or an arbitrary client program.

[B] Log the exception or errormeans that the Container logs the exception or error so that the System Ad
istrator is alerted of the problem.

[C] Discard instance means that the Container must not invoke any business methods or container callb
on the instance.

[16] Note that the EJB specification allows only Session beans to use bean-managed transaction demarcation.

Table 9 Handling of exceptions thrown by a business method of a session with bean-managed transactio
demarcation

Bean method condition Bean method exception Container action Client receives

Bean is stateful or state-
less Session.

AppException Re-throw AppException Receives AppException.

all other exceptions Log the exception or
error.

Mark for rollback a
transaction that has been
started, but not yet com-
pleted, by the instance.

Discard instance.

Throw RemoteException .

ReceivesRemoteExcep-
tion .

Table 8 Handling of exceptions thrown by a business method of a bean with container-managed transact
demarcation

 Method condition Method exception Container’s action Client’s view
 11/24/99 192

Container Provider responsibilities Enterprise JavaBeans v1.1, Final Release Exception handling

Sun Microsystem Inc

oked

tor.

tainer

w the
s-

hat

the

w the
12.3.2 Exceptions from container-invoked callbacks

This subsection specifies the Container’s handling of exceptions thrown from the container-inv
callbacks on the enterprise bean. This subsection applies to the following callback methods:

• The ejbActivate() , ejbLoad() , ejbPassivate() , ejbStore() , setEntity-
Context(EntityContext) , and unsetEntityContext() methods of theEnti-
tyBean interface.

• The ejbActivate() , ejbPassivate() , and setSessionContext(Session-
Context) methods of theSessionBean interface.

• The afterBegin(), beforeCompletion() and afterCompletion(boolean)
methods of theSessionSynchronization interface.

The Container must handle all exceptions or errors from these methods as follows:

• Log the exception or error to bring the problem to the attention of the System Administra

• If the instance is in a transaction, mark the transaction for rollback.

• Discard the instance (i.e. the Container must not invoke any business methods or con
callbacks on the instance).

• If the exception or error happened during the processing of a client invoked method, thro
java.rmi.RemoteException to the client. If the instance executed in the client’s tran
action, the Container should throw thejavax.transaction.TransactionRolled-
BackException because it provides more information to the client. (The client knows t
it is fruitless to continue the transaction.)

12.3.3 javax.ejb.NoSuchEntityException

TheNoSuchEntityException is a subclass ofEJBException . If it is thrown by a method of an
entity bean class, the Container must handle the exception using the rules forEJBException
described in Sections 12.3.1 and 12.3.2.

To give the client a better indication of the cause of the error, the Container should throw
java.rmi.NoSuchObjectException to the client (which is a subclass ofjava.rmi.Remo-
teException).

12.3.4 Non-existing session object

If a client makes a call to a session object that has been removed, the Container should thro
java.rmi.NoSuchObjectException to the client (which is a subclass ofjava.rmi.Remo-
teException).
193 11/24/99

Exception handling Enterprise JavaBeans v1.1, Final Release Container Provider responsibilities

Sun Microsystems Inc.

ns, as
excep-

w the

siness

e cli-

lease all
in the

stance
r can-
JDK

ations
gar-

in

en

f the

the
12.3.5 Exceptions from the management of container-managed transactions

The container is responsible for starting and committing the container-managed transactio
described in Subsection 11.6.2. This subsection specifies how the Container must deal with the
tions that may be thrown by the transaction start and commit operations.

If the Container fails to start or commit a container-managed transaction, the Container must thro
java.rmi.RemoteException to the client.

However, the Container should not throw thejava.rmi.RemoteException if the Container per-
forms a transaction rollback because the instance has invoked thesetRollbackOnly() method on
its EJBContext object. In this case, the Container must rollback the transaction and pass the bu
method result or the application exception thrown by the business method to the client.

Note that some implementations of the Container may retry a failed transaction transparently to th
ent and enterprise bean code. Such a Container would throw thejava.rmi.RemoteException
after a number of unsuccessful tries.

12.3.6 Release of resources

When the Container discards an instance because of a system exception, the Container should re
the resources held by the instance that were acquired through the resource factories declared
enterprise bean environment (See Subsection 14.4).

Note: While the Container should release the connections to the resource managers that the in
acquired through the resource factories declared in the enterprise bean environment, the Containe
not, in general, release “unmanaged” resources that the instance may have acquired through the
APIs. For example, if the instance has opened a TCP/IP connection, most Container implement
will not be able to release the connection. The connection will be eventually released by the JVM
bage collector mechanism.

12.3.7 Support for deprecated use ofjava.rmi.RemoteException

The EJB 1.0 specification allowed the business methods,ejbCreate , ejbPostCreate ,
ejbFind<METHOD> , ejbRemove , and the container-invoked callbacks (i.e. the methods defined
the EntityBean , SessionBean , andSessionSynchronization interfaces) implemented in
the enterprise bean class to use thejava.rmi.RemoteException to report non-application excep-
tions to the Container.

This use of thejava.rmi.RemoteException is deprecated in EJB 1.1—enterprise beans writt
for the EJB 1.1 specification should use thejavax.ejb.EJBException instead.

The EJB 1.1 specification requires that a Container support the deprecated use o
java.rmi.RemoteException . The Container should treat thejava.rmi.RemoteExcep-
tion thrown by an enterprise bean method in the same way as it is specified for
javax.ejb.EJBException .
 11/24/99 194

Client’s view of exceptions Enterprise JavaBeans v1.1, Final Release Exception handling

Sun Microsystem Inc

d

n.

Both of
luding

nt can
e EJB

client
lication

t

rown
bean
ation

home
plica-
row-

arca-
Note: The use of thejava.rmi.RemoteException is deprecated only in the above-mentione
methods. The methods of the remote and home interface still must use thejava.rmi.RemoteEx-
ception as required by the EJB specification.

12.4 Client’s view of exceptions

This section describes the client’s view of exceptions received from an enterprise bean invocatio

A client accesses an enterprise Bean through the enterprise Bean’s remote and home interfaces.
these interfaces are Java RMI interfaces, and therefore the throws clauses of all their methods (inc
those inherited from superinterfaces) include the mandatoryjava.rmi.RemoteException. The
throws clauses may include an arbitrary number of application exceptions.

12.4.1 Application exception

If a client program receives an application exception from an enterprise bean invocation, the clie
continue calling the enterprise bean. An application exception does not result in the removal of th
object.

If a client program receives an application exception from an enterprise bean invocation while the
is associated with a transaction, the client can typically continue the transaction because an app
exception does not automatically causes the Container to mark the transaction for rollback.

For example, if a client receives theExceedLimitExceptionapplication exception from thedebitmethod
of anAccountbean, the client may invoke thedebitmethod again, possibly with a lower debit amoun
parameter. If the client executed in a transaction context, throwing theExceedLimitExceptionexception
would not automatically result in rolling back, or marking for rollback, the client’s transaction.

Although the Container does not automatically mark for rollback a transaction because of a th
application exception, the transaction might have been marked for rollback by the enterprise
instance before it threw the application exception. There are two ways to learn if a particular applic
exception results in transaction rollback or not:

• Statically. Programmers can check the documentation of the enterprise bean’s remote or
interface. The Bean Provider may have specified (although he is not required to) the ap
tion exceptions for which the enterprise bean marks the transaction for rollback before th
ing the exception.

• Dynamically. Clients that are enterprise beans with container-managed transaction dem
tion can use thegetRollbackOnly() method of thejavax.ejb.EJBContext object
to learn if the current transaction has been marked for rollback; other clients may use theget-
Status() method of the javax.transaction.UserTransaction interface to
obtain the transaction status.
195 11/24/99

Exception handling Enterprise JavaBeans v1.1, Final Release Client’s view of exceptions

Sun Microsystems Inc.

Con-

been

r the
e been
thod

cuting

n the
.

k its
roll-
prise

other
was

atus to
enter-

an

orting
12.4.2 java.rmi.RemoteException

The client receives thejava.rmi.RemoteException as an indication of a failure to invoke an
enterprise bean method or to properly complete its invocation. The exception can be thrown by the
tainer or by the communication subsystem between the client and the Container.

If the client receives thejava.rmi.RemoteException exception from a method invocation, the
client, in general, does not know if the enterprise Bean’s method has been completed or not.

If the client executes in the context of a transaction, the client’s transaction may, or may not, have
marked for rollback by the communication subsystem or target bean’s Container.

For example, the transaction would be marked for rollback if the underlying transaction service o
target Bean’s Container doubted the integrity of the data because the business method may hav
partially completed. Partial completion could happen, for example, when the target bean’s me
returned with a RuntimeException exception, or if the remote server crashed in the middle of exe
the business method.

The transaction may not necessarily be marked for rollback. This might occur, for example, whe
communication subsystem on the client-side has not been able to send the request to the server

When a client executing in a transaction context receives aRemoteException from an enterprise
bean invocation, the client may use either of the following strategies to deal with the exception:

• Discontinue the transaction. If the client is the transaction originator, it may simply rollbac
transaction. If the client is not the transaction originator, it can mark the transaction for
back or perform an action that will cause a rollback. For example, if the client is an enter
bean, the enterprise bean may throw aRuntimeException which will cause the Container
to rollback the transaction.

• Continue the transaction. The client may perform additional operations on the same or
enterprise beans, and eventually attempt to commit the transaction. If the transaction
marked for rollback at the time theRemoteException was thrown to the client, the commit
will fail.

If the client chooses to continue the transaction, the client can first inquire about the transaction st
avoid fruitless computation on a transaction that has been marked for rollback. A client that is an
prise bean with container-managed transaction demarcation can use theEJBContext.getRoll-
backOnly() method to test if the transaction has been marked for rollback; a client that is
enterprise bean with bean-managed transaction demarcation, and other client types, can use theUser-
Transaction.getStatus() method to obtain the status of the transaction.

Some implementations of EJB Servers and Containers may provide more detailed exception rep
by throwing an appropriate subclass of thejava.rmi.RemoteException to the client. The fol-
lowing subsections describe the several subclasses of thejava.rmi.RemoteException that may
be thrown by the Container to give the client more information.
 11/24/99 196

System Administrator’s responsibilities Enterprise JavaBeans v1.1, Final Release Exception handling

Sun Microsystem Inc

e cli-

rprise

ect no

and
excep-

ation,

llbacks
e

f the
Con-
12.4.2.1 javax.transaction.TransactionRolledbackException

The javax.transaction.TransactionRolledbackException is a subclass of the
java.rmi.RemoteException. It is defined in the JTA standard extension.

If a client receives thejavax.transaction.TransactionRolledbackException , the cli-
ent knows for certain that the transaction has been marked for rollback. It would be fruitless for th
ent to continue the transaction because the transaction can never commit.

12.4.2.2 javax.transaction.TransactionRequiredException

The javax.transaction.TransactionRequiredException is a subclass of the
java.rmi.RemoteException. It is defined in the JTA standard extension.

Thejavax.transaction.TransactionRequiredException informs the client that the tar-
get enterprise bean must be invoked in a client’s transaction, and that the client invoked the ente
bean without a transaction context.

This error usually indicates that the application was not properly formed.

12.4.2.3 java.rmi.NoSuchObjectException

The java.rmi.NoSuchObjectException is a subclass of thejava.rmi.RemoteExcep-
tion. It is thrown to the client if a remote business method cannot complete because the EJB obj
longer exists.

12.5 System Administrator’s responsibilities

The System Administrator is responsible for monitoring the log of the non-application exceptions
errors logged by the Container, and for taking actions to correct the problems that caused these
tions and errors.

12.6 Differences from EJB 1.0

The EJB 1.1 specification of exception handling preserved the rules defined in the EJB 1.0 specific
with the following exceptions:

• EJB 1.0 specified that the enterprise bean business methods and container-invoked ca
use thejava.rmi.RemoteException to report non-application exceptions. This practic
is deprecated in EJB 1.1—the enterprise bean methods should use thejavax.ejb.EJBEx-
ception , or other suitableRuntimeException to report non-application exceptions.

• In EJB 1.1, all non-application exceptions thrown by the instance result in the rollback o
transaction in which the instance executed, and in discarding the instance. In EJB 1.0, the
197 11/24/99

Exception handling Enterprise JavaBeans v1.1, Final Release Differences from EJB 1.0

Sun Microsystems Inc.

the

ack a
plica-
B 1.1,
tainer would not rollback a transaction and discard the instance if the instance threw
java.rmi.RemoteException .

• In EJB 1.1, an application exception does not cause the Container to automatically rollb
transaction. In EJB 1.0, the Container was required to rollback a transaction when an ap
tion exception was passed through a transaction boundary started by the Container. In EJ
the Container performs the rollback only if the instance have invoked thesetRollback-
Only() method on itsEJBContext object.
 11/24/99 198

Overview Enterprise JavaBeans v1.1, Final Release Support for Distribution

Sun Microsystem Inc

] inter-

e bean
sed over

s to the
IOP

se of
oto-
Chapter 13 Support for Distribution

13.1 Overview

The home and remote interfaces of the enterprise bean’s client view are defined as Java™ RMI [3
faces. This allows the Container to implement the home and remote interfaces asdistributed objects. A
client using the home and remote interfaces can reside on a different machine than the enterpris
(location transparency), and the object references of the home and remote interfaces can be pas
the network to other applications.

The EJB specification further constrains the Java RMI types that can be used by enterprise bean
legal RMI-IIOP types [7]. This makes it possible for the EJB Container implementors to use RMI-I
as the object distribution protocol.

Note: The EJB 1.1 specification does not require Container vendors to use RMI-IIOP. A later relea
the J2EE platform is likely to require a J2EE platform implementor to implement the RMI-IIOP pr
col for EJB interoperability in heterogeneous server environments.
199 11/24/99

Support for Distribution Enterprise JavaBeans v1.1, Final Release Client-side objects in distributed environment

Sun Microsystems Inc.

with
ote

loyment
r uses

Server

r.
13.2 Client-side objects in distributed environment

When the RMI-IIOP protocol or similar distribution protocols are used, the client communicates
the enterprise bean usingstubsfor the server-side objects. The stubs implement the home and rem
interfaces.

Figure 49 Location of EJB Client Stubs.

The communication stubs used on the client side are artifacts generated at enterprise Bean’s dep
time by the EJB Container provider tools. The stubs used on the client are standard if the Containe
RMI-IIOP as the distribution protocol; the stubs are Container-specific otherwise.

13.3 Standard distribution protocol

The standard mapping of the Enterprise JavaBeans architecture to CORBA is defined in [8].

The mapping enables the following interoperability:

• A client using an ORB from one vendor can access enterprise Beans residing on an EJB
provided by another vendor.

• Enterprise Beans in one EJB Server can access enterprise Beans in another EJB Serve

• A non-Java platform CORBA client can access any enterprise Bean object.

enterprise Bean

container address space (i.e. JVM)

EJB home object

EJB object

remote

client address space (i.e. JVM)

client

EJB object stub

EJB home stub container
 11/24/99 200

Overview Enterprise JavaBeans v1.1, Final Release Enterprise bean environment

Sun Microsystem Inc

siness

m the
ccess
xternal
tar-
Chapter 14 Enterprise bean environment

This chapter specifies the interfaces for accessing the enterprise bean environment.

14.1 Overview

The Application Assembler and Deployer should be able to customize an enterprise bean’s bu
logic without accessing the enterprise bean’s source code.

In addition, ISVs typically develop enterprise beans that are, to a large degree, independent fro
operational environment in which the application will be deployed. Most enterprise beans must a
resource managers and external information. The key issue is how enterprise beans can locate e
information without prior knowledge of how the external information is named and organized in the
get operational environment.

The enterprise bean environment mechanism attempts to address both of the above issues.
201 11/24/99

Enterprise bean environment Enterprise JavaBeans v1.1, Final Release Enterprise bean’s environment as a JNDI API

Sun Microsystems Inc.

nment.
zation

bean
e

sing a
r-

bean’s
erprise

bean

es. The
enter-

the
yer to

s that
odify

bean
he val-

e bean
ed with
ment at
This chapter is organized as follows.

• Section 14.2 defines the interfaces that specify and access the enterprise bean’s enviro
The section illustrates the use of the enterprise bean’s environment for generic customi
of the enterprise bean’s business logic.

• Section 14.3 defines the interfaces for obtaining the home interface of another enterprise
using anEJB specification reference. An EJB specification reference is a special entry in th
enterprise bean’s environment.

• Section 14.4 defines the interfaces for obtaining a resource manager connection factory u
resource manager connection factory reference. A resource manager connection factory refe
ence is a special entry in the enterprise bean’s environment.

14.2 Enterprise bean’s environment as a JNDI API naming
context

The enterprise bean’s environment is a mechanism that allows customization of the enterprise
business logic during deployment or assembly. The enterprise bean’s environment allows the ent
bean to be customized without the need to access or change the enterprise bean’s source code.

The Container implements the enterprise bean’s environment, and provides it to the enterprise
instance through the JNDI interfaces. The enterprise bean’s environment is used as follows:

1. The enterprise bean’s business methods access the environment using the JNDI interfac
Bean Provider declares in the deployment descriptor all the environment entries that the
prise bean expects to be provided in its environment at runtime.

2. The Container provides an implementation of the JNDI API naming context that stores
enterprise bean environment. The Container also provides the tools that allow the Deplo
create and manage the environment of each enterprise bean.

3. The Deployer uses the tools provided by the Container to create the environment entrie
are declared in the enterprise bean’s deployment descriptor. The Deployer can set and m
the values of the environment entries.

4. The Container makes the environment naming context available to the enterprise
instances at runtime. The enterprise bean’s instances use the JNDI interfaces to obtain t
ues of the environment entries.

Each enterprise bean defines its own set of environment entries. All instances of an enterpris
within the same home share the same environment entries; the environment entries are not shar
other enterprise beans. Enterprise bean instances are not allowed to modify the bean’s environ
runtime.
 11/24/99 202

Enterprise bean’s environment as a JNDI API naming contextEnterprise JavaBeans v1.1, Final Release Enterprise bean environment

Sun Microsystem Inc

in the
nment

ron-

s his or

s. An
-

ent

yment
If an enterprise bean is deployed multiple times in the same Container, each deployment results
creation of a distinct home. The Deployer may set different values for the enterprise bean enviro
entries for each home.

Terminology warning: The enterprise bean’s “environment” should not be confused with the “envi
ment properties” defined in the JNDI API documentation.

The following subsections describe the responsibilities of each EJB Role.

14.2.1 Bean Provider’ s responsibilities
This section describes the Bean Provider’s view of the enterprise bean’s environment, and define
her responsibilities.

14.2.1.1 Access to enterprise bean’s environment

An enterprise bean instance locates the environment naming context using the JNDI interface
instance creates ajavax.naming.InitialContext object by using the constructor with no argu
ments, and looks up the environment naming via theInitialContext under the name
java:comp/env . The enterprise bean’s environment entries are stored directly in the environm
naming context, or in any of its direct or indirect subcontexts.

The value of an environment entry is of the Java type declared by the Bean Provider in the deplo
descriptor.
203 11/24/99

Enterprise bean environment Enterprise JavaBeans v1.1, Final Release Enterprise bean’s environment as a JNDI API

Sun Microsystems Inc.

.

’s code.

the
f the

s the
prise
The following code example illustrates how an enterprise bean accesses its environment entries

public class EmployeeServiceBean implements SessionBean {

...
public void setTaxInfo(int numberOfExemptions, ...)

throws InvalidNumberOfExemptionsException {
...

// Obtain the enterprise bean’s environment naming context.
Context initCtx = new InitialContext();
Context myEnv = (Context)initCtx.lookup("java:comp/env");

// Obtain the maximum number of tax exemptions
// configured by the Deployer.
Integer max = (Integer)myEnv.lookup(“maxExemptions”);

// Obtain the minimum number of tax exemptions
// configured by the Deployer.
Integer min = (Integer)myEnv.lookup(“minExemptions”);

// Use the environment entries to customize business logic.
if (numberOfExeptions > maxExemptions ||

numberOfExemptions < minExemptions)
throw new InvalidNumberOfExemptionsException();

// Get some more environment entries. These environment
// entries are stored in subcontexts.
String val1 = (String)myEnv.lookup(“foo/name1”);
Boolean val2 = (Boolean)myEnv.lookup(“foo/bar/name2”);

// The enterprise bean can also lookup using full pathnames.
Integer val3 = (Integer)

initCtx.lookup("java:comp/env/name3");
Integer val4 = (Integer)

initCtx.lookup("java:comp/env/foo/name4");
...

}
}

14.2.1.2 Declaration of environment entries

The Bean Provider must declare all the environment entries accessed from the enterprise bean
The environment entries are declared using theenv-entry elements in the deployment descriptor.

Eachenv-entry element describes a single environment entry. Theenv-entry element consists of
an optional description of the environment entry, the environment entry name relative to
java:comp/env context, the expected Java type of the environment entry value (i.e. the type o
object returned from the JNDIlookup method), and an optional environment entry value.

An environment entry is scoped to the session or entity bean whose declaration contain
env-entry element. This means that the environment entry is inaccessible from other enter
beans at runtime, and that other enterprise beans may defineenv-entry elements with the same
env-entry-name without causing a name conflict.
 11/24/99 204

Enterprise bean’s environment as a JNDI API naming contextEnterprise JavaBeans v1.1, Final Release Enterprise bean environment

Sun Microsystem Inc

t be a
The environment entry values may be one of the following Java programming language types:String ,
Integer , Boolean , Double , Byte , Short , Long , andFloat .

If the Bean Provider provides a value for an environment entry using theenv-entry-value ele-
ment, the value can be changed later by the Application Assembler or Deployer. The value mus
string that is valid for the constructor of the specified type that takes a singleString parameter.
205 11/24/99

Enterprise bean environment Enterprise JavaBeans v1.1, Final Release Enterprise bean’s environment as a JNDI API

Sun Microsystems Inc.
The following example is the declaration of environment entries used by theEmployeeService-
Bean whose code was illustrated in the previous subsection.

<enterprise-beans>
<session>

...
<ejb-name>EmployeeService</ejb-name>
<ejb-class>

com.wombat.empl.EmployeeServiceBean
</ejb-class>
...
<env-entry>

<description>
The maximum number of tax exemptions
allowed to be set.

</description>
<env-entry-name>maxExemptions</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>
<env-entry-value>15</env-entry-value>

</env-entry>
<env-entry>

<description>
The minimum number of tax exemptions
allowed to be set.

</description>
<env-entry-name>minExemptions</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>
<env-entry-value>1</env-entry-value>

</env-entry>
<env-entry>

<env-entry-name>foo/name1</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>value1</env-entry-value>

</env-entry>
<env-entry>

<env-entry-name>foo/bar/name2</env-entry-name>
<env-entry-type>java.lang.Boolean</env-entry-type>
<env-entry-value>true</env-entry-value>

</env-entry>
<env-entry>

<description>Some description.</description>
<env-entry-name>name3</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>

</env-entry>
<env-entry>

<env-entry-name>foo/name4</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>
<env-entry-value>10</env-entry-value>

</env-entry>
...

</session>
</enterprise-beans>
...
 11/24/99 206

EJB references Enterprise JavaBeans v1.1, Final Release Enterprise bean environment

Sun Microsystem Inc

Bean
er has

e bean

by the
ies for

the

nter-

r-
ntries
r set
con-

to their

n Pro-

JB ref-

-jar file
at the
14.2.2 Application Assembler’s responsibility
The Application Assembler is allowed to modify the values of the environment entries set by the
Provider, and is allowed to set the values of those environment entries for which the Bean Provid
not specified any initial values.

14.2.3 Deployer’s responsibility
The Deployer must ensure that the values of all the environment entries declared by an enterpris
are set to meaningful values.

The Deployer can modify the values of the environment entries that have been previously set
Bean Provider and/or Application Assembler, and must set the values of those environment entr
which no value has been specified.

The description elements provided by the Bean Provider or Application Assembler help
Deployer with this task.

14.2.4 Container Provider responsibility
The container provider has the following responsibilities:

• Provide a deployment tool that allows the Deployer to set and modify the values of the e
prise bean’s environment entries.

• Implement thejava:comp/env environment naming context, and provide it to the ente
prise bean instances at runtime. The naming context must include all the environment e
declared by the Bean Provider, with their values supplied in the deployment descriptor o
by the Deployer. The environment naming context must allow the Deployer to create sub
texts if they are needed by an enterprise bean.

• The Container must ensure that the enterprise bean instances have only read access
environment variables. The Container must throw thejavax.naming.OperationNot-
SupportedException from all the methods of thejavax.naming.Context interface
that modify the environment naming context and its subcontexts.

14.3 EJB references

This section describes the programming and deployment descriptor interfaces that allow the Bea
vider to refer to the homes of other enterprise beans using “logical” names calledEJB references. The
EJB references are special entries in the enterprise bean’s environment. The Deployer binds the E
erences to the enterprise bean’s homes in the target operational environment.

The deployment descriptor also allows the Application Assembler tolink an EJB reference declared in
one enterprise bean to another enterprise bean contained in the same ejb-jar file, or in another ejb
in the same J2EE application unit. The link is an instruction to the tools used by the Deployer th
EJB reference must be bound to the home of the specified target enterprise bean.
207 11/24/99

Enterprise bean environment Enterprise JavaBeans v1.1, Final Release EJB references

Sun Microsystems Inc.

rences.

eans as

4.3.1.2

rprise
e

viron-

home

i-
ter-

ust not
nces

(i.e.
an.
14.3.1 Bean Provider’ s responsibilities
This subsection describes the Bean Provider’s view and responsibilities with respect to EJB refe

14.3.1.1 EJB reference programming interfaces

The Bean Provider must use EJB references to locate the home interfaces of other enterprise b
follows.

• Assign an entry in the enterprise bean’s environment to the reference. (See subsection 1
for information on how EJB references are declared in the deployment descriptor.)

• The EJB specification recommends, but does not require, that all references to other ente
beans be organized in theejb subcontext of the bean’s environment (i.e. in th
java:comp/env/ejb JNDI context).

• Look up the home interface of the referenced enterprise bean in the enterprise bean’s en
ment using JNDI.

The following example illustrates how an enterprise bean uses an EJB reference to locate the
interface of another enterprise bean.

public class EmployeeServiceBean implements SessionBean {

public void changePhoneNumber(...) {
...

// Obtain the default initial JNDI context.
Context initCtx = new InitialContext();

// Look up the home interface of the EmployeeRecord
// enterprise bean in the environment.
Object result = initCtx.lookup(

"java:comp/env/ejb/EmplRecord");

// Convert the result to the proper type.
EmployeeRecordHome emplRecordHome = (EmployeeRecordHome)

javax.rmi.PortableRemoteObject.narrow(result,
EmployeeRecordHome.class);

...
}

}

In the example, the Bean Provider of theEmployeeServiceBean enterprise bean assigned the env
ronment entryejb/EmplRecord as the EJB reference name to refer to the home of another en
prise bean.

14.3.1.2 Declaration of EJB references in deployment descriptor

Although the EJB reference is an entry in the enterprise bean’s environment, the Bean Provider m
use aenv-entry element to declare it. Instead, the Bean Provider must declare all the EJB refere
using theejb-ref elements of the deployment descriptor. This allows the ejb-jar consumer
Application Assembler or Deployer) to discover all the EJB references used by the enterprise be
 11/24/99 208

EJB references Enterprise JavaBeans v1.1, Final Release Enterprise bean environment

Sun Microsystem Inc

an has

entry
f

.

and that
Eachejb-ref element describes the interface requirements that the referencing enterprise be
for the referenced enterprise bean. Theejb-ref element contains an optionaldescription ele-
ment; and the mandatoryejb-ref-name, ejb-ref-type , home, andremote elements.

The ejb-ref-name element specifies the EJB reference name; its value is the environment
name used in the enterprise bean code. Theejb-ref-type element specifies the expected type o
the enterprise bean; its value must be eitherEntity or Session . Thehome andremote elements
specify the expected Java types of the referenced enterprise bean’s home and remote interfaces

An EJB reference is scoped to the session or entity bean whose declaration contains theejb-ref ele-
ment. This means that the EJB reference is not accessible to other enterprise beans at runtime,
other enterprise beans may defineejb-ref elements with the sameejb-ref-name without causing
a name conflict.

The following example illustrates the declaration of EJB references in the deployment descriptor.

...
<enterprise-beans>

<session>
...
<ejb-name>EmployeeService</ejb-name>
<ejb-class>

com.wombat.empl.EmployeeServiceBean
</ejb-class>
...
<ejb-ref>

<description>
This is a reference to the entity bean that
encapsulates access to employee records.

</description>
<ejb-ref-name>ejb/EmplRecord</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<home>com.wombat.empl.EmployeeRecordHome</home>
<remote>com.wombat.empl.EmployeeRecord</remote>

</ejb-ref>

<ejb-ref>
<ejb-ref-name>ejb/Payroll</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<home>com.aardvark.payroll.PayrollHome</home>
<remote>com.aardvark.payroll.Payroll</remote>

</ejb-ref>

<ejb-ref>
<ejb-ref-name>ejb/PensionPlan</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>com.wombat.empl.PensionPlanHome</home>
<remote>com.wombat.empl.PensionPlan</remote>

</ejb-ref>
...

</session>
...

</enterprise-beans>
...
209 11/24/99

Enterprise bean environment Enterprise JavaBeans v1.1, Final Release EJB references

Sun Microsystems Inc.

n

in the

e with
e indi-

rget
rence.

l-
14.3.2 Application Assembler’s responsibilities

The Application Assembler can use theejb-link element in the deployment descriptor to link a
EJB reference to a target enterprise bean. The link will be observed by the deployment tools.

The Application Assembler specifies the link between two enterprise beans as follows:

• The Application Assembler uses the optionalejb-link element of theejb-ref element
of the referencing enterprise bean. The value of theejb-link element is the name of the tar-
get enterprise bean. (It is the name defined in theejb-name element of the target enterprise
bean.) The target enterprise bean can be in the same ejb-jar file, or in another ejb-jar
same J2EE application unit as the referencing enterprise bean.

• The Application Assembler must ensure that the target enterprise bean is type-compatibl
the declared EJB reference. This means that the target enterprise bean must be of the typ
cated in theejb-ref-type element, and that the home and remote interfaces of the ta
enterprise bean must be Java type-compatible with the interfaces declared in the EJB refe

The following illustrates anejb-link in the deployment descriptor.

...
<enterprise-beans>

<session>
...

<ejb-name>EmployeeService</ejb-name>
<ejb-class>

com.wombat.empl.EmployeeServiceBean
</ejb-class>
...
<ejb-ref>

<ejb-ref-name>ejb/EmplRecord</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<home>com.wombat.empl.EmployeeRecordHome</home>
<remote>com.wombat.empl.EmployeeRecord</remote>
<ejb-link>EmployeeRecord</ejb-link>

</ejb-ref>
...

</session>
...

<entity>
<ejb-name>EmployeeRecord</ejb-name>
<home>com.wombat.empl.EmployeeRecordHome</home>
<remote>com.wombat.empl.EmployeeRecord</remote>
...

</entity>
...

</enterprise-beans>
...

The Application Assembler uses theejb-link element to indicate that the EJB reference “Emp
Record” declared in theEmployeeService enterprise bean has been linked to theEmploy-
eeRecord enterprise bean.
 11/24/99 210

Resource manager connection factory referencesEnterprise JavaBeans v1.1, Final Release Enterprise bean environment

Sun Microsystem Inc

es of
mple,

rget

types
e indi-
rget
ared in

t.

tasks
ovider
-

EJB

ce man-

a

14.3.3 Deployer’s responsibility
The Deployer is responsible for the following:

• The Deployer must ensure that all the declared EJB references are bound to the hom
enterprise beans that exist in the operational environment. The Deployer may use, for exa
the JNDILinkRef mechanism to create a symbolic link to the actual JNDI name of the ta
enterprise bean’s home.

• The Deployer must ensure that the target enterprise bean is type-compatible with the
declared for the EJB reference. This means that the target enterprise bean must of the typ
cated in theejb-ref-type element, and that the home and remote interfaces of the ta
enterprise bean must be Java type-compatible with the home and remote interfaces decl
the EJB reference.

• If an EJB reference declaration includes theejb-link element, the Deployer must bind the
enterprise bean reference to the home of the enterprise bean specified as the link’s targe

14.3.4 Container Provider’ s responsibility
The Container Provider must provide the deployment tools that allow the Deployer to perform the
described in the previous subsection. The deployment tools provided by the EJB Container pr
must be able to process the information supplied in theejb-ref elements in the deployment descrip
tor.

At the minimum, the tools must be able to:

• Preserve the application assembly information in theejb-link elements by binding an EJB
reference to the home interface of the specified target enterprise bean.

• Inform the Deployer of any unresolved EJB references, and allow him or her to resolve an
reference by binding it to a specified compatible target enterprise bean.

14.4 Resource manager connection factory references

A resource manager connection factory is an object that is used to create connections to a resour
ager. For example, an object that implements thejavax.sql.DataSource interface is a resource
manager connection factory forjava.sql.Connection objects which implement connections to
database management system.
211 11/24/99

Enterprise bean environment Enterprise JavaBeans v1.1, Final Release Resource manager connection factory refer-

Sun Microsystems Inc.

t allow

ies in
y refer-
ce facto-
source

trans-

es his

tions to

n fac-
ection

ection
ferent
nces
-
ht
n

ment

tain a
ible to

the

. In
od that

nvokes
ation
This section describes the enterprise bean programming and deployment descriptor interfaces tha
the enterprise bean code to refer to resource factories using logical names calledresource manager con-
nection factory references. The resource manager connection factory references are special entr
the enterprise bean’s environment. The Deployer binds the resource manager connection factor
ences to the actual resource factories that are configured in the Container. Because these resour
ries allow the Container to affect resource management, the connections acquired through the re
manager connection factory references are calledmanaged resources(e.g. these resource factories allow
the Container to implement connection pooling and automatic enlistment of the connection with a
action).

14.4.1 Bean Provider’ s responsibilities
This subsection describes the Bean Provider’s view of locating resource factories and defin
responsibilities.

14.4.1.1 Programming interfaces for resource manager connection factory references

The Bean Provider must use resource manager connection factory references to obtain connec
resources as follows.

• Assign an entry in the enterprise bean’s environment to the resource manager connectio
tory reference. (See subsection 14.4.1.2 for information on how resource manager conn
factory references are declared in the deployment descriptor.)

• The EJB specification recommends, but does not require, that all resource manager conn
factory references be organized in the subcontexts of the bean’s environment, using a dif
subcontext for each resource manager type. For example, all JDBC™ DataSource refere
might be declared in thejava:comp/env/jdbc subcontext, and all JMS connection facto
ries in thejava:comp/env/jms subcontext. Also, all JavaMail connection factories mig
be declared in thejava:comp/env/mail subcontext and all URL connection factories i
the java:comp/env/url subcontext.

• Look up the resource manager connection factory object in the enterprise bean’s environ
using the JNDI interface.

• Invoke the appropriate method on the resource manager connection factory method to ob
connection to the resource. The factory method is specific to the resource type. It is poss
obtain multiple connections by calling the factory object multiple times.

The Bean Provider has two choices with respect to dealing with associating a principal with
resource manager access:

• Allow the Deployer to set up principal mapping or resource manager sign-on information
this case, the enterprise bean code invokes a resource manager connection factory meth
has no security-related parameters.

• Sign on to the resource manager from the bean code. In this case, the enterprise bean i
the appropriate resource manager connection factory method that takes the sign-on inform
as method parameters.
 11/24/99 212

Resource manager connection factory referencesEnterprise JavaBeans v1.1, Final Release Enterprise bean environment

Sun Microsystem Inc

o

ation)

nviron-

s in the
e.
ences

. The

cts. The
ign-on
l map-
ty by
The Bean Provider uses theres-auth deployment descriptor element to indicate which of the tw
resource manager authentication approaches is used.

We expect that the first form (i.e. letting the Deployer set up the resource manager sign-on inform
will be the approach used by most enterprise beans.

The following code sample illustrates obtaining a JDBC connection.

public class EmployeeServiceBean implements SessionBean {
EJBContext ejbContext;

public void changePhoneNumber(...) {
...

// obtain the initial JNDI context
Context initCtx = new InitialContext();

// perform JNDI lookup to obtain resource manager
// connection factory
javax.sql.DataSource ds = (javax.sql.DataSource)

initCtx.lookup("java:comp/env/jdbc/EmployeeAppDB");

// Invoke factory to obtain a connection. The security
// principal is not given, and therefore
// it will be configured by the Deployer.
java.sql.Connection con = ds.getConnection();
...

}
}

14.4.1.2 Declaration of resource manager connection factory references in deployment
descriptor

Although a resource manager connection factory reference is an entry in the enterprise bean’s e
ment, the Bean Provider must not use anenv-entry element to declare it.

Instead, the Bean Provider must declare all the resource manager connection factory reference
deployment descriptor using theresource-ref elements. This allows the ejb-jar consumer (i.
Application Assembler or Deployer) to discover all the resource manager connection factory refer
used by an enterprise bean.

Eachresource-ref element describes a single resource manager connection factory reference
resource-ref element consists of thedescription element; and the mandatory
res-ref-name , res-type , andres-auth elements. Theres-ref-name element contains the
name of the environment entry used in the enterprise bean’s code. Theres-type element contains
the Java type of the resource manager connection factory that the enterprise bean code expe
res-auth element indicates whether the enterprise bean code performs resource manager s
programmatically, or whether the Container signs on to the resource manager using the principa
ping information supplied by the Deployer. The Bean Provider indicates the sign-on responsibili
setting the value of theres-auth element toApplication or Container .
213 11/24/99

Enterprise bean environment Enterprise JavaBeans v1.1, Final Release Resource manager connection factory refer-

Sun Microsystems Inc.

declara-
tory
ns may

n fac-

Java

by the

y

e
n

the

ctories
e

A resource manager connection factory reference is scoped to the session or entity bean whose
tion contains theresource-ref element. This means that the resource manager connection fac
reference is not accessible from other enterprise beans at runtime, and that other enterprise bea
defineresource-ref elements with the sameres-ref-name without causing a name conflict.

The type declaration allows the Deployer to identify the type of the resource manager connectio
tory.

Note that the indicated type is the Java type of the resource manager connection factory, not the
type of the resource.

The following example is the declaration of resource manager connection factory references used
EmployeeService enterprise bean illustrated in the previous subsection.

...
<enterprise-beans>

<session>
...

<ejb-name>EmployeeService</ejb-name>
<ejb-class>

com.wombat.empl.EmployeeServiceBean
</ejb-class>
...
<resource-ref>

<description>
A data source for the database in which
the EmployeeService enterprise bean will
record a log of all transactions.

</description>
<res-ref-name>jdbc/EmployeeAppDB</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>

</resource-ref>
...

</session>
</enterprise-beans>
...

14.4.1.3 Standard resource manager connection factory types

The Bean Provider must use thejavax.sql.DataSource resource manager connection factor
type for obtaining JDBC API connections, and thejavax.jms.QueueConnectionFactory or
the javax.jms.TopicConnectionFactory for obtaining JMS connections.

The Bean Provider must use thejavax.mail.Session resource manager connection factory typ
for obtaining JavaMailTM API connections, and thejava.net.URL resource manager connectio
factory type for obtaining URL connections.

It is recommended that the Bean Provider names JDBC API data sources in
java:comp/env/jdbc subcontext, and JMS connection factories in thejava:comp/env/jms
subcontext. It is also recommended that the Bean Provider names all JavaMail API connection fa
in the java:comp/env/mail subcontext, and all URL connection factories in th
java:comp/env/url subcontext.
 11/24/99 214

Resource manager connection factory referencesEnterprise JavaBeans v1.1, Final Release Enterprise bean environment

Sun Microsystem Inc

ean
tional

s to the

rence

on fac-
JNDI
urce
mpati-

ening
, and is

-
ecific

t the
ager,
anner
cifica-

pre-

r the

to
-on

gn-on

ass-
Note: A future EJB specification will add the “connector” mechanism that will allow an enterprise b
to use the API described in this section to obtain resource objects that provide access to addi
back-end systems.

14.4.2 Deployer’s responsibility
The Deployer uses deployment tools to bind the resource manager connection factory reference
actual resource factories configured in the target operational environment.

The Deployer must perform the following tasks for each resource manager connection factory refe
declared in the deployment descriptor:

• Bind the resource manager connection factory reference to a resource manager connecti
tory that exists in the operational environment. The Deployer may use, for example, the
LinkRef mechanism to create a symbolic link to the actual JNDI API name of the reso
manager connection factory. The resource manager connection factory type must be co
ble with the type declared in theres-type element.

• Provide any additional configuration information that the resource manager needs for op
and managing the resource. The configuration mechanism is resource-manager specific
beyond the scope of this specification.

• If the value of theres-auth element isContainer , the Deployer is responsible for config
uring the sign-on information for the resource manager. This is performed in a manner sp
to the EJB Container and resource manager; it is beyond the scope of this specification.

For example, if principals must be mapped from the security domain and principal realm used a
enterprise beans application level to the security domain and principal realm of the resource man
the Deployer or System Administrator must define the mapping. The mapping is performed in a m
specific to the EJB Container and resource manager; it is beyond the scope of the current EJB spe
tion.

14.4.3 Container provider responsibility
The EJB Container provider is responsible for the following:

• Provide the deployment tools that allow the Deployer to perform the tasks described in the
vious subsection.

• Provide the implementation of the resource manager connection factory classes fo
resource managers that are configured with the EJB Container.

• If the Bean Provider set theres-auth of a resource manager connection factory reference
Application , the Container must allow the bean to perform explicit programmatic sign
using the resource manager’s API.

• The Container must provide tools that allow the Deployer to set up resource manager si
information for the resource manager references whoseres-auth element is set toCon-
tainer . The minimum requirement is that the Deployer must be able to specify the user/p
215 11/24/99

Enterprise bean environment Enterprise JavaBeans v1.1, Final Release DeprecatedEJBContext.getEnvironment()

Sun Microsystems Inc.

y the
or user
nager

of a
ntainer
rop-
n.

wing

er for

e man-
erprise

ment
ption

roper-
nt the

ould

e

word information for each resource manager connection factory reference declared b
enterprise bean, and the Container must be able to use the user/password combination f
authentication when obtaining a connection to the resource by invoking the resource ma
connection factory.

Although not required by the EJB specification, we expect that Containers will support some form
single sign-on mechanism that spans the application server and the resource managers. The Co
will allow the Deployer to set up the resource managers such that the EJB caller principal can be p
agated (directly or through principal mapping) to a resource manager, if required by the applicatio

While not required by the EJB specification, most EJB Container providers also provide the follo
features:

• A tool to allow the System Administrator to add, remove, and configure a resource manag
the EJB Server.

• A mechanism to pool connections to the resources for the enterprise beans and otherwis
age the use of resources by the Container. The pooling must be transparent to the ent
beans.

14.4.4 System Administrator’s responsibility

The System Administrator is typically responsible for the following:

• Add, remove, and configure resource managers in the EJB Server environment.

In some scenarios, these tasks can be performed by the Deployer.

14.5 DeprecatedEJBContext.getEnvironment() method

The environment naming contextintroduced in EJB 1.1 replaces the EJB 1.0 concept ofenvironment
properties.

An EJB 1.1 compliant Container is not required to implement support for the EJB 1.0 style environ
properties. If the Container does not implement the functionality, it should throw a RuntimeExce
(or subclass thereof) from theEJBContext.getEnvironment() method.

If an EJB 1.1 compliant Container chooses to provide support for the EJB 1.0 style environment p
ties (so that it can support enterprise beans written to the EJB 1.0 specification), it should impleme
support as described below.

When the tools convert the EJB 1.0 deployment descriptor to the EJB 1.1 XML format, they sh
place the definitions of the environment properties into theejb10-properties subcontext of the
environment naming context. Theenv-entry elements should be defined as follows: th
env-entry-name element contains the name of the environment property, theenv-entry-type
must be java.lang.String , and the optionalenv-entry-value contains the environment
property value.
 11/24/99 216

UserTransaction interface Enterprise JavaBeans v1.1, Final Release Enterprise bean environment

Sun Microsystem Inc

ample.

prise
h the

re
ion are
For example, an EJB 1.0 enterprise bean with two environment propertiesfoo andbar , should declare
the followingenv-entry elements in its EJB 1.1 format deployment descriptor.

...
<env-entry>

env-entry-name>ejb10-properties/foo</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>

</env-entry>
<env-entry>

<description>bar’s description</description>
<env-entry-name>ejb10-properties/bar</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>bar value</env-entry-value>

</env-entry>
...

The Container should provide the entries declared in theejb10-properties subcontext to the
instances as ajava.util.Properties object that the instances obtain by invoking theEJBCon-
text.getEnvironment() method.

The enterprise bean uses the EJB 1.0 API to access the properties, as shown by the following ex

public class SomeBean implements SessionBean {
SessionContext ctx;
java.util.Properties env;

public void setSessionContext(SessionContext sc) {
ctx = sc;
env = ctx.getEnvironment();

}

public someBusinessMethod(...) ... {
String fooValue = env.getProperty("foo");
String barValue = env.getProperty("bar");

}
...

}

14.6 UserTransaction interface

Note: The requirement for the Container to publish the UserTransaction interface in the enter
bean’s JNDI API context was added to make the requirements on UserTransaction uniform wit
other Java 2 platform, Enterprise Edition application component types.

The Container must make theUserTransaction interface available to the enterprise beans that a
allowed to use this interface (only session beans with bean-managed transaction demarcat
allowed to use this interface) in JNDI API under the namejava:comp/UserTransaction.
217 11/24/99

Enterprise bean environment Enterprise JavaBeans v1.1, Final Release UserTransaction interface

Sun Microsystems Inc.

at
The Container must not make theUserTransaction interface available to the enterprise beans th
are not allowed to use this interface. The Container should throwjavax.naming.NameNotFoun-
dException if an instance of an enterprise bean that is not allowed to use theUserTransaction
interface attempts to look up the interface in JNDI API.

The following code example

public MySessionBean implements SessionBean {
...
public someMethod()
{

Context initCtx = new InitialContext();
UserTransaction utx = (UserTransaction)initCtx.lookup(

“java:comp/UserTransaction”);
utx.begin();
...
utx.commit();

}
...

}

is functionally equivalent to

public MySessionBean implements SessionBean {
SessionContext ctx;
...
public someMethod()
{

UserTransaction utx = ctx.getUserTransaction();
utx.begin();
...
utx.commit();

}
...

}

 11/24/99 218

Overview Enterprise JavaBeans v1.1, Final Release Security management

Sun Microsystem Inc

changes
edge

ppli-
on-

and

han

e dif-
Chapter 15 Security management

This chapter defines the EJB architecture support for security management.

The deployment aspect of security management has changed significantly since EJB 1.0. These
were made primarily to support ISV enterprise beans, which are usually written without the knowl
of the target security domain.

15.1 Overview

We set the following goals for the security management in the EJB architecture:

• Lessen the burden of the application developer (i.e. the Bean Provider) for securing the a
cation by allowing greater coverage from more qualified EJB architecture roles. The EJB C
tainer provider provides the implementation of the security infrastructure; the Deployer
System Administrator define the security policies.

• Allow the security policies to be set by the Application Assembler or Deployer rather t
being hard-coded by the Bean Provider at development time.

• Allow the enterprise bean applications to be portable across multiple EJB Servers that us
ferent security mechanisms.
219 11/24/99

Security management Enterprise JavaBeans v1.1, Final Release Bean Provider’s responsibilities

Sun Microsystems Inc.

without
e enter-
yer to

tional

as the
ns.
must
tively

r-
rfaces.
nter-
ents

n the
enter-
spects
e bean

the
invoke

tools
y dur-

simple
usiness

urity

y, and

mote or
inter-
an.
The EJB architecture encourages the Bean Provider to implement the enterprise bean class
hard-coding the security policies and mechanisms into the business methods. In most cases, th
prise bean’s business method should not contain any security-related logic. This allows the Deplo
configure the security policies for the application in a way that is most appropriate for the opera
environment of the enterprise.

To make the Deployer’s task easier, the Application Assembler (which could be the same party
Bean Provider) may definesecurity rolesfor an application composed of one or more enterprise bea
A security role is a semantic grouping of permissions that a given type of users of the application
have in order to successfully use the application. The Applications Assembler can define (declara
in the deployment descriptor)method permissionsfor each security role. A method permission is a pe
mission to invoke a specified group of methods of the enterprise beans’ home and remote inte
The security roles defined by the Application Assembler present a simplified security view of the e
prise beans application to the Deployer—the Deployer’s view of the application’s security requirem
is the small set of security roles rather than a large number of individual methods.

The Deployer is responsible for assigning principals, or groups of principals, which are defined i
target operational environment, to the security roles defined by the Application Assembler for the
prise beans in the deployment descriptor. The Deployer is also responsible for configuring other a
of the security management of the enterprise beans, such as principal mapping for inter-enterpris
calls and principal mapping for resource manager access.

At runtime, a client will be allowed to invoke a business method only if the principal associated with
client call has been assigned by the Deployer to have at least one security role that is allowed to
the business method.

The Container Provider is responsible for enforcing the security policies at runtime, providing the
for managing security at runtime, and providing the tools used by the Deployer to manage securit
ing deployment.

Because not all security policies can be expressed declaratively, the EJB architecture provides a
programmatic interface that the Bean Provider may use to access the security context from the b
methods.

The following sections define the responsibilities of the individual EJB roles with respect to sec
management.

15.2 Bean Provider’s responsibilities

This section defines the Bean Provider’s perspective of the EJB architecture support for securit
defines his responsibilities.

15.2.1 Invocation of other enterprise beans
An enterprise bean business method can invoke another enterprise bean via the other bean’s re
home interface. The EJB architecture provides neither programmatic nor deployment descriptor
faces for the invoking enterprise bean to control the principal passed to the invoked enterprise be
 11/24/99 220

Bean Provider’s responsibilities Enterprise JavaBeans v1.1, Final Release Security management

Sun Microsystem Inc

tion) is
r and
nt of

(in the
o the

r secu-

meth-
derly-

uch as
hould

ies in
mecha-
efine

secu-
riate

trans-
uld be
access
The management of caller principals passed on enterprise bean invocations (i.e. principal delega
set up by the Deployer and System Administrator in a Container-specific way. The Bean Provide
Application Assembler should describe all the requirements for the caller’s principal manageme
inter-enterprise bean invocations as part of the description. The default principal management
absence of other deployment instructions) is to propagate the caller principal from the caller t
callee. (That is, the called enterprise bean will see the same returned value of theEJBContext.get-
CallerPrincipal() as the calling enterprise bean.)

15.2.2 Resource access
Section 14.4 defines the protocol for accessing resource managers, including the requirements fo
rity management.

15.2.3 Access of underlying OS resources
The EJB architecture does not define the operating system principal under which enterprise bean
ods execute. Therefore, the Bean Provider cannot rely on a specific principal for accessing the un
ing OS resources, such as files. (See subsection 15.6.8 for the reasons behind this rule.)

We believe that most enterprise business applications store information in resource managers s
relational databases rather than in resources at the operating system levels. Therefore, this rule s
not affect the portability of most enterprise beans.

15.2.4 Programming style recommendations

The Bean Provider should neither implement security mechanisms nor hard-code security polic
the enterprise beans’ business methods. Rather, the Bean Provider should rely on the security
nisms provided by the EJB Container, and should let the Application Assembler and Deployer d
the appropriate security policies for the application.

The Bean Provider and Application Assembler may use the deployment descriptor to convey
rity-related information to the Deployer. The information helps the Deployer to set up the approp
security policy for the enterprise bean application.

15.2.5 Programmatic access to caller’s security context

Note: In general, security management should be enforced by the Container in a manner that is
parent to the enterprise beans’ business methods. The security API described in this section sho
used only in the less frequent situations in which the enterprise bean business methods need to
the security context information.
221 11/24/99

Security management Enterprise JavaBeans v1.1, Final Release Bean Provider’s responsibilities

Sun Microsystems Inc.

that
enter-

pecified
secu-

s.

row a
The javax.ejb.EJBContext interface provides two methods (plus two deprecated methods
were defined in EJB 1.0) that allow the Bean Provider to access security information about the
prise bean’s caller.

public interface javax.ejb.EJBContext {
...

//
// The following two methods allow the EJB class
// to access security information.
//
java.security.Principal getCallerPrincipal();
boolean isCallerInRole(String roleName);

//
// The following two EJB 1.0 methods are deprecated.
//
java.security.Identity getCallerIdentity();
boolean isCallerInRole(java.security.Identity role);

...

}

The Bean Provider can invoke thegetCallerPrincipal andisCallerInRole methods only in
the enterprise bean’s business methods for which the Container has a client security context, as s
in Table 2 on page 60, Table 3 on page 70, and Table 4 on page 111. If they are invoked when no
rity context exists, they should throw thejava.lang.IllegalStateException runtime excep-
tion.

The getCallerIdentity() and isCallerInRole(Identity role) methods are depre-
cated in EJB 1.1. The Bean Provider must use thegetCallerPrincipal() and isCallerIn-
Role(String roleName) methods for new enterprise beans.

An EJB 1.1 compliant container may choose to implement the two deprecated methods as follow

• A Container that does not want to provide support for this deprecated method should th
RuntimeException (or subclass ofRuntimeException) from the getCallerI-
dentity() method.

• A Container that wants to provide support for thegetCallerIdentity() method should
return an instance of a subclass of thejava.security.Identity abstract class from the
 11/24/99 222

Bean Provider’s responsibilities Enterprise JavaBeans v1.1, Final Release Security management

Sun Microsystem Inc

lue

row a

in the
ation

in the

. The
aller
entified
te the
net
inci-
, not
ros
d by
method. ThegetName() method invoked on the returned object must return the same va
thatgetCallerPrincipal().getName() would return.

• A Container that does not want to provide support for this deprecated method should th
RuntimeException (or subclass ofRuntimeException) from the isCallerIn-
Role(Identity identity) method.

• A Container that wants to implement theisCallerInRole(Identity identity)
method should implement it as follows:

public isCallerInRole(Identity identity) {
return isCallerInRole(identity.getName());

}

15.2.5.1 Use ofgetCallerPrincipal()

The purpose of the getCallerPrincipal() method is to allow the enterprise bean methods to obta
current caller principal’s name. The methods might, for example, use the name as a key to inform
in a database.

An enterprise bean can invoke thegetCallerPrincipal() method to obtain ajava.secu-
rity.Principal interface representing the current caller. The enterprise bean can then obta
distinguished name of the caller principal using thegetName() method of thejava.secu-
rity.Principal interface.

The meaning of thecurrent caller, the Java class that implements thejava.security.Principal
interface, and the realm of the principals returned by thegetCallerPrincipal() method depend
on the operational environment and the configuration of the application.

An enterprise may have a complex security infrastructure that includes multiple security domains
security infrastructure may perform one or more mapping of principals on the path from an EJB c
to the EJB object. For example, an employee accessing his company over the Internet may be id
by a userid and password (basic authentication), and the security infrastructure may authentica
principal and then map the principal to a Kerberos principal that is used on the enterprise’ s intra
before delivering the method invocation to the EJB object. If the security infrastructure performs pr
pal mapping, the getCallerPrincipal() method returns the principal that is the result of the mapping
the original caller principal. (In the previous example, getCallerPrincipal() would return the Kerbe
principal.) The management of the security infrastructure, such as principal mapping, is performe
the System Administrator role; it is beyond the scope EJB specification.
223 11/24/99

Security management Enterprise JavaBeans v1.1, Final Release Bean Provider’s responsibilities

Sun Microsystems Inc.

uses it
a-
iden-

code
using

end on

pplica-
pals or
The following code sample illustrates the use of thegetCallerPrincipal() method.

public class EmployeeServiceBean implements SessionBean {
EJBContext ejbContext;

public void changePhoneNumber(...) {
...

// Obtain the default initial JNDI context.
Context initCtx = new InitialContext();

// Look up the home interface of the EmployeeRecord
// enterprise bean in the environment.
Object result = initCtx.lookup(

"java:comp/env/ejb/EmplRecord");

// Convert the result to the proper type.
EmployeeRecordHome emplRecordHome = (EmployeeRecordHome)

javax.rmi.PortableRemoteObject.narrow(result,
EmployeeRecordHome.class);

// obtain the caller principal.
callerPrincipal = ejbContext.getCallerPrincipal();

// obtain the caller principal’s name.
callerKey = callerPrincipal.getName();

// use callerKey as primary key to EmployeeRecord finder
EmployeeRecord myEmployeeRecord =

emplRecordHome.findByPrimaryKey(callerKey);

// update phone number
myEmployeeRecord.changePhoneNumber(...);

...
}

}

In the previous example, the enterprise bean obtains the principal name of the current caller and
as the primary key to locate anEmployeeRecord Entity object. This example assumes that applic
tion has been deployed such that the current caller principal contains the primary key used for the
tification of employees (e.g. employee number).

15.2.5.2 Use ofisCallerInRole(String roleName)

The main purpose of the isCallerInRole(String roleName) method is to allow the Bean Provider to
the security checks that cannot be easily defined declaratively in the deployment descriptor
method permissions. Such a check might impose a role-based limit on a request, or it might dep
information stored in the database.

The enterprise bean code uses theisCallerInRole(String roleName) method to test whether
the current caller has been assigned to a given security role. Security roles are defined by the A
tion Assembler in the deployment descriptor (see Subsection 15.3.1), and are assigned to princi
principal groups that exist in the operational environment by the Deployer.
 11/24/99 224

Bean Provider’s responsibilities Enterprise JavaBeans v1.1, Final Release Security management

Sun Microsystem Inc

ty roles
curity

e

-

The following code sample illustrates the use of theisCallerInRole(String roleName)
method.

public class PayrollBean ... {
EntityContext ejbContext;

public void updateEmployeeInfo(EmplInfo info) {

oldInfo = ... read from database;

// The salary field can be changed only by caller’s
// who have the security role "payroll"
if (info.salary != oldInfo.salary &&

!ejbContext.isCallerInRole("payroll")) {
throw new SecurityException(...);

}
...

}
...

}

15.2.5.3 Declaration of security roles referenced from the bean’s code

The Bean Provider is responsible for declaring in thesecurity-role-ref elements of the deploy-
ment descriptor all the security role names used in the enterprise bean code. Declaring the securi
references in the code allows the Application Assembler or Deployer to link the names of the se
roles used in the code to the security roles defined for an assembled application through thesecu-
rity-role elements.

The Bean Provider must declare each security role referenced in the code using thesecu-
rity-role-ref element as follows:

• Declare the name of the security role using therole-name element. The name must be th
security role name that is used as a parameter to theisCallerInRole(String role-
Name) method.

• Optional: Provide a description of the security role in thedescription element.

A security role reference, including the name defined by therole-name element, is scoped to the ses
sion or entity bean element whose declaration contains thesecurity-role-ref element.
225 11/24/99

Security management Enterprise JavaBeans v1.1, Final Release Application Assembler’s responsibilities

Sun Microsystems Inc.

red in

ment

ans is
eeds
, the
l it. The
ployer,

-
ication.

s
inter-

of an
cepts
The following example illustrates how an enterprise bean’s references to security roles are decla
the deployment descriptor.

...
<enterprise-beans>

...
<entity>

<ejb-name>AardvarkPayroll</ejb-name>
<ejb-class>com.aardvark.payroll.PayrollBean</ejb-class>
...
<security-role-ref>

<description>
This security role should be assigned to the
employees of the payroll department who are
allowed to update employees’ salaries.

</description>
<role-name>payroll</role-name>

</security-role-ref>
...

</entity>
...

</enterprise-beans>
...

The deployment descriptor above indicates that the enterprise beanAardvarkPayroll makes the
security check usingisCallerInRole("payroll") in its business method.

15.3 Application Assembler’s responsibilities

The Application Assembler (which could be the same party as the Bean Provider) may define asecurity
viewof the enterprise beans contained in the ejb-jar file. Providing the security view in the deploy
descriptor is optional for the Bean Provider and Application Assembler.

The main reason for the Application Assembler’s providing the security view of the enterprise be
to simplify the Deployer’s job. In the absence of a security view of an application, the Deployer n
detailed knowledge of the application in order to deploy the application securely For example
Deployer would have to know what each business method does to determine which users can cal
security view defined by the Application Assembler presents a more consolidated view to the De
allowing the Deployer to be less familiar with the application.

The security view consists of a set ofsecurity roles. A security role is a semantic grouping of permis
sions that a given type of users of an application must have in order to successfully use the appl

The Applications Assembler definesmethod permissionsfor each security role. A method permission i
a permission to invoke a specified group of methods of the enterprise beans’ home and remote
faces.

It is important to keep in mind that the security roles are used to define the logical security view
application. They should not be confused with the user groups, users, principals, and other con
that exist in the target enterprise’s operational environment.
 11/24/99 226

Application Assembler’s responsibilities Enterprise JavaBeans v1.1, Final Release Security management

Sun Microsystem Inc

ation,
to the

e inter-

pera-
e

ment to

pass

d

curity
In special cases, a qualified Deployer may change the definition of the security roles for an applic
or completely ignore them and secure the application using a different mechanism that is specific
operational environment.

If the Bean Provider has declared any security role references using thesecurity-role-ref ele-
ments, the Application Assembler must link all the security role references listed in thesecu-
rity-role-ref elements to the security roles defined in thesecurity-role elements. This is
described in more detail in subsection 15.3.3.

15.3.1 Security roles
The Application Assembler can define one or moresecurity rolesin the deployment descriptor. The
Application Assembler then assigns groups of methods of the enterprise beans’ home and remot
faces to the security roles to define the security view of the application.

Because the Application Assembler does not, in general, know the security environment of the o
tional environment, the security roles are meant to belogical roles (or actors), each representing a typ
of user that should have the same access rights to the application.

The Deployer then assigns user groups and/or user accounts defined in the operational environ
the security roles defined by the Application Assembler.

Defining the security roles in the deployment descriptor is optional[17]l for the Application Assembler.
Their omission in the deployment descriptor means that the Application Assembler chose not to
any security deployment related instructions to the Deployer in the deployment descriptor.

The Application Assembler is responsible for the following:

• Define each security role using asecurity-role element.

• Use therole-name element to define the name of the security role.

• Optionally, use thedescription element to provide a description of a security role.

The security roles defined by thesecurity-role elements are scoped to the ejb-jar file level, an
apply to all the enterprise beans in the ejb-jar file.

[17] If the Application Assembler does not define security roles in the deployment descriptor, the Deployer will have to define se
roles at deployment time.
227 11/24/99

Security management Enterprise JavaBeans v1.1, Final Release Application Assembler’s responsibilities

Sun Microsystems Inc.

he or
wed to
The following example illustrates a security role definition in a deployment descriptor.

...
<assembly-descriptor>

<security-role>
<description>

This role includes the employees of the
enterprise who are allowed to access the
employee self-service application. This role
is allowed only to access his/her own
information.

</description>
<role-name>employee</role-name>

</security-role>

<security-role>
<description>

This role includes the employees of the human
resources department. The role is allowed to
view and update all employee records.

</description>
<role-name>hr-department</role-name>

</security-role>

<security-role>
<description>

This role includes the employees of the payroll
department. The role is allowed to view and
update the payroll entry for any employee.

</description>
<role-name>payroll-department</role-name>

</security-role>

<security-role>
<description>

This role should be assigned to the personnel
authorized to perform administrative functions
for the employee self-service application.
This role does not have direct access to
sensitive employee and payroll information.

</description>
<role-name>admin</role-name>

</security-role>
...

</assembly-descriptor>

15.3.2 Method permissions

If the Application Assembler has defined security roles for the enterprise beans in the ejb-jar file,
she can also specify the methods of the remote and home interface that each security role is allo
invoke.
 11/24/99 228

Application Assembler’s responsibilities Enterprise JavaBeans v1.1, Final Release Security management

Sun Microsystem Inc

secu-
ing all

using

list
eth-

efined

e secu-

ee legal

cified

f the
e, this
Method permissions are defined in the deployment descriptor as a binary relation from the set of
rity roles to the set of methods of the home and remote interfaces of the enterprise beans, includ
their superinterfaces (including the methods of theEJBHome and EJBObject interfaces). The
method permissions relation includes the pair (R, M) if and only if the security roleR is allowed to
invoke the methodM.

The Application Assembler defines the method permissions relation in the deployment descriptor
themethod-permission elements as follows.

• Eachmethod-permission element includes a list of one or more security roles and a
of one or more methods. All the listed security roles are allowed to invoke all the listed m
ods. Each security role in the list is identified by therole-name element, and each method
(or a set of methods, as described below) is identified by themethod element. An optional
description can be associated with amethod-permission element using thedescrip-
tion element.

• The method permissions relation is defined as the union of all the method permissions d
in the individualmethod-permission elements.

• A security role or a method may appear in multiplemethod-permission elements.

It is possible that some methods are not assigned to any security roles. This means that none of th
rity roles defined by the Application Assembler needs access to the methods.

The method element uses theejb-name , method-name , and method-params elements to
denote one or more methods of an enterprise bean’s home and remote interfaces. There are thr
styles for composing themethod element:

Style 1:
<method>

<ejb-name> EJBNAME</ejb-name>
<method-name>*</method-name>

</method>

This style is used for referring to all of the remote and home interface methods of a spe
enterprise bean.

Style 2: :
<method>

<ejb-name> EJBNAME</ejb-name>
<method-name> METHOD</method-name>

</method>

This style is used for referring to a specified method of the remote or home interface o
specified enterprise bean. If there are multiple methods with the same overloaded nam
style refers to all of the overloaded methods.
229 11/24/99

Security management Enterprise JavaBeans v1.1, Final Release Application Assembler’s responsibilities

Sun Microsystems Inc.

aded
erface.

sig-
Style 3:
<method>

<ejb-name> EJBNAME</ejb-name>
<method-name> METHOD</method-name>
<method-params>

<method-param> PARAMETER_1</method-param>
...
<method-param> PARAMETER_N</method-param>

</method-params>
</method>

This style is used to refer to a specified method within a set of methods with an overlo
name. The method must be defined in the specified enterprise bean’s remote or home int

The optionalmethod-intf element can be used to differentiate methods with the same name and
nature that are defined in both the remote and home interfaces.
 11/24/99 230

Application Assembler’s responsibilities Enterprise JavaBeans v1.1, Final Release Security management

Sun Microsystem Inc

ploy-
The following example illustrates how security roles are assigned method permissions in the de
ment descriptor:

...
<method-permission>

<role-name>employee</role-name>
<method>

<ejb-name>EmployeeService</ejb-name>
<method-name>*</method-name>

</method>
</method-permission>

<method-permission>
<role-name>employee</role-name>
<method>

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>findByPrimaryKey</method-name>

</method>
<method>

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>getEmployeeInfo</method-name>

</method>
<method>

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>updateEmployeeInfo</method-name>

</method>
</method-permission>

<method-permission>
<role-name>payroll-department</role-name>
<method>

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>findByPrimaryKey</method-name>

</method>
<method>

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>getEmployeeInfo</method-name>

</method>
<method>

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>updateEmployeeInfo</method-name>

</method>
<method>

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>updateSalary</method-name>

</method>
</method-permission>

<method-permission>
<role-name>admin</role-name>
<method>

<ejb-name>EmployeeServiceAdmin</ejb-name>
<method-name>*</method-name>

</method>
</method-permission>
...
231 11/24/99

Security management Enterprise JavaBeans v1.1, Final Release Deployer’s responsibilities

Sun Microsystems Inc.

e

d in

med

been
with
15.3.3 Linking security r ole references to security roles
If the Application Assembler defines thesecurity-role elements in the deployment descriptor, h
or she is also responsible for linking all the security role references declared in thesecu-
rity-role-ref elements to the security roles defined in thesecurity-role elements.

The Application Assembler links each security role reference to a security role using therole-link
element. The value of therole-link element must be the name of one of the security roles define
asecurity-role element.

A role-link element must be used even if the value ofrole-name is the same as the value of the
role-link reference.

The following deployment descriptor example shows how to link the security role reference na
payroll to the security role namedpayroll-department .

...
<enterprise-beans>

...
<entity>

<ejb-name>AardvarkPayroll</ejb-name>
<ejb-class>com.aardvark.payroll.PayrollBean</ejb-class>
...
<security-role-ref>

<description>
This role should be assigned to the
employees of the payroll department.
Members of this role have access to
anyone’s payroll record.

The role has been linked to the
payroll-department role.

</description>
<role-name>payroll</role-name>
<role-link>payroll-department</role-link>

</security-role-ref>
...

</entity>
...

</enterprise-beans>
...

15.4 Deployer’s responsibilities

The Deployer is responsible for ensuring that an assembled application is secure after it has
deployed in the target operational environment. This section defines the Deployer’s responsibility
respect to EJB architecture security management.
 11/24/99 232

Deployer’s responsibilities Enterprise JavaBeans v1.1, Final Release Security management

Sun Microsystem Inc

view
yer’s
s and
oyer’s

ent.
Con-

bean

the
exam-

roups)

rity role

curity
rin-

secu-
the
ipal

al

cture.
ment
iron-
e user
on a
ame,

The
d in
The Deployer uses deployment tools provided by the EJB Container Provider to read the security
of the application supplied by the Application Assembler in the deployment descriptor. The Deplo
job is to map the security view that was specified by the Application Assembler to the mechanism
policies used by the security domain in the target operational environment. The output of the Depl
work includes an application security policy descriptor that is specific to the operational environm
The format of this descriptor and the information stored in the descriptor are specific to the EJB
tainer.

The following subsections describe the security related tasks performed by the Deployer.

15.4.1 Security domain and principal realm assignment
The Deployer is responsible for assigning the security domain and principal realm to an enterprise
application.

Multiple principal realms within the same security domain may exist, for example, to separate
realms of employees, trading partners, and customers. Multiple security domains may exist, for
ple, in application hosting scenarios.

15.4.2 Assignment of security roles
The Deployer assigns principals and/or groups of principals (such as individual users or user g
used for managing security in the operational environment to the security roles defined in thesecu-
rity-role elements of the deployment descriptor.

Typically, the Deployer does not need to change the method permissions assigned to each secu
in the deployment descriptor.

The Application Assembler linked all the security role references used in the bean’s code to the se
roles defined in thesecurity-role elements. The Deployer does not assign principals and/or p
cipal groups to the security role references—the principals and/or principals groups assigned to a
rity role apply also to all the linked security role references. For example, the Deployer of
AardvarkPayroll enterprise bean in subsection 15.3.3 would assign principals and/or princ
groups to the security-rolepayroll-department , and the assigned principals and/or princip
groups would be implicitly assigned also to the linked security rolepayroll .

The EJB architecture does not specify how an enterprise should implement its security archite
Therefore, the process of assigning the logical security roles defined in the application’s deploy
descriptor to the operational environment’s security concepts is specific to that operational env
ment. Typically, the deployment process consists of assigning to each security role one or mor
groups (or individual users) defined in the operational environment. This assignment is done
per-application basis. (That is, if multiple independent ejb-jar files use the same security role n
each may be assigned differently.)

15.4.3 Principal delegation
The Deployer is responsible for configuring the principal delegation for inter-component calls.
Deployer must follow any instructions supplied by the Application Assembler (for example, provide
thedescription elements of the deployment descriptor, or in a deployment manual).
233 11/24/99

Security management Enterprise JavaBeans v1.1, Final Release EJB Architecture Client Responsibilities

Sun Microsystems Inc.

r prin-
. In the
rprise
r. This

in sub-

er and
adapt

tion
Appli-
ing in
for the
b-jar

at the
onflict

rule
curity

com-
ecurity

secu-

hap-
uests
The default mode is to propagate the caller principal from one component to another (i.e. the calle
cipal of the first enterprise bean in a call-chain is passed to the enterprise beans down the chain)
absence of instructions from the Application Assembler, the Deployer should configure the ente
beans such that this “caller propagation” mode is used when one enterprise bean calls anothe
ensures that the returned value ofgetCallerPrincipal() will be the same for all the enterprise
beans involved in a call chain.

15.4.4 Security management of resource access

The Deployer’s responsibilities with respect to securing resource managers access are defined
section 14.4.2.

15.4.5 General notes on deployment descriptor processing

The Deployer can use the security view defined in the deployment descriptor by the Bean Provid
Application Assembler merely as “hints” and may change the information whenever necessary to
the security policy to the operational environment.

Since providing the security information in the deployment descriptor is optional for the Applica
Assembler, the Deployer is responsible for performing any tasks that have not been done by the
cation Assembler. (For example, if the definition of security roles and method permissions is miss
the deployment descriptor, the Deployer must define the security roles and method permissions
application.) It is not required that the Deployer store the output of this activity in the standard ej
file format.

15.5 EJB Architecture Client Responsibilities

This section defines the rules that the EJB architecture client program must follow to ensure th
security context passed on the client calls, and possibly imported by the enterprise bean, do not c
with the EJB Server’s capabilities for association between a security context and transactions.

These rules are:

• A transactional client cannot change its principal association within a transaction. This
ensures that all calls from the client within a transaction are performed with the same se
context.

• A Session Bean’s client must not change its principal association for the duration of the
munication with the session object. This rule ensures that the server can associate a s
identity with the session instance at instance creation time, and never have to change the
rity association during the session instance lifetime.

• If transactional requests within a single transaction arrive from multiple clients (this could
pen if there are intermediary objects or programs in the transaction call-chain), all req
within the same transaction must be associated with the same security context.
 11/24/99 234

EJB Container Provider’s responsibilities Enterprise JavaBeans v1.1, Final Release Security management

Sun Microsystem Inc

n use

ation
or her
age-

ntime

rprise
omain,

ple, the
eros.

may be
e.

ulti-

r appli-
man-

ecurity
ust be
15.6 EJB Container Provider’s responsibilities

This section describes the responsibilities of the EJB Container and Server Provider.

15.6.1 Deployment tools
The EJB Container Provider is responsible for providing the deployment tools that the Deployer ca
to perform the tasks defined in Section 15.4.

The deployment tools read the information from the deployment descriptor and present the inform
to the Deployer. The tools guide the Deployer through the deployment process, and present him
with choices for mapping the security information in the deployment descriptor to the security man
ment mechanisms and policies used in the target operational environment.

The deployment tools’ output is stored in an EJB Container specific manner, and is available at ru
to the EJB Container.

15.6.2 Security domain(s)
The EJB Container provides a security domain and one or more principal realms to the ente

beans. The EJB architecture does not specify how an EJB Server should implement a security d
and does not define the scope of a security domain.

A security domain can be implemented, managed, and administered by the EJB Server. For exam
EJB Server may store X509 certificates or it might use an external security provider such as Kerb

The EJB specification does not define the scope of the security domain. For example, the scope
defined by the boundaries of the application, EJB Server, operating system, network, or enterpris

The EJB Server can, but is not required to, provide support for multiple security domains, and/or m
ple principal realms.

The case of multiple domains on the same EJB Server can happen when a large server is used fo
cation hosting. Each hosted application can have its own security domain to ensure security and
agement isolation between applications owned by multiple organizations.

15.6.3 Security mechanisms
The EJB Container Provider must provide the security mechanisms necessary to enforce the s

policies set by the Deployer. The EJB specification does not specify the exact mechanisms that m
implemented and supported by the EJB Server.

The typical security functions provided by the EJB Server include:

• Authentication of principals.

• Access authorization for EJB calls and resource manager access.
235 11/24/99

Security management Enterprise JavaBeans v1.1, Final Release EJB Container Provider’s responsibilities

Sun Microsystems Inc.

loyer
iner is

ecify
ultiple

rinci-

rprise

of a
le 2 on

me and
m the

ers as

tiple
r Pro-
ed by

g an
• Secure communication with remote clients (privacy, integrity, etc.).

15.6.4 Passing principals on EJB architecture calls
The EJB Container Provider is responsible for providing the deployment tools that allow the Dep
to configure the principal delegation for calls from one enterprise bean to another. The EJB Conta
responsible for performing the principal delegation as specified by the Deployer.

The minimal requirement is that the EJB Container must be capable of allowing the Deployer to sp
that the caller principal is propagated on calls from one enterprise bean to another (i.e. the m
beans in the call chain will see the same return value fromgetCallerPrincipal()).

This requirement is necessary for applications that need a consistent return value of getCallerP
pal() across a chain of calls between enterprise beans.

15.6.5 Security methods injavax.ejbEJBContext

The EJB Container must provide access to the caller’s security context information from the ente
beans’ instances via thegetCallerPrincipal() and isCallerInRole(String role-
Name) methods. The EJB Container must provide this context information during the execution
business method invoked via the enterprise bean’s remote or home interface, as defined in Tab
page 60, Table 3 on page 70, and Table 4 on page 111.

The Container must ensure that all enterprise bean method invocations received through the ho
remote interface are associated with some principal. The Container must never return a null fro
getCallerPrincipal() method.

15.6.6 Secure access to resource managers
The EJB Container Provider is responsible for providing secure access to resource manag
described in Subsection 14.4.3.

15.6.7 Principal mapping
If the application requires that its clients are deployed in a different security domain, or if mul
applications deployed across multiple security domains need to interoperate, the EJB Containe
vider is responsible for the mechanism and tools that allow mapping of principals. The tools are us
the System Administrator to configure the security for the application’s environment.

15.6.8 System principal
The EJB 1.1 specification does not define the “system” principal under which the JVM runnin
enterprise bean’s method executes.
 11/24/99 236

EJB Container Provider’s responsibilities Enterprise JavaBeans v1.1, Final Release Security management

Sun Microsystem Inc

ntime
EJB
other
e sys-
ten-

. The
EJB

cement

d the
load
n sys-

olicy
rin-
er-

od, the

other
enter-
se bean

stance
ludes
ntext
source
that the
archi-

ns.

beans
yer.

ultiple
Leaving the principal undefined makes it easier for the EJB Container vendors to provide the ru
support for EJB architecture on top of their existing server infrastructures. For example, while one
Container implementation can execute all instances of all enterprise beans in a single JVM, an
implementation can use a separate JVM per ejb-jar per client. Some EJB Containers may make th
tem principal the same as the application-level principal; Others may use different principals, po
tially from different principal realms and even security domains.

15.6.9 Runtime security enforcement
The EJB Container is responsible for enforcing the security policies defined by the Deployer
implementation of the enforcement mechanism is EJB Container implementation specific. The
Container may, but does not have to, use the Java programming language security as the enfor
mechanism.

For example, to isolate multiple executing enterprise bean instances, the EJB Container can loa
multiple instances into the same JVM and isolate them via using multiple class-loaders, or it can
each instance into its own JVM and rely on the address space protection provided by the operatio
tem.

The general security enforcement requirements for the EJB Container follow:

• The EJB Container must provide enforcement of the client access control per the p
defined by the Deployer. A caller is allowed to invoke a method if, and only if, the caller p
cipal is assignedat least oneof the security roles that includes the method in its method p
missions definition. (That is, it is not meant that the caller must be assignedall the roles
associated with the method.) If the Container denies a client access to a business meth
Container must throw thejava.rmi.RemoteExcetion to the client

• The EJB Container must isolate an enterprise bean instance from other instances and
application components running on the server. The EJB Container must ensure that other
prise bean instances and other application components are allowed to access an enterpri
only via the enterprise bean’s remote and home interfaces.

• The EJB Container must isolate an enterprise bean instance at runtime such that the in
does not gain unauthorized access to privileged system information. Such information inc
the internal implementation classes of the container, the various runtime state and co
maintained by the container, object references of other enterprise bean instances, or re
managers used by other enterprise bean instances. The EJB Container must ensure
interactions between the enterprise beans and the container are only through the EJB
tected interfaces.

• The EJB Container must ensure the security of the persistent state of the enterprise bea

• The EJB Container must manage the mapping of principals on calls to other enterprise
or on access to resource managers according to the security policy defined by the Deplo

• The Container must allow the same enterprise bean to be deployed independently m
times, each time with a different security policy[18]. The Container must allow multi-
ple-deployed enterprise beans to co-exist at runtime.
237 11/24/99

Security management Enterprise JavaBeans v1.1, Final Release System Administrator’s responsibilities

Sun Microsystems Inc.

typ-
ner,

some
ployer

inis-

r to a

ator is
rprise

an-
15.6.10 Audit trail
The EJB Container may provide a security audit trail mechanism. A security audit trail mechanism
ically logs all java.security.Exceptions. It also logs all denials of access to EJB Servers, EJB Contai
EJB remote interfaces, and EJB home interfaces.

15.7 System Administrator’s responsibilities

This section defines the security-related responsibilities of the System Administrator. Note that
responsibilities may be carried out by the Deployer instead, or may require cooperation of the De
and the System Administrator.

15.7.1 Security domain administration
The System Administrator is responsible for the administration of principals. Security domain adm
tration is beyond the scope of the EJB specification.

Typically, the System Administrator is responsible for creating a new user account, adding a use
user group, removing a user from a user group, and removing or freezing a user account.

15.7.2 Principal mapping
If the client is in a different security domain than the target enterprise bean, the system administr
responsible for mapping the principals used by the client to the principals defined for the ente
bean. The result of the mapping is available to the Deployer.

The specification of principal mapping techniques is beyond the scope of the EJB architecture.

15.7.3 Audit trail r eview
If the EJB Container provides an audit trail facility, the System Administrator is responsible for its m
agement.

[18] The enterprise bean is installed each time using a different JNDI name.
 11/24/99 238

Overview Enterprise JavaBeans v1.1, Final Release Deployment descriptor

Sun Microsystem Inc

es an
n the
tion.
xam-

r. This
mbler,

y does
bler
enter-

ined in
Chapter 16 Deployment descriptor

This chapter defines the deployment descriptor that is part of the ejb-jar file. Section 16.1 provid
overview of the deployment descriptor. Sections 16.2 through 16.4 describe the information i
deployment descriptor from the perspective of the EJB roles responsible for providing the informa
Section 16.5 defines the deployment descriptor’s XML DTD. Section 16.7 provides a complete e
ple of a deployment descriptor of an assembled application.

16.1 Overview

The deployment descriptor is part of the contract between the ejb-jar file producer and consume
contract covers both the passing of enterprise beans from the Bean Provider to Application Asse
and from the Application Assembler to the Deployer.

An ejb-jar file produced by the Bean Provider contains one or more enterprise beans and typicall
not contain application assembly instructions. An ejb-jar file produced by an Application Assem
contains one or more enterprise beans, plus application assembly information describing how the
prise beans are combined into a single application deployment unit.

The J2EE specification defines how enterprise beans and other application components conta
multiple ejb-jar files can be assembled into an application.
239 11/24/99

Deployment descriptor Enterprise JavaBeans v1.1, Final Release Bean Provider’s responsibilities

Sun Microsystems Inc.

at is
r file.

an
ructural
ruc-
rprise

er-
unit.
file
ean’s

in the

e

rise
JNDI
The role of the deployment descriptor is to capture the declarative information (i.e information th
not included directly in the enterprise beans’ code) that is intended for the consumer of the ejb-ja

There are two basic kinds of information in the deployment descriptor:

• Enterprise beans’ structuralinformation. Structural information describes the structure of
enterprise bean and declares an enterprise bean’s external dependencies. Providing st
information in the deployment descriptor is mandatory for the ejb-jar file producer. The st
tural information cannot, in general, be changed because doing so could break the ente
bean’s function.

• Application assemblyinformation. Application assembly information describes how the ent
prise bean (or beans) in the ejb-jar file is composed into a larger application deployment
Providing assembly information in the deployment descriptor is optional for the ejb-jar
producer. Assembly level information can be changed without breaking the enterprise b
function, although doing so may alter the behavior of an assembled application.

16.2 Bean Provider’s responsibilities

The Bean Provider is responsible for providing the structural information for each enterprise bean
deployment descriptor.

The Bean Provider must use theenterprise-beans element to list all the enterprise beans in th
ejb-jar file.

The Bean Provider must provide the following information for each enterprise bean:

• Enterprise bean’s name. The Bean Provider must assign a logical name to each enterp
bean in the ejb-jar file. There is no architected relationship between this name, and the
 11/24/99 240

Bean Provider’s responsibilities Enterprise JavaBeans v1.1, Final Release Deployment descriptor

Sun Microsystem Inc

es the

va
fies the

e

d

vider
c-

rant

an
eful

he
n

an
ge-

er
the
API name that the Deployer will assign to the enterprise bean. The Bean Provider specifi
enterprise bean’s name in theejb-name element.

• Enterprise bean’s class. The Bean Provider must specify the fully-qualified name of the Ja
class that implements the enterprise bean’s business methods. The Bean Provider speci
enterprise bean’s class name in theejb-class element.

• Enterprise bean’s home interfaces. The Bean Provider must specify the fully-qualified nam
of the enterprise bean’s home interface in thehome element.

• Enterprise bean’s remote interfaces. The Bean Provider must specify the fully-qualifie
name of the enterprise bean’s remote interface in theremote element.

• Enterprise bean’s type. The enterprise beans types are session and entity. The Bean Pro
must use the appropriatesession or entity element to declare the enterprise bean’s stru
tural information.

• Re-entrancy indication. The Bean Provider must specify whether an entity bean is re-ent
or not. Session beans are never re-entrant.

• Session bean’s state management type. If the enterprise bean is a Session bean, the Be
Provider must use thesession-type element to declare whether the session bean is stat
or stateless.

• Session bean’s transaction demarcation type. If the enterprise bean is a Session bean, t
Bean Provider must use thetransaction-type element to declare whether transactio
demarcation is performed by the enterprise bean or by the Container.

• Entity bean’s persistence management. If the enterprise bean is an Entity bean, the Be
Provider must use thepersistence-type element to declare whether persistence mana
ment is performed by the enterprise bean or by the Container.

• Entity bean’s primary key class. If the enterprise bean is an Entity bean, the Bean Provid
specifies the fully-qualified name of the Entity bean’s primary key class in
prim-key-class element. The Bean Providermustspecify the primary key class for an
241 11/24/99

Deployment descriptor Enterprise JavaBeans v1.1, Final Release Application Assembler’s responsibility

Sun Microsystems Inc.

ed
the

ent

e
section

o the

ces

, and
form
eploy-

cation
tput is
to a

put
ation

case,
sec-
Entity with bean-managed persistence, andmay(but is not required to) specify the primary key
class for an Entity with container-managed persistence.

• Container-managed fields. If the enterprise bean is an Entity bean with container-manag
persistence, the Bean Provider must specify the container-managed fields using
cmp-fields elements.

• Environment entries. The Bean Provider must declare all the enterprise bean’s environm
entries as specified in Subsection 14.2.1.

• Resource manager connection factory references.The Bean Provider must declare all th
enterprise bean’s resource manager connection factory references as specified in Sub
14.4.1.

• EJB references. The Bean Provider must declare all the enterprise bean’s references t
homes of other enterprise beans as specified in Subsection 14.3.1.

• Security role references. The Bean Provider must declare all the enterprise bean’s referen
to security roles as specified in Subsection 15.2.5.3.

The deployment descriptor produced by the Bean Provider must be well formed in the XML sense
valid with respect to the DTD in Section 16.5. The content of the deployment descriptor must con
to the semantics rules specified in the DTD comments and elsewhere in this specification. The d
ment descriptor must refer to the DTD using the following statement:

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise
JavaBeans 1.1//EN" "http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd">

16.3 Application Assembler’s responsibility

The Application Assembler assembles enterprise beans into a single deployment unit. The Appli
Assembler’s input is one or more ejb-jar files provided by one or more Bean Providers, and the ou
also one or more ejb-jar files. The Application Assembler can combine multiple input ejb-jar files in
single output ejb-jar file, or split an input ejb-jar file into multiple output ejb-jar files. Each out
ejb-jar file is either a deployment unit intended for the Deployer, or a partially assembled applic
that is intended for another Application Assembler.

The Bean Provider and Application Assembler may be the same person or organization. In such a
the person or organization performs the responsibilities described both in this and the previous
tions.
 11/24/99 242

Application Assembler’s responsibility Enterprise JavaBeans v1.1, Final Release Deployment descriptor

Sun Microsystem Inc

Pro-

me

or

ew

16.2

e
reates

cu-
he

od
e and
rmis-

e
ces

these

ion
s that
beans

wed
ppen
The Application Assembler may modify the following information that was specified by the Bean
vider:

• Enterprise bean’s name. The Application Assembler may change the enterprise bean’s na
defined in theejb-name element.

• Values of environment entries. The Application Assembler may change existing and/
define new values of environment properties.

• Description fields. The Application Assembler may change existing or create n
description elements.

The Application Assembler must not, in general, modify any other information listed in Section
that was provided in the input ejb-jar file.

In addition, the Application Assembler may, but is not required to, specify any of the followingapplica-
tion assembly information:

• Binding of enterprise bean references. The Application Assembler may link an enterpris
bean reference to another enterprise bean in the ejb-jar file. The Application Assembler c
the link by adding theejb-link element to the referencing bean.

• Security roles. The Application Assembler may define one or more security roles. The se
rity roles define therecommendedsecurity roles for the clients of the enterprise beans. T
Application Assembler defines the security roles using thesecurity-role elements.

• Method permissions. The Application Assembler may define method permissions. Meth
permission is a binary relation between the security roles and the methods of the remot
home interfaces of the enterprise beans. The Application Assembler defines method pe
sions using themethod-permission elements.

• Linking of security role references. If the Application Assembler defines security roles in th
deployment descriptor, the Application Assembler must link the security role referen
declared by the Bean Provider to the security roles. The Application Assembler defines
links using therole-link element.

• Transaction attributes. The Application Assembler may define the value of the transact
attributes for the methods of the remote and home interfaces of the enterprise bean
require container-managed transaction demarcation. All Entity beans and the Session
declared by the Bean Provider as transaction-typeContainer require container-managed
transaction demarcation. The Application Assembler uses thecontainer-transaction
elements to declare the transaction attributes.

If an input ejb-jar file contains application assembly information, the Application Assembler is allo
to change the application assembly information supplied in the input ejb-jar file. (This could ha
when the input ejb-jar file was produced by another Application Assembler.)
243 11/24/99

Deployment descriptor Enterprise JavaBeans v1.1, Final Release Container Provider’s responsibilities

Sun Microsystems Inc.

, and
form
eploy-

ML

DTD
by the
The deployment descriptor produced by the Bean Provider must be well formed in the XML sense
valid with respect to the DTD in Section 16.5. The content of the deployment descriptor must con
to the semantic rules specified in the DTD comments and elsewhere in this specification. The d
ment descriptor must refer to the DTD using the following statement:

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise
JavaBeans 1.1//EN" "http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd">

16.4 Container Provider’s responsibilities

The Container provider provides tools that read and import the information contained in the X
deployment descriptor.

16.5 Deployment descriptor DTD

This section defines the XML DTD for the EJB 1.1 deployment descriptor. The comments in the
specify additional requirements for the syntax and semantics that cannot be easily expressed
DTD mechanism.

The content of the XML elements is in general case sensitive. This means, for example, that

<reentrant>True</reentrant>

must be used, rather than:

<reentrant>true</reentrant>.

All valid ejb-jar deployment descriptors must contain the following DOCTYPE declaration:

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise
JavaBeans 1.1//EN" "http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd">
 11/24/99 244

Deployment descriptor DTD Enterprise JavaBeans v1.1, Final Release Deployment descriptor

Sun Microsystem Inc

sem-
b-jar
We plan to provide an ejb-jar file verifier that can be used by the Bean Provider and Application As
bler Roles to ensure that an ejb-jar is valid. The verifier would check all the requirements for the ej
file and the deployment descriptor stated by this specification.

<!--
This is the XML DTD for the EJB 1.1 deployment descriptor.
-->

<!--
The assembly-descriptor element contains application-assembly infor-
mation.

The application-assembly information consists of the following parts:
the definition of security roles, the definition of method permis-
sions, and the definition of transaction attributes for enterprise
beans with container-managed transaction demarcation.

All the parts are optional in the sense that they are omitted if the
lists represented by them are empty.

Providing an assembly-descriptor in the deployment descriptor is
optional for the ejb-jar file producer.

Used in: ejb-jar
-->
<!ELEMENT assembly-descriptor (security-role*, method-permission*,

container-transaction*)>

<!--
The cmp-field element describes a container-managed field. The field
element includes an optional description of the field, and the name of
the field.

Used in: entity
-->
<!ELEMENT cmp-field (description?, field-name)>

<!--
The container-transaction element specifies how the container must
manage transaction scopes for the enterprise bean’s method invoca-
tions. The element consists of an optional description, a list of
method elements, and a transaction attribute.The transaction
attribute is to be applied to all the specified methods.

Used in: assembly-descriptor
-->
<!ELEMENT container-transaction (description?, method+,

trans-attribute)>

<!--
The description element is used by the ejb-jar file producer to pro-
vide text describing the parent element.

The description element should include any information that the
ejb-jar file producer wants to provide to the consumer of the ejb-jar
file (i.e. to the Deployer). Typically, the tools used by the ejb-jar
file consumer will display the description when processing the parent
245 11/24/99

Deployment descriptor Enterprise JavaBeans v1.1, Final Release Deployment descriptor DTD

Sun Microsystems Inc.
element.

Used in: cmp-field, container-transaction, ejb-jar, entity,
env-entry, ejb-ref, method, method-permission, resource-ref, secu-
rity-role, security-role-ref, and session.
-->
<!ELEMENT description (#PCDATA)>

<!--
The display-name element contains a short name that is intended to be
display by tools.

Used in: ejb-jar, session, and entity

Example:
<display-name>Employee Self Service</display-name>

-->
<!ELEMENT display-name (#PCDATA)>

<!--
The ejb-class element contains the fully-qualified name of the enter-
prise bean’s class.

Used in: entity and session

Example:
<ejb-class>com.wombat.empl.EmployeeServiceBean</ejb-class>

-->
<!ELEMENT ejb-class (#PCDATA)>

<!--
The optional ejb-client-jar element specifies a JAR file that con-
tains the class files necessary for a client program to access the
enterprise beans in the ejb-jar file. The Deployer should make the
ejb-client JAR file accessible to the client’s class-loader.

Used in: ejb-jar

Example:
<ejb-client-jar>employee_service_client.jar</ejb-client-jar>

-->
<!ELEMENT ejb-client-jar (#PCDATA)>

<!--
The ejb-jar element is the root element of the EJB deployment descrip-
tor. It contains an optional description of the ejb-jar file, optional
display name, optional small icon file name, optional large icon file
name, mandatory structural information about all included enterprise
beans, optional application-assembly descriptor, and an optional name
of an ejb-client-jar file for the ejb-jar.
-->
<!ELEMENT ejb-jar (description?, display-name?, small-icon?,

large-icon?, enterprise-beans, assembly-descriptor?,
ejb-client-jar?)>

<!--
The ejb-link element is used in the ejb-ref element to specify that an
EJB reference is linked to another enterprise bean in the ejb-jar
file.
 11/24/99 246

Deployment descriptor DTD Enterprise JavaBeans v1.1, Final Release Deployment descriptor

Sun Microsystem Inc
The value of the ejb-link element must be the ejb-name of an enter-
prise bean in the same ejb-jar file, or in another ejb-jar file in the
same J2EE application unit.

Used in: ejb-ref

Example:
<ejb-link>EmployeeRecord</ejb-link>

-->
<!ELEMENT ejb-link (#PCDATA)>

<!--
The ejb-name element specifies an enterprise bean’s name. This name is
assigned by the ejb-jar file producer to name the enterprise bean in
the ejb-jar file’s deployment descriptor. The name must be unique
among the names of the enterprise beans in the same ejb-jar file.

The enterprise bean code does not depend on the name; therefore the
name can be changed during the application-assembly process without
breaking the enterprise bean’s function.

There is no architected relationship between the ejb-name in the
deployment descriptor and the JNDI name that the Deployer will assign
to the enterprise bean’s home.

The name must conform to the lexical rules for an NMTOKEN.

Used in: entity, method, and session

Example:
<ejb-name>EmployeeService</ejb-name>

-->
<!ELEMENT ejb-name (#PCDATA)>

<!--
The ejb-ref element is used for the declaration of a reference to
another enterprise bean’s home. The declaration consists of an
optional description; the EJB reference name used in the code of the
referencing enterprise bean; the expected type of the referenced
enterprise bean; the expected home and remote interfaces of the ref-
erenced enterprise bean; and an optional ejb-link information.

The optional ejb-link element is used to specify the referenced enter-
prise bean. It is used typically in ejb-jar files that contain an
assembled application.

Used in: entity and session
-->
<!ELEMENT ejb-ref (description?, ejb-ref-name, ejb-ref-type, home,

remote, ejb-link?)>

<!--
The ejb-ref-name element contains the name of an EJB reference. The
EJB reference is an entry in the enterprise bean’s environment.

It is recommended that name is prefixed with "ejb/".

Used in: ejb-ref
247 11/24/99

Deployment descriptor Enterprise JavaBeans v1.1, Final Release Deployment descriptor DTD

Sun Microsystems Inc.
Example:
<ejb-ref-name>ejb/Payroll</ejb-ref-name>

-->
<!ELEMENT ejb-ref-name (#PCDATA)>

<!--
The ejb-ref-type element contains the expected type of the referenced
enterprise bean.

The ejb-ref-type element must be one of the following:
<ejb-ref-type>Entity</ejb-ref-type>
<ejb-ref-type>Session</ejb-ref-type>

Used in: ejb-ref
-->
<!ELEMENT ejb-ref-type (#PCDATA)>

<!--
The enterprise-beans element contains the declarations of one or more
enterprise beans.
-->
<!ELEMENT enterprise-beans (session | entity)+>

<!--
The entity element declares an entity bean. The declaration consists
of: an optional description; optional display name; optional small
icon file name; optional large icon file name; a name assigned to the
enterprise bean in the deployment descriptor; the names of the entity
bean’s home and remote interfaces; the entity bean’s implementation
class; the entity bean’s persistence management type; the entity
bean’s primary key class name; an indication of the entity bean’s
reentrancy; an optional list of container-managed fields; an optional
specification of the primary key field; an optional declaration of the
bean’s environment entries; an optional declaration of the bean’s EJB
references; an optional declaration of the security role references;
and an optional declaration of the bean’s resource manager connection
factory references.

The optional primkey-field may be present in the descriptor if the
entity’s persistency-type is Container.

The other elements that are optional are “optional” in the sense that
they are omitted if the lists represented by them are empty.

At least one cmp-field element must be present in the descriptor if
the entity’s persistency-type is Container, and none must not be
present if the entity’s persistence-type is Bean.

Used in: enterprise-beans
-->
<!ELEMENT entity (description?, display-name?, small-icon?,

large-icon?, ejb-name, home, remote, ejb-class,
persistence-type, prim-key-class, reentrant,
cmp-field*, primkey-field?, env-entry*,
ejb-ref*, security-role-ref*, resource-ref*)>

<!--
The env-entry element contains the declaration of an enterprise
 11/24/99 248

Deployment descriptor DTD Enterprise JavaBeans v1.1, Final Release Deployment descriptor

Sun Microsystem Inc
bean’s environment entries. The declaration consists of an optional
description, the name of the environment entry, and an optional value.

Used in: entity and session
-->
<!ELEMENT env-entry (description?, env-entry-name, env-entry-type,

env-entry-value?)>

<!--
The env-entry-name element contains the name of an enterprise bean’s
environment entry.

Used in: env-entry

Example:
<env-entry-name>minAmount</env-entry-name>

-->
<!ELEMENT env-entry-name (#PCDATA)>

<!--
The env-entry-type element contains the fully-qualified Java type of
the environment entry value that is expected by the enterprise bean’s
code.

The following are the legal values of env-entry-type: java.lang.Bool-
ean, java.lang.String, java.lang.Integer, java.lang.Double,
java.lang.Byte, java.lang.Short, java.lang.Long, and java.lang.Float.

Used in: env-entry

Example:
<env-entry-type>java.lang.Boolean</env-entry-type>

-->
<!ELEMENT env-entry-type (#PCDATA)>

<!--
The env-entry-value element contains the value of an enterprise
bean’s environment entry.

Used in: env-entry

Example:
<env-entry-value>100.00</env-entry-value>

-->
<!ELEMENT env-entry-value (#PCDATA)>

<!--
The field-name element specifies the name of a container managed
field. The name must be a public field of the enterprise bean class or
one of its superclasses.

Used in: cmp-field

Example:
<field-name>firstName</field-Name>

-->
<!ELEMENT field-name (#PCDATA)>

<!--
249 11/24/99

Deployment descriptor Enterprise JavaBeans v1.1, Final Release Deployment descriptor DTD

Sun Microsystems Inc.
The home element contains the fully-qualified name of the enterprise
bean’s home interface.

Used in: ejb-ref, entity, and session

Example:
<home>com.aardvark.payroll.PayrollHome</home>

-->
<!ELEMENT home (#PCDATA)>

<!--
The large-icon element contains the name of a file containing a large
(32 x 32) icon image. The file name is relative path within the
ejb-jar file.

The image must be either in the JPEG or GIF format, and the file name
must end with the suffix ".jpg" or ".gif" respectively.
The icon can be used by tools.

Example:
<large-icon>employee-service-icon32x32.jpg</large-icon>

-->
<!ELEMENT large-icon (#PCDATA)>

<!--
The method element is used to denote a method of an enterprise bean’s
home or remote interface, or a set of methods. The ejb-name element
must be the name of one of the enterprise beans in declared in the
deployment descriptor; the optional method-intf element allows to
distinguish between a method with the same signature that is defined
in both the home and remote interface; the method-name element speci-
fies the method name; and the optional method-params elements iden-
tify a single method among multiple methods with an overloaded method
name.

There are three possible styles of the method element syntax:

1. <method>
<ejb-name>EJBNAME</ejb-name>
<method-name>*</method-name>

</method>

 This style is used to refer to all the methods of the specified
 enterprise bean’s home and remote interfaces.

2. <method>
<ejb-name>EJBNAME</ejb-name>
<method-name>METHOD</method-name>

</method>>

 This style is used to refer to the specified method of the
 specified enterprise bean. If there are multiple methods with
 the same overloaded name, the element of this style refers to
 all the methods with the overloaded name.
 11/24/99 250

Deployment descriptor DTD Enterprise JavaBeans v1.1, Final Release Deployment descriptor

Sun Microsystem Inc
3. <method>
<ejb-name>EJBNAME</ejb-name>
<method-name>METHOD</method-name>
<method-params>

<method-param>PARAM-1</method-param>
<method-param>PARAM-2</method-param>
...
<method-param>PARAM-n</method-param>

</method-params>
<method>

 This style is used to refer to a single method within a set of
 methods with an overloaded name. PARAM-1 through PARAM-n are the
 fully-qualified Java types of the method’s input parameters (if
 the method has no input arguments, the method-params element
 contains no method-param elements). Arrays are specified by the
 array element’s type, followed by one or more pair of square
 brackets (e.g. int[][]).

Used in: method-permission and container-transaction

Examples:

Style 1: The following method element refers to all the methods of
the EmployeeService bean’s home and remote interfaces:

<method>
<ejb-name>EmployeeService</ejb-name>
<method-name>*</method-name>

</method>

Style 2: The following method element refers to all the create
methods of the EmployeeService bean’s home interface:

<method>
<ejb-name>EmployeeService</ejb-name>
<method-name>create</method-name>

</method>

Style 3: The following method element refers to the
create(String firstName, String LastName) method of the
EmployeeService bean’s home interface.

<method>
<ejb-name>EmployeeService</ejb-name>
<method-name>create</method-name>
<method-params>

<method-param>java.lang.String</method-param>
<method-param>java.lang.String</method-param>

</method-params>
</method>

The following example illustrates a Style 3 element with
more complex parameter types. The method

foobar(char s, int i, int[] iar, mypackage.MyClass mycl,
mypackage.MyClass[][] myclaar)

 would be specified as:
251 11/24/99

Deployment descriptor Enterprise JavaBeans v1.1, Final Release Deployment descriptor DTD

Sun Microsystems Inc.
<method>
<ejb-name>EmployeeService</ejb-name>
<method-name>foobar</method-name>
<method-params>

<method-param>char</method-param>
<method-param>int</method-param>
<method-param>int[]</method-param>
<method-param>mypackage.MyClass</method-param>
<method-param>mypackage.MyClass[][]</method-param>

</method-params>
</method>

The optional method-intf element can be used when it becomes
 necessary to differentiate between a method defined in the home
 interface and a method with the same name and signature that is
 defined in the remote interface.

For example, the method element

<method>
<ejb-name>EmployeeService</ejb-name>
<method-intf>Remote</method-intf>
<method-name>create</method-name>
<method-params>

<method-param>java.lang.String</method-param>
<method-param>java.lang.String</method-param>

</method-params>
</method>

can be used to differentiate the create(String, String) method
 defined in the remote interface from the create(String, String)
 method defined in the home interface, which would be defined as

<method>
<ejb-name>EmployeeService</ejb-name>
<method-intf>Home</method-intf>
<method-name>create</method-name>
<method-params>

<method-param>java.lang.String</method-param>
<method-param>java.lang.String</method-param>

</method-params>
</method>

The method-intf element can be used with all three Styles of the
method element usage. For example, the following method element exam-
ple could be used to refer to all the methods of the EmployeeService
bean’s home interface.

<method>
<ejb-name>EmployeeService</ejb-name>
<method-intf>Home</method-intf>
<method-name>*</method-name>

</method>

-->
<!ELEMENT method (description?, ejb-name, method-intf?, method-name,

method-params?)>
 11/24/99 252

Deployment descriptor DTD Enterprise JavaBeans v1.1, Final Release Deployment descriptor

Sun Microsystem Inc
<!--
The method-intf element allows a method element to differentiate
between the methods with the same name and signature that are defined
in both the remote and home interfaces.

The method-intf element must be one of the following:
<method-intf>Home</method-intf>
<method-intf>Remote</method-intf>

Used in: method
-->
<!ELEMENT method-intf (#PCDATA)>

<!--
The method-name element contains a name of an enterprise bean method,
or the asterisk (*) character. The asterisk is used when the element
denotes all the methods of an enterprise bean’s remote and home inter-
faces.

Used in: method
-->
<!ELEMENT method-name (#PCDATA)>

<!--
The method-param element contains the fully-qualified Java type name
of a method parameter.

Used in: method-params
-->
<!ELEMENT method-param (#PCDATA)>

<!--
The method-params element contains a list of the fully-qualified Java
type names of the method parameters.

Used in: method
-->
<!ELEMENT method-params (method-param*)>

<!--
The method-permission element specifies that one or more security
roles are allowed to invoke one or more enterprise bean methods. The
method-permission element consists of an optional description, a list
of security role names, and a list of method elements.

The security roles used in the method-permission element must be
defined in the security-role element of the deployment descriptor,
and the methods must be methods defined in the enterprise bean’s
remote and/or home interfaces.

Used in: assembly-descriptor
-->
<!ELEMENT method-permission (description?, role-name+, method+)>

<!--
The persistence-type element specifies an entity bean’s persistence
management type.
253 11/24/99

Deployment descriptor Enterprise JavaBeans v1.1, Final Release Deployment descriptor DTD

Sun Microsystems Inc.
The persistence-type element must be one of the two following:
<persistence-type>Bean</persistence-type>
<persistence-type>Container</persistence-type>

Used in: entity
-->
<!ELEMENT persistence-type (#PCDATA)>

<!--
The prim-key-class element contains the fully-qualified name of an
entity bean’s primary key class.

If the definition of the primary key class is deferred to deployment
time, the prim-key-class element should specify java.lang.Object.

Used in: entity

Examples:
<prim-key-class>java.lang.String</prim-key-class>
<prim-key-class>com.wombat.empl.EmployeeID</prim-key-class>
<prim-key-class>java.lang.Object</prim-key-class>

-->
<!ELEMENT prim-key-class (#PCDATA)>

<!--
The primkey-field element is used to specify the name of the primary
key field for an entity with container-managed persistence.

The primkey-field must be one of the fields declared in the cmp-field
element, and the type of the field must be the same as the primary key
type.

The primkey-field element is not used if the primary key maps to mul-
tiple container-managed fields (i.e. the key is a compound key). In
this case, the fields of the primary key class must be public, and
their names must correspond to the field names of the entity bean
class that comprise the key.

Used in: entity

Example:
<primkey-field>EmployeeId</primkey-field>

-->
<!ELEMENT primkey-field (#PCDATA)>

<!--
The reentrant element specifies whether an entity bean is reentrant or
not.

The reentrant element must be one of the two following:
<reentrant>True</reentrant>
<reentrant>False</reentrant>

Used in: entity
-->
<!ELEMENT reentrant (#PCDATA)>

<!--
 11/24/99 254

Deployment descriptor DTD Enterprise JavaBeans v1.1, Final Release Deployment descriptor

Sun Microsystem Inc
The remote element contains the fully-qualified name of the enter-
prise bean’s remote interface.

Used in: ejb-ref, entity, and session

Example:
<remote>com.wombat.empl.EmployeeService</remote>

-->
<!ELEMENT remote (#PCDATA)>

<!--
The res-auth element specifies whether the enterprise bean code signs
on programmatically to the resource manager, or whether the Container
will sign on to the resource manager on behalf of the bean. In the
latter case, the Container uses information that is supplied by the
Deployer.

The value of this element must be one of the two following:
<res-auth>Application</res-auth>
<res-auth>Container</res-auth>

-->
<!ELEMENT res-auth (#PCDATA)>

<!--
The res-ref-name element specifies the name of a resource manager con-
nection factory reference.

Used in: resource-ref
-->
<!ELEMENT res-ref-name (#PCDATA)>

<!--
The res-type element specifies the type of the data source. The type
is specified by the Java interface (or class) expected to be imple-
mented by the data source.

Used in: resource-ref
-->
<!ELEMENT res-type (#PCDATA)>

<!--
The resource-ref element contains a declaration of enterprise bean’s
reference to an external resource. It consists of an optional descrip-
tion, the resource manager connection factory reference name, the
indication of the resource manager connection factory type expected
by the enterprise bean code, and the type of authentication (bean or
container).

Used in: entity and session

Example:
<resource-ref>

<res-ref-name>EmployeeAppDB</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>

</resource-ref>
-->
<!ELEMENT resource-ref (description?, res-ref-name, res-type,

res-auth)>
255 11/24/99

Deployment descriptor Enterprise JavaBeans v1.1, Final Release Deployment descriptor DTD

Sun Microsystems Inc.
<!--
The role-link element is used to link a security role reference to a
defined security role. The role-link element must contain the name of
one of the security roles defined in the security-role elements.

Used in: security-role-ref
-->
<!ELEMENT role-link (#PCDATA)>

<!--
The role-name element contains the name of a security role.

The name must conform to the lexical rules for an NMTOKEN.

Used in: method-permission, security-role, and security-role-ref
-->
<!ELEMENT role-name (#PCDATA)>

<!--
The security-role element contains the definition of a security role.
The definition consists of an optional description of the security
role, and the security role name.

Used in: assembly-descriptor

Example:
<security-role>

<description>
This role includes all employees who are authorized
to access the employee service application.

</description>
<role-name>employee</role-name>

</security-role>
-->
<!ELEMENT security-role (description?, role-name)>

<!--
The security-role-ref element contains the declaration of a security
role reference in the enterprise bean’s code. The declaration con-
sists of an optional description, the security role name used in the
code, and an optional link to a defined security role.

The value of the role-name element must be the String used as the
parameter to the EJBContext.isCallerInRole(String roleName) method.

The value of the role-link element must be the name of one of the
security roles defined in the security-role elements.

Used in: entity and session

-->
<!ELEMENT security-role-ref (description?, role-name, role-link?)>

<!--
The session-type element describes whether the session bean is a
stateful session, or stateless session.

The session-type element must be one of the two following:
 11/24/99 256

Deployment descriptor DTD Enterprise JavaBeans v1.1, Final Release Deployment descriptor

Sun Microsystem Inc
<session-type>Stateful</session-type>
<session-type>Stateless</session-type>

-->
<!ELEMENT session-type (#PCDATA)>

<!--
The session element declares an session bean. The declaration con-
sists of: an optional description; optional display name; optional
small icon file name; optional large icon file name; a name assigned
to the enterprise bean in the deployment description; the names of the
session bean’s home and remote interfaces; the session bean’s imple-
mentation class; the session bean’s state management type; the ses-
sion bean’s transaction management type; an optional declaration of
the bean’s environment entries; an optional declaration of the bean’s
EJB references; an optional declaration of the security role refer-
ences; and an optional declaration of the bean’s resource manager con-
nection factory references.

The elements that are optional are “optional” in the sense that they
are omitted when if lists represented by them are empty.

Used in: enterprise-beans
-->
<!ELEMENT session (description?, display-name?, small-icon?,

large-icon?, ejb-name, home, remote, ejb-class,
session-type, transaction-type, env-entry*,
ejb-ref*, security-role-ref*, resource-ref*)>

<!--
The small-icon element contains the name of a file containing a small
(16 x 16) icon image. The file name is relative path within the
ejb-jar file.

The image must be either in the JPEG or GIF format, and the file name
must end with the suffix ".jpg" or ".gif" respectively.

The icon can be used by tools.

Example:
<small-icon>employee-service-icon16x16.jpg</small-icon>

-->
<!ELEMENT small-icon (#PCDATA)>

<!--
The transaction-type element specifies an enterprise bean’s transac-
tion management type.

The transaction-type element must be one of the two following:
<transaction-type>Bean</transaction-type>
<transaction-type>Container</transaction-type>

Used in: session
-->
<!ELEMENT transaction-type (#PCDATA)>

<!--
The trans-attribute element specifies how the container must manage
the transaction boundaries when delegating a method invocation to an
enterprise bean’s business method.
257 11/24/99

Deployment descriptor Enterprise JavaBeans v1.1, Final Release Deployment descriptor DTD

Sun Microsystems Inc.
The value of trans-attribute must be one of the following:
<trans-attribute>NotSupported</trans-attribute>
<trans-attribute>Supports</trans-attribute>
<trans-attribute>Required</trans-attribute>
<trans-attribute>RequiresNew</trans-attribute>
<trans-attribute>Mandatory</trans-attribute>
<trans-attribute>Never</trans-attribute>

Used in: container-transaction
-->
<!ELEMENT trans-attribute (#PCDATA)>

<!--
The ID mechanism is to allow tools that produce additional deployment
information (i.e information beyond the standard EJB deployment
descriptor information) to store the non-standard information in a
separate file, and easily refer from these tools-specific files to the
information in the standard deployment descriptor.

The EJB architecture does not allow the tools to add the non-standard
information into the EJB deployment descriptor.
-->
<!ATTLIST assembly-descriptor id ID #IMPLIED>
<!ATTLIST cmp-field id ID #IMPLIED>
<!ATTLIST container-transaction id ID #IMPLIED>
<!ATTLIST description id ID #IMPLIED>
<!ATTLIST display-name id ID #IMPLIED>
<!ATTLIST ejb-class id ID #IMPLIED>
<!ATTLIST ejb-client-jar id ID #IMPLIED>
<!ATTLIST ejb-jar id ID #IMPLIED>
<!ATTLIST ejb-link id ID #IMPLIED>
<!ATTLIST ejb-name id ID #IMPLIED>
<!ATTLIST ejb-ref id ID #IMPLIED>
<!ATTLIST ejb-ref-name id ID #IMPLIED>
<!ATTLIST ejb-ref-type id ID #IMPLIED>
<!ATTLIST enterprise-beans id ID #IMPLIED>
<!ATTLIST entity id ID #IMPLIED>
<!ATTLIST env-entry id ID #IMPLIED>
<!ATTLIST env-entry-name id ID #IMPLIED>
<!ATTLIST env-entry-type id ID #IMPLIED>
<!ATTLIST env-entry-value id ID #IMPLIED>
<!ATTLIST field-name id ID #IMPLIED>
<!ATTLIST home id ID #IMPLIED>
<!ATTLIST large-icon id ID #IMPLIED>
<!ATTLIST method id ID #IMPLIED>
<!ATTLIST method-intf id ID #IMPLIED>
<!ATTLIST method-name id ID #IMPLIED>
<!ATTLIST method-param id ID #IMPLIED>
<!ATTLIST method-params id ID #IMPLIED>
<!ATTLIST method-permission id ID #IMPLIED>
<!ATTLIST persistence-type id ID #IMPLIED>
<!ATTLIST prim-key-class id ID #IMPLIED>
<!ATTLIST primkey-field id ID #IMPLIED>
<!ATTLIST reentrant id ID #IMPLIED>
<!ATTLIST remote id ID #IMPLIED>
<!ATTLIST res-auth id ID #IMPLIED>
<!ATTLIST res-ref-name id ID #IMPLIED>
<!ATTLIST res-type id ID #IMPLIED>
 11/24/99 258

Deployment descriptor example Enterprise JavaBeans v1.1, Final Release Deployment descriptor

Sun Microsystem Inc

the
<!ATTLIST resource-ref id ID #IMPLIED>
<!ATTLIST role-link id ID #IMPLIED>
<!ATTLIST role-name id ID #IMPLIED>
<!ATTLIST security-role id ID #IMPLIED>
<!ATTLIST security-role-ref id ID #IMPLIED>
<!ATTLIST session-type id ID #IMPLIED>
<!ATTLIST session id ID #IMPLIED>
<!ATTLIST small-icon id ID #IMPLIED>
<!ATTLIST transaction-type id ID #IMPLIED>
<!ATTLIST trans-attribute id ID #IMPLIED>

16.6 Deployment descriptor example

The following example illustrates a sample deployment descriptor for the ejb-jar containing
Wombat’s assembled application described in Section 3.2.
259 11/24/99

Deployment descriptor Enterprise JavaBeans v1.1, Final Release Deployment descriptor example

Sun Microsystems Inc.

prop-
ents
Note: The text in the <description> elements has been formatted by adding whitespace to appear
erly indented in this document. In a real deployment descriptor document, the <description> elem
would likely contain no extra whitespace characters.

<!DOCTYPE ejb-jar PUBLIC “-//Sun Microsystems, Inc.//DTD Enterprise
JavaBeans 1.1//EN” “http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd”>
<ejb-jar>

<description>
This ejb-jar file contains assembled enterprise beans that are
part of employee self-service application.

</description>

<enterprise-beans>
<session>

<description>
The EmployeeService session bean implements a session
between an employee and the employee self-service
application.

</description>
<ejb-name>EmployeeService</ejb-name>
<home>com.wombat.empl.EmployeeServiceHome</home>
<remote>com.wombat.empl.EmployeeService</remote>
<ejb-class>com.wombat.empl.EmployeeServiceBean</ejb-class>
<session-type>Stateful</session-type>
<transaction-type>Bean</transaction-type>

<env-entry>
<env-entry-name>envvar1</env-entry-name>
<env-entry-type>String</env-entry-type>
<env-entry-value>some value</env-entry-value>

</env-entry>

<ejb-ref>
<ejb-ref-name>ejb/EmplRecords</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<home>com.wombat.empl.EmployeeRecordHome</home>
<remote>com.wombat.empl.EmployeeRecord</remote>
<ejb-link>EmployeeRecord</ejb-link>

</ejb-ref>

<ejb-ref>
<ejb-ref-name>ejb/Payroll</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<home>com.aardvark.payroll.PayrollHome</home>
<remote>com.aardvark.payroll.Payroll</remote>
<ejb-link>AardvarkPayroll</ejb-link>

</ejb-ref>

<ejb-ref>
<ejb-ref-name>ejb/PensionPlan</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>com.wombat.empl.PensionPlanHome</home>
<remote>com.wombat.empl.PensionPlan</remote>

</ejb-ref>

<resource-ref>
<description>

This is a reference to a JDBC database.
 11/24/99 260

Deployment descriptor example Enterprise JavaBeans v1.1, Final Release Deployment descriptor

Sun Microsystem Inc
EmployeeService keeps a log of all
transactions performed through the
EmployeeService bean for auditing
purposes.

</description>
<res-ref-name>jdbc/EmployeeAppDB</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>

</resource-ref>
</session>

<session>
<description>

The EmployeeServiceAdmin session bean implements
the session used by the application’s administrator.

</description>

<ejb-name>EmployeeServiceAdmin</ejb-name>
<home>com.wombat.empl.EmployeeServiceAdminHome</home>
<remote>com.wombat.empl.EmployeeServiceAdmin</remote>
<ejb-class>com.wombat.empl.EmployeeServiceAdmin-

Bean</ejb-class>
<session-type>Stateful</session-type>
<transaction-type>Bean</transaction-type>

<resource-ref>
<description>

This is a reference to a JDBC database.
EmployeeService keeps a log of all
transactions performed through the
EmployeeService bean for auditing
purposes.

</description>
<res-ref-name>jdbc/EmployeeAppDB</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>

</resource-ref>
</session>

<entity>
<description>

The EmployeeRecord entity bean encapsulates access
to the employee records.The deployer will use
container-managed persistence to integrate the
entity bean with the back-end system managing
the employee records.

</description>

<ejb-name>EmployeeRecord</ejb-name>
<home>com.wombat.empl.EmployeeRecordHome</home>
<remote>com.wombat.empl.EmployeeRecord</remote>
<ejb-class>com.wombat.empl.EmployeeRecordBean</ejb-class>
<persistence-type>Container</persistence-type>
<prim-key-class>com.wombat.empl.EmployeeID</prim-key-class>
<reentrant>True</reentrant>

<cmp-field><field-name>employeeID</field-name></cmp-field>
<cmp-field><field-name>firstName</field-name></cmp-field>
<cmp-field><field-name>lastName</field-name></cmp-field>
261 11/24/99

Deployment descriptor Enterprise JavaBeans v1.1, Final Release Deployment descriptor example

Sun Microsystems Inc.
<cmp-field><field-name>address1</field-name></cmp-field>
<cmp-field><field-name>address2</field-name></cmp-field>
<cmp-field><field-name>city</field-name></cmp-field>
<cmp-field><field-name>state</field-name></cmp-field>
<cmp-field><field-name>zip</field-name></cmp-field>
<cmp-field><field-name>homePhone</field-name></cmp-field>
<cmp-field><field-name>jobTitle</field-name></cmp-field>
<cmp-field><field-name>managerID</field-name></cmp-field>
<cmp-field><field-name>jobTitleHis-

tory</field-name></cmp-field>
</entity>

<entity>
<description>

The Payroll entity bean encapsulates access
to the payroll system.The deployer will use
container-managed persistence to integrate the
entity bean with the back-end system managing
payroll information.

</description>

<ejb-name>AardvarkPayroll</ejb-name>
<home>com.aardvark.payroll.PayrollHome</home>
<remote>com.aardvark.payroll.Payroll</remote>
<ejb-class>com.aardvark.payroll.PayrollBean</ejb-class>
<persistence-type>Bean</persistence-type>
<prim-key-class>com.aardvark.payroll.Accoun-

tID</prim-key-class>
<reentrant>False</reentrant>

<security-role-ref>
<role-name>payroll-org</role-name>
<role-link>payroll-department</role-link>

</security-role-ref>
</entity>

</enterprise-beans>

<assembly-descriptor>
<security-role>

<description>
This role includes the employees of the
enterprise who are allowed to access the
employee self-service application. This role
is allowed only to access his/her own
information.

</description>
<role-name>employee</role-name>

</security-role>

<security-role>
<description>

This role includes the employees of the human
resources department. The role is allowed to
view and update all employee records.

</description>
<role-name>hr-department</role-name>

</security-role>

<security-role>
 11/24/99 262

Deployment descriptor example Enterprise JavaBeans v1.1, Final Release Deployment descriptor

Sun Microsystem Inc
<description>
This role includes the employees of the payroll
department. The role is allowed to view and
update the payroll entry for any employee.

</description>
<role-name>payroll-department</role-name>

</security-role>

<security-role>
<description>

This role should be assigned to the personnel
authorized to perform administrative functions
for the employee self-service application.
This role does not have direct access to
sensitive employee and payroll information.

</description>
<role-name>admin</role-name>

</security-role>

<method-permission>
<role-name>employee</role-name>
<method>

<ejb-name>EmployeeService</ejb-name>
<method-name>*</method-name>

</method>
</method-permission>

<method-permission>
<role-name>employee</role-name>
<method>

<ejb-name>EmployeeRecord</ejb-name>
<method-name>findByPrimaryKey</method-name>

</method>
<method>

<ejb-name>EmployeeRecord</ejb-name>
<method-name>getDetail</method-name>

</method>
<method>

<ejb-name>EmployeeRecord</ejb-name>
<method-name>updateDetail</method-name>

</method>
</method-permission>

<method-permission>
<role-name>employee</role-name>
<method>

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>findByPrimaryKey</method-name>

</method>
<method>

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>getEmployeeInfo</method-name>

</method>
<method>

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>updateEmployeeInfo</method-name>

</method>
</method-permission>
263 11/24/99

Deployment descriptor Enterprise JavaBeans v1.1, Final Release Deployment descriptor example

Sun Microsystems Inc.
<method-permission>
<role-name>admin</role-name>
<method>

<ejb-name>EmployeeServiceAdmin</ejb-name>
<method-name>*</method-name>

</method>
</method-permission>

<method-permission>
<role-name>hr-department</role-name>
<method>

<ejb-name>EmployeeRecord</ejb-name>
<method-name>create</method-name>

</method>
<method>

<ejb-name>EmployeeRecord</ejb-name>
<method-name>remove</method-name>

</method>
<method>

<ejb-name>EmployeeRecord</ejb-name>
<method-name>changeManager</method-name>

</method>
<method>

<ejb-name>EmployeeRecord</ejb-name>
<method-name>changeJobTitle</method-name>

</method>
<method>

<ejb-name>EmployeeRecord</ejb-name>
<method-name>findByPrimaryKey</method-name>

</method>
<method>

<ejb-name>EmployeeRecord</ejb-name>
<method-name>getDetail</method-name>

</method>
<method>

<ejb-name>EmployeeRecord</ejb-name>
<method-name>updateDetail</method-name>

</method>
</method-permission>

<method-permission>
<role-name>payroll-department</role-name>
<method>

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>findByPrimaryKey</method-name>

</method>
<method>

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>getEmployeeInfo</method-name>

</method>
<method>

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>updateEmployeeInfo</method-name>

</method>
<method>

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>updateSalary</method-name>

</method>
</method-permission>
 11/24/99 264

Deployment descriptor example Enterprise JavaBeans v1.1, Final Release Deployment descriptor

Sun Microsystem Inc
<container-transaction>
<method>

<ejb-name>EmployeeRecord</ejb-name>
<method-name>*</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>

<container-transaction>
<method>

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>*</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
</assembly-descriptor>

</ejb-jar>
265 11/24/99

Deployment descriptor Enterprise JavaBeans v1.1, Final Release Deployment descriptor example

Sun Microsystems Inc.
 11/24/99 266

Overview Enterprise JavaBeans v1.1, Final Release Ejb-jar file

Sun Microsystem Inc

used
sembled

, and

lly do
bler

terprise
into a
Chapter 17 Ejb-jar file

The ejb-jar file is the standard format for packaging of enterprise Beans. The ejb-jar file format is
to package un-assembled enterprise beans (the Bean Provider’s output), and to package as
applications (the Application Assembler’s output).

17.1 Overview

The ejb-jar file format is the contract between the Bean Provider and Application Assembler
between the Application Assembler and the Deployer.

An ejb-jar file produced by the Bean Provider contains one or more enterprise beans that typica
not contain application assembly instructions. An ejb-jar file produced by an Application Assem
(which can be the same person or organization as the Bean Provider) contains one or more en
beans, plus application assembly information describing how the enterprise beans are combined
single application deployment unit.
267 11/24/99

Ejb-jar file Enterprise JavaBeans v1.1, Final Release Deployment descriptor

Sun Microsystems Inc.

ploy-

e bean
perinter-

rprise
erenced
le that is

clo-
.2 and

con-
hat are

onal
e is

rence
cludes
sed,

, but
on the
17.2 Deployment descriptor

The ejb-jar file must contain the deployment descriptor in the format defined in Chapter 16. The de
ment descriptor must be stored with the nameMETA-INF/ejb-jar.xml in the ejb-jar file.

17.3 Class files

For each enterprise bean, the ejb-jar file must include the class files of the following:

• The enterprise bean class.

• The enterprise bean home and remote interface.

• The primary key class if the bean is an entity bean.

The ejb-jar file must also contain the class files for all the classes and interfaces that the enterpris
class, and the remote and home interfaces depend on. This includes their superclasses and su
faces, and the classes and interfaces used as method parameters, results, and exceptions.

An ejb-jar file does not have to include the class files of the home and remote interfaces of an ente
bean that is referenced by an enterprise bean in the ejb-jar, or other classes needed by the ref
enterprise bean, if the referenced enterprise bean or needed classes are defined in another jar fi
named in the Class-Path attribute in the Manifest file of the referencing ejb-jar file, or the transitive
sure of such Class-Path references. Note that this Class-Path mechanism only works with JDK 1
later.

17.4 ejb-client JAR file

The ejb-jar file producer can create an ejb-client JAR file for the ejb-jar file. The client-ejb JAR file
tains all the class files that a client program needs to use the client view of the enterprise beans t
contained in the ejb-jar file.

The ejb-client JAR file is specified in the deployment descriptor of the ejb-jar file using the opti
ejb-client-jar element. The Deployer should ensure that the specified ejb-client JAR fil
accessible to the client program’s class-loader. If noejb-client-jar element is specified, the
Deployer should make the entire ejb-jar file accessible to the client’s class-loader.

The EJB specification does not specify whether the ejb-jar file should include by copy or by refe
the classes that are in the ejb-client JAR. If the by-copy approach is used, the producer simply in
all the class files in the ejb-client JAR file also in the ejb-jar file. If the by-reference approach is u
the ejb-jar file producer does not duplicate the content of the ejb-client JAR file in the ejb-jar file
instead uses a Manifest Class-Path entry in the ejb-jar file to specify that the ejb-jar file depends
ejb-client JAR at runtime.
 11/24/99 268

Deprecated in EJB 1.1 Enterprise JavaBeans v1.1, Final Release Ejb-jar file

Sun Microsystem Inc

atform

ted in

con-

the
rma-

replaced
The use of the Class-Path entries in the JAR files is explained in the Java 2, Enterprise Edition Pl
specification [10].

17.5 Deprecated in EJB 1.1

This section describes the deployment information that was defined in EJB 1.0, and is depreca
EJB 1.1.

17.5.1 ejb-jar Manifest
The JAR Manifest file is no longer used by the EJB architecture to identify the enterprise beans
tained in an ejb-jar file.

EJB 1.0 used the Manifest file to identify the individual enterprise beans that were included in
ejb-jar file. In EJB 1.1, the enterprise beans are identified in the deployment descriptor, so the info
tion in the Manifest is no longer needed.

17.5.2 Serialized deployment descriptor JavaBeans™ components
The mechanism of using serialized JavaBeans components as deployment descriptors has been
by the XML-based deployment descriptor.
269 11/24/99

Ejb-jar file Enterprise JavaBeans v1.1, Final Release Deprecated in EJB 1.1

Sun Microsystems Inc.
 11/24/99 270

Bean Provider’s responsibilities Enterprise JavaBeans v1.1, Final Release Runtime environment

Sun Microsystem Inc

tainer
ortable

onality
to allow
Chapter 18 Runtime environment

This chapter defines the application programming interfaces (APIs) that a compliant EJB Con
must make available to the enterprise bean instances at runtime. These APIs can be used by p
enterprise beans because the APIs are guaranteed to be available in all EJB Containers.

The chapter also defines the restrictions that the EJB Container Provider can impose on the functi
that it provides to the enterprise beans. These restrictions are necessary to enforce security and
the Container to properly manage the runtime environment.

18.1 Bean Provider’s responsibilities

This section describes the view and responsibilities of the Bean Provider.
271 11/24/99

Runtime environment Enterprise JavaBeans v1.1, Final Release Bean Provider’s responsibilities

Sun Microsystems Inc.

1.1.x
viders
erprise

at the
pply
iew of

s is
ss be

rs may
across

ion of

rprise

to a
18.1.1 APIs provided by Container
The EJB Provider can rely on the EJB Container Provider to provide the following APIs:

• JDK 1.1.x or Java 2

• EJB 1.1 Standard Extension

• JDBC 2.0 Standard Extension (support for row sets only)

• JNDI 1.2 Standard Extension

• JTA 1.0.1 Standard Extension (theUserTransaction interface only)

• JavaMail 1.1 Standard Extension (for sending mail only)

The Bean Provider must take into consideration that while some Containers will provide JDK
APIs, other Containers may provide the Java 2 (i.e. JDK 1.2) APIs. This means that the Bean Pro
that want to deploy their enterprise beans in all Containers must restrict the APIs used by the ent
beans to those that are available in JDK 1.1 and the above listed standard extensions.

18.1.2 Programming restrictions

This section describes the programming restrictions that a Bean Provider must follow to ensure th
enterprise bean isportableand can be deployed in any compliant EJB Container. The restrictions a
to the implementation of the business methods. Section 18.2, which describes the Container’s v
these restrictions, defines the programming environment that all EJB Containers must provide.

• An enterprise Bean must not use read/write static fields. Using read-only static field
allowed. Therefore, it is recommended that all static fields in the enterprise bean cla
declared asfinal .

This rule is required to ensure consistent runtime semantics because while some EJB Containe
use a single JVM to execute all enterprise bean’s instances, others may distribute the instances
multiple JVMs.

• An enterprise Bean must not use thread synchronization primitives to synchronize execut
multiple instances.

Same reason as above. Synchronization would not work if the EJB Container distributed ente
bean’s instances across multiple JVMs.

• An enterprise Bean must not use the AWT functionality to attempt to output information
display, or to input information from a keyboard.
 11/24/99 272

Bean Provider’s responsibilities Enterprise JavaBeans v1.1, Final Release Runtime environment

Sun Microsystem Inc

play

to-

ponents

ket, or

es not
with

clared
ity rules
access

es in a
ty.

loader;
top the

ctions
envi-

cket, or

o use
ge the

attempt
enter-

reads
Most servers do not allow direct interaction between an application program and a keyboard/dis
attached to the server system.

• An enterprise bean must not use thejava.io package to attempt to access files and direc
ries in the file system.

The file system APIs are not well-suited for business components to access data. Business com
should use a resource manager API, such as JDBC API, to store data.

• An enterprise bean must not attempt to listen on a socket, accept connections on a soc
use a socket for multicast.

The EJB architecture allows an enterprise bean instance to be a network socket client, but it do
allow it to be a network server. Allowing the instance to become a network server would conflict
the basic function of the enterprise bean-- to serve the EJB clients.

• The enterprise bean must not attempt to query a class to obtain information about the de
members that are not otherwise accessible to the enterprise bean because of the secur
of the Java language. The enterprise bean must not attempt to use the Reflection API to
information that the security rules of the Java programming language make unavailable.

Allowing the enterprise bean to access information about other classes and to access the class
manner that is normally disallowed by the Java programming language could compromise securi

• The enterprise bean must not attempt to create a class loader; obtain the current class
set the context class loader; set security manager; create a new security manager; s
JVM; or change the input, output, and error streams.

These functions are reserved for the EJB Container. Allowing the enterprise bean to use these fun
could compromise security and decrease the Container’s ability to properly manage the runtime
ronment.

• The enterprise bean must not attempt to set the socket factory used by ServerSocket, So
the stream handler factory used by URL.

These networking functions are reserved for the EJB Container. Allowing the enterprise bean t
these functions could compromise security and decrease the Container’s ability to properly mana
runtime environment.

• The enterprise bean must not attempt to manage threads. The enterprise bean must not
to start, stop, suspend, or resume a thread; or to change a thread’s priority or name. The
prise bean must not attempt to manage thread groups.

These functions are reserved for the EJB Container. Allowing the enterprise bean to manage th
would decrease the Container’s ability to properly manage the runtime environment.

• The enterprise bean must not attempt to directly read or write a file descriptor.
273 11/24/99

Runtime environment Enterprise JavaBeans v1.1, Final Release Bean Provider’s responsibilities

Sun Microsystems Inc.

.

cular

le.

ould

ual rules

ction

ction

bjects

ctions

s of the

e

iners,
fined in
t pro-
Allowing the enterprise bean to read and write file descriptors directly could compromise security

• The enterprise bean must not attempt to obtain the security policy information for a parti
code source.

Allowing the enterprise bean to access the security policy information would create a security ho

• The enterprise bean must not attempt to load a native library.

This function is reserved for the EJB Container. Allowing the enterprise bean to load native code w
create a security hole.

• The enterprise bean must not attempt to gain access to packages and classes that the us
of the Java programming language make unavailable to the enterprise bean.

This function is reserved for the EJB Container. Allowing the enterprise bean to perform this fun
would create a security hole.

• The enterprise bean must not attempt to define a class in a package.

This function is reserved for the EJB Container. Allowing the enterprise bean to perform this fun
would create a security hole.

• The enterprise bean must not attempt to access or modify the security configuration o
(Policy, Security, Provider, Signer, and Identity).

These functions are reserved for the EJB Container. Allowing the enterprise bean to use these fun
could compromise security.

• The enterprise bean must not attempt to use the subclass and object substitution feature
Java Serialization Protocol.

Allowing the enterprise bean to use these functions could compromise security.

• The enterprise bean must not attempt to passthis as an argument or method result. Th
enterprise bean must pass the result ofSessionContext.getEJBObject() or Enti-
tyContext.getEJBObject() instead.

To guarantee portability of the enterprise bean’s implementation across all compliant EJB Conta
the Bean Provider should test the enterprise bean using a Container with the security settings de
Tables 10 and 11. The tables define the minimal functionality that a compliant EJB Container mus
vide to the enterprise bean instances at runtime.
 11/24/99 274

Container Provider’s responsibility Enterprise JavaBeans v1.1, Final Release Runtime environment

Sun Microsystem Inc

nter-
ments; a
tion.

bean

ubset

rprise
e Con-
ity and
terfer-

st be
ntainer
ermis-
18.2 Container Provider’s responsibility

This section defines the Container’s responsibilities for providing the runtime environment to the e
prise bean instances. The requirements described here are considered to be the minimal require
Container may choose to provide additional functionality that is not required by the EJB specifica

18.2.1 Java 2 Platform-based Container

A Java 2 platform-based EJB Container must make the following APIs available to the enterprise
instances at runtime:

• Java 2 APIs

• EJB 1.1 APIs

• JNDI 1.2

• JTA 1.0.1, theUserTransaction interface only

• JDBC™ 2.0 extension

• JavaMail 1.1, sending mail only

The following subsections describes the requirements in more detail.

18.2.1.1 Java 2 APIs requirements

The Container must provide the full set of Java 2 platform APIs. The Container is not allowed to s
the Java 2 platform APIs.

The EJB Container is allowed to make certain Java 2 platform functionality unavailable to the ente
bean instances by using the Java 2 platform security policy mechanism. The primary reason for th
tainer to make certain functions unavailable to enterprise bean instances is to protect the secur
integrity of the EJB Container environment, and to prevent the enterprise bean instances from in
ing with the Container’s functions.

The following table defines the Java 2 platform security permissions that the EJB Container mu
able to grant to the enterprise bean instances at runtime. The term “grant” means that the Co
must be able to grant the permission, the term “deny” means that the Container should deny the p
sion.

Table 10 Java 2 Platform Security policy for a standard EJB Container

Permission name EJB Container policy

java.security.AllPermission deny
275 11/24/99

Runtime environment Enterprise JavaBeans v1.1, Final Release Container Provider’s responsibility

Sun Microsystems Inc.

bean
rprise

bean
nstance

esented
ust be

f the
Some Containers may allow the Deployer to grant more, or fewer, permissions to the enterprise
instances than specified in Table 10. Support for this is not required by the EJB specification. Ente
beans that rely on more or fewer permissions will not be portable across all EJB Containers.

18.2.1.2 EJB 1.1 requirements
The container must implement the EJB 1.1 interfaces as defined in this documentation.

18.2.1.3 JNDI 1.2 requirements

At the minimum, the EJB Container must provide a JNDI API name space to the enterprise
instances. The EJB Container must make the name space available to an instance when the i
invokes thejavax.naming.InitialContext default (no-arg) constructor.

The EJB Container must make available at least the following objects in the name space:

• The home interfaces of other enterprise beans.

• The resource factories used by the enterprise beans.

The EJB specification does not require that all the enterprise beans deployed in a Container be pr
with the same JNDI API name space. However, all the instances of the same enterprise bean m
presented with the same JNDI API name space.

java.awt.AWTPermission deny

java.io.FilePermission deny

java.net.NetPermission deny

java.util.PropertyPermission grant “read”, “*”
deny all other

java.lang.reflect.ReflectPermission deny

java.lang.RuntimePermission grant “queuePrintJob”,
deny all other

java.lang.SecurityPermission deny

java.io.SerializablePermission deny

java.net.SocketPermission grant “connect”, “*” [Note A],
deny all other

Notes:

[A] This permission is necessary, for example, to allow enterprise beans to use the client functionality o
Java IDL API and RMI-IIOP packages that are part of Java 2 platform.

Table 10 Java 2 Platform Security policy for a standard EJB Container

Permission name EJB Container policy
 11/24/99 276

Container Provider’s responsibility Enterprise JavaBeans v1.1, Final Release Runtime environment

Sun Microsystem Inc

ation
e

ation.
rfaces,

rprise
hese
t for

bean

t the

bean
make

of the
Con-
18.2.1.4 JTA 1.0.1 requirements

The EJB Container must include the JTA 1.0.1 extension, and it must provide thejavax.transac-
tion.UserTransaction interface to enterprise beans with bean-managed transaction demarc
through the javax.ejb.EJBContext interface, and also in JNDI under the nam
java:comp/UserTransaction , in the cases required by the EJB specification.

The EJB Container is not required to implement the other interfaces defined in the JTA specific
The other JTA interfaces are low-level transaction manager and resource manager integration inte
and are not intended for direct use by enterprise beans.

18.2.1.5 JDBC™ 2.0 extension requirements

The EJB Container must include the JDBC 2.0 extension and provide its functionality to the ente
bean instances, with the exception of the low-level XA and connection pooling interfaces. T
low-level interfaces are intended for integration of a JDBC driver with an application server, no
direct use by enterprise beans.

18.2.2 JDK™ 1.1 based Container

A JDK 1.1 based EJB Container must make the following APIs available to the enterprise
instances at runtime:

• JDK 1.1 or higher

• EJB 1.1 APIs

• JNDI 1.2

• JTA 1.0.1, theUserTransaction interface only

• JDBC™ 2.0 extension

• JavaMail 1.1, sending mail only

The following subsections describes the requirements in more detail.

18.2.2.1 JDK 1.1 APIs requirements

The Container must provide the full set of JDK 1.1 APIs. The Container is not allowed to subse
JDK 1.1 APIs.

The EJB Container is allowed to make certain JDK 1.1 functionality unavailable to the enterprise
instances by using the JDK security manager mechanism. The primary reason for the Container to
certain functions unavailable to enterprise bean instances is to protect the security and integrity
EJB Container environment, and to prevent the enterprise bean instances from interfering with the
tainer’s functions.
277 11/24/99

Runtime environment Enterprise JavaBeans v1.1, Final Release Container Provider’s responsibility

Sun Microsystems Inc.

low to
The following table defines the JDK 1.1 security manager checks that the EJB Container must al
succeed when the check is invoked from an enterprise bean instance.

Table 11 JDK 1.1 Security manager checks for a standard EJB Container

Security manager check EJB Container’s security manager policy

checkAccept(String, int) throw SecurityException

checkAccess(Thread) throw SecurityException

checkAccess(ThreadGroup) throw SecurityException

checkAwtEventQueueAccess() throw SecurityException

checkConnect(String, int) allow

checkConnect(String, int, Object) allow

checkCreateClassLoader() throw SecurityException

checkDelete(String) throw SecurityException

checkExec(String) throw SecurityException

checkExit(int) throw SecurityException

checkLink(int) throw SecurityException

checkListen(int) throw SecurityException

checkMemberAccess(Class, int) throw SecurityException

checkMulticast(InetAddress) throw SecurityException

checkMulticast(InetAddress, byte) throw SecurityException

checkPackageAccess(String) throw SecurityException

checkPackageDefinition(String) throw SecurityException

checkPrintJobAccess() allow

checkPropertiesAccess() throw SecurityException

checkPropertyAccess(String) allow read of all properties

checkRead(FileDescriptor) throw SecurityException

checkRead(String) throw SecurityException

checkRead(String, Object) throw SecurityException

checkSecurityAccess(String) throw SecurityException

checkSetFactory() throw SecurityException
 11/24/99 278

Container Provider’s responsibility Enterprise JavaBeans v1.1, Final Release Runtime environment

Sun Microsystem Inc

bean
rprise

s not

ust be

r-EJB
ing so
rprise
Some Containers may allow the Deployer to grant more, or fewer, permissions to the enterprise
instances than specified in Table 10. Support for this is not required by the EJB specification. Ente
beans that rely on more or fewer permissions will not be portable across all EJB Containers.

18.2.2.2 EJB 1.1 requirements
The container must implement the EJB 1.1 interfaces as defined in this documentation.

18.2.2.3 JNDI 1.2 requirements

Same as defined in Subsection 18.2.1.3.

18.2.2.4 JTA 1.0.1 requirements

Same as defined in Subsection 18.2.1.4.

18.2.2.5 JDBC 2.0 extension requirements

Same as defined in Subsection 18.2.1.5, with the following exception: The EJB Container i
required to provide the support for the RowSet functionality.

This exception was made because the RowSet functionality requires the Java 2 Collections.

18.2.3 Ar gument passing semantics

The enterprise bean’s home and remote interfaces areremote interfacesfor Java RMI. The Container
must ensure the semantics for passing arguments conform to Java RMI. Non-remote objects m
passed by value.

Specifically, the EJB Container is not allowed to pass non-remote objects by reference on inte
invocations when the calling and called enterprise beans are collocated in the same JVM. Do
could result in the multiple beans sharing the state of a Java object, which would break the ente
bean’s semantics.

checkSystemClipboardAccess() throw SecurityException

checkTopLevelWindow(Object) throw SecurityException

checkWrite(FileDescriptor) throw SecurityException

checkWrite(String) throw SecurityException

Table 11 JDK 1.1 Security manager checks for a standard EJB Container

Security manager check EJB Container’s security manager policy
279 11/24/99

Runtime environment Enterprise JavaBeans v1.1, Final Release Container Provider’s responsibility

Sun Microsystems Inc.
 11/24/99 280

Bean Provider’s responsibilities Enterprise JavaBeans v1.1, Final Release Responsibilities of EJB Architecture Roles

Sun Microsystem Inc

essary
nt EJB

docu-

ormat
Chapter 19 Responsibilities of EJB Architecture Roles

This chapter provides the summary of the responsibilities of each EJB architecture Role.

19.1 Bean Provider’s responsibilities

This section highlights the requirements for the Bean Provider. Meeting these requirements is nec
to ensure that the enterprise beans developed by the Bean Provider can be deployed in all complia
Containers.

19.1.1 API r equirements

The enterprise beans must meet all the API requirements defined in the individual chapters of this
ment.

19.1.2 Packaging requirements

The Bean Provider is responsible for packaging the enterprise beans in an ejb-jar file in the f
described in Chapter 17.
281 11/24/99

Responsibilities of EJB Architecture Roles Enterprise JavaBeans v1.1, Final Release Application Assembler’s responsibilities

Sun Microsystems Inc.

yer to
ls are

r pro-

r files

tail.

secu-
ing of

tor in

remote
The deployment descriptor must include thestructural information described in Section 16.2.

The deployment descriptor may optionally include any of theapplication assemblyinformation as
described in Section 16.3.

19.2 Application Assembler’s responsibilities

The requirements for the Application Assembler are in defined in Section 16.3.

19.3 EJB Container Provider’s responsibilities

The EJB Container Provider is responsible for providing the deployment tools used by the Deplo
deploy enterprise beans packaged in the ejb-jar file. The requirements for the deployment too
defined in the individual chapters of this document.

The EJB Container Provider is responsible for implementing its part of the EJB contracts, and fo
viding all the runtime services described in the individual chapters of this document.

19.4 Deployer’s responsibilities

The Deployer uses the deployment tools provided by the EJB Container provider to deploy ejb-ja
produced by the Bean Providers and Application Assemblers.

The individual chapters of this document describe the responsibilities of the Deployer in more de

19.5 System Administrator’s responsibilities

The System Administrator is responsible for configuring the EJB Container and server, setting up
rity management, integrating resource managers with the EJB Container, and runtime monitor
deployed enterprise beans applications.

The individual chapters of this document describe the responsibilities of the System Administra
more detail.

19.6 Client Programmer’s responsibilities

The EJB client programmer writes applications that access enterprise beans via their home and
interfaces.
 11/24/99 282

package javax.ejb Enterprise JavaBeans v1.1, Final Release Enterprise JavaBeans™ API Reference

Sun Microsystem Inc
Chapter 20 Enterprise JavaBeans™ API Reference

The following interfaces and classes comprise the Enterprise JavaBeans API:

packagejavax.ejb

Interfaces:

public interface EJBContext
public interface EJBHome
public interface EJBMetaData
public interface EJBObject
public interface EnterpriseBean
public interface EntityBean
public interface EntityContext
public interface Handle
public interface HomeHandle
public interface SessionBean
public interface SessionContext
public interface SessionSynchronization
283 11/24/99

Enterprise JavaBeans™ API Reference Enterprise JavaBeans v1.1, Final Release package javax.ejb.deployment

Sun Microsystems Inc.

ated
r, and

1.1

with
Classes:

public class CreateException
public class DuplicateKeyException
public class EJBException
public class FinderException
public class ObjectNotFoundException
public class RemoveException

packagejavax.ejb.deployment

The javax.ejb.deployment package that was defined in the EJB 1.0 specification is deprec
in EJB 1.1. The EJB 1.0 deployment descriptor format should not be used by ejb-jar file produce
the support for it is not required by EJB 1.1 compliant Containers.

We intend to a tool which will help convert an EJB 1.0 deployment descriptor to the EJB
XML-based format. Thejavax.ejb.deployment package will be provided only as part of this
tool.

The Javadoc specification of the EJB interface is included in a ZIP file distributed
this document.
 11/24/99 284

package javax.ejb.deployment Enterprise JavaBeans v1.1, Final Release Related documents

Sun Microsystem Inc
Chapter 21 Related documents

[1] JavaBeans.http://java.sun.com/beans.

[2] Java Naming and Directory Interface (JNDI).http://java.sun.com/products/jndi.

[3] Java Remote Method Invocation (RMI).http://java.sun.com/products/rmi.

[4] Java Security.http://java.sun.com/security.

[5] Java Transaction API (JTA).http://java.sun.com/products/jta.

[6] Java Transaction Service (JTS).http://java.sun.com/products/jts.

[7] Java to IDL Mapping. OMG TC Document.http://www.omg.org/cgi-bin/doc?formal/99-07-59.

[8] Enterprise JavaBeans to CORBA Mapping.http://java.sun.com/products/ejb/docs.html.

[9] OMG Object Transaction Service.http://www.omg.org/corba/sectrans.htm#trans.

[10] Java 2 Platform, Enterprise Edition, v1.2 (J2EE).http://java.sun.com/j2ee.
285 11/24/99

Related documents Enterprise JavaBeans v1.1, Final Release package javax.ejb.deployment

Sun Microsystems Inc.
 11/24/99 286

package javax.ejb.deployment Enterprise JavaBeans v1.1, Final Release Features deferred to future releases

Sun Microsystem Inc

ver) to

to the
Appendix A Features deferred to future releases

We plan to provide an SPI-level interface for attaching a resource manager (such as a JDBC dri
the EJB Container as a separate Connector API.

We plan to enhance the support for Entities in the next major release (EJB 2.0). We are looking in
area of use of the UML for the design and analysis of enterprise beans applications.

We plan to provide integration of EJB with JMS as part of EJB 2.0.
287 11/24/99

Features deferred to future releases Enterprise JavaBeans v1.1, Final Release package javax.ejb.deployment

Sun Microsystems Inc.
 11/24/99 288

Client-demarcated transactions Enterprise JavaBeans v1.1, Final Release Frequently asked questions

Sun Microsystem Inc

tain a
Appendix B Frequently asked questions

This Appendix provides the answers to a number of frequently asked questions.

B.1 Client-demarcated transactions

The EJB 1.0 specification did not explain how a client other than another enterprise bean can ob
the javax.transaction.UserTransaction interface.

The Java2, Enterprise Edition specification [10] defines how a client can obtain thejavax.trans-
action.UserTransaction interface using JNDI.
289 11/24/99

Frequently asked questions Enterprise JavaBeans v1.1, Final Release Inheritance

Sun Microsystems Inc.

le, the
d how

inherit-

nce
ve its
onent
his is a

en-
The following is an example of how a Java application can obtain thejavax.transaction.User-
Transaction interface.

...
Context ctx = new InitialContext();
UserTransaction utx =

(UserTransaction)ctx.lookup(“java:comp/UserTransaction”);

//
// Perform calls to enterprise beans in a transaction.
//
utx.begin();
... call one or more enterprise beans
utx.commit();
...

B.2 Inheritance

The current EJB specification does not specify the concept ofcomponent inheritance. There are com-
plex issues that would have to be addressed in order to define component inheritance (for examp
issue of how the primary key of the derived class relates to the primary key of the parent class, an
component inheritance affects the parent component’s persistence).

However, the Bean Provider can take advantage of the Java programming language support for
ance as follows:

• Interface inheritance. It is possible to use the Java programming language interface inherita
mechanism for inheritance of the home and remote interfaces. A component may deri
home and remote interfaces from some “parent” home and remote interfaces; the comp
then can be used anywhere where a component with the parent interfaces is expected. T
Java language feature, and its use is transparent to the EJB Container.

• Implementation class inheritance. It is possible to take advantage of the Java class implem
tation inheritance mechanism for the enterprise bean class. For example, the classCheckin-
gAccountBean class can extend theAccountBean class to inherit the implementation of
the business methods.
 11/24/99 290

Entities and relationships Enterprise JavaBeans v1.1, Final Release Frequently asked questions

Sun Microsystem Inc

nce of
e bean
nce) can
list is

n-

Bean.

ava 2
as the
B.3 Entities and relationships

The current EJB architecture does not specify how one Entity bean should store an object refere
another Entity bean. The desirable strategy is application-dependent. The enterprise bean (if th
uses bean-managed persistence) or the Container (if the bean uses container-managed persiste
use any of the following strategies for maintaining persistently a relationship between entities (the
not inclusive of all possible strategies):

• Object’s primary key. This is applicable if the target object’s Home is known and fixed.

• Home name and object’s primary key.

• Home object reference and object’s primary key.

• Object’s handle.

B.4 Finder methods for entities with container-managed persistence

The EJB specification does not provide aformal mechanism for the Bean Provider of a bean with co
tainer-managed persistence to specify the criteria for the finder methods.

The current mechanism is that Bean Provider describes the finders in a description of the Entity
The current EJB specification does not provide any syntax for describing the finders.

We plan to address this issue in a future release of the specification.

B.5 JDK 1.1 or Java 2

Chapter 18 describes the issue of using JDK 1.1 versus Java 2 in detail.

In summary, the Bean Provider can produce enterprise beans that will run in both JDK 1.1 and J
platform based Containers. The Container Provider can use either JDK 1.1 or Java 2 platform
basis for the implementation of the Container.

B.6 javax.transaction.UserTransaction versus javax.jts.UserTransaction

The correct spelling isjavax.transaction.UserTransaction .

The use ofjavax.jts.UserTransaction is deprecated in EJB 1.1.
291 11/24/99

Frequently asked questions Enterprise JavaBeans v1.1, Final Release How to obtain database connections

Sun Microsystems Inc.

BC API
rences

pts to
n a cli-

-
ssed by

e bean
ing so
rprise
B.7 How to obtain database connections

Section 14.4 specifies how an enterprise bean should obtain connections to resources such as JD
connections. The connection acquisition protocol uses resource manager connection factory refe
that are part of the enterprise bean’s environment.

The following is an example of how an enterprise bean obtains a JDBC connection:

public class EmployeeServiceBean implements SessionBean {
EJBContext ejbContext;

public void changePhoneNumber(...) {
...

// obtain the initial JNDI context
Context initCtx = new InitialContext();

// perform JNDI lookup to obtain resource manager connection

 // factory
javax.sql.DataSource ds = (javax.sql.DataSource)

initCtx.lookup("java:comp/env/jdbc/EmployeeAppDB");

// Invoke factory to obtain a connection. The security
// principal is not given, and therefore
// it will be configured by the Deployer.
java.sql.Connection con = ds.getConnection();
...

}
}

B.8 Session beans and primary key

The EJB 1.1 specification specifies the Container’s behavior for the cases when a client attem
access the primary key of a session object. In summary, the Container must throw an exception o
ent’s attempt to access the primary key of a session object.

B.9 Copying of parameters required for EJB calls within the same JVM

The enterprise bean’s home and remote interfaces areremote interfacein the Java RMI sense. The Con
tainer must ensure the Java RMI argument passing semantics. Non-remote objects must be pa
value.

Specifically, the EJB Container is not allowed to pass local objects by reference on inter-enterpris
invocations when the calling and called enterprise beans are collocated in the same JVM. Do
could result in the multiple beans sharing the state of a Java object, which would break the ente
bean’s semantics.
 11/24/99 292

Changes since Release 0.8 Enterprise JavaBeans v1.1, Final Release Revision History

Sun Microsystem Inc

s

n-
nt was

ntainer

anger-
Appendix C Revision History

C.1 Changes since Release 0.8

Removedjava.ejb.BeanPermission from the API. This file was incorrectly included in the 0.8
specification.

Renamed packages tojava.ejb andjavax.ejb.deployment . The Enterprise JavaBeans API i
packaged as a standard extension, and standard extensions should be prefixed withjavax . Also
renamedjava.jts to javax.jts .

Made clear that a container can support multiple EJB classes. We renamed thejavax.ejb.Con-
tainer to javax.ejb.EJBHome. Some reviewers pointed out that the use of the term “Co
tainer” for the interface that describes the life cycle operations of an EJB class as seen by a clie
confusing.

Folded the factory and finder methods into the enterprise bean’shome interface. This reduces the num-
ber of Java classes per EJB class and the number of round-trips between a client and the co
required to create or find an EJB object. It also simplifies the client-view API.

Removed the PINNED mode of a Session Bean. Many reviewers considered this mode to be “d
ous” since it could prevent the container from efficiently managing its memory resources.
293 11/24/99

Revision History Enterprise JavaBeans v1.1, Final Release Changes since Release 0.9

Sun Microsystems Inc.

g an

r pro-

gle dia-

n Bean

hange
.

n-
nge
Clarified the life cycle of a stateless Session Bean.

Added a chapter with the specification for exception handling.

We have renamed the contract between a component and its container tocomponent contract. The pre-
viously used termcontainer contract confused several reviewers.

Added description of finder methods.

Modified the entity create protocol by breaking theejbCreate method into two:ejbCreate and
ejbPostCreate . This provides a cleaner separation of the discrete steps involved in creatin
entity in a database and its associated middle-tier object.

Added more clarification to the description of the entity component protocol.

Added more information about the responsibilities of the enterprise bean provider and containe
vider.

RenamedSessionSynchronization.beginTransaction() to SessionSynchroniza-
tion.afterBegin() to avoid confusion withUserTransaction.begin() .

Added the specification of isolation levels for container-managed Entity Beans.

C.2 Changes since Release 0.9

Renamedjavax.ejb.InstanceContext to javax.ejb.EJBContext .

Fixed bugs in the javadoc of thejavax.ejb.EntityContext interface.

Combined the state diagrams for non-transactional and transactional Session Beans into a sin
gram.

Added the definition of the restrictions on using transaction scopes with a Session Bean (a Sessio
can be only in a single transaction at a time).

Allowed the enterprise bean’s class to implement the enterprise bean’s remote interface. This c
was requested by reviewers to facilitate migration of existing Java code to Enterprise JavaBeans

Removed thejavax.ejb.EJBException from the specification, and replaced its use by the sta
dard java.rmi.RemoteException . This change was necessary because of the previous cha
that allows the enterprise bean class to implement its remote interface.

Changed some rules regarding exception handling.
 11/24/99 294

Changes since Release 0.95 Enterprise JavaBeans v1.1, Final Release Revision History

Sun Microsystem Inc

e at
xisting

ns and

rs

n

that

elp the

Java-

rules

rovid-
si-
quires
Renamed to thejavax.jts.CurrentTransaction interface tojavax.jts.UserTransac-
tion to avoid confusion with theorg.omg.CosTransactions.Current interface. The
javax.jts.UserTransaction interface defines the subset of operations that are “safe” to us
the application-level, and can be supported by the majority of the transaction managers used by e
platforms.

Added specification for TX_BEAN_MANAGED transactions.

Made the isolation levels supplied in the deployment descriptor applicable also to Session Bea
entities with bean-managed persistence.

Renamed thedestroy() methods toremove() . This change was requested by several reviewe
who pointed out the potential for name space collisions in their implementations.

Added the create arguments to theejbPostCreate method. This simplifies the programming of a
Entity Bean that needs the create arguments in theejbPostCreate method (previously, the bean
would have to save these arguments in theejbCreate method).

Added restrictions on the use of per-method deployment attributes.

Added javax.ejb.EJBMetaData to the examples, and added the generation of the class
implements this interface as a requirements for the container tools.

Added thegetRollbackOnly method to thejavax.ejb.EJBContext interface. This method
allows an instance to test if the current transaction has been marked for rollback. The test may h
enterprise bean to avoid fruitless computation after it caught an exception.

We removed the placeholder Appendix for examples. We will provide examples on the Enterprise
Beans architecture Web site rather than in this document.

C.3 Changes since Release 0.95

Allowed a container-managed field to be of any Java programming language Serializable type.

Clarified the bean provider responsibilities for theejbFind<METHOD> methods Entity Beans with
container-managed persistence.

Added two rules to Subsection xxx on exception handling and transaction management. The new
are for the TX_BEAN_MANAGED beans.

Use thejavax.rmi.PortableRemoteObject.narrow(...) method to perform the narrow
operations after a JNDI lookup in the code samples used in the specification. While some JNDI p
ers may return from thelookup(...) method the exact stub for the home interface making it pos
ble to for the client application to use a Java cast, other providers may return a wider type that re
an explicit narrow to the home interface type. Thejavax.rmi.PortableRemoteObject.nar-
row(...) method is the standard Java RMI way to perform the explicit narrow operation.

Changed several deployment descriptor method names.
295 11/24/99

Revision History Enterprise JavaBeans v1.1, Final Release Changes since 1.0

Sun Microsystems Inc.

mary

rsis-

nt

tion
sup-
riptor
sibil-
ssem-

n-man-

se in

tainer
C.4 Changes since 1.0

This sections lists the changes since EJB 1.0.

Specified the behavior ofEJBObject.getPrimaryKey(), EJBMetaData.getPrima-
ryKeyClass(), EJBHome.remove(Object primaryKey,) and isIdenti-
cal(Object other) for Session Beans. As Session Bean do not have client-accessible pri
keys, these operations result in exceptions.

Disallowed TX_BEAN_MANAGED for Entity Beans.

Disallowed use ofSessionSynchronization for TX_BEAN_MANAGED sessions.

Allowed using java.lang.String as a primary key type.

Allowed deferring the specification of the primary key class for entities with container-managed pe
tence to the deployment time.

Clarified that a matching ejbPostCreate isrequired for each ejbCreate.

Added requirement for hashCode and equals for the primary key class.

Deprecated the packagejavax.ejb.deployment by replacing the JavaBeans-based deployme
descriptor with an XML-based deployment descriptor.

Improved the information in the deployment descriptor by clearly separating structural informa
from application assembly information, and by removing support for information that should be
plied by the Deployer rather than by the ejb-jar producer (i.e. ISV). The EJB 1.0 deployment desc
mixed all this information together, making it hard for people to understand the division of respon
ity for setting the various values, and it was not clear what values can be changed at application a
bly and/or deployment.

Added the requirement for the Bean Provider to specify whether the enterprise bean uses a bea
aged or container-managed transaction.

AddedNever the list of possible values of the transaction attributes to allow specification of the ca
which an enterprise bean must never be called from a transactional client.

Removed the Appendix describing thejavax.transaction package. Inclusion of this package in
the EJB document is no longer needed because the JTA documentation is publicly available.

Tightened the specification of the responsibilities for transaction management.

Tighten the rules for the runtime environment that the Bean Provider can expect and the EJB Con
Provider must provide. See Chapter 18.
 11/24/99 296

Changes since 1.1 Draft 1 Enterprise JavaBeans v1.1, Final Release Revision History

Sun Microsystem Inc

.

ction

ssions
PI for

that all

and the
super-

ot guar-

on-

ans to

for these

h the
ust be
C.5 Changes since 1.1 Draft 1

This sections lists the changes since EJB 1.1 Draft 1.

Allow use of the Java 2java.util.Collection interfaces for the result of entity finder methods

Defining the FinderException in the finder methods of the home interface is mandatory now.

Clean up of the exception specification, including minor changes from EJB 1.0 summarized in Se
12.6.

The scope of the EJB specification for managing transaction isolation levels was reduced to se
with bean-managed transaction demarcation. The current EJB specification does not have any A
managing transaction isolation for beans with container-managed transaction demarcation (note
Entity beans fall into this category).

Eliminated thestateless-session element in the XML DTD. Now thesession element is
used to describe both the stateful and stateless session beans.

Added an optionaldescription element to themethod element. The intention is to allow tools to
display the description of the method.

Clarified that the enterprise bean class may have superclasses, and that the business methods
various container callbacks can be implemented in the enterprise bean class, or in any of its
classes.

Fixed the example that illustrates the use of handles for session objects. Serialized handles are n
anteed to be deserializable in a different system, and therefore they cannot be emailed.

Updated the Overview chapter.

Allowed deferring the specification of the primary key class for all entities (not only for those with c
tainer-managed persistence as it was the case in Draft 1).

Allow enterprise beans to print. The Container must grant the permission to the enterprise be
queue printer job.

ThesetRollbackOnly() andgetRollbackOnly() methods of theEJBContext object must
not be used by enterprise beans with bean-managed transaction demarcation. There is no need
beans to use these methods.

C.6 Changes since 1.1 Draft 2

Fix an error in the requirement for how a Container must deal with inter-EJB invocations when bot
calling and called bean are in the same JVM. The correct requirement is that the RMI semantics m
ensured, and therefore the Container must not pass non-remote objects by reference.
297 11/24/99

Revision History Enterprise JavaBeans v1.1, Final Release Changes since 1.1 Draft 2

Sun Microsystems Inc.

ultiple

-

y sub-

upport

w the

-
r

hod

to use

e

-

stance
Clarified the requirements for serialization of the session objects.

Specified that an EJB Compliant Container may always return a null from the deprecatedgetCall-
erIdentity() method.

Added a section on distributed transaction scenarios involving access to the same entity from m
clients in the same transaction.

Changed the specification of the return value type of theejbCreate(...) methods for entities with
container-managed persistence. The previous specification required that theejbCreate methods are
defined as returning void. The new requirement is that theejbCreate methods be defined as return
ing the primary key class type. The implementation of theejbCreate method should return null. This
change is to allow tools, if they wish, to create an entity bean with bean-managed persistence b
classing an original entity bean with container-managed persistence.

For compatibility with EJB 1.0, added the support for thejava.rmi.RemoteException to be
thrown from the enterprise bean class methods. This is needed to allow an EJB 1.1 Container to s
enterprise beans written to the EJB 1.0 specification. The use of thejava.rmi.RemoteException
in the enterprise bean class methods is deprecated, and new applications should thro
javax.ejb.EJBException instead.

Removed the deprecated packagejavax.ejb.deployment from the EJB interfaces. The the depre
cated packagejavax.ejb.deployment will be distributed only with the deployment descripto
conversion tool.

Updated the examples in the transaction chapter by removing thesetAutoCommit andsetTrans-
actionIsolation calls. These calls are not typically done by the enterprise bean.

Added the<method-intf> element to allow a method element to differentiate between a met
with same signature when defined in both the remote and home interfaces.

Specified the behavior of thegetUserTransaction() , setRollbackOnly() , andgetRoll-
backOnly() methods for the cases when the methods are invoked by beans that are not allowed
these methods. The Container will throw thejava.lang.IllegalException in these situations.

Specified thatPortableRemoteObject.narrow(...) must be used by a client to convert th
result ofHandle.getEJBObject() to the remote interface type.

Required portable enterprise bean clients to use thePortableRemoteObject.narrow(...).

Clarified the minimal lifetime for handles.

Clarified that the caller must haveat least onesecurity role (notall) associated with the method permis
sion in order to be allowed to invoke the method.

Support for entities has been made mandatory for the Container Provider.

Added a section to the Exception chapter dealing with the release of resources held by the in
when the instance is being discarded because of a system exception.
 11/24/99 298

Changes since EJB 1.1 Draft 3 Enterprise JavaBeans v1.1, Final Release Revision History

Sun Microsystem Inc

ther
on the

sivated

r

. The

t not
nteed

r the

ds.

e any
ged

ritten
Added theres-auth element to the deployment descriptor for the Bean Provider to indicate whe
the bean code performs an explicit sign-on to a resource manager, or whether the Bean relies
Container to perform sign-on based on the information supplied by Deployer.

Addedjava.io.Serializable as a superinterface ofjavax.ejb.Handle . The EJB 1.0 spec
required that the implementation class implements thejava.io.Serializable interface, this
change expresses the requirement syntactically.

Added the interfacejavax.ejb.HomeHandle to provide support for handles for home objects.

Allowed a Session bean instance to be removed upon a timeout while the instance is in the pas
state.

Add the javax.ejb.NoSuchEntityException exception to the API. Added requirements fo
throwing thejava.rmi.NoSuchObjectExcetion to the chapter on exceptions.

C.7 Changes since EJB 1.1 Draft 3

Replaced the support for environment properties with the JNDI API-based environment entries
EJB 1.0 style of environment properties access is deprecated in EJB 1.1.

Removed thefinalize() method from the state diagrams. Specified that an enterprise bean mus
define thefinalize() method in the enterprise bean class. This is because it cannot be guara
that the method is called at all in some Container implementations.

Made clear that the result of comparing two object reference using the Java "==" operator o
equals() method is undefined.

Added Tables 2, 3, and 4 that specify which operations are allowed in the enterprise bean metho

Clarified what “proper transaction context” means in the Chapter on entities.

Flattened the DTD hierarchy by removing the elements that grouped entries of the same type.

Relaxed the rules for the primary key class. An entity with bean-managed persistence can us
RMI-IIOP Value Type as its primary key type; the primary key type of an entity with container-mana
persistence is more constrained.

Added theisStatelessSession() method to theEJBMetaData interface.

Updated the chapter in distribution to simply reference RMI-IIOP. The original chapter had been w
before RMI-IIOP was completed.
299 11/24/99

Revision History Enterprise JavaBeans v1.1, Final Release Changes since EJB 1.1 Public Draft

Sun Microsystems Inc.

-
s in the

.

at runs

ith an

-

uded in

en an

hich

ction
C.8 Changes since EJB 1.1 Public Draft

Added theejb-client-jar element to the deployment descriptor to allow the ejb-jar file pro
ducer to specify a JAR file that contains the classes necessary to access the enterprise bean
ejb-jar file.

The value of theres-auth element was changed toApplication (it wasBean) to be consistent
with the Java 2, Enterprise Edition platform specification.

Changed the lexical rules for theenv-entry-value element so that values of the typeString
need not be double-quoted in the deployment descriptor. See subsection 14.2.1.2.

Added the requirement for the Container to provide theUserTransaction interface to the enter-
prise bean instances in the environment JNDI API context under the namejava:comp/User-
Transaction . See section 14.6.

Clarified that the container must never return a null from thegetCallerPrincipal() method.

Allow the stateful session bean’sejbCreate , ejbRemove , ejbActivate , andejbPassivate
methods to access resource managers without transaction context. This was allowed in EJB 1.0

Cleaned up the description of transactions. Removed the confusing termlocal transaction, and created
the description of how a Container may deal with the resource manager updates from a method th
with an unspecified transaction context into Section 11.6.3 (the termlocal transactionwas used to refer
to the cases that are now covered by this section).

Added an explanation of how ejbLoad and ejbStore work for entity bean instances that execute w
unspecified transaction context. See subsection 9.1.7.1.

Fixed the argument type of theisIdentical(EJBObject) method. The spec showed it incor
rectly asjava.lang.Object . The EJB class files and javadoc have always been correct.

Disallowed the use ofUserTransaction in the setSessionContext method, as specified in
Tables 2 and 3.

Specified which methods can be assigned a transaction attribute, and which methods can be incl
method-permission elements.

Clarified in Subsection 12.3.6 which “resources” the Container is responsible for releasing wh
instance is being discarded.

Augmented the restrictions on client’s security context in Section 15.5 to cover the case in w
requests in the same transaction are received from multiple intermediate objects.

Moved the description of the “transaction diamond” scenario from Subsection 9.1.13 to Subse
11.7. Described also the transaction diamond scenario for Session Beans.

Clarified the scope of theenv-entry-name , ejb-ref-name , res-ref-name , secu-
rity-role-ref androle-name elements.
 11/24/99 300

Changes since EJB 1.1 Public Draft 2 Enterprise JavaBeans v1.1, Final Release Revision History

Sun Microsystem Inc

 bean.

of the
eans’

or the
owed

rned

tainer
opera-

ason
ation
e, and
yment

gned to

e and
f time
Specified that application exceptions must not be defined as a subclass ofRuntimeException or
RemoteException .

Clarified that the container-managed persistence fields must not be defined astransient .

Clarified in Subsection 9.2.3 that the entity object created by theejbCreate(...) method must
have a unique primary key.

Clarified in Section 6.8 how the Container delegates requests to instances of a stateless Session

Added to Section 18.1.2 the restriction that an enterprise bean must not passthis as a method argu-
ment or result.

In Section 6.4.1 specified that the Container must be able to preserve to an object reference
UserTransaction interface across passivation. Same for the object references of enterprise b
home interfaces.

Noted in Chapter 11 that the transaction attributes may be specified either by the Bean Provider
Application Assembler. The previous text suggested that only the Application Assembler was all
to specify the transaction attributes.

Made the terminology more consistent throughout the specification. Used the termssession bean, ses-
sion object, session bean instance, home interface, remote interface, session EJBObject, andsession
EJBHomeconsistently. Used similar terminology for the entity bean related terms. Note that we tu
off the change bars while making this editorial clean up.

Disallowed the use of thesetRollbackOnly and getRollbackOnly method, the use of the
UserTransaction interface, resource manager access, and enterprise bean access in theejbCre-
ate andejbRemove methods of the stateless session bean (see Table 3 on page 70). The Con
does not have a transaction context and client security context during the execution of these two
tions of a stateless session bean.

Added support for referencing the deployment descriptor elements through XML IDs. The main re
for this is to make it easier for tools that want to pass additional non-standard deployment inform
for the enterprise beans. The tools should put the non-standard information into a separate fil
optionally make use the ID mechanism to reference the information in the standard EJB deplo
descriptor. Tools arenot allowed to extend the format of the EJB deployment descriptor.

Made a minor change to the language in Subsection 15.3.2 for the case that a method is not assi
any security role.

Added a paragraph stating that the Container should implement the object references of the hom
remote interfaces of Entity objects such that a client can use the references over a long period o
(Subsection 9.3.9).

C.9 Changes since EJB 1.1 Public Draft 2

We changed the JTA requirements to refer to version JTA 1.0.1.
301 11/24/99

Revision History Enterprise JavaBeans v1.1, Final Release Changes since EJB 1.1 Public Draft 3

Sun Microsystems Inc.

re that

rd EJB

elds to

ent

ent

ion
uments

st be
B 1.0
e were
Added clarifications to subsections 9.1.5.1, 9.1.5.2, and 9.4.3 stating that the container must ensu
the instance’s state is synchronized before it invokesejbRemove .

Renamed theprimkey-class element toprim-key-class to be consistent with the rest of the
element names.

Clarified in Subsection 12.1.1 that a Bean Provider is allowed to define subclasses of the standa
application exceptions.

Added the requirement (in Subsection 9.4.2) for the Container to reset the container-manager fi
the default Java language values prior to invokingejbCreate .

Clarified the reason for allowing the primary key type for CMP entities to be specified at deploym
time (Subsection 9.4.7.3).

C.10 Changes since EJB 1.1 Public Draft 3

Made clear in Section 11.2.3 that not all EJB client environments are required to support theUser-
Transaction interface.

Specified the name and URI to be used in the DOCTYPE PUBLIC ID in the EJB XML deploym
descriptors.

Corrected Section 5.3.2 to state that ajavax.ejb.RemoveException be thrown instead of
java.rmi.RemoteException .

Fixed a few errors in Tables 2, 3, and 4.

Changed the format of the Style 3method element of the EJB deployment descriptor. See Sect
16.5. This change was necessary to disambiguate a Style 3 element for a method with no arg
from a Style 2 element.

C.11 Changes since EJB 1.1 Public Release

Fixed an error in Subsection 15.2.5. ThegetCallerPrincipal and isCallerInRole func-
tions, when called in an inappropriate context, must throw thejava.lang.IllegalStateEx-
ception , not thejavax.ejb.EJBException .

Fixed the omission of a requirement in Subsection 9.4.1. The container-managed fields mu
declared aspublic fields in the enterprise bean class. This requirement was present in the EJ
specification, and it was inadvertently left out when the sections on container-managed persistenc
reorganized during the EJB 1.1 specification process.
 11/24/99 302

Changes since EJB 1.1 Public Release Enterprise JavaBeans v1.1, Final Release Revision History

Sun Microsystem Inc

erprise

bean
l state.

1.2 to

EE

s are

with

.

Made it clear in 6.4.1 that an instance is allowed to retain across passivation references to ent
beans’ remote and home interfaces, references to theSessionContext object, references to the
java:comp/env JNDI API context and its subcontexts, and references to theUserTransaction
anywherein the instances conversational state (i.e. not only directly in the fields of the session
class). For example, it is possible to retain a Collection of remote interfaces in the conversationa

Changed the version numbers in the DOCTYPE specification in the deployment descriptor from
1.1. The correct DOCTYPE specification is:

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise
JavaBeans 1.1//EN" "http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd">

Clarified in Sections 5.5 and 8.7 that handles are not capabilities in the security sense.

Replaced the termresource factory reference with the termresource manager con-
nection factory reference . This change makes the terminology consistent with other J2
specs.

Added a missing entry to Table 11 forcheckLink .

Clarified in 16.5 that the DTD XML elements’ content is case sensitive.

Fixed a few typos in the text.

C.12 Changes since EJB 1.1 Public Release

Clarified in 17.3 that the enterprise bean’s dependent files could be in other jar files if the jar file
specified in the ejb-jar file’s Class-Path.

Clarified in 16.5 that the method-intf can be used with all Style elements, specifically
method-name being *.

Clarified in 9.1.9.4 that multi-object finders should return an empty collection if no object is found

Allowed enterprise beans to read system properties.
303 11/24/99

Revision History Enterprise JavaBeans v1.1, Final Release Changes since EJB 1.1 Public Release

Sun Microsystems Inc.
 11/24/99 304

305

Index
A
activation, 50, 65
All , 46
APIs

runtime, 272, 275
Application Assembler, 22

responsibilities, 282
transaction attributes, 171
transaction role, 169

application assembly, 243–244
application exception, 187
application exception See exception

B
Bean Provider, 22

responsibilities, 281
responsibility, 74–77

BeanReference
Interface in package java.beans.enter-

prise, 285
Interface in package java.ejb, 285

C
cmp-fields element, 242
commit, 118
Container

Interface in package java.ejb, 285
Container Provider, 23

transaction demarcation
bean managed, 173
container managed, 175–178

container-transaction element, 171

conversational state, 51
passivation, 51
rollback, 53

CORBA mapping, 35
CreateException, 116
CurrentTransaction

Interface in package java.jts, 293

D
Deployer, 22

responsibilities, 282
deployment descriptor

application assembly, 240
bean structure, 240, 240–242
DTD, 244–259
EJB reference, 208
ejb-link element, 210
ejb-ref element, 208
enterprise-beans element, 240
env-entry element, 204
environment entry, 204
res-auth element, 213
resource-ref element, 213
role, 240
transaction attributes, 171
XML DTD, 244–259

distributed objects, 199
DuplicateKeyException, 116

E
EJB Container Provider, 23

requirements, 78–79

INDEX306
responsibilities, 282
EJB reference, 207

Deployer role, 211
ejb-link element, 210
in deployment descriptor, 208
locate home interface, 208

EJB Role
Application Assembler, 22
Bean Provider, 22
Container Provider, 23
Deployer, 22
EJB Server Provider, 23
System Administrator, 24

EJB Server Provider, 23
ejb-class element, 241
ejb-client JAR file, 268
EJBContext

Interface in package javax.ejb, 284, 285
EJBHome, 41, 128

Interface in package javax.ejb, 285
remove method, 42

ejb-jar file, 33, 242, 267
class files, 268
deployment descriptor, 268
ejb-client JAR file, 268
JAR Manifest, 269

ejb-link element, 210
EJBMetaData, 129
ejb-name element, 240
EJBObject, 39, 43, 128

remove method, 42
ejb-ref element, 208
ejbRemove, 61
enterprise bean component

characteristics of, 30
enterprise bean component model, 30
enterprise bean contract

client view, 31
CORBA mapping, 35
home interface, 31
metadata interface, 32
object identity, 32
remote interface, 32

component contract
requirements, 32

ejb-jar file, 33

enterprise bean environment
JNDI interface, 202

InitialContext, 203
Enterprise Bean Provider, 22
entity bean

allowed method operations, 111
bean provider-implemented methods,

104–107
business methods, 125
class requirements, 121
client view of, 85–86
commit, 118
constructor, 104
create method, 89, 122
CreateException, 116
DuplicateKeyException, 116
EJB container, 86
ejbActivate, 105
ejbCreate, 105, 122
ejbFind methods, 124
ejbLoad, 106, 112
ejbPassivate, 106
ejbPostCreate, 105, 124
ejbRemove, 106
ejbStore, 106, 112
exceptions, 116–117
find methods, 90, 107, 124

return type, 114–115
findByPrimaryKey, 90
FinderException, 117
generated classes, 127
getHandle method, 94
getPrimaryKey method, 93
handle, 94, 128
home interface

function of, 89
requirements, 126

home interface handle, 95, 128
isIdentical method, 93
life cycle, 91–92, 102–104
locate home interface, 87
methods

container view of, 107–109
modeling business objects, 99
ObjectNotFoundException, 117
persistence, 99, 100, 101

INDEX 307
container managed, 129–134
primary key, 93, 127
reentrancy, 120
remote interface, 93, 125
remove method, 90
RemoveException, 117
setEntityContext, 104
state, 102
state caching, 112
transaction demarcation, 160

container managed, 167
transaction synchronization, 119
unsetEntityContext, 105

entity element, 241
env-entry element, 204
environment entry, 204

Application Assembler role, 207
Deployer role, 207

environment naming context, 203
exception

application, 187
client handling of, 195
data integrity, 188
defined, 188
subclass of, 189

client view, 195
container handling of, 191

container-invoked callbacks, 193
containter-managed transaction, 194
NoSuchObjectException, 197
RemoteException, 194, 196

client handling, 196
system

handling of, 189–190
System Administrator, 197
transaction commit, 194
transaction start, 194
TransactionRequiredException, 197
TransactionRolledbackException, 197

F
findByPrimaryKey, 90
FinderException, 117

G
getCallerIdentity, 222

getCallerPrincipal, 223, 236
getEnvironment method, 216
getHandle method, 94
getPrimaryKey method, 47, 93

H
home element, 241
home interface, 31, 40, 67

client functionality, 89
create method, 89
EJB reference to, 207
entity bean, 126
find methods, 90
findByPrimaryKey, 90
handle, 95
locating, 87
remove method, 90

I
Interfaces

java.beans.enterprise.BeanReference, 285
java.ejb.BeanReference, 285
java.ejb.Container, 285
java.jts.CurrentTransaction, 293
javax.ejb.EJBContext, 284, 285
javax.ejb.EJBHome, 285
javax.ejb.SessionSynchronization, 168
javax.jts.UserTransaction, 293

isCallerInRole, 222
isCallerinRole, 224
isIdentical method, 46, 93
isolation level

managing in transaction, 160

J
JAR Manifest file, 269
Java RMI, 279
JDBC, 277
JDK 1.1, 277–279
JNDI, 276
JNDI interface, 202

InitialContext, 203
JTA, 277

M
Mandatory, 170, 177

INDEX308
metadata interface, 32
method-permission element, 229

N
narrow method, 47
Never, 170, 177
NoSuchObjectException, 197
NotSupported, 170, 175

O
object identity, 32
ObjectNotFoundException, 117

P
passivation, 50, 65

conversational state, 51
SessionContext interface, 52
UserTransaction interface, 52

persistence, 99
bean managed, 100

entity state caching, 112
container managed, 101, 129–134

persistence-type element, 241
portability

programming restrictions, 272–274
primary key, 93, 127
prim-key-class element, 241
principal, 220, 221

delegation, 233

R
remote element, 241
remote interface, 32, 39, 43

entity bean, 93, 125
RemoteException, 194, 196

client handling, 196
RemoveException, 117
Required, 170, 175
RequiresNew, 170, 176
res-auth element, 213
resource

obtaining connection to, 212
res-auth element, 213

resource factory, 211
resource factory reference, 211

resource-ref element, 213

resource-ref element, 213
RMI, 199
role-link element, 232
role-name element, 227
runtime

APIs, 272, 275

S
security

audit, 238
bean provider

programming recommendations, 221
client responsibility, 234
current caller, 223
deployment descriptor processing, 234
deployment tools, 235
EJBContext, 222, 236
getCallerPrincipal, 222, 223, 236
isCallerInRole, 222, 224
mechanism, 235
principal, 220, 221

delegation, 233
passing, 236

principal realm, 233, 235
role-link element, 232
runtime enforcement, 237
security-role-ref element, 225

security domain, 233, 235
security role, 220, 226, 227

assigning, 233
linking, 232
method permission, 220, 226, 229
role-name element, 227

security view, 226
security-role element, 227, 233
security-role-ref element, 225
session bean

access to, 39
business method requirements, 76
class requirements, 75
client operations on, 44
client view of, 39
create, 42
ejbCreate requirements, 76
ejbRemove call, 61
exceptions, 61

INDEX 309
getPrimaryKey method, 47
home interface, 40, 41
home interface requirements, 77
identity, 43
provider responsibility, 74–77
remote interface, 39, 43
remote interface requirements, 77
remove, 42, 66
requirements, 74–77
SessionBean interface, 53
SessionContext interface, 54
SessionSynchronization interface, 54
stateful

conversational state, 51
identity of, 46
isIdentical method, 46
lifecycle, 57
operations in, 59

stateless, 67–74
exceptions, 71
home interface, 67
identity of, 46
isIdentical method, 46
lifecycle, 68
operations, 70
transaction demarcation, 161
use of, 67

transaction context, 56
transaction demarcation, 160, 161

bean managed, 161
container managed, 167

transaction scope, 62
session bean instance

activation, 50, 65
characteristics, 49
creating, 55

diagram of, 63
passivation, 50, 65
serialization of calls, 56

session element, 241
SessionBean interface, 53
SessionContext interface, 54

passivation, 52
SessionSynchronization interface, 54, 168

callbacks, 179
session-type element, 241

stateful session bean
conversational state, 51
lifecycle, 57
operations in, 59

stateless session bean. See session bean
Supports, 170, 176
System Administrator, 24

responsibilities, 282

T
transaction

attributes, 154
definition, 169
deployment descriptor, 171
Mandatory, 177
Never, 177
NotSupported, 175
Required, 175
RequiresNew, 176
Supports, 176
values, 170

bean managed, 154, 159–169
container responsibilities, 173

committing, 64
container managed, 154, 159–169

container responsibilities, 175–178
getRollbackOnly method, 169, 178
getUserTransaction method, 179
SessionSynchronization callbacks,

179
setRollbackOnly method, 168, 178

isolation level, 160
JTA, 155
JTS, 155
multiple client access, 180–185
nested, 154
SessionSynchronization interface, 168
starting, 63
synchronizing, 119
unspecified transaction context, 179
UserTransaction interface, 154

transaction context
session bean, 56

transaction scope
session bean, 62

TransactionRequiredException, 197

INDEX310
TransactionRolledbackException, 197
transaction-type element, 241
trans-attribute element, 171
type narrowing, 47, 96

U
UserTransaction

Interface in package javax.jts, 293
UserTransaction interface, 154, 161, 217

passivation, 52

	Chapter 1 Introduction
	1.1 Target audience
	1.2 What is new in EJB 1.1
	1.3 Application compatibility and interoperability
	1.4 Acknowledgments
	1.5 Organization
	1.6 Document conventions

	Chapter 2 Goals
	2.1 Overall goals
	2.2 Goals for Release 1.0
	2.3 Goals for Release 1.1

	Chapter 3 EJB Architecture Roles and Scenarios
	3.1 EJB Architecture Roles
	3.1.1 Enterprise Bean Provider
	3.1.2 Application Assembler
	3.1.3 Deployer
	3.1.4 EJB Server Provider
	3.1.5 EJB Container Provider
	3.1.6 System Administrator

	3.2 Scenario: Development, assembly, and deployment

	Chapter 4 Overview
	4.1 Enterprise Beans as components
	4.1.1 Component characteristics
	4.1.2 Flexible component model

	4.2 Enterprise JavaBeans Architecture contracts
	4.2.1 Client-view contract
	4.2.2 Component contract
	4.2.3 Ejb-jar file
	4.2.4 Contracts summary

	4.3 Session and entity objects
	4.3.1 Session objects
	4.3.2 Entity objects

	4.4 Standard mapping to CORBA protocols

	Chapter 5 Client View of a Session Bean
	5.1 Overview
	5.2 EJB Container
	5.2.1 Locating a session bean’s home interface
	5.2.2 What a container provides

	5.3 Home interface
	5.3.1 Creating a session object
	5.3.2 Removing a session object

	5.4 EJBObject
	5.5 Session object identity
	5.6 Client view of session object’s life cycle
	5.7 Creating and using a session object
	5.8 Object identity
	5.8.1 Stateful session beans
	5.8.2 Stateless session beans
	5.8.3 getPrimaryKey()

	5.9 Type narrowing

	Chapter 6 Session Bean Component Contract
	6.1 Overview
	6.2 Goals
	6.3 A container’s management of its working set
	6.4 Conversational state
	6.4.1 Instance passivation and conversational state
	6.4.2 The effect of transaction rollback on conversational state

	6.5 Protocol between a session bean instance and its container
	6.5.1 The required SessionBean interface
	6.5.2 The SessionContext interface
	6.5.3 The optional SessionSynchronization interface
	6.5.4 Business method delegation
	6.5.5 Session bean’s ejbCreate(...) methods
	6.5.6 Serializing session bean methods
	6.5.7 Transaction context of session bean methods

	6.6 STATEFUL Session Bean State Diagram
	6.6.1 Operations allowed in the methods of a stateful session bean class
	6.6.2 Dealing with exceptions
	6.6.3 Missed ejbRemove() calls
	6.6.4 Restrictions for transactions

	6.7 Object interaction diagrams for a STATEFUL session bean
	6.7.1 Notes
	6.7.2 Creating a session object
	6.7.3 Starting a transaction
	6.7.4 Committing a transaction
	6.7.5 Passivating and activating an instance between transactions
	6.7.6 Removing a session object

	6.8 Stateless session beans
	6.8.1 Stateless session bean state diagram
	6.8.2 Operations allowed in the methods of a stateless session bean class
	6.8.3 Dealing with exceptions

	6.9 Object interaction diagrams for a STATELESS session bean
	6.9.1 Client-invoked create()
	6.9.2 Business method invocation
	6.9.3 Client-invoked remove()
	6.9.4 Adding instance to the pool

	6.10 The responsibilities of the bean provider
	6.10.1 Classes and interfaces
	6.10.2 Session bean class
	6.10.3 ejbCreate methods
	6.10.4 Business methods
	6.10.5 Session bean’s remote interface
	6.10.6 Session bean’s home interface

	6.11 The responsibilities of the container provider
	6.11.1 Generation of implementation classes
	6.11.2 Session EJBHome class
	6.11.3 Session EJBObject class
	6.11.4 Handle classes
	6.11.5 EJBMetaData class
	6.11.6 Non-reentrant instances
	6.11.7 Transaction scoping, security, exceptions

	Chapter 7 Example Session Scenario
	7.1 Overview
	7.2 Inheritance relationship
	7.2.1 What the session Bean provider is responsible for
	7.2.2 Classes supplied by container provider
	7.2.3 What the container provider is responsible for

	Chapter 8 Client View of an Entity
	8.1 Overview
	8.2 EJB Container
	8.2.1 Locating an entity bean’s home interface
	8.2.2 What a container provides

	8.3 Entity bean’s home interface
	8.3.1 create methods
	8.3.2 finder methods
	8.3.3 remove methods

	8.4 Entity object’s life cycle
	8.5 Primary key and object identity
	8.6 Entity Bean’s remote interface
	8.7 Entity bean’s handle
	8.8 Entity home handles
	8.9 Type narrowing of object references

	Chapter 9 Entity Bean Component Contract
	9.1 Concepts
	9.1.1 Runtime execution model
	9.1.2 Granularity of entity beans
	9.1.3 Entity persistence (data access protocol)
	9.1.3.1 Bean-managed persistence
	9.1.3.2 Container-managed persistence

	9.1.4 Instance life cycle
	9.1.5 The entity bean component contract
	9.1.5.1 Entity bean instance’s view:
	9.1.5.2 Container’s view:

	9.1.6 Operations allowed in the methods of the entity bean class
	9.1.7 Caching of entity state and the ejbLoad and ejbStore methods
	9.1.7.1 ejbLoad and ejbStore with the NotSupported transaction attribute

	9.1.8 Finder method return type
	9.1.8.1 Single-object finder
	9.1.8.2 Multi-object finders

	9.1.9 Standard application exceptions for Entities
	9.1.9.1 CreateException
	9.1.9.2 DuplicateKeyException
	9.1.9.3 FinderException
	9.1.9.4 ObjectNotFoundException
	9.1.9.5 RemoveException

	9.1.10 Commit options
	9.1.11 Concurrent access from multiple transactions
	9.1.12 Non-reentrant and re-entrant instances

	9.2 Responsibilities of the Enterprise Bean Provider
	9.2.1 Classes and interfaces
	9.2.2 Enterprise bean class
	9.2.3 ejbCreate methods
	9.2.4 ejbPostCreate methods
	9.2.5 ejbFind methods
	9.2.6 Business methods
	9.2.7 Entity bean’s remote interface
	9.2.8 Entity bean’s home interface
	9.2.9 Entity bean’s primary key class

	9.3 The responsibilities of the Container Provider
	9.3.1 Generation of implementation classes
	9.3.2 Entity EJBHome class
	9.3.3 Entity EJBObject class
	9.3.4 Handle class
	9.3.5 Home Handle class
	9.3.6 Meta-data class
	9.3.7 Instance’s re-entrance
	9.3.8 Transaction scoping, security, exceptions
	9.3.9 Implementation of object references

	9.4 Entity beans with container-managed persistence
	9.4.1 Container-managed fields
	9.4.2 ejbCreate, ejbPostCreate
	9.4.3 ejbRemove
	9.4.4 ejbLoad
	9.4.5 ejbStore
	9.4.6 finder methods
	9.4.7 primary key type
	9.4.7.1 Primary key that maps to a single field in the entity bean class
	9.4.7.2 Primary key that maps to multiple fields in the entity bean class
	9.4.7.3 Special case: Unknown primary key class

	9.5 Object interaction diagrams
	9.5.1 Notes
	9.5.2 Creating an entity object
	9.5.3 Passivating and activating an instance in a transaction
	9.5.4 Committing a transaction
	9.5.5 Starting the next transaction
	9.5.6 Removing an entity object
	9.5.7 Finding an entity object
	9.5.8 Adding and removing an instance from the pool

	Chapter 10 Example entity scenario
	10.1 Overview
	10.2 Inheritance relationship
	10.2.1 What the entity Bean Provider is responsible for
	10.2.2 Classes supplied by Container Provider
	10.2.3 What the container provider is responsible for

	Chapter 11 Support for Transactions
	11.1 Overview
	11.1.1 Transactions
	11.1.2 Transaction model
	11.1.3 Relationship to JTA and JTS

	11.2 Sample scenarios
	11.2.1 Update of multiple databases
	11.2.2 Update of databases via multiple EJB Servers
	11.2.3 Client-managed demarcation
	11.2.4 Container-managed demarcation
	11.2.5 Bean-managed demarcation
	11.2.6 Interoperability with non-Java clients and servers

	11.3 Bean Provider’s responsibilities
	11.3.1 Bean-managed versus container-managed transaction demarcation
	11.3.1.1 Non-transactional execution

	11.3.2 Isolation levels
	11.3.3 Enterprise beans using bean-managed transaction demarcation
	11.3.3.1 getRollbackOnly() and setRollbackOnly() method

	11.3.4 Enterprise beans using container-managed transaction demarcation
	11.3.4.1 javax.ejb.SessionSynchronization interface
	11.3.4.2 javax.ejb.EJBContext.setRollbackOnly() method
	11.3.4.3 javax.ejb.EJBContext.getRollbackOnly() method

	11.3.5 Declaration in deployment descriptor

	11.4 Application Assembler’s responsibilities
	11.4.1 Transaction attributes

	11.5 Deployer’s responsibilities
	11.6 Container Provider responsibilities
	11.6.1 Bean-managed transaction demarcation
	11.6.2 Container-managed transaction demarcation
	11.6.2.1 NotSupported
	11.6.2.2 Required
	11.6.2.3 Supports
	11.6.2.4 RequiresNew
	11.6.2.5 Mandatory
	11.6.2.6 Never
	11.6.2.7 Transaction attribute summary
	11.6.2.8 Handling of setRollbackOnly() method
	11.6.2.9 Handling of getRollbackOnly() method
	11.6.2.10 Handling of getUserTransaction() method
	11.6.2.11 javax.ejb.SessionSynchronization callbacks

	11.6.3 Handling of methods that run with “an unspecified transaction context”

	11.7 Access from multiple clients in the same transaction context
	11.7.1 Transaction “diamond” scenario with an entity object
	11.7.2 Container Provider’s responsibilities
	11.7.3 Bean Provider’s responsibilities
	11.7.4 Application Assembler and Deployer’s responsibilities
	11.7.5 Transaction diamonds involving session objects

	Chapter 12 Exception handling
	12.1 Overview and Concepts
	12.1.1 Application exceptions
	12.1.2 Goals for exception handling

	12.2 Bean Provider’s responsibilities
	12.2.1 Application exceptions
	12.2.2 System exceptions
	12.2.2.1 javax.ejb.NoSuchEntityException

	12.3 Container Provider responsibilities
	12.3.1 Exceptions from an enterprise bean’s business methods
	12.3.2 Exceptions from container-invoked callbacks
	12.3.3 javax.ejb.NoSuchEntityException
	12.3.4 Non-existing session object
	12.3.5 Exceptions from the management of container-managed transactions
	12.3.6 Release of resources
	12.3.7 Support for deprecated use of java.rmi.RemoteException

	12.4 Client’s view of exceptions
	12.4.1 Application exception
	12.4.2 java.rmi.RemoteException
	12.4.2.1 javax.transaction.TransactionRolledbackException
	12.4.2.2 javax.transaction.TransactionRequiredException
	12.4.2.3 java.rmi.NoSuchObjectException

	12.5 System Administrator’s responsibilities
	12.6 Differences from EJB 1.0

	Chapter 13 Support for Distribution
	13.1 Overview
	13.2 Client-side objects in distributed environment
	13.3 Standard distribution protocol

	Chapter 14 Enterprise bean environment
	14.1 Overview
	14.2 Enterprise bean’s environment as a JNDI API naming context
	14.2.1 Bean Provider’s responsibilities
	14.2.1.1 Access to enterprise bean’s environment
	14.2.1.2 Declaration of environment entries

	14.2.2 Application Assembler’s responsibility
	14.2.3 Deployer’s responsibility
	14.2.4 Container Provider responsibility

	14.3 EJB references
	14.3.1 Bean Provider’s responsibilities
	14.3.1.1 EJB reference programming interfaces
	14.3.1.2 Declaration of EJB references in deployment descriptor

	14.3.2 Application Assembler’s responsibilities
	14.3.3 Deployer’s responsibility
	14.3.4 Container Provider’s responsibility

	14.4 Resource manager connection factory references
	14.4.1 Bean Provider’s responsibilities
	14.4.1.1 Programming interfaces for resource manager connection factory references
	14.4.1.2 Declaration of resource manager connection factory references in deployment descriptor
	14.4.1.3 Standard resource manager connection factory types

	14.4.2 Deployer’s responsibility
	14.4.3 Container provider responsibility
	14.4.4 System Administrator’s responsibility

	14.5 Deprecated EJBContext.getEnvironment() method
	14.6 UserTransaction interface

	Chapter 15 Security management
	15.1 Overview
	15.2 Bean Provider’s responsibilities
	15.2.1 Invocation of other enterprise beans
	15.2.2 Resource access
	15.2.3 Access of underlying OS resources
	15.2.4 Programming style recommendations
	15.2.5 Programmatic access to caller’s security context
	15.2.5.1 Use of getCallerPrincipal()
	15.2.5.2 Use of isCallerInRole(String roleName)
	15.2.5.3 Declaration of security roles referenced from the bean’s code

	15.3 Application Assembler’s responsibilities
	15.3.1 Security roles
	15.3.2 Method permissions
	15.3.3 Linking security role references to security roles

	15.4 Deployer’s responsibilities
	15.4.1 Security domain and principal realm assignment
	15.4.2 Assignment of security roles
	15.4.3 Principal delegation
	15.4.4 Security management of resource access
	15.4.5 General notes on deployment descriptor processing

	15.5 EJB Architecture Client Responsibilities
	15.6 EJB Container Provider’s responsibilities
	15.6.1 Deployment tools
	15.6.2 Security domain(s)
	15.6.3 Security mechanisms
	15.6.4 Passing principals on EJB architecture calls
	15.6.5 Security methods in javax.ejbEJBContext
	15.6.6 Secure access to resource managers
	15.6.7 Principal mapping
	15.6.8 System principal
	15.6.9 Runtime security enforcement
	15.6.10 Audit trail

	15.7 System Administrator’s responsibilities
	15.7.1 Security domain administration
	15.7.2 Principal mapping
	15.7.3 Audit trail review

	Chapter 16 Deployment descriptor
	16.1 Overview
	16.2 Bean Provider’s responsibilities
	16.3 Application Assembler’s responsibility
	16.4 Container Provider’s responsibilities
	16.5 Deployment descriptor DTD
	16.6 Deployment descriptor example

	Chapter 17 Ejb-jar file
	17.1 Overview
	17.2 Deployment descriptor
	17.3 Class files
	17.4 ejb-client JAR file
	17.5 Deprecated in EJB 1.1
	17.5.1 ejb-jar Manifest
	17.5.2 Serialized deployment descriptor JavaBeans™ components

	Chapter 18 Runtime environment
	18.1 Bean Provider’s responsibilities
	18.1.1 APIs provided by Container
	18.1.2 Programming restrictions

	18.2 Container Provider’s responsibility
	18.2.1 Java 2 Platform-based Container
	18.2.1.1 Java 2 APIs requirements
	18.2.1.2 EJB 1.1 requirements
	18.2.1.3 JNDI 1.2 requirements
	18.2.1.4 JTA 1.0.1 requirements
	18.2.1.5 JDBC™ 2.0 extension requirements

	18.2.2 JDK™ 1.1 based Container
	18.2.2.1 JDK 1.1 APIs requirements
	18.2.2.2 EJB 1.1 requirements
	18.2.2.3 JNDI 1.2 requirements
	18.2.2.4 JTA 1.0.1 requirements
	18.2.2.5 JDBC 2.0 extension requirements

	18.2.3 Argument passing semantics

	Chapter 19 Responsibilities of EJB Architecture Roles
	19.1 Bean Provider’s responsibilities
	19.1.1 API requirements
	19.1.2 Packaging requirements

	19.2 Application Assembler’s responsibilities
	19.3 EJB Container Provider’s responsibilities
	19.4 Deployer’s responsibilities
	19.5 System Administrator’s responsibilities
	19.6 Client Programmer’s responsibilities

	Chapter 20 Enterprise JavaBeans™ API Reference
	package javax.ejb
	package javax.ejb.deployment

	Chapter 21 Related documents
	Appendix A Features deferred to future releases
	Appendix B Frequently asked questions
	B.1 Client-demarcated transactions
	B.2 Inheritance
	B.3 Entities and relationships
	B.4 Finder methods for entities with container-managed persistence
	B.5 JDK 1.1 or Java 2
	B.6 javax.transaction.UserTransaction versus javax.jts.UserTransaction
	B.7 How to obtain database connections
	B.8 Session beans and primary key
	B.9 Copying of parameters required for EJB calls within the same JVM

	Appendix C Revision History
	C.1 Changes since Release 0.8
	C.2 Changes since Release 0.9
	C.3 Changes since Release 0.95
	C.4 Changes since 1.0
	C.5 Changes since 1.1 Draft 1
	C.6 Changes since 1.1 Draft 2
	C.7 Changes since EJB 1.1 Draft 3
	C.8 Changes since EJB 1.1 Public Draft
	C.9 Changes since EJB 1.1 Public Draft 2
	C.10 Changes since EJB 1.1 Public Draft 3
	C.11 Changes since EJB 1.1 Public Release
	C.12 Changes since EJB 1.1 Public Release

