Sun's 2002 Worldwide Java Developer Conferenc

Parsing XML In the Java™
2 Platform, Micro Edition
(J2ME™)

XML in a MIDP Environment

Jonathan Knudsen
Technical Writer
Sun Microsystems, Inc.



Overall Presentation Goal

Learn how to parse XML documents
in a MIDP environment.

JavaOne



Learning Objectives

As a result of this presentation, you will:

Understand architectural issues involved
In selecting XML as a data transport

Learn about the current palette of small,
Open source parsers

Understand the issues of making an
application that is small and performs
well on a MIDP device

JavaOne



Speaker’s Qualifications

Jonathan Knudsen is a Technical Writer for
Sun Microsystems’ Wireless Developer site

http://wireless.java.sun.com/
http://jonathanknudsen.com/

Books: Wireless Java™ (Apress), Learning
Java™ (O’Reilly), Java 2D Graphics (O’Reilly),
Java™ Cryptography (O’Reilly)

Articles: JavaWorld™, O’Reilly Network, EXE

Speaking: SD West 2001, O’Reilly Java™
Conference 2001 & 2000, ICJD 2001

JavaOne



Presentation Agenda

Multi-tier System Architecture
Parser Roundup
Performance Considerations

Source Code Demonstration

JavaOne



Multi-tier System
Architecture




Three Tiers, This Month

Where does MIDP fit? HTTP .
WML |
Database Pr=S G
| ' Standalonel
Client
HTTP,
RMI/IIOP,

JNDI




Everything Is Small in MIDP

Network setup is slow
Data rates are slow
Processor is slow

Memory is scarce

JavaOne



MIDP Clients Need Server Support

No HTML browsers here
No complex protocols: no JNDI, no RMI

Server steps up to the plate

Mashes data into formats the client
understands

Handles complex protocols for the client

JavaOne



Three Tiers With MIDP

This is just one possibility HTTP

Database Ko

XML el
>

Server 1

HTTP,
RMI/IIOP,
JNDI

1
i

Standalone
Client




Parser Roundup




Don’t Supersize Me

Code size is constrained

JAR size maximum is about 50 kB
(varies by carrier, manufacturer)

Available memory is generally small

Open Source is attractive
Customizable in size and features
Fixable

JavaOne



Parser Types

Model

Creates an object representation of a document
in memory (e.g., DOM)

Push

Parses through an entire document, spitting out
events to registered listeners (e.g., SAX)

Pull

Parses a little at a time, returning a single
element or tag

JavaOne



The Small Parser Lineup

Name License Size MIDP Type
ASXMLP 011230 ~BSD 6 kB vyes push
kXML 1.2 EPL 12 kB vyes pull
MinML 1.7 BSD 14 kB no push
TinyXML 0.7 GPL 12kB no model
Xparse-d 1.1 GPL 6 kB vyes model

JavaOne



Links

Parser URL

ASXMLP http://www.alsutton.com/software/xmlparser/

kXML http://kxml.enhydra.org/

MinML http://www.wilson.co.uk/xml/minml.htm

NanoXML http://nanoxml.sourceforge.net/

TinyXML http://www.gibaradunn.srac.org/tiny/

Xparse-J http://www.webreference.com/XML/tools/xparse-j.html
Parser License URL

ASXMLP http://www.alsutton.com/software/licence.html

kXML http://kxml.enhydra.org/software/license/

MinML http://www.opensource.org/licenses/bsd-license.html
NanoXML http://www.opensource.org/licenses/zlib-license.html
TinyXML http://www.gibaradunn.srac.org/tiny/gpl.txt

Xparse-J http://www.webreference.com/xml/tools/license.html

JavaOne



Near Misses

NanoXML 2.2 Lite
6 kB
http://nanoxml.sourceforge.net/

XMLtp 1.7
25 kB
http://members.tripod.de/xmlitp/

JavaOne



Porting Techniques

Remove features you don’t need

Supply missing classes
java.* naming is questionable

Dummy classes or real implementations

Rewrite unavailable functionality

JavaOne



Performance
Considerations

JavaOne



Overview

Not specific to XML applications
An XML parser may push you to the wall

Runtime performance
Connection setup: number of documents
Connection speed: document size

User perception

Deployment
Code size

JavaOne



Document Design

Connection setup time is long
Make each document count
Perhaps aggregate documents on the server

Connection speed is slow
Only send essential information
Make documents as short as possible

JavaOne



Threading

Network activity has to go in a separate thread
Don’t lock up the application’s interface

|deally, allow the user to do other work while
network activity occurs in the background

Parsing should likely occur in a separate
thread

Depends on your parser
Depends on your document

JavaOne



Code Size

Carriers or devices may impose restrictions
on code size

Nextel/Motorola: 50 kB (soft)
Devices don’t have much storage space
Wireless bandwidth is small

Code size refers to the size of the MIDlet
suite JAR

.Class files
Resource files (images, icons, others)

Use an obfuscator to reduce class
file size

JavaOne



What Does an Obfuscator Do?

Depends on the product: read the
documentation

Original purpose was to render code
Impervious to decompilation

Some possibilities:

Removes unused classes

Removes unused methods and variables
Renames classes, packages and variables
Adds illegal stuff that confuses decompilers

JavaOne



Using an Obfuscator

The obfuscator may not play nicely with
your development environment

Build without obfuscation:
Compile » Preverify » JAR

Build with obfuscation:
Compile » Obfuscate » Preverify » JAR

Another possibility:

Compile » Preverify » JAR4Obfuscate »
Preverify » JAR

JavaOne



Some Free Stuff

JAX
nttp://www.alphaworks.ibm.com/tech/JAX/
Removes unused classes and interfaces
Prunes unused methods and variables
Shortens internal method and field names

Retroguard
http://www.retrologic.com/retroguard-main.htmi
Renames class, method, and field names

JavaOne



=T
[=

Demo

JavaOne



Summary

Three-tier application architecture

May include XML and transformations for
different client types

May make sense to send XML to a MIDP client

Various small parsers exist
Differentiated by execution model, license, size
Optimizations
Document size, network connections
Code size

JavaOne



If You Only Remember One Thing...

All of this is online.

http://wireless.java.sun.com/midp/articles/parsingxmi/

JavaOne



Sun's 2002 Worldwide Java Developer Conference’




