
Session 2133

Project Code-named
‘Monty’: A High-
Performance Java™ Virtual
Machine for Small Devices
Lars Bak
Kasper Verdich Lund
Jakob Roland Andersen
Demo by Kay Neuenhofen
Sun Microsystems, Inc.

Session 2133 2

Purpose of the Presentation

To present the design and
implementation of the next generation
high-performance Java™ virtual
machine for the CLDC platform

Session 2133 3

Learning Objectives

 As a result of this presentation, you will
be able to:
 Learn why speed will be important in

mobile devices
 Understand the key technologies behind

a high-performance VM for memory
constrained systems

 Anticipate upcoming performance
improvements for CLDC

Session 2133 4

Why Is Speed Important
in Mobile Devices?

 Bandwidth will approach 2Mbits/s

 Battery drain is crucial

 New compute-intensive application types
 E-commerce applications
 Banking applications
 System software
 Location-based services
 Multimedia applications
 3D games and gambling applications

Session 2133 5

Java™ Platform

JVMTM CardVMKVM

Optional
Packages

Java™ 2
Platform,

Enterprise
Edition

(J2EE™)

Java™ 2
Platform,
Standard
Edition

(J2SE™)
Java
Card
APIs

Optional
Packages

Personal
 Basis
Profile

RMI
 Opt. Pkg.

Foundation Profile

CDC

MIDP

CLDC

Java™ 2 Platform,
Micro Edition (J2ME™)

Personal
 Profile

JVMJVM KVM
Java
Card
VM

Wireless stack

Session 2133 6

Java™ Virtual Machine Challenge

 How do we design a high-performance Java
virtual machine that preserves battery life?
 Fast byte code execution
 Low memory footprint
 Flexible memory system

Session 2133 7

Why Should You Listen to Us?

 Lars Bak is a virtual machine architect at
Sun Microsystems, Inc.

 Lars Bak has 16 years of experience in
designing and implementing object-oriented
virtual machines:
 Java HotSpot™, StrongTalk, Self, and Beta

 Kasper Verdich Lund and Jakob Roland
Andersen are graduate students at Aarhus
University, Denmark

Session 2133 8

Presentation Outline

 The Project

 The Technology
 Compact object layout
 Fast synchronization
 Explicit type tags
 Dynamic compilation
 Unified memory management

 Benchmark results

 Demo on iPaq

Session 2133 9

Project Monty

 Focused on delivering the next generation
VM for the CLDC platform
 Fast execution
 Low memory footprint
 Long-lived VM
 From scratch design

 Goals
 10 times the speed of KVM 1.0.3
 Small footprint

Session 2133 10

Where Is Performance Important?

Mobile
Information

Device
Profile

JVM

Hardware

CLDC Libraries

Application Application

UI and Networking

Library integration

Byte code execution
Threading
Memory management

C
LD

C

Session 2133 11

Project Monty Technology Overview

 Clean 32-bit Java virtual machine
 Compliant with JLS and JVM™ specification
 Approaches Java™ technology desktop

performance
 Precise generation-based garbage collection
 No restrictions on:

 Number of loaded classes
 Size of object heap

 Target memory for the Java platform: 1Mb
 JVM + CLDC + MIDP + Applications

Session 2133 12

Project Monty Design Rules

 Keep it simple, stupid!

 Complexity results in
 Increased footprint
 Fragile implementation

 No premature optimizations

 Examples:
 Stack maps for activations
 Special cache for compiled code

Session 2133 13

Object Requirements in the
Java™ Programming Language

 Must carry reflective information
 java.lang.Object.getClass()

 Can be synchronization targets
 synchronized (x) { ... }

 Support immutable hash code
 java.lang.Object.hashCode()

 VM must provide default implementation

Session 2133 14

Compact Object Layout

 1 word object header (class pointer)

Instance Near Class

 no hash

 Near is copied if hash code is assigned

 no hash

145263

Instance Near Class

Session 2133 15

Compact Object Layout

 Only few objects get hash code assigned

 Saves a word for most objects
 Occupies less space
 Speeds up allocation

Session 2133 16

Object Sizes

 Byte sizes

 class Number { int value;}
 class Node {
 byte code;
 Node next;
 short index;
 boolean hasIndex;
 }

VM Classic KVM HotSpot CVM Monty

Number Class 16 16 16 12 8

Node Class 32 28 24 24 12

 Sample “Java classes”

Session 2133 17

 Object locking
Instance Near Class

no hash

Instance Near

Class
no hash

no hash

Stack

Object Synchronization

 Object unlocking

Instance Near Class

Stack

Instance Near

Class

Session 2133 18

Object Synchronization

 Applied block-structured locking as in
the Java HotSpot™ virtual machine

 No space is needed in the object

 Used the location of the near object
to indicate locking

Session 2133 19

Pointers on the Execution Stack

 Precise garbage collection requires the system
to locate all pointers on the stack

∀ active execution frames
 ∀ locals and expression stack elements
 is this an object pointer?

 Two approaches to solve this problem
 Abstract interpretation of bytecodes
 Carry explicit tags with bytecode execution

Session 2133 20

Explicit Type Tagging

 Value on stack has associated tag

 Frame

Reference type

Primitive type: float

3.14

Primitive type: int

17

Session 2133 21

Explicit Type Tagging

 Eliminates the need for stack maps
 KVM, 5-10% of reflective data

 J2SE™ uses abstract interpretation

 Makes scanning for references trivial

 Doubles the needed stack space!

Session 2133 22

Is a Dynamic Compiler Needed?

 On average, interpreted VM performance is
x10 slower than compiled VM performance

 x1 x3 x20

Monty

Interpreted Compiled
KVM CVM HotSpot

Session 2133 23

Compilation Strategy

 Compiled code occupies 4 to 5 times more
memory than byte codes

 The solution is adaptive compilation
 Only compile the methods that are hot spots
 Make the interpreter as fast as possible

 Fast and simple one-pass compiler

Session 2133 24

Adaptive Compilation Strategy

Interpreter

Profiler Compiler

Byte
Codes

Compiled
Code

Session 2133 25

Speeding Up the Interpreter

 Threaded assembly interpreter with static
dispatch table

 Interpreter is generated

 Each bytecode template is described as an
ordered set of instructions

 Optimized by brute force instruction reordering

Is this really necessary?

Session 2133 26

Resource Management

 Traditional approach
 Segment for user objects
 Segment for reflective data
 Segment for code cache

 … results in
 Fragmentation
 Complexity
 Static segmentation

Session 2133 27

Unified Resource Management

 The object heap contains all data
 Allocated objects
 Loaded classes
 VM internal data structures
 Compiled code

… everything is subject to garbage collection

Session 2133 28

Benefits of Unified Resource
Management

 No fragmentation at all

 Compiled code can be removed to give space
for application objects

 More robust, smaller, and simpler memory
management code

Session 2133 29

Compiled Code Removal

 Least recently used (LRU) algorithm used for
ranking compiled code for removal

 Garbage collector determines how much code
should be removed and removes the least
recently used compiled code

 Deoptimization is applied to frames described
by compiled code to be removed

Session 2133 30

Battery Life and Cache Behavior

 Faster execution consumes less power

 Cache friendly design
 Small objects
 Generational garbage collector, touches

memory locally
 Compiled code in object heap, fully

relocatable/flushable

Session 2133 31

Benchmarks Results

 Selected Benchmarks
 Richards Simulates dispatch kernel of an operating system

 DeltaBlue Solves one-way constraint systems

 Pentominoes Mathematical puzzle benchmark

 KXML XML parser benchmark

 BenchPress Stanford integer benchmarks

 Platforms
 iPaq: 206Mhz StrongARM/WinCE
 PC: 1.4Ghz P4/Windows2000

Session 2133 32

KVM 1.0.3 Monty Ratio

15.5

45.2

46.3

170.1

361.7

1.6

5.6

5.5

11.4

32.6

9.9

8.0

8.3

14.9

11.1

10.0Geomean

 Benchmark Results

KXML

Richards

DeltaBlue

Pentominoes

Benchpress

* All numbers are seconds

Strong ARM/Win x86/Win32

KVM 1.0.3 Monty Ratio

166.1

340.8

606.1

938.6

1841.2

32.6

33.6

98.4

117.2

205.6

5.1

10.2

6.2

8.0

9.0

7.1Geomean

Session 2133

Session 2133 34

Conclusion

 Project Monty is a new high-performance
Java virtual machine for the JavaTM platform
for CLDC with:
 Compact object layout
 Fast synchronization
 Explicit type tags
 Dynamic compilation
 Unified memory management

 It provides high performance and small
memory footprint

Session 2133 35

If You Only Remember One Thing…

Anticipate an order of magnitude
performance boost for CLDC

How can you use the extra juice?

Session 2133

Session 2133

