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Purpose of the Presentation

To present the design and 
implementation of the next generation 
high-performance Java™ virtual 
machine for the CLDC platform
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Learning Objectives

 As a result of this presentation, you will 
be able to:
 Learn why speed will be important in 

mobile devices
 Understand the key technologies behind 

a high-performance VM for memory 
constrained systems  

 Anticipate upcoming performance 
improvements for CLDC
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Why Is Speed Important 
in Mobile Devices?

 Bandwidth will approach 2Mbits/s

 Battery drain is crucial

 New compute-intensive application types
 E-commerce applications
 Banking applications
 System software
 Location-based services
 Multimedia applications
 3D games and gambling applications
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Java™ Virtual Machine Challenge

 How do we design a high-performance Java 
virtual machine that preserves battery life?
 Fast byte code execution
 Low memory footprint
 Flexible memory system
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Why Should You Listen to Us?

 Lars Bak is a virtual machine architect at 
Sun Microsystems, Inc.

 Lars Bak has 16 years of experience in 
designing and implementing object-oriented 
virtual machines:
 Java HotSpot™, StrongTalk, Self, and Beta

 Kasper Verdich Lund and Jakob Roland 
Andersen are graduate students at Aarhus 
University, Denmark
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Presentation Outline

 The Project

 The Technology
 Compact object layout
 Fast synchronization
 Explicit type tags
 Dynamic compilation
 Unified memory management

 Benchmark results

 Demo on iPaq



Session 2133 9

Project Monty

 Focused on delivering the next generation 
VM for the CLDC platform
 Fast execution
 Low memory footprint
 Long-lived VM
 From scratch design

 Goals
 10 times the speed of KVM 1.0.3
 Small footprint
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Where Is Performance Important?
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Project Monty Technology Overview

 Clean 32-bit Java virtual machine
 Compliant with JLS and JVM™ specification
 Approaches Java™ technology desktop 

performance
 Precise generation-based garbage collection
 No restrictions on:

 Number of loaded classes
 Size of object heap

 Target memory for the Java platform: 1Mb
 JVM + CLDC + MIDP + Applications
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Project Monty Design Rules

 Keep it simple, stupid!

 Complexity results in
 Increased footprint
 Fragile implementation

 No premature optimizations

 Examples:
 Stack maps for activations
 Special cache for compiled code
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Object Requirements in the 
Java™ Programming Language

 Must carry reflective information
 java.lang.Object.getClass()

 Can be synchronization targets
 synchronized (x) { ... }

 Support immutable hash code
 java.lang.Object.hashCode()

 VM must provide default implementation
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Compact Object Layout

 1 word object header (class pointer)

Instance Near Class

 no hash

 Near is copied if hash code is assigned

 no hash

145263

Instance Near Class
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Compact Object Layout

 Only few objects get hash code assigned

 Saves a word for most objects
 Occupies less space
 Speeds up allocation
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Object Sizes

 Byte sizes

 class Number {   int value;} 
 class Node {
   byte    code;
   Node    next;
   short   index;
   boolean hasIndex;
 }
 

VM Classic KVM HotSpot CVM Monty

Number Class 16 16 16 12 8

Node Class 32 28 24 24 12

 Sample “Java classes”
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 Object locking
Instance Near Class

no hash

Instance Near

Class
no hash

no hash

Stack

Object Synchronization

 Object unlocking

Instance Near Class

Stack

Instance Near

Class
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Object Synchronization

 Applied block-structured locking as in 
the Java HotSpot™ virtual machine

 No space is needed in the object

 Used the location of the near object 
to indicate locking
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Pointers on the Execution Stack

 Precise garbage collection requires the system 
to locate all pointers on the stack

∀ active execution frames
  ∀  locals and expression stack elements
     is this an object pointer?

 Two approaches to solve this problem
 Abstract interpretation of bytecodes
 Carry explicit tags with bytecode execution 
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Explicit Type Tagging

 Value on stack has associated tag

 Frame 

Reference type 

 

Primitive type: float 

3.14 

Primitive type: int 

17 
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Explicit Type Tagging

 Eliminates the need for stack maps
 KVM, 5-10% of reflective data

 J2SE™ uses abstract interpretation 

 Makes scanning for references trivial

 Doubles the needed stack space!
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Is a Dynamic Compiler Needed?

 On average, interpreted VM performance is 
x10 slower than compiled VM performance

 x1 x3 x20

Monty

Interpreted Compiled
KVM CVM HotSpot
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Compilation Strategy

 Compiled code occupies 4 to 5 times more 
memory than byte codes

 The solution is adaptive compilation
 Only compile the methods that are hot spots
 Make the interpreter as fast as possible

 Fast and simple one-pass compiler
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Adaptive Compilation Strategy
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Speeding Up the Interpreter

 Threaded assembly interpreter with static 
dispatch table

 Interpreter is generated

 Each bytecode template is described as an 
ordered set of instructions

 Optimized by brute force instruction reordering

Is this really necessary?
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Resource Management

 Traditional approach
 Segment for user objects
 Segment for reflective data
 Segment for code cache

 … results in
 Fragmentation
 Complexity
 Static segmentation
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Unified Resource Management

 The object heap contains all data
 Allocated objects
 Loaded classes
 VM internal data structures
 Compiled code

… everything is subject to garbage collection
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Benefits of Unified Resource 
Management

 No fragmentation at all

 Compiled code can be removed to give space 
for application objects

 More robust, smaller, and simpler memory 
management code
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Compiled Code Removal

 Least recently used (LRU) algorithm used for 
ranking compiled code for removal

 Garbage collector determines how much code 
should be removed and removes the least 
recently used compiled code

 Deoptimization is applied to frames described 
by compiled code to be removed
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Battery Life and Cache Behavior

 Faster execution consumes less power

 Cache friendly design
 Small objects
 Generational garbage collector, touches 

memory locally
 Compiled code in object heap, fully 

relocatable/flushable
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Benchmarks Results

 Selected Benchmarks
 Richards Simulates dispatch kernel of an operating system

 DeltaBlue Solves one-way constraint systems

 Pentominoes Mathematical puzzle benchmark

 KXML XML parser benchmark

 BenchPress Stanford integer benchmarks

 Platforms
 iPaq: 206Mhz StrongARM/WinCE
 PC: 1.4Ghz P4/Windows2000
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KVM 1.0.3 Monty Ratio
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Conclusion

 Project Monty is a new high-performance 
Java virtual machine for the JavaTM platform 
for CLDC with:
 Compact object layout
 Fast synchronization
 Explicit type tags
 Dynamic compilation
 Unified memory management

 It provides high performance and small 
memory footprint
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If You Only Remember One Thing…

Anticipate an order of magnitude 
performance boost for CLDC

How can you use the extra juice?
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